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Abstract1

Although AI systems which support composition using predictive text are well established there2

are no analogous technologies for mechanical design. Motivated by the vision of a predictive system,3

that learns from previous designs and can interactively provide a list of established feature alternatives4

to the designer as a design progresses, this paper describes the theory, implementation and assessment5

of an intelligent system that learns from a family of previous designs and generates inferences using6

a form of spatial statistics.7

The formalism presented, models 3D design activity as a ‘Marked Point Process’ that enables8

the probability of specific features being added at particular locations to be calculated. Because the9

resulting probabilities are updated every time a new feature is added the predictions will become10

more accurate as a design develops. This approach allows the cursor position on a CAD model to11

implicitly define a spatial focus for every query made to the statistical model. The authors describe12

the mathematics underlying a statistical model that amalgamates the frequency of occurrence of the13

features in the existing designs of a product family.14

Having established the theoretical foundations of the work, a generic six step implementation15

process is described. This process is then illustrated for circular hole features using a statistical16

model generated from a dataset of hydraulic valves. The paper describes how the positions of each17

design’s extracted hole features can be homogenized through rotation and scaling. Results suggest18

that within generic part families (i.e. designs with common structure) a marked point process can19

be effective at predicting incremental steps in the development of new designs.20

Keywords: Feature based Design, Predictive Design, Marked Point Process21
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1 Introduction22

It has been argued that only 20% of design information is reused despite 90% of all design activities being23

based on the variants of existing designs [1], and that on average only 28% of design information is reused24

within manufacturing applications [2]. Design can be considered as a sequential decision-making process,25

where the current state of a design evolves through a series of design choices. A system is required where26

design features may be suggested to the designer for effective reuse, and these design reuse procedures27

can be learned from historical data [3, 4].28

This paper introduces the underpinning mathematics required for implementation of a new generation29

of user interfaces that automatically identifies appropriate characteristics of previous designs for reuse30

based on a designer’s real time activity. As a design evolves the system generates predictions of the31

features which might be incorporated, and are informed by both previous work and the new, ongoing32

design. In order to identify the most relevant features, and avoid presenting the user with an overwhelming33

number of suggestions, the work reported exploits the location of information (i.e. features and mouse34

pointer) on a 3D Computer Aided Design (CAD) model so that predictions can be appropriate to specific35

positions on an engineering component. The system described assumes a single engineer developing a36

design by carrying out a series of operations on a CAD system. The system does not dictate any order37

of operations and allows the engineer’s focus to move around the component.38

Designs seldom start with a blank sheet of paper, but are informed by past experiences with reports39

of as much as 75% of design activity comprising the re-use of existing knowledge [5]. In the context of40

designing industrial parts such activities comprise re-using, configuring, and assembling existing compo-41

nents. A key contributing factor to companies not performing projects on time and budget is the lack of42

knowledge re-use, which leads to frequent ‘reinventing the wheel’ rather than finding and using already43

known solutions [6].44

Motivated by these observations this paper proposes a different form of design representation that can45

combine many design variations into a single probabilistic model that facilitates the reuse of previously46

used features during an interactive process that leads to the instantiation of a new design. By leveraging47

the available information, a probabilistic CAD system would prompt the engineers with fragments (i.e.48

features) of previously designed components to extend the current CAD design. Although reuse of49

common features in the design of many industrial products is desirable there could be cases where such50

a practice inhibits innovation. Aware of this the authors’ aim is not to automate but support with51

suggestions that the engineer is free to ignore. For this we propose modeling the design process as52

a Marked Point Process (MPP) to create a formal framework that can assess the association between53

designs. Similar approaches have been used successfully in neuroanatomy to analyze brain scan images54

through voxel based morphometry [7], as well a feature recognition in image analysis.55

For our application, points are the coordinate location corresponding to where a design feature has56
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been placed and marks refer to the feature chosen. MPP is a form of spatial statistics, metrics based57

on statistical tools that are used to characterize the distribution of events across space [8], and are58

widely used across a number of application areas for example the distribution of trees in forests to59

stars in the sky. Through this lens we view the behavior of engineers as a stochastic process, updating60

throughout the design process on decisions made to place features in specific locations and thereby61

supporting probabilistic measures for subsequent choices. The statistical inference can be supported62

through historical data, viewing past designs as realizations from such a stochastic process. Specifically,63

we develop a decision support system through a Bayesian methodology, where we start with a prior64

distribution to assign a probabilistic measure on the features and location to be chosen by the engineer.65

Following each choice, the prior distribution is updated to a posterior distribution based on this new data66

and thereby making full use of all the information available. So as more design choices are made, the67

model will be able to discriminate more effectively between historical designs based on similarity.68

Given the above context and motivation, the authors defined the following goals for the work:69

Aim70

To define a computational framework that can support an interactive design process with suggestions of71

features based on three inputs: a knowledge of existing designs; the state of an emerging design and a72

location on the surface of the emerging design.73

Objectives74

1. Establish a method of homogenizing the orientation and dimensions of a collection of designs be-75

longing to a product family.76

2. Develop a statistical function that represents the probability of a particular feature occurring at a77

particular location, on the surface of a design for a member of the product family.78

3. Create a prototype implementation that can support an interactive design cycle which updates79

the inferred probability of specific features occurring at given location as the design of a part is80

modified.81

4. Assess the accuracy of the feature predictions82

5. Identify any inherent limitations or weakness in the approach83

The rest of this paper is structured as follows: In Section 2 we provide a brief review of both predictive84

design systems and relevant MPP literature to position the contribution of this work. In Section 3 we85

present a generic overview of our process to support design development and in Section 4 we outline the86

details of the mathematical model that underpins the process. We explore key characteristics of design87
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activities and data to inform our modeling choices, and we provide a generic modeling and decision88

support framework. In Section 5, we evaluate the proposed modeling framework through a case study.89

Finally, in Section 6 we reflect on the future direction of research in this area.90

2 Literature Review91

Systems for predictive design have to combine assessment of historical data with statistical methods so92

that human users can easily choose, or ignore, suggestions that enhances the creative process. SMS text93

messaging software, used by mobile phones, illustrate both the potential and challenges of engineering94

useful predictive systems. However, while text prediction seek to identify patterns in a linear series of95

symbols with a simple (i.e. keypad) interface, anticipating the intention of product designer requires96

analysis of 3D information that has no canonical ordering (i.e. unlike a sentence of text, that reads from97

left to right, a designer can essential edit shapes in any sequence). Despite these inherent difficulties98

research into computational technologies that could enable predictive design systems has been reported99

for more than a decade.100

An early example is [9] who developed the “InspireMe” interface which allowed a user to ‘place’ and101

‘glue’ one of ten suggestions, proposed in response to a query shape, and then request new suggestions102

for the resulting composite shape. The placed shape can be translated, rotated, and scaled to match the103

query shape. The suggestions that are not useful can be removed and replaced with new suggestions.104

[9] used a multi-dimensional histogram-based signature to encode shape’s global spatial structure and its105

local detail to identify suggestions for a given shape query.106

Later work recognized that there was potential to improve the accuracy of suggestions by combining107

the frequency of occurrence with shape parameter values. For example, [10] demonstrated an interface for108

an assembly-based modeling tool. The interface presents the user with semantical labeled tabs that can109

be expanded hierarchically to show component sub-categories. The user can select a component and drag110

it onto the current model. A probabilistic Bayesian network is then used to dynamically update both the111

proposed component categories and the components based on their semantic and stylistic compatibility112

with the current modeling state. The interface estimates whether the new component should have a113

symmetric counterpart and computes the symmetry plane. Based on the modeling requirements, the114

selected model can be moved to a position, rotated, scaled, duplicated, and glued.115

While [9] focused on the design of assemblies of predefined component parts, [11] reported a predictive116

system for component shape synthesis. Their approach provided an interactive platform for the user to117

constrain shape synthesis based on high-level specifications (i.e. specific components, components from118

particular categories, and components from learned latent styles) and an input shape database. Within119

the proposed interactive shape synthesis interface a user can select constraints by selecting required: shape120
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styles, component categories and styles. The algorithm then proposes a list of synthesized objects based121

on the given inputs. The discrete features help ensure that components selected for a synthesized shape122

have compatible numbers of adjacent components of each type, and their edges have been identified and123

stored with the category label of components (so they can be attached for placing where a component can124

be attached to another component with symmetry relationships). Like [9], [11] also used a probabilistic125

approach to identify and synthesize existing shapes from complex domains to generate new combinations126

of components.127

There is a tension in all reported work between accuracy and the number of predictions made. This128

can be observed in [12] that describes a user interface that guides a designer’s selection with a list of129

the 50 ‘best’ suggested components during an assembly based modeling process. The interface aims130

to enable easy browsing and propose components that are most compatible with the current state of131

the assembly design (represented as a 3D model). The interface allows users to manually drag, move,132

scale, orient and combine selected components. The placed components can also be incorporated in the133

design using Boolean operations (union, difference, and intersection) to obtain composite model. The134

suggestion list automatically updates every time a component is added to the assembly. The suggestions135

are ranked by size (larger components are given preference) at the start of the modeling process. The136

marginal probability distribution computed from a factor graph by [12], which incorporates adjacency137

and multiplicity factors of segmented components, to score and rank predicted components.138

A different type of assembly design is considered by [13] who proposed an algorithm that takes a139

partially completed 3D scene as input and propose relevant models in a user-specified region of interest140

by leveraging text data. Suggestions are generated using three different approaches; Graph Kernel, N-141

gram, and Merged. A query is generated by converting the given 3D scene into text that represents the142

five closest models to a focal point nominated by the user. The algorithm uses co-occurrence, 5-gram143

statistics from Google Web N-grams dataset and point-wise mutual information between the labels of144

nearby models in the scene and the labels of models in the database to create suggestions.145

For a very similar application [14] presented a method for generating novel arrangements of diverse 3D146

objects synthesized from few given examples. The method creates a probabilistic model for scenes based147

on Bayesian networks and Gaussian mixtures that can be trained by a small number of input examples148

of relevant scenes retrieved from database. User were able to vary the degrees of similarity and diversity149

in the generated scenes by controlling the weighting (through blending parameters) given to the influence150

of the existing database of prior designs.151

The “AttribIt” interface was developed in [15] which facilitates the targeted exploration of different152

combinations of visual components using commands based on the relative semantic attribute. A user153

initializes a design with a coherent combination of components from a database, then they select a subset154

of these components and interactively increase, or decrease, the strength of an attribute using sliders.155
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In doing this they can observe changes to the whole design in real-time as new database components156

corresponding to the updated attribute strengths are swapped. The components are assembled automat-157

ically into a coherent design (provision for manual adjustments such as translation, rotation and scaling158

controls are available to refine the results). The interface shows regions of high geometric variation under159

the current attribute (highlighted in red color in Fig. 1).160

Figure 1: User Interface for Assembly-based modeling using relative attributes [15]

When the overall form of a design (whether assembly or component) is constrained by function or the161

need to fit into a product family a template can be used to facilitate reuse. For example [16] developed162

templates that can be used in an interactive design system to create new 3D models in a design-by-163

example manner. The interface allows a user to choose template parts from the database, change their164

parameters, and combine them to create new models. The information in the template has been used165

to automatically position, align and connect parts by adjusting parameters, adding constraints, and166

assigning connectors. The assembly-based modeling system provides pick and drag substructures from167

different designs and add them to a working model. The elements on the selected node are represented168

in full color, while the others become semi-transparent during manipulation, and constrained degrees of169

freedom are hidden.170

To support the generation of interior designs [17] developed a probabilistic hierarchical grammar171

to enable functional (rather than spatial) representation of an office environment. The aim was to172

support consistent segmentations, category labels and functional groupings of 3D scenes that characterizes173

geometric properties, cardinalities and spatial relationship in a hierarchical manner. A probabilistic174

grammar is used to automatically create consistent annotated scene graphs. Figure 2 illustrates an input175

scene mapped with labels and then converted into the hierarchical form using probabilistic grammar.176

A 7-dimensional descriptor (i.e. support and vertical relationships, horizontal separation, and overlap177

between objects) is used to describe the relationship between two objects. The dynamic programming178

for belief propagation was developed for scene parsing with optimal hierarchy. The technique creates179

candidate nodes based on spatial proximity, grammar binaries and finds the optimal binary hierarchy180
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which is converted to a logical hierarchy of the original grammar.181

Figure 2: Input scene mapped with labels and converted into the hierarchical form using probabilistic
grammar [17]

More recently [18] reported the “ComplementMe” user interface that aims to seamlessly integrate182

suggested CAD models into the design process. A combination of embedding and retrieval neural network183

architectures are proposed for suggesting complementary functional and stylistic components and their184

placements within an incomplete 3D part assembly. The embedding network was used to map parts185

to a low-dimensional feature space, and the retrieval network was used to retrieve partial assemblies to186

appropriate components. The interface shows the possible candidates generated by sampling from the187

conditional probability distribution predicted by the retrieval network. The user could select a desired188

complementary component, and the algorithm predicts the location for it via the placement network. The189

new shape will be synthesized for the user, and the next component is proposed based on the modified190

assembly.191

In conclusion the literature on predictive design systems is largely focused on the creation of assemblies192

of 3D component models where frequently the positioning of suggested components is a manual task for193

the user. In contrast the authors’ work is focused on the identification of shape features (i.e. fragments194

of an entire model that are patterns of geometry such as holes) that are appropriate to a location defined195

by the position of a user’s mouse pointer on the surface of a 3D object.196

2.1 Marked Point Processes197

Marked point processes (MPP) are widely applied within image analysis, where it was first introduced198

by [19]. The methodology is used extensively and successfully for the extraction of multiple objects from199

images. Applications include biological imagery on cells [20], disks in a plane [21], building outlines [22]200

and person detection from camera images [23]. It is a flexible methodology that has been extended for201

object extraction from images to arbitrarily shaped objects [24]. More recently, [25] have developed the202

approach for microscope images, [26] have used MPP’s to automatically detect the locations of road203

segments and [27] have used it for visual perceptions. A survey of marked point processes applied to204

image analysis can be found in [28].205

The literature to date has developed methods to extract images and characterize them in the form of206

a MPP which are then stored in a database. Our focus complements this work, as we develop decision207
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support tools that also utilizes information about the location of extracted features in an MPP data208

structure.209

3 Process for Constructing Marked Point Process Decision Sup-210

port211

We propose a six step approach adapted from the CISSE process, see [29], for constructing empirical212

prior distributions to support Bayesian analysis, which considers the following five steps; Characterize,213

Identify, Sentence, Select, and Estimate. As described in the following for the third step we have placed214

particular focus on homogenizing the data rather than sentencing the data and we have decomposed the215

fifth step to consider prediction and updating.216

Step 1: Characterize the population of designs. We begin by identifying those factors characterizing the217

design. This is an important step because it defines the criteria by which data sets (i.e. historical218

designs) are subsequently selected for inclusion in the comparator pool used to construct the219

prior distribution. Examples of such characteristics may be with respect to types of layouts of220

and/or features used within designs.221

Step 2: Identify candidate sample designs matching population. The factors characterizing the population222

of designs can be switched on/off for candidate designs effectively providing a means of making223

a relative assessment of relevance against a set of criteria. We are simply trying to find the best224

available data sets to make reasonable and timely inference. We are assuming that the current225

design for which we are providing the decision support will be similar to one of these historical226

designs. We can accommodate a unique apriori assessment on the likelihood of the current design227

being realized to be like each possible candidate historical design, although our default may be a228

uniform distribution prior.229

Step 3: Homogenizing the comparator data. Generally, the higher the degree of homogeneity within the230

comparator pool the more accurate the predictive inference [see 30]. This requires a measure for231

similarity between designs, such as the KL divergence measure as proposed in [31] against which232

the data can be transformed for homogeneity. Two key approaches to address this are scaling and233

rotation. Firstly, all designs can be re-scaled into the unit cube. Secondly, the data describing234

the locations of features can be rotated for alignment. This work should be performed prior to235

the start of the design. This stage may be omitted if it is considered that information would be236

lost in transforming the data, and the resulting prior would not be as effective at discriminating237

between design types.238
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Step 4: Select a probability model for the population of designs. The nature of design patterns is such that239

a parametric probability distribution is unlikely to exist that adequately represent the variability240

of location and features within designs. As such, a non-parametric approach should be considered,241

for which we recommend Kernel Density Estimation (KDE). Under such an approach, choices242

will need to be made concerning the band-width parameter, which is essentially deciding on243

allowable variation of location of features within similar designs. The resulting model is known244

as the Feature Location Probability Function (FLPF), for which we would fit one to each historic245

design to obtain a model for each design type.246

Step 5: Predictive Model. The predictive distribution is simply a weighted average of the FLPF for each247

design type in the comparator set, where the weights reflect the likelihood that the current design248

will ultimately be realized as being similar to the candidate design in the set.249

Step 6: Update prior on design type and predictive distribution. During the design process, Steps 5 and250

6 are repeated in a cycle of feature addition and updating of the predictive distribution, which251

we call the Predictive Feature Location Function (PFLF), to reflect how each change impacts on252

the probable location of other features. This process, driven by the actions and selections of the253

human designer, continues until the component part is complete (i.e. the design is finished).254

Figure 3 provides a schematic for the predictive system. The data homogenization and FLPF can be255

performed in advance using the existing designs and features selected from the database in steps 1 and256

2. As a new design evolves, the PFLF is generated from the FLPF and the design type prior. The PFLF257

can be updated in response to events to provide feature suggestions at interactive speeds.258

4 Model Development259

In this section, a model is mathematically developed for steps 3 to 6 from the process in Section 3. This260

will allow for both predictions on feature type together with its spatial position.261

4.1 Overview262

We model the process of a designer choosing to place features in specific locations as a Marked Point263

Process (MPP). As such we can view historical designs as a realization from this process. Consider a264

design denoted by di, which comprises ni features (not necessarily unique) and for each feature, which265

we denote with m, we have an associated location described by its (x, y) coordinates. We express the266

design as an unordered set of coordinates and features with di = {(x1, y1,m1), . . . , (xni , yni ,mni)}. We267

restrict our designs to 2 dimensions expressed as (x, y) coordinates for simplicity but the method is easily268

generalizable to higher dimensions.269
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Figure 3: System schematic for feature prediction through Bayesian updating.

11



At the core of a MPP is the intensity function, which describes the probability of a feature being270

placed in a particular location. Let λ(x, y,m| c
˜
) denote the intensity function of the process at location271

specified by the (x, y) coordinates, for feature m given the designer has already made choices of places272

various features at locations captured in the matrix c
˜
. A characteristic of this function is that if we273

integrate the intensity over the whole (x, y) plane then we obtain the expected number of features m in274

the design. Moreover, we can express this as a probability density function, i.e. f(x, y,m, | c
˜
) given in275

Eq. (1), to describe the next choice made by the designer by normalizing it so that it integrates to 1. This276

function can then be used to rank features based on their likelihood of being placed at specific locations277

to provide appropriate decision support to the designer.278

f(x, y,m, | c
˜
) =

λ(x, y,m| c
˜
)∫∫

∀x,y

λ(x, y,m| c
˜
)dxdy

(1)

Engineering designs possess dependency structures unlike other fields of MPP study so ‘off the shelf’279

models for intensity functions are not available. Dependency refers to the association of choices, such280

that placing one feature in a location increases or decreases the likelihood of other features in various281

locations. Poor choices of dependency models can result in uninformative inference at best and misleading282

inference at worst. In typical spatial or temporal point process applications, self-exciting models are used283

to capture local dependency where the realization of one point increases the likelihood of nearby points284

being discovered. In design, choosing a feature for a location can have ramifications for distant locations285

due to a need for symmetry for example. We develop a methodology for characterizing such dependency.286

Many designs may be a collection of few choices, so while there may exist a large database of historical287

designs there are small sample sizes on which to infer the dependency structure. Inference is made more288

challenging with an extensive set of features from which to choose.289

We propose a non-parametric approach to estimating the intensity functions that will provide a290

foundation on which to develop decision support, estimated from the data on historical designs. Kernel291

density estimates (KDE) consists of modeling the intensity function of a point process through assigning292

a kernel, e.g. the Normal distribution, centred at each location where a point has been realized, often293

resulting in a multi-modal probability model to describe the likelihood of discovering points. Typically294

the kernel density requires the analyst to choose a value for the smoothing parameter (e.g. in the case of295

the Normal kernel density this would correspond to the standard deviation for each density used).296

In Section 4.2 we will develop the non-parametric model for the density function based on KDE from297

historical designs. In Sections 4.3 and 4.4 we will outline a Bayesian updating mechanism that will298

show how the density function changes as the designer makes further choices and as such so too will the299

decision support. In Section 4.5 we will derive metrics to characterize the dependency structure implied300

by these modeling assumptions. Finally in Section 4.6, we will consider transformation that we can make301
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on historical design data to improve predictions, specifically, re-scaling and rotating the data.302

4.2 Model Description303

We assume that a new design will be similar in some sense to historical designs but not necessarily304

identical. As such, prior to commencing an assessment should be made of the historical data that will305

be used to assess its suitability. Assuming we have a catalog of n historical designs that are appropriate306

for the decision support then we consider that there are n types of design and the current design under307

construction will belong to one of these types. We will estimate the density function for each type with308

the data available from each design. Following this we will apply a prior probability on the type of design309

being constructed based on the choices made.310

Consider an historical design i for which there have been ni,m choices of feature m. Using a KDE311

approach to estimate the probability density function for design of type i with respect to feature m we312

have the density given in Eq. (2)313

f(x, y|m, i) =



1
cxy ni,m = 0

ni,m∑
i=1

φj(x, y;µx,j = xi,m,j , µy,j = yi,m,j , σ)

ni,m ni,m ≥ 1

(2)

Where φj(·) is a bivariate Normal density function, µx,j is the mean of the x variable in φj(·), µy,j314

is the mean of the y variable in φj(·), xi,m,j is the location on the x coordinate in design i of the jth315

occurrence of feature m, yi,m,j is the location on the y coordinate in design i of the jth occurrence of316

feature m, σ is the standard deviation for both x and y, although one could assume a more elaborate317

covariance structure if appropriate, and cxy is a normalizing constant to ensure the density integrates to318

1. It is worth noting that one could substitute other kernel density functions in if more appropriate, we319

only require it to possess all the characteristics of a bivariate probability density function.320

We have assigned a uniform distribution over the plane for situations where that feature has not321

appeared in design i. It may be desirable to remove this, if one did not want to permit certain features322

for particular design types.323

Essentially, the resulting density is a collection of Normal densities centred about observed locations324

and the standard deviation parameter controls for the allowable variation from the historical design to325

be considered similar.326

Let I be the random variable describing the design type that the designer is developing and M to be327

the random variable describing the next feature to be chosen. To express the unconditional probability328

density function we first define three indicator functions to denote design type, feature, and presence in329

Eq. (3).330
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δi =


1, I = i

0, I 6= i,

δm =


1, M = m

0, M 6= m,

δnim
=


1, nim ≥ 1

0, nim = 0

(3)

We denote the probability of a feature m appearing in design type i with pi,m and the probability of331

the design being of type i with π(i). Combining these, the full probability density function describing332

the likelihood of a feature m being located at (x, y) and the design being of type i is given in Eq. (4).333

f(x, y,M = m, I = i) =

imax∑
i=1

mmax∑
m=1

δiπ(i)δmpi,m

δnim

ni,m∑
j=1

φj(x, y;µx,j = xi,m,j , µy,j = yi,m,j , σ)

ni,m
+ (1− δnim

)

 (4)

The design type is a latent variable used to capture the dependency between the features and locations.334

By summing the density function across all possible values of I we obtain the distribution for location335

and feature only, given in Eq. (5).336

f(x, y,M = m) =

imax∑
i=1

mmax∑
m=1

π(i)δmpi,m

δnim

ni,m∑
j=1

φj(x, y;µx,j = xi,m,j , µy,j = yi,m,j , σ)

ni,m
+ (1− δnim

)

 (5)

Similarly, we express each marginal distribution in Eqs. (6–9).337
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f(x) =

imax∑
i=1

mmax∑
m=1

π(i)pi,m

δnim

ni,m∑
j=1

gj(x;µx,j = xi,m,j , σ)

ni,m
+ (1− δnim)

 (6)

f(y) =

imax∑
i=1

mmax∑
m=1

π(i)pi,m

δnim

ni,m∑
j=1

gj(y;µy,j = yi,m,j , σ)

ni,m
+ (1− δnim

)

 (7)

f(M = m) =

imax∑
i=1

π(i)pi,m (8)

f(I = i) = π(i) (9)

Where gj(·) is a univariate Normal density function.338

4.3 Probability of a Feature Being Selected for a Design339

Given the total number of incidences within a design we assume the number of incidences of each possible340

feature for a design is a realization from a multinomial distribution. Moreover, we assume the underlying341

probabilities associated with each feature vary across design types. Under such a modeling assumption342

a natural estimator of the probability of a feature being selected for a design of a particular type would343

be the observed frequency on similar designs from the class. However, given that we have at most one344

design for each type we are likely to produce poor inference due to small samples. Moreover, we are likely345

to be faced with a large number of features with zero events data resulting in an estimated probability346

of 0. This creates a particular issue for the decision support being developed, as all historical designs347

that did not possess all the features chosen for a current design would be ruled out as candidate design348

types through Bayesian updating. As such, allowing for non-zero probability estimates would permit the349

inclusion of candidate design types even if they do not include all the features chosen at some point in350

the design process. For a discussion on alternative estimation methods for zero event data, see [32].351

We propose using an uninformative prior distribution, where a uniform prior distribution is assumed352

on each probability and subsequently updated on the data. As the probabilities must sum to 1, the353

uniform assumption implies a Dirichlet prior distribution. This is a common pairing with the multinomial354

distribution as it provides a flexible distribution that is convenient to use computationally. This results355

in the following estimate for the probability, given in Eq. (10).356

pi,z = w
βz
β

+ (1− w)
ki,z
ki

(10)
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Where w = β/(β+ki), ki,z gives the number of features in design i of type z, ki =
∑
∀z ki,z, βz =357 ∑

∀i ki,z, and β =
∑
∀z βz.358

We see that pi,z is a weighted average of the observed frequency ki,z/ki and the prior mean. The359

weight applied to the frequency increases as the number of features chosen for design i increases, i.e. ki.360

4.4 Bayesian Updating361

Every choice made by the designer provides information concerning the type of design being constructed,362

i.e. to which historical design is it similar. We will model this learning through Bayesian updating. As363

described in Section 4.2 we have a probability distribution, i.e. π(i), which describes the uncertainty364

concerning the design type. In this section we present a Bayesian updating of this distribution based365

on design choices. Assume that the designer has made nk choices then the posterior distribution for the366

design type is updated as in Eq. (11).367

π(i| c
˜
) =

nk∏
k=1

f(xk, yk,M = mk, I = i)

imax∑
i=1

nk∏
k=1

f(xk, yk,M = mk, I = i)

(11)

This posterior is then used in the predictive distribution, given in Eq. (12).368

f(x, y,M = m| c
˜
) =

imax∑
i=1

mmax∑
m=1

π(i| c
˜
)δmpi,m

δnim

ni,m∑
j=1

φj(x, y;µx,j = xi,m,j , µy,j = yi,m,j , σ)

ni,m
+ (1− δnim

)

 (12)

This function can be used to provide inference on the relative likelihood of features being located on369

specified positions through comparing ratios.370

4.5 Dependency Structure371

The moments of the model are easily obtained through conditional expectation arguments resulting in the372

expectations given in the Supplemental Material S1. Through setting δnim
= 1 for all designs we would373

obtain the moments anticipated in the historical designs, however, for our model we have accommodated374

the possibility of features appearing in design types which are not present in the associated historical375

design.376

The moments can then be used to construct measures such as correlation between the (x, y) coor-377
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dinates. However, while commonly used such measures are limited within our context as they focus on378

the linear relationship between only two variables. We may wish to consider more general settings such379

as non-linear relationships as well as 3D designs or even the dependency between features and locations.380

For this we use the mutual information (MI) measure, which we denote by ω, to assess dependency. The381

concept of mutual information is linked to the entropy of a random variable, which quantifies the expected382

amount of information held in a random variable. The mutual information measure is considering the383

information gain from modeling the joint distribution rather than assuming each variable is independent.384

ω = E
[
ln

(
f(X,Y,M)

f(X)f(Y )f(M)

)]
(13)

This can be re-expressed as in Eq. (14), which is simply the entropy of the joint distribution minus385

the sum of the entropy for all the marginals.386

ω = E
[

ln
(
f(X,Y,M)

)]
− E

[
ln
(
f(X)

)]
− E

[
ln
(
f(Y )

)]
− E

[
ln
(
f(M)

)]
(14)

Clearly, ω = 0 if f(x, y,m) = f(x)f(y)f(m), i.e. if the variables are independent. Moreover, it can be387

shown that as dependency increases so too does the measure. This measure can be useful for comparing388

dependency between various subsets of designs, noting that the stronger the dependency the better the389

predictions will be. Some analysts prefer to transform this measure to bound it within (0, 1) and as such390

use the transform ω̇ =
√

1− e−2ω [33]. The joint and marginal distributions required to calculate the MI391

are provided in S2.392

4.6 Re-Scaling and Rotating393

Generally, the higher the degree of homogeneity in the comparator pool of data, then the greater the394

accuracy in the prediction [30] and as such pre-processing the relevant historical data to achieve greater395

homogeneity may be desirable. We consider re-scaling and rotating the data for each as a means to396

achieve this. However, such transformations may not always be beneficial as key information may be397

lost that helps identify the most similar historical designs. The advantage of such transformations are398

through identifying regions where specific features are highly likely to be located for a large number of399

design types. The disadvantage can be blurring distinctive characteristics between design types and as400

such it will take longer for the process to learn precisely to which design type it belongs.401

Re-scaling can be achieved through stretching or compressing a design to the unit cube, so that the402

length of each dimension is re-scaled such that 0 is the minimum and 1 the maximum in that dimension for403

that design. If such a transformation is performed, care must be taken in interpreting distance between404

two points as the scales would not be the same between dimensions. Rotations can be the result of405

a non-standardized axis used with designs. As such, through rotation the data we are constructing a406
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common axis, which may reveal more similarity across the designs. Rotation data is achieved through407

matrix multiplication of the data set. For example, in a 2 dimensional design, every rotation around the408

origin in a counter clockwise direction can be represented with the matrix R shown in Eq. (15).409

R =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (15)

When the data are multiplied by R we obtain the new coordinates as in Eqs. (16).410

xj(θ) = cos(θ)xj − sin(θ)yj (16)

yj(θ) = sin(θ)xj + cos(θ)yj

An analyst could decide upon rotation and rescaling based on visual inspection. However, for a411

more rigorous approach we would need to measure the distance between designs and seek to minimize412

it. Following the approach proposed by [31] we use the Kullback-Leibler (KL) divergence measure to413

assess the difference between designs. Using the superimposition of all designs as an average design we414

can measure the difference of each design to the average and seek to minimize it.415

The KL divergence measure of design type v to u, denoted by DKL(Du ‖ Dv) is given in Eq. (17).416

DKL(Du ‖ Dv) =

mmax∑
m=1

∞∫
−∞

∞∫
−∞

Pu,m


nu,m∑
j=1

φj(x, y;µu,x,j = xu,m,j , µu,y,j = yu,m,j , σ)

nu,m



ln



Pu,m


nu,m∑
j=1

φj(x, y;µu,x,j = xu,m,j , µu,y,j = yu,m,j , σ)

nu,m



Pv,m


nv,m∑
j=1

φj(x, y;µv,x,j = xv,m,j , µv,y,j = yv,m,j , σ)

nv,m




dxdy (17)

This is re-expressed in Eq. (18).417
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DKL(Du ‖ Dv) = E

ln

pu,m

nu,m∑
j=1

φj(x, y;µu,m,j = xu,m,j , µu,y,j = yu,m,j , σ)

nu,m





−

E

ln

pv,m

nv,m∑
j=1

φj(x, y;µv,m,j = xv,m,j , µv,y,j = yv,m,j , σ)

nv,m






(18)

Where the expectation is taken with respect to the distribution with u. Expressing this as an expec-418

tation provides a computational advantage, as a closed form analytical solution is not available, we can419

conduct Monte Carlo simulations with the distribution of u and evaluate the average of the expression.420

In sum, we can transform each design through rotation and re-scaling to minimize the KL divergence of421

the mean design to the design in question.422

4.7 Summary423

Section 4 has outlined the underlying model and process to support the prediction of features given424

location. This can be used with an interactive CAD system, where the cursor sits in a location described425

by its coordinates and the recommended feature is suggested. In Section 5 we apply this to a data set.426

5 Case Study427

To allow an intuitive, visual understanding of the proposed process we have chosen to use a set of 513428

mechanical valve designs. The structure of the valve bodies have obvious regularities with circles around429

the valve’s flanges together with other functional holes. An unordered set of hole diameters and associated430

(x, y, z) coordinates were extracted for each valve body from the B-rep of the CAD design using the Twig431

match algorithm [34]. Further details are provided in [31]. An example valve design is shown in Fig. 4a432

with the extracted hole features, scaled to [0, 1], shown in Fig. 4b.433

In this analysis, the aim is to predict the sequential addition of hole features and their position434

given the state of the current design, with the focus on features occurring on the same surface plane i.e.435

predicting a hole diameter on the flange surface.436
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Figure 4: Example of a valve body from CAD design database. Figure 4a shows an image of a valve
design and Fig. 4b the scaled positions of the extracted hole features. The different colors are used to
identify the different diameters of the holes

5.1 Scaling437

To facilitate prediction the feature coordinates of each design were scaled to the unit cube – each dimension438

was scaled to [0, 1] – and additional rescaling was required on each cube surface so that the features439

retained their geometric shape. Models were then estimated using the features and feature positions440

which were positioned on the surface of the cube, one surface at a time. For example, after scaling, the441

data were subset to analyze the features on the x = 0 face. Figure 5 shows the superimposition of the442

scaled feature coordinates from all designs on the x = 0, y = 0 and z = 0 faces (some jitter of the points443

has been added to the Figure to aid feature discrimination).444
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Figure 5: Superimposition of scaled hole feature coordinates for all the data on the specified face of the
cube.
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5.2 Kernel Density Estimation445

The KDE were estimated across each face of the cube. This was done by dividing the face into N by N446

regular grid positions and then estimating the kernel density at each grid position for each feature in all447

designs. A Normal kernel with user specified standard deviation was applied, in this analysis chosen to448

be 0.05, and the density on each dimension calculated independently. If a design did not have a specific449

feature that was present in the database pool of features then a Uniform probability across the grid450

of positions was assumed. This allows for predictions to be generated on a new design which is using451

a combination of hole features that have not been previously observed. The KDE outputs a density452

estimation at each position in the N by N grid for every feature in the database.453

5.3 Evaluation454

Both the correctness of the FLPF and the predictive accuracy of the PFLF were assessed using 10-455

fold cross-validation. The kernel density across the features was estimated using the training data and456

then evaluated on the designs in the test set. Each test design, which contain hole feature labels and457

their coordinates, was evaluated one at a time. Three measures of predictive performance were used;458

the distance from the observed feature coordinate to the nearest predicted mode was calculated using459

two approaches, and reciprocal rank was used to evaluate how accurately a feature was predicted at its460

observed position. Further details are provided in the Supplemental Material S3.3.461

An illustration of the Bayesian updating and predictions on one test design is provided in the Sup-462

plemental Material S3.463

5.4 Results464

Figure 6 illustrates the aggregated results from the cross-validation. The x-axis indicates how many holes465

have been added to a new design (e.g. if a test design has four features, then the predictive densities,466

distances to mode and ranks are calculated after sequentially adding 0, 1, 2, or 3 holes to the new design).467

The y-axis gives the mean distance to the mode, either on the raw scale or in grid steps or the mean468

reciprocal rank. The red triangle gives the mean across the ten folds. The performance of the predicted469

rank of suggestions is shown in the third figure; the range of values is from zero – poor suggestions, to470

one – perfect suggestions.471

As expected an initial improvement is observed in the distances to the nearest predictive mode as472

additional features were added to each new test design, however, there is a clear pattern of extreme values473

within all figures which results in a decrease in performance as additional holes are added to a design.474

This can be explained, as within each test fold there are a few designs which are unlike anything in the475

training set and thus the KDE does not provide reasonable predictions.476
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Figure 6: Cross-validation predictive performance. The x-axis indicates how many holes have been added
to a new design and the y-axis records the average distance or rank. The black points give the within
fold average measure and the red triangle the average performance across the folds.

Some examples follow. All the designs in which a specific feature occurs in the training dataset may477

have a different number of feature instances than observed in the test design. In one example, within478

a training dataset instance, designs with the hole diameter “33.0” have between 3 and 13 instances on479

the flange plane, however it occurs 16 times within a test design. This results in all the predictive480

modes being slightly offset, as seen in the Supplemental Material S6.1. This modeling framework cannot481

infer the coordinates for features even though they are still placed within the same circular orientation.482

Another example is that all of the designs with a specific feature in the training dataset are positioned483

differently than those in the test design. For an example shown in the Supplemental Material S6.2, the484

hole diameter “35.0” was used as a central bore hole in the training data designs, however, it was used as485

the bolt connector within the new test design. Therefore as additional holes are added to the new design486

the updated predictive density provides little information. Clearly the order in which the features are487

added to a new design will affect the predictive density, particularly when there are multiple types (hole488

dimensions) of feature, and this can impact the quality of predictive guidance. For an example shown in489

the Supplemental Material S6.3, there are 30 designs within a training dataset instance that contain the490

“22.0” diameter, but only one of these also has the additional “17.29” diameter. The early selection of491

the “17.29” feature adds more probability weight onto the single design in the training set, and it takes492

several further additions for the predictions to improve.493

The predictive performance of the method was re-evaluated omitting the 24 unusual designs from the494

test datasets and the results are shown in Fig. 7. This is done to examine the predictive performance495

of the model for a designer who remains within the catalog of previous designs. It can be seen that the496

predictive performance improves as more features are added to a new design. This again indicates that497

the utility of the method is dependent on the designs forming a homogeneous set. The folds with larger498

values can be explained by the ordering of the features entering in to the design, as illustrated by the499

example given in the Supplemental Material S6.3. While the distance to the nearest predictive mode500
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may be small, there remain extreme values in the rank predictions. This indicates that while a feature501

is expected at a position, our model has been unable to predict the specific feature, and so suggests that502

the feature added at this position is unusual given those observed at in the training data.503
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Figure 7: Cross-validation predictive performance after omitting unusual designs from the test set. The
x-axis indicates how many holes have been added to a new design and the y-axis records the average
distance or rank. The black points give the within fold average measure and the red triangle the average
performance across the folds.

The prediction results for the features on the y = 0 and z = 0 cube face are provided in the Supple-504

mental Material S7. Performance is similar to the x = 0 face with predictions improving as additional505

features are added to the design. Within the features on these faces, there are two designs that are unlike506

any of the other designs; the effect of this is more apparent on the y = 0 face. Again removal of the507

outlier design resulted in improved statistics (results not provided).508

5.5 Association Measure509

The utility of the method is supported by the homogeneity of the design database. Section 4.5 described510

how the mutual information could be used to provide some measure of the expected dependence in a511

database, however, there is no analytic solution to Eq. (14) for our non-parametric model. We therefore512

estimate this measure through a simulation exercise. We denote imax as the number of designs in the513

database, mmax as the number of unique marks (features) and ni,m as the number of marks of type m514

in design i. The probability of randomly choosing design i is given by qi = 1/imax and the probability of515

selecting mark m given that design i was selected is defined by pi,m = ni,m/
∑
∀m

ni,m.516

For a given design database, a representative random sample of feature instances is generated, using517

the following steps,518

1. Uniformly sample a design i from the set of designs in the database with probability qi519

2. Randomly sample a feature type m from design i with probability pi,m520

3. Sample a single instance of feature type m, as there may be multiple instances of feature m within521

design i.522
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4. Take a random sample from the Normal kernel with mean at the (x, y) coordinates523

5. Repeat many times524

An estimate of the MI can then be calculated using the expressions given in the Supplemental Material525

S2 where the KDE of the designs in the database are evaluated at the sampled coordinates.526

The dependence structure within our sample database was estimated using this method across the527

ten training cross-validation datasets, and the resulting MI scores had mean 1.43 and standard deviation528

0.03. This equates to a scaled ω̇ = 0.97 indicating that there is strong dependence within the data and529

thus we would expect predictions to be good. For comparison, a null distribution was estimated for530

the statistic on the same training data, permuting the feature instance and generating the coordinates531

randomly from the Uniform [0,1] distribution, so that features were no longer aligned with specific designs532

or coordinates. This gave a MI of 0.62 (0.03), and scaled value of 0.84. A second smaller simulation of533

randomly generated designs and feature coordinates revealed that smaller samples produced higher MI.534

As sample size increased then the MI decreased to zero, the theoretical value for independence. It535

would therefore be useful for practitioners to evaluate the MI on randomly permuted data to support536

interpretation of the MI score on the design database.537

5.6 Rotation538

The more similar the designs in the database the stronger the signal for making predictions. However,539

different designs may have been created with a different orientation. Section 4.6 described how the540

KL measure could be used to rotate one design to minimize the probabilistic differences between them.541

There is not an analytic solution to Eq. (18) for our non-parametric model but we can minimize the KL542

divergence between two designs u and v, DKL(Du ‖ Dv), by finding the angles of rotation that maximize543

the second term by a simulation design embedded in an optimization routine. As the KDE may be a544

noisy function, a global optimization routine should be used, although a brute force search is feasible in545

2D.546

The rotation can be implemented as follows. The design database contains feature instances that547

are assumed to be representative of the underlying orientation of the designs and we consider this as a548

single average design. Each design would then be orientated in turn, to this average design, excluding the549

design getting rotated from the pool. First multiple random draws are simulated from the Normal kernel,550

with means equal to the feature positions of the design to be rotated. Then the KL measure is calculated551

between the samples and the average design. The new design is then rotated and re-sampled until the KL552

measure is minimized. An illustration of the 2D rotation of a part is given in the Supplemental Material553

S5.554
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5.7 Choice of Standard Deviation555

The choice of standard deviation (bandwidth) of the Normal kernel determines how spread out the556

predicted density is around the training data observations. Figure 8 shows the predicted density for the557

same training data under different kernel standard deviations. There are two main approaches one could558

take in determining a suitable value for this parameter. It may be that prediction is the only desirable559

performance measure and then through cross validation exercises an optimal value can be identified.560

Alternatively, with more emphasis on the prospective nature of this decision support, to facilitate the561

determination of designs that are similar to historical designs, this parameter can be used as a controlling562

lever, whereby small values will result in predictions that are very close to previous designs.563
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Figure 8: Predictive density calculated under a Normal kernel using different standard deviations. The
colourbar legend describes how the image colour maps to the data, with dark red indicating regions of
higher predictive density

5.8 Discussion of Results564

We have described how to implement the proposed process for predicting the type and location of the565

features that might be added during an engineering design process. We evaluated the method on a data566

set of real designs through a cross validation process. In 90% of the evaluation runs the feature’s actual567

location and the prediction (once at least one feature had been selected) were very close (i.e. within 0.5568

grid space on average – 1% of the normalized range of the part). When more features were added to569

the design the accuracy of the predictions improved. This observation can be clearly seen in the ranking570

of the predicted features (i.e. an ordered list of the most to least likely features to occur at a given571

location). If four features had been selected (i.e. added to the design) the subsequent features selected572

were, on average, ranked in the first 25% of the list of suggestions. This increased to the top 10% once573

eight features had been selected.574

This behavior reflects the nature of the commercial product families which formed the dataset. These575

have frequently repeated sets of features at standardized positions within a design, and so after one choice576

has been made then subsequent choices can be predicted with a high probability. In other words portfolios577
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of mechanical designs have strong dependence in data that results in strong predictive performance.578

Figure 9 shows two components with a feature prediction “heat map” manually superimposed on579

to their faces. These hotspots indicate where features (regardless of their type and size) are frequently580

located in the training data. For each figure, the left-hand side plot presents the complete part, the581

central plot presents the predictive density from the training pool when no features have been added to582

the part, and the right-hand side plot the updated density given that the new features have been added583

to the design.584

Figure 9b presents an example of how the predictive density changes once a feature has been added to585

the design. Before a choice has been made, the greatest predictive density is placed on the four corners586

of the feasible box, the normalized range of the scaled prediction region, indicating that this orientation587

is most common in the training dataset. Once a feature of specific size and position has been added, the588

predictive density changes to favor a pattern of six holes away from the corners. Red and blue circles589

are used in Fig. 9b to highlight how the predictive density in these regions change given some feature590

addition. Although such heat-maps give an intuitive overview the prediction results can be presented to591

a user in several different ways. For example, given a location (e.g. the user’s curser) a list of feature592

suggestions (ranked in order of their likelihood) could be generated.593

The heat maps also illustrate the need for further research into user interfaces that allow the designer594

to control the choice of training data (used to generate the predictions) and the scaling/mapping of595

the results onto new designs. In the case study, the feature coordinates were normalized to boundaries596

determined by the extent of feature locations within the training dataset. For example, in Fig. 9a597

predictions were generated across the unit cube and so there is non-zero density in the corners (highlighted598

by black circle in central panel of Fig. 9a), whereas if a unit circle had been used to normalize the feature599

locations the result would be more appropriate to the shape by omitting the truncated predicted region600

corners. An obvious artifact of the current approach to normalization is that there will be regions on601

a face (colored green in Fig. 9) that are beyond the geometric extent of the features used to train the602

prediction system. Due to the restrictions that we have imposed through this mapping, predictions were603

not generated outside the range of the normalized region. However, depending on the choice of kernel,604

one could extrapolate beyond these boundaries for a new design, but as with any extrapolation, these605

require stronger assumptions.606

This could be mitigated by filtering suggestions that are physical or functionally feasible before pre-607

senting them as options to the designer. The development of effective filters would also enable the608

geometric limits on feature prediction to be determined in a manner most appropriate to the application609

(e.g. a part bounding box, or specific planes). However, work is required on generic scaling functions to610

support this, for example the top flange of the design-part provided in Fig. 9b is rectangular and so the611

predictive density requires to be mapped back to the original part dimension from the unit cube used to612
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generate predictions.613

(a) Part-design A

(b) Part-design B

Figure 9: The feature predictions were mapped onto two incomplete designs. Regions of higher predictive
density are illustrated by dark red. From left to right, the plots show the complete part, the predictive
distribution when no features have been added, and so is completely informed by the training data, and
lastly the predictive distribution after the addition of a central bore hole and one bolt hole feature. The
updated distribution displays the increased level of belief in the positions of subsequent features, with
areas of higher density and lower variance. The black circle in (a) is used to indicate the prediction
region which has been truncated and the red and blue circles in (b) are used to highlight the changes
in the predictive density once a choice has been made. The green sections represent areas outside the
normalized prediction region.

6 Summary and Conclusions614

The aim of this research was to “Define a computational framework that can support an interactive615

design process with suggestions of features based on three inputs: a knowledge of existing designs; the616

state of an emerging design and a location on the surface of the emerging design.” The authors believe617

that system described meets this goal and has established how the feature content of mechanical designs618

can be amalgamated and transformed into a likelihood function that defines the probability of particular619

design features occurring at specific locations on a model.620

The work has not only demonstrated that the architecture of the proposed system is viable but also621

established that the computations can be done quickly enough to support a dynamic design process. For622

example, the prototype system can respond to a given mouse location at interactive speeds (i.e. ms)623

and consequently could support user interface functionality such as pop-up menus (customized to reflect624
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likely feature types and parameter values) or even ghosting images of possible features onto the cursor625

location as it moves to particular locations. In this way the engineer is free to ignore these selections in626

the same way a user of a predictive text system is able to adopt or dismiss suggestions when composing627

SMS texts.628

The case-study illustrated the method using hole features, however, the feature set could be extended629

to include those with a more complicated geometry. Provided that a feature can be defined geometrically630

and hence extracted from the CAD design, the prediction method can be applied by considering such631

features as another type of mark. This would allow for modeling the dependence both between and across632

feature types.633

6.1 Limitations634

Like other predictive systems and there are inevitable limitations. Currently the system can only predict635

the likelihood of features occurring within the volume defined by the maximum extent of the features636

extracted from the training dataset. Understanding how these results can be generalized to support637

predictions across variable volumes, as well as optimal scaling of the normalized prediction region, is an638

area of further research. Additionally, while the method of data homogenization appears to be viable639

for product families with very regular structures (e.g. industrial valves or manifold blocks), its behavior640

with product families with more variable forms is not clear.641

However, one of the features of all interactive predictive systems (that makes them viable) is that642

the user is always free to ignore suggestions that are wrong or out of context. In other words predictive643

systems do not have to provide perfect predictions all the time to be useful.644

6.2 Future Work645

Having established the fundamentals of the theory the authors intend to broaden the application to other646

datasets of mechanical component designs. This will allow the investigation of the methodology’s ability647

to support multiple feature types and more geometrically varied product families i.e. the scaling of the648

normalized prediction region. The merits and implications of estimating the normalized prediction region649

using different kernels which can account for boundary effects will be studied. Considering MPP’s beyond650

simple Euclidean geometry provide opportunities. The current focus of the project has been on providing651

decision support to a single engineer, and how such a system will support concurrent designs carried out652

simultaneously by distributed teams is a topic that requires further investigation.653

Although this work has established the theoretical and computational foundations for a predictive654

system its utility will ultimately depend on how its user interface behaves. Although beyond the scope of655

this work follow-on projects will seek to incorporate the predictive functionality described in a commercial656

CAD system (via their API) and so allow a systematic assessment of the impact of predictive CAD on657
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design productivity to be undertaken.658
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Supplemental Material751

S1 Moments from KDE752

E [X] =

imax∑
i=1

mmax∑
m=1

π(i)pi,m


δnim

ni,m∑
j=1

xi,m,j

ni,m
+ (1− δnim)

1

2


(19)

E [Y ] =

imax∑
i=1

mmax∑
m=1

π(i)pi,m


δnim

ni,m∑
j=1

yi,m,j

ni,m
+ (1− δnim

)
1

2


(20)

E [XY ] =

imax∑
i=1

mmax∑
m=1

π(i)pi,m


δnim

ni,m∑
j=1

xi,m,jyi,m,j

ni,m
+ (1− δnim

)
1

4


(21)

E
[
X2
]

=

imax∑
i=1

mmax∑
m=1

π(i)pi,m


δnim

ni,m∑
j=1

x2i,m,j

ni,m
+ (1− δnim

)
1

4


(22)

E
[
Y 2
]

=

imax∑
i=1

mmax∑
m=1

π(i)pi,m


δnim

ni,m∑
j=1

y2i,m,j

ni,m
+ (1− δnim

)
1

4


(23)

33



S2 Mutual Information Distributions753

The Mutual Information measure for the model is defined by ω in the following.754

ω = E [ln (f (X,Y,M))]− E [ln (f (X))]− E [ln (f (Y ))]− E [ln (f (M))]

Therefore we require the entropy measures for the joint and marginal distributions.755

As we are investigating dependency within the historic data we use the following joint and marginal756

probability density function where δnim
has been set to 1.757

f (x, y,m) =

imax∑
i=1

mmax∑
m=1

π (i) δmpi,m


ni,m∑
j=1

φj (x, y;µx,j = xi,k,j , µy,j = yi,m,j , σ)

ni,m



f (x) =
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f (y) =

imax∑
i=1

mmax∑
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π (i) pi,m

ni,m∑
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f (m) =

imax∑
i=1

π (i) pi,m

Deriving the MI statistic will require either numerical integration of Monte Carlo simulations methods.758

We propose the latter.759

Assume we generate s′ random simulations of (x, y) locations and feature m from f(x, y,m). As we760

increase the number of simulations we can obtain a more accurate estimate of the expectation.761

E [ln (f (X,Y,M))] = lim
s′→∞

s′∑
s=1

ln (f (xs, ys,ms))

s′

Similar arguments hold for the marginal on location (x, y). For feature direct calculation of the762

entropy is straightforward.763

E [ln (f (M))] =

imax∑
i=1

mmax∑
m=1

π (i) pi,m ln

(
imax∑
i=1

π (i) pi,m

)
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S3 Case Study Demonstration764

S3.1 Feature Location Probability Function Assessment765

For illustration, we step through an example using the data on the x = 0 face, and focus on one test766

design, and consider it a new design. With no features added to this on the x = 0 face, a uniform767

prior was assumed on which design from the training set the new design is most similar to, and use this768

to update the predictive distribution. Figure 10 provides a visualization of the predictive density. The769

darker red regions indicate areas of higher feature probability which reflects the contents on the training770

dataset with the central bore hole most prevalent. The blue numbers are used to indicate the positions771

of the hole features in the test design.772
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Figure 10: The predictive density for a new design given that no features have been added to the face with
the blue numbers indicating the positions of the features that will be added showing strong agreement
between the initial prediction and realization.

One feature is then added at the position observed in the test design. Given this additional informa-773

tion, the prior on which design from the training dataset the new design is most similar to is updated.774

Figure 11 illustrates how the prior on each training set design changes given this one observation; the775

red dashed line indicates the Uniform prior of no information and the probability of test designs either776

increase or decrease given the addition of the feature to the new design. Importantly, while the probabil-777

ities can be very small they are all non-zero. Moreover, we see an clear indication of a subset of designs778

types that are more likely candidates for the design being constructed.779

S3.2 Predictive Feature Location Function Predictive Performance780

This posterior is then used to update the predictive distribution, with the density, aggregated over all781

features, shown in Fig. 12; the green triangle indicates the position of the feature that was added to the782
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Figure 11: The posterior probability on which design from the training dataset a new design is most
similar to. The red dashed line indicates the prior Uniform probability where all designs have equal
probability.

new design. The addition of one feature shifts the probability to similar designs in the training dataset,783

and which captures the similar scaled coordinates.784
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Figure 12: The updated predictive density for a new design given one feature, hole diameter “18.0”,
has been added at the position marked by the green triangle, showing stronger agreement between the
prediction and the realizations than with the prior distribution.

Additionally, due to how the density is generated, the predictions can be presented at the feature785

level, and the ranked probability of feature inclusion calculated at each spatial coordinate. See Fig. 13786

for the predictive distribution for the four features with the highest probability aggregated over the unit787

square; 94% of the predictive density weight is on the “19.0” feature, 5% on “6.4”, and all other features788

having lower than 0.1% (note that the density color scale is not transferable between subplots i.e. the789

dark red may represent lower density between images).790
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Figure 13: The updated predictive density for four different features for a new design given one feature,
hole diameter “18.0”, has been added at the position marked by the green triangle

S3.3 Measuring Predictive Performance791

Fig. 12 also illustrates how the system’s predictive performance was evaluated. Using the test design,792

the observed features can be sequentially added to a new design at the observed test positions one at793

a time. A distance measure was then calculated after each addition between the positions of each of794

the remaining holes in the test design and the nearest predictive mode – the distance from the observed795

features in blue to the areas of high density in red – e.g. how well does the predictive density capture796

the feature positions. Details of how the distances were calculated are provided in S4.797

A score was also generated to measure how accurately a hole feature is predicted at a specific position.798

The predicted density of each feature at the position of an observed hole in the test design were ranked,799

and this ranked list was then compared to the feature observed in the test design at that position;800

reciprocal rank was used as the performance measure.801

These measures were calculated for all designs in the test datasets. The distances to remaining hole802

features and the ranks were averaged within each fold given how many holes have been added to the new803

design.804
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S4 Evaluating Distance from Feature to Nearest Predictive Mode805

A hill-climbing algorithm [35] was used to calculate the distance from the remaining features in the806

design to the nearest predictive mode; starting from the feature position moves in steps of one around807

the predicted intensity grid were evaluated until there were no increasing moves. The Euclidean distance808

between the feature position and the mode was then calculated. Euclidean distance was measured in two809

scales; one which accounts for the difference in scaling the dimensions to [0, 1] and another in the raw810

counts of moving from one grid position to the next. For example in the Fig. 14, the predictive density811

on the x = 0 is calculated at discrete points in y and z, shown by the black points. We observe a point812

from the test design, in red. The search for the nearest predictive mode evaluates all of the adjacent grid813

positions to the current position in the search by comparing the density (dependent on scaled distance)814

of the neighboring discrete points to the observed; color blue. If a neighboring grid point has a higher815

value (green) then the search moves to that position. This continues until there are no increasing moves816

– this position is then taken as the nearest local mode to the observed point.817
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Figure 14: Illustration of hill-climbing search to nearest predictive mode. The [0, 1] interval is divided
into a N by N grid, in this case N = 4. The kernel density is estimated at the discrete black points. A
feature is observed at a specific position, shown in red, and the mode is located by moving in increasing
steps between neighboring grid positions.
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S5 Rotation of Features in Two Dimensions818

The following example illustrates how the features of a part can be rotated to be more in alignment with819

the features in the database of designs. For an example, a part may have been designed around a rotated820

axis relative to the other parts in the database. Figure 15 shows the part from earlier rotated 20 degrees821

on the x = 0 face. The black points show the superimposition of all features instances from the training822

set on the x = 0 face – the average design, the blue triangles illustrate the positions of the features from a823

misaligned design – the design to be rotated – and the green stars give the feature positions post rotation.824

The rotation was seen to improve predictive ability; the average unscaled distance (grid points) from the825

features to the predicted modes was seven steps before rotation but one after.826
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Figure 15: A superimposition of all features instances from the training set on the x = 0 face. The
blue triangles illustrate the positions of the features from a misaligned design. The green stars give their
positions post rotation
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S6 Illustration of Designs with Poor Predictive Performance827

S6.1 Different Spatial Orientation of Features828
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Figure 16: Predictive density for a new (test) design with greater feature occurrence than is present in
the training data designs
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Figure 17: Predictive density for a new (test) design in which a hole feature is used for a different purpose
than in the training data designs
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Figure 18: The order that hole features are added to a new design impacts the predictive density and
thus decision support.
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S7 Additional Modeling Results831

S7.1 Prediction Results for the y = 0 Face832
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Figure 19: Cross-validation predictive performance. The x-axis indicates how many holes have been
added to a new design and the y-axis records the average distance or rank. The black points give the
within fold average measure and the red triangle the average performance across the folds.
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Figure 20: Cross-validation predictive performance. The x-axis indicates how many holes have been
added to a new design and the y-axis records the average distance or rank. The black points give the
within fold average measure and the red triangle the average performance across the folds.
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