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ABSTRACT In this paper a metamaterial-inspired T-matching network is directly imbedded inside the
feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF wireless
transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement
of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The
matching network is first theoretically modelled to gain insight of its limitations. It was then implemented
directly in the 50-€2 feedline to a standard circular patch antenna, which is an unconventional methodology.
The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi
improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,
and this is achieved over a significantly wider frequency range by a factor of approximately twenty.
Moreover, there is good correlation between the theoretical model, method of moments simulation, and
the measurement results.

INDEX TERMS T-matching circuit, microstrip antenna, metamaterial, transmission-line, impedance

matching.
I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Microstrip antennas have become popular for use in many
approving it for publication was Raghvendra Kumar Chaudhary . wireless systems due to their planar profile, ease of
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fabrication and low manufacturing cost. Moreover, such
antennas allow ease of integration with RF circuit compo-
nents [1]. As aresult, the use of planar based antenna configu-
rations enables the integration of communication capabilities
in a wide range of applications in the context of Industry
4.0 technologies such as Internet of Things (IoT) or vehic-
ular communications, among others. This has been made
possible by the design of flexible and compact transceivers
especially in the sub-6 GHz band for wireless sensor networks
(WSN), wireless local area networks (WLAN), public land
mobile networks (PLMN) and 5G communication systems.
The vast number of applications which make use of wireless
communication systems is leading to the need of employing
different wireless systems in a cooperative way (i.e., Hetero-
geneous Network operation), as well as the increase in the
allocated channel bandwidth. Optimal performance of these
wireless systems is given, among other factors, by adequate
transceiver system operation. In relation with antenna sub-
systems, impedance matching is one of the main factors to
consider in order to reduce reflection-coefficient and hence,
increase overall coverage range and minimize overall energy
consumption [2]-[7].

The input impedance of an antenna is typically different
from the impedance of the system to which it is connected,
requiring impedance matching stages in order to minimize
losses. In many cases, it is possible to realize impedance
matching by modifying the antenna geometry [8]. However,
the main limitation of conventional microstrip antennas is
their narrow impedance bandwidth (typically less than 3%
for reflection-coefficient better than —10 dB). In addition,
electrically thin edge-fed microstrip patch antennas usually
suffer from high resonant input impedance, typically in a
range of 300-500 €2, which is challenging to directly match
with a 50-Q2 microstrip feedline. To maximize power transfer
to and from the antenna, and therefore enhance its radiation
efficiency different matching approaches have been investi-
gated previously [9]-[11].

In many wireless applications the matching circuit is not
always designed for optimum power transfer between the
antenna and transceiver, but consideration is given to max-
imizing the power handling capability, reducing non-linear
distortion and impedance bandwidth. In [12] the matching
and impedance bandwidth enhancement is achieved by stack-
ing the radiation patch with a parasitic element. With this
technique bandwidth extension of ~19% is possible. In [13],
the feeding scheme employed provides an impedance band-
width of ~28% however the design of the feeding scheme
is complex to implement in practice, which has an impact in
fabrication cost. In [14], a capacitively coupled probe is used
to excite a nonradiative mode close to the antenna’s dominant
radiation mode to realize a bandwidth of ~28%. In [15]
multiple resonant modes are simultaneously excited to extend
the bandwidth of a patch antenna by about 32%, however this
technique is shown to adversely affect the antenna’s broadside
radiation pattern. In [16] the bandwidth is improved by 15.2%
by exciting dual modes.
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FIGURE 1. (a) Equivalent circuit of L-matching network, and
(b) equivalent circuit of T-matching network.

In this paper a simple and effective metamaterial-inspired
wideband matching technique is proposed to enhance the
radiation gain and efficiency performance of a planar antenna.
The proposed matching technique uses a 7 -matching network
consisting of series capacitor, shunt inductor, series capaci-
tor configuration to realize metamaterial characteristics. The
matching network is directly embedded inside the feedline of
the antenna, which is an unconventional methodology. The
technique is first theoretically characterized to gain an under-
standing of its effectiveness and is then validated through
practical design and measurement.

Il. IMPEDANCE MATCHED ANTENNA

The three types of lumped element matching networks that
are commonly used are based on the L-network, 7 -network,
and T-network. The advantage of L-network is that it only has
two reactive components whose values can be tuned easily for
a given load impedance. However, its impedance matching
capability is limited. On the other hand, the 77 - or T-networks
have the capability of providing superior impedance match-
ing flexibility than the L-network because they have three
reactive components that can be tuned.

Fig.1 shows equivalent circuit of a typical L- and
T-matching network. The reactive components can be
either lumped elements or realized using transmission-lines
based on microstrip integrated circuit technology. Capac-
itors can be realized using interdigital or low impedance
microstrip-lines and inductors can be realized using high
impedance microstrip-lines. Reactive components realized
using microstrip-lines can however result in a larger circuit
size.

The reactive components in the network control the
reflection-coefficient between the antenna and matching net-
work. In practice the capacitance values are adjusted or tuned
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FIGURE 2. Impedance Z;, of the L-matching network in Fig.1.

until the reflection-coefficient of the antenna is lower than
a specified threshold value, which is typically —10 dB, to
(i) reduce system complexity, (ii) maintain the matching per-
formance, and (iii) maximize RF power to the antenna.

To determine the effect of LC reactive components on
the input impedance Z;, of the L-network in Fig.1(a) the
network is first represented in a simplified form in Fig.2,
where the impedance Z; accounts for inductance L and the
load impedance Z; = Rp+ jXi..

1 .
—=(B—JA
Zi __ecBA =R+ X (D
A+j (B - ﬁ)
where the real and imaginary impedances are:
R=A / [(a)AC)2 + (wBC — 1)2] )
X = [B —wC <A2 + Bz)] / [(a)AC)Z + (wBC — 1)2]
3)
By dividing Eqn.(2) by (3) it can be shown that
wC = (BR — AX) / R <A2 n Bz) )

Substituting Eqn. (4) into (2) and (3), it can be shown that

[R - (A2 +Bz) /2A]2 4+ X2 = [(A2 —i—Bz) /2,4]2 (5)

where A = Ry, and B = oL + X1,

Eqn.(5) describes a circle whose center and radius, i.e.
the impedance position, is a function of the inductive and
capacitive reactance and the load impedance. This equation
reveals that the center and radius of the impedance circle
can be changed by tweaking either one or both inductance
and capacitance in the circuit to effect matching. Unlike
the L-network a T-network can provide superior impedance
matching because it has three reactive components that can be
tuned. In the next section a T-matching circuit is explored in
the reduction of mismatch between the antenna and RF front-
end circuit.

Ill. T-COMPENSATION CIRCUIT

In a real-world scenario, the matching network is con-
nected to the antenna using a transmission-line. The proposed
T-matching network in Fig.3 comprises an arrangement of
series capacitor, shunt inductor, series capacitor. Assuming
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FIGURE 3. Equivalent circuit model of the T-matching network inserted
between the source and the antenna.

C1 = C; = C/2 it can be shown that the propagation S, the
phase velocity v,, and group velocity v, are given by [17]

1
- <0 6
B w«/ﬁ< (6)
vngz—a)z IC <0 %)
-1
vg=<%) = +w’VLC >0 (8)

Eqgn. (7) and (8) show that phase and group veloci-
ties are antiparallel, which is characteristic of left-handed
metamaterial [17].

The impedance Z, seen by the signal from the transmitter
is a combination of the impedance Z; of the transmission-
line of length / and the impedance of the antenna load
Z; . Hence, to optimize power transfer between the trans-
mitter to the antenna, we need to conjugately impedance
match the impedance Z;, looking into the matching circuit
to Zy.

The impedance Z, looking into the antenna load of
impedance Z; via the transmission-line of length [ of
impedance Z; is given by

Zo=7 [—Z”".Zl ranp! ] ©)
Z1 + jZptanBl
Then
L&+ jolLz,
Zy=—"——— (10)
zo+j (L)

The input impedance Z;, of the T-compensation circuit,
shown in Fig.3, can be represented as Z;;, = R;, + jXi,, where
R;, and Xj;, can be determined to be given by

i (L _oy) exl [y 4 (@’LCo-1
L(&—9)+et 3+ ()

Rin = - : > (11
() + [+ (2]
ot ()]
G+ [+ (5]
(12)
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FIGURE 4. T-matching circuit.

where

x=277 (1 + tanzﬁl)
y = tan® Bl <Z12 - ZLZ)
t = Z{ + Z}tan*Bl

Reflection-coefficient (I';,) at the input port of the antenna
is a measure of how much RF power is reflected from the
antenna. This parameter therefore determines how much RF
power is radiated by the antenna. It also has an impact on
the radiation efficiency of the antenna which is calculated in
terms of the ratio of the radiated power to the power delivered
to the load. The reflection-coefficient looking at the antenna
via the T-compensation circuit is given by:

_ Rizn +X1%1 — 23 —JRin
(Rin +Z0)* + X},
where R;, and Xj, are defined by Eqns. (11) and (12).
Eqn.(13) indicates that the center frequency and bandwidth of
the matching system can be controlled by simply using appro-
priate values of the capacitances C| and C, and inductance L.

For a T-matching circuit the relationship between bandwidth
and reflection-coefficient is derived in [18] to be given by

b |Fin|

1- |Fin|

13)

in

BW =~ (14)
Eqgn.(14) indicates that by appropriately selecting R;, and X,
the bandwidth of the matching network can be optimized.

The basic T-match circuit, shown in Fig.4, allows to set
impedance transformation ratio and Q-factor/matching band-
width of circuit independently.

01=2 a0 (1)
1 = — an = —

Rin R
The T-matching circuit can be decomposed to two L-match
circuits, as shown in Fig.5. By series-to-parallel transforma-
tion as shown in From Fig.6 [19], [20],

01 = M and 0y = (6)
= — an = —
=5, 2= %,
2 1
Rinp = Ri =Rin (14 0) and Ry = Ry =Ry ( 1+ —
O
(17)
1 1
Xip=X (14— ) andXo, =X, [ 14+ — (18)
O 0
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FIGURE 5. T-matching circuit decomposed to two L-match circuits.
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FIGURE 6. T-matching after series to parallel transformation.

Rearranging Eqn.(17)

R[ RI
1=/ R and O = | R, (19)

The total Q of the circuit is given by

Re 4 JR_ (20)
Rin RL

At resonant frequency, |X4| = |X1,p| and |Xg| = |X2,p|.

Q=01+ =

Therefore, X4 = X; (1 + Ql% andXg =X (1 + QL%

The above relationships allow the design of the prelim-
inary 7-matching circuit. The design procedure involves:
(1) finding R; using Eqn.(20) from given Rz, R;, and Q;
(ii) calculating Q; and Q5 using Eqn.(19); (iii) finding X and
X5 using Eqn.(15), and (iv) finding X4 and Xp using Eqn.(16).

The expression for the gain of the circular patch antenna
can be determined using [21]

G=nD (21)

where the efficiency 7 is given by
i @)

n= Pr

where P, is the radiated power into space, and Pr is the total
power delivered to the antenna. This expression indicates that
the efficiency of the antenna is independent of frequency. The
directivity of the antenna D is given by [22]

B IRe (EgH} — EgH) lo—0

D= 23
Pr/471r2 3)
Taking Eqn.(23) and (22), Eqn.(21) can be written as
4rr? 1
Ge = = _Re (EgH}, — EgH) lo—o
Pr 2
4rr? 1 ( 5 5
= 2 (EeP+1EP) b %)
Pr 27, ¢

where 1, = 1207 Q2 is the free-space impedance.
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The far-field electric field components are given by [22]

Vak(, e kot

2r
—Ju_1 (koasing)] (25)

Vak, e Jkor
E — 1
¢ =J 2r r

— Jn—1 (koasinf)] (26)

Ey =J" cosnd x [Jn+1 (koasing)

cos@sinn@ x [J,4+1 (koasind)

where V = hE,J, (k,a), h is the thickness of the substrate, a
is effective radius of the circular patch, J,, (ka) is the Bessel
function of order n and k, = w/c.

From Eqn.(25) and (26), for n = 1, we obtain

Vak,\?
(1o 1+ 1Eg?) lomo = ( Zr”) @7)

The expression for effective gain given by Eqn.(24) then
becomes

G = X (ak,)* (28)
- 21, ’ Pr
The resonant resistance R can be calculated using
V2
R=— 29
2Pr 29)
Then from Eqs. (28) and (29),
2
G= ( 4, r) (30)
Mo c

where f; is the resonant frequency of the dominant mode
(TM11). Eqn.(30) indicates the gain of the circular patch
antenna is affected by the power delivered to it.

Assuming C; = C, = C/2 in Fig.3, the ABCD matrix of
the 7-matching network is given by [23]

3 A ] e

This matrix can be simplified to

A Bl _[1+XY X (1+X YL)—i-)_(C @2
C D| YL 1+X.Y
where X, = —j2/wCZ, and Y, = —jZ, [wL.
The insertion loss is defined as [23]
P
IL = 10log—2~ (33)

La

where Ppj; is power delivered to the load before inserting
the T-matching network, and Pp, is power delivered to the
load after inserting the network. For the two-port 7-matching
network in Fig.3 that is symmetrical and reciprocal, the fol-
lowing conditions apply [23]

1.LA=D 2.AD—-BC =0

3.A & D are real 4. B = C are imaginary

Hence the insertion loss in terms of ABCD matrix is given
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FIGURE 7. (a) Equivalent circuit model of feedline and patch antenna,
and (b) circular patch antenna loaded with metamaterial matching
network using Keysight Technologies’ Advance Design System (ADS).
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FIGURE 8. Theoretical, simulated and measured reflection-coefficient
response of the antenna without and with the metamaterial-inspired
matching network. Black diamond studded line is prediction by theory,
dotted lines indicate the simulated result, and solid lines represent the
measured result.
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FIGURE 9. Dispersion diagram of the CRLH-TL feedline antenna.

Therefore, the insertion loss introduced by inserting the two-
port T-matching network can be shown to be given by

IL = 10l0g | 14| = (! ! z 7 (35)
= 0} _— —_—
g wC\?LC ~ 7,) " 2L
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TABLE 1. Antenna’s geometrical parameters.

Parameters Size (mm)
L 54
w 29
R 11.2
Ly 28
Wy 2.47
Lg 2.3
|74 0.5
Radius of shunt via-hole 0.5
Thickness of FR-4 substrate 1.6
0
5
g
= L=1.1586 nH
5 -10
8
s
S -15 —
3 -20 —
% =1.545 pF
z -
25 =
1 | c1=05462 pF C=1515pF
1 C=05212pF
'30 IIII]IIII]IIII]1I]TITI]I]ITII
3.0 35 4.0 4.5 5.0 5.5 6.0

Freq. (GHz)

FIGURE 10. Effect on the reflection-coefficient response by the
T-matching network parameters.

L

FIGURE 11. Photograph of the microstrip antenna incorporating the
T-matching circuit.

The gain of the T-matching network in Eqn.(30) is there-
fore affected by the insertion loss which is defined in Eqn.(35)

In the next section it is shown that with proper selection
of Cq, Ca, and L a high gain and high radiation efficiency
can be obtained over a wide frequency band. However, this
does introduce some complexity in the design as each variable
capacitor needs to be controlled separately. Nevertheless,
the proposed technique is amenable to electronic tuning
hence allowing controllable matching capability according to
system requirements.

IV. DESIGN EXAMPLE USING METAMATERIAL INSPIRED
T-MATCHING NETWORK

A standard circular microstrip antenna was designed at 4 GHz
using FR-4 lossy substrate with a relative permittivity of 4.3,
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FIGURE 12. Surface current distribution over the antenna at 4 GHz,
(a) without the T-matching circuit, and (b) with the T-matching circuit.

thickness of 1.6 mm, and tan § of 0.025. The radius of the
circular patch is 11.2 mm. The patch antenna is excited using
a microstrip feedline. Fig.7(a) shows the equivalent circuit
model of the distributed transmission-line feed and the patch
antenna. The LC component values of the feedline were
chosen such that its lowpass filter response was well above
the resonant frequency of the antenna so that it had no impact
on the antenna’s performance. The reflection-coefficient of
the antenna predicted by theory and simulation in Fig.8 show
it resonates at 4 GHz with a high-Q and hence has a narrow
impedance bandwidth. The measured results show a band-
width of 0.1 GHz for S;; < —10 dB with an optimum
reflection-coefficient value of —12 dB at 4 GHz.

Microstrip feedline length determines the input impedance
of the antenna. Hence, a 7T-matching circuit is directly
embedded in the feedline, which is an unconventional
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FIGURE 13. E-field distribution over the antenna at 4 GHz, (a) without the
T-matching circuit, and (b) with the T-matching circuit.

technique. The matching circuit used here is a metama-
terial structure that exhibits left-handed properties of neg-
ative refractive index when interacts with electromagnetic
signals [17]. The metamaterial characteristics are realized
here with a T-network composed of series capacitance, shunt
inductance, and series capacitance circuit, as per schematic
diagram in Fig.7(b). The dispersion diagram of the antenna
with the matching circuit in Fig.9 show the phase variation
is virtually zero at 4 GHz. The dispersion diagram was com-
puted using CST Microwave Studio which is 3D electromag-
netic simulation tool. The antenna structure was modelled in
CST and its boundary conditions, which defines the radiating
environment of the model, were set appropriately so that the
simulator effectively saw open space around the antenna. The
Eigenmode Solver in CST was used to obtain the dispersion
diagram as described in [24].

The reflection-coefficient response in Fig.8 by theory, sim-
ulation, and measurement show that with the inclusion of
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FIGURE 14. Measured radiation gain and efficiency response with and
without the embedded T-matching circuit.

the metamaterial matching network the antenna’s impedance
bandwidth is significantly improved. It is evident from
Fig.8 that magnitude of reactive components constituting
the T-matching circuit have a great influence on the
Q-factor of the antenna. The results of the parametric
study in Fig.10 show how the parameters constituting the
T-matching circuit effect the reflection-coefficient response.
The optimum values are: C1 = 0.5462 pF, C» = 1.545 pF and
L = 1.1586 nH. The fabricated antenna with the match-
ing network is shown in Fig.11. Its measured reflection-
coefficient in Fig.8 is better than —18 dB at 4 GHz. The
magnitude of the geometrical parameters corresponding to
the lumped element values, which are annotated in Fig.11,
are given in Table 1.

Simulated current distribution without and with the
T-matching circuit at 4 GHz is shown in Fig.12. The size
and color of the arrow indicate the magnitude and intensity of
the current. The rainbow-colored band defines the magnitude
of the intensity associated with the color of the arrows. It is
evident that the current distribution over the antenna with
the T-matching circuit results in current concentration at the
shorting pin of the matching circuit in the feedline. Despite
this the magnitude of the current intensity associated with the
colored arrows over the two antennas, i.e., without and with
the matching network, as specified in the colored bands show
the current intensity is comparable. The E-field distribution
over the antenna without and with the 7-matching circuit
is shown in Fig.13. It is observed from this figure that the
E-field intensity is strongest at the top and bottom portions of
the patch however the E-field intensity is unaffected with the
inclusion of the T-matching circuit.

The measured radiation gain and efficiency performance
without and with the 7-matching circuit are shown in Fig.14.
It is evident from these results that there is substantial
improvement in the radiation gain and efficiency by employ-
ing the T-matching circuit. This is because most of the RF
power is delivered to the antenna from the source. Measured
results show without the matching circuit the antenna has
a peak gain and efficiency of 5.5 dBi and 59.8%, respec-
tively, at 4 GHz. However, with the matching circuit the
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FIGURE 15. The normalized measured radiation pattern in the E-plane
and H-plane at 4 GHz, (a) without no matching circuit, and (b) with the
embedded T-matching circuit.

peak gain and peak efficiency are 8.2 dBi and 71.8%,
respectively. Moreover, the gain and efficiency extend over
a significantly larger bandwidth. The gain >6 dBi extend
from 3.35-5.25 GHz, and the efficiency >60% extend from
3.25-5.1GHz.

The radiation pattern in the E- and H-planes and the cross-
polarization without and with the 7-matching network at
4 GHz are shown in Fig. 15. The change in the radiation
pattern with the T -matching network is marginal and, in both
cases, the cross-polarization is less than —30 dB.

Table 2 compares the present technique with some
recently reported antenna bandwidth enhancement tech-
niques. Impedance bandwidth enhancement of a microstrip
patch antenna in [25] and [26] is achieved by loading the
antenna with shorting pins and slots. In [27] the bandwidth
is enhanced by simply curving the patch antenna in a partial
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TABLE 2. Comparison of the proposed matching technique of recently

reported techniques.

Fractional Peak Peak
Ref. Technology Antenna size bandwidth Gain Eff.
(%) (dBi) | (%)
25 | SIOMEPIS& ) 142, %1272, x0.009%, 10 118 | 94
26 | SIOMNEPIS& ) ), x1.472, x0.0450, | 88&49 | 6&s | &
27 | Microstrip 0.584, X0.584, x0.0164, 9 6.28 83.5
One-dimensional
EM bandgap
28 | ground structures | 0.214, x0.321, xX0.0094, 325 7 95
& two-stage beam
directors
29 | Differential 0.8, X0.81, X0.0131, 18.7 85 | 80
microstrip
30 | Magneto-clectric | ) 0,972, x0.174, 282 9.0 .
dipole
31 |Shortingpin& 1y 73, 1172, %0055, | 322 65 | 93
Aperture-fed with
32 | shorting pins 1.631, x0.821, x0.0174, 152 6.8 -
This | Metamaterial
work | feedline 0.674, x0.382, x0.0214, 52.5 8.2 71.8

cylindrical shape. In [28] one-dimensional electromagnetic
bandgap ground structures and two-stage beam directors
are employed in an inverted-L antenna topology to enhance
the bandwidth. Even though the radiation efficiency of the
proposed antenna is relatively low compared with the other
techniques it is evident from the table that the proposed
technique has a comparable gain and exhibits a substantially
larger impedance bandwidth. Moreover, its size is relatively
small with the exception of [28].

V. CONCLUSION

Impedance bandwidth of an antenna is determined by the
matching conditions between the RF transceiver front-end
and the antenna. We have demonstrated the effectiveness
of employing an embedded metamaterial-based T -matching
circuit directly implemented inside the feedline to enhance
the antenna’s impedance bandwidth. The measured results
confirm significant improvement in the antenna’s impedance
bandwidth over its operating frequency range. Moreover,
with the proposed technique improvement was observed in
the radiation gain and efficiency too.
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