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Abstract: Intelligent information systems that contain emergent elements often encounter trust
problems because results do not get sufficiently explained and the procedure itself can not be
fully retraced. This is caused by a control flow depending either on stochastic elements or on the
structure and relevance of the input data. Trust in such algorithms can be established by letting
users interact with the system so that they can explore results and find patterns that can be
compared with their expected solution. Reflecting features and patterns of human understanding
of a domain against algorithmic results can create awareness of such patterns and may increase
the trust that a user has in the solution. If expectations are not met, close inspection can be
used to decide whether a solution conforms to the expectations or whether it goes beyond the
expected. By either accepting or rejecting a solution, the user’s set of expectations evolves and a
learning process for the users is established. In this paper we present a conceptual framework that
reflects and supports this process. The framework is the result of an analysis of two exemplary
case studies from two different disciplines with information systems that assist experts in their
complex tasks.

Keywords: Intelligent Systems, AI, Trust, Explainable AI, Knowledge Management,
Knowledge Patterns

1. INTRODUCTION

Human expertise in many aspects is largely based on
prior knowledge and familiar patterns, which have either
been acquired through personal experience or been passed
on from other members of a community the individual
belongs to. As long as answers to prevalent questions
conform to available, well-known patterns acceptance of
theses answers is not an issue. Otherwise, they must
become crystallisation points of new insights and initiate
the creation of new patterns that find acceptance by
convincing the individual expert and the communities
with their superiority. However, a stagnancy that sticks to
known knowledge has long been observed and been called
knowledge inertia (Liao, 2002).

Today, human experts solve complex problems with instru-
ments using algorithmic techniques that rely on emergent
phenomena and thus confront humans with results that are
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uncommon and have been constructed in uncommon ways.
Such techniques, a class to which systems that we now
call intelligent systems belong to, produce results of high
complexity (e.g. routes in a map with assigned vehicles for
transportation of goods) or use highly complex structures
to compute results (e.g. classification through a trained
artificial neural network). Both situations are difficult to
capture for a human being. Moreover, the construction
process depends on data and self-organising algorithmic
mechanisms that typically include non-deterministic ele-
ments. Solutions can be large and therefore be difficult to
evaluate and validate, especially if a solution is unfamiliar
to the user or the solution contains unexpected elements.
Such solutions often do not conform to known patterns,
neither does the way the results are produced. This quite
understandably ensues traces of doubt about the validity
of the result. Trust in such systems must be established
as intelligent systems become a commodity in a world of
increasing digitisation (Andras et al., 2018). Upon that,
humans easily fall prey to various cognitive biases. They
often tend to either overestimate their own capabilities and



knowledge (Pallier et al., 2002) or easily accept solutions
produced by a machine without sufficient critical reflec-
tion (automation bias) (Cummings, 2004). In this context
appropriate instruments become a necessity.

In this paper, we present two exemplary case studies in
which human experts, in the first case traffic experts
and in the second case doctors, use intelligent systems
that produce results on the edge between known and
novel patterns. Both systems use formal languages to
explicitly document and formulate patterns and are able to
integrate new patterns. We use the case studies to derive
a conceptual framework for maintaining patterns that can
be generalised for other disciplines. Before we conclude
and look at future research directions we relate our ideas
to current work.

2. CASE STUDIES

In this section, we discuss two case studies that exemplify
how human experts may use intelligent systems for deci-
sion support. We look at transportation planners locating
micro depots and scheduling couriers and doctors, namely
cardiologists, who analyse ECG recordings as a diagnostic
instrument.

2.1 Case 1: Planning Urban Logistics using Evolutionary
Algorithms

In this section we examine the use of an urban logis-
tics problem, the micro-depot routing problem (Urquhart
et al., 2019b), as an example knowledge domain. Our aim
in this domain is not to solve specific problem instances,
but to illuminate the solution space in order to inform
a domain expert as to the options for the use of micro-
depots (MDs) and associated couriers. It is necessary for
the domain experts to have trust in the algorithm if they
are to accept the solutions presented and ultimately use
them to inform policy making.

The Micro-Depot Problem The delivery of packages by
courier/express parcel (CEP) companies to city centres
can contribute to congestion and pollution, due to the
number of delivery vehicles required. Such vehicles (tradi-
tionally light vans) pollute the atmosphere when moving
and the need to park in order to deliver parcels contributes
congestion. One approach to reducing the impact of CEP
deliveries is to employ modes such as walking couriers,
cycle couriers (cargo bikes) and electric vehicles (EVs).
These modes (especially the first two) contribute far less
pollution and require less parking space when making a
delivery. The downside is that walking and cycle couriers
have far less capacity and range. In order to effectively
use such alternative couriers they may be based at MDs
close to the city centre. The MD may be a locker or
container positioned in a location where a conventional
supply vehicle can deliver a supply of packages without
causing congestion, the final short delivery runs between
the MD and the recipient can be made by walking, cycle
or EV courier. The use of MDs represents a major change
in how goods are delivered and hence a major disruption
to the associated knowledge domain. The use of MDs is ef-
fectively expanding the knowledge domain. The challenge

that now exists is to assist the expert in applying their
knowledge to this expanded domain.

In the problems examined here, a range of possible MD
locations have been previously identified, the solver can
determine which locations are to be used.

We characterise solutions to the MD problem as follows:

• Pollution: attempt to improve air-quality in the city
through lowering emissions.

• Distance: reduce congestion by reducing the overall
distance travelled.

• Couriers: the number of couriers required to imple-
ment the solution.

• Time: the time span required to make all of the
deliveries

In addition the financial cost of the solution is used as the
fitness function, financial cost being the sum of the fixed
costs and costs/km for the couriers used in the solution.

Solving the Micro-Depot Problem The Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) is an illumina-
tion algorithm that was first introduced by Mouret and
Clune (2015). MAP-Elites creates a structured archive of
high-performing solutions mapped onto solution charac-
teristics defined by the user. A set of characteristics is
identified which may be used to classify a solution (e.g. for
a routing problem one might use cost, distance, delivery
time span and vehicles required). Solutions are generated
using mutation and recombination operators, but each
solution can be classified by normalising its characteristics
in order to identify a “bin” within the solution space that
the solution belongs to. For instance we might normalise
our four characteristics on a scale of 0-20, thus a solution
might occupy a bin such as 5:4:2:12 for example. The
number of bins in a map is calculated as s

d where s is
the number of points on the scale and d is the number of
dimensions. In our example the number of bins would be
160,000 (204). There exists the issue as to what happens
when a solution is generated that belongs to a bin that is
already occupied. In this case MAP-Elites uses a fitness
value to determine which solution should be allowed to
occupy the bin. In our vehicle routing problem (VRP)
example we could utilise distance as the fitness value and
thus, when a solution is found that maps to an occupied
bin, it replaces the existing solution if it represents a
decrease in distance. Figure 1 shows a representation of
an archive as produced by MAP-Elites based on a 4-
dimensional problem as described above.

We use a representation and operators that are fully
described by the authors in Urquhart et al. (2019b). The
representation uses a grand tour which represents the
route to be taken using the supply vehicle to visit all
customers, this route is constructed using the nearest-
neighbour heuristic. A chromosome is a structure which
contains instructions to transfer groups of deliveries to
a MD. Each gene within the chromosome represents one
particular courier as follows:

Tour Point Customer Qty MD Courier Mode

An example gene might be : 5, 3,MD1,WALK which
would remove the customers at positions 5,6 and 7 in
the grand tour and have them delivered by a walking



courier based at MD d1 (the 3 items removed from the
grand tour are replaced by a single visit to d1). Mutation
operators create new genes, delete old genes and randomly
alter the contents of a selected gene. The recombination
operator creates new chromosomes by randomly selecting
genes from the parents.

In summary the chromosome is a set of instructions that
may be used to convert the grand tour into a 2-tier delivery
solution making using of MD and couriers. MAP-Elites
provides the user with a structured set of solutions from
which they may make the choice of final solution. Solutions
can now be further visualised and analysed by appropriate
Parallel Coordinates plots (see figure 2).

Increasing Trust by Recording Algorithmic Decisions A
drawback of stochastic based meta-heuristics (including
MAP-Elites) is the difficulty in explaining how a solution
was arrived at. A user will have an understanding of the
solution presented to them as a result of executing the
algorithm, but will not have any insight as to how that
solution was arrived at.

When the solution generated does not match the user’s
expectation they look for an explanation as to how that so-
lution was created. To take an example; suppose we solve a
Travelling Salesman problem using a simple constructional
heuristic such as nearest neighbour (nn). The nn heuristic
is simple and non-stochastic, it is possible to explain that
city A is followed by city B as B was the closest un-visited
city at the point A was added to the solution. The nn
heuristic has the attributes of simplicity and predictability
(due to being non-stochastic) which make the solutions
produced easily explainable. But those attributes which
make it explainable, also result in the solutions being of
poor quality. It should also be remembered that VRP type
problems are more complex than TSP and so simplistic
heuristics such as nn are not necessarily appropriate.

A stochastic meta-heuristic (such as MAP-Elites) gener-
ates solutions by means of recombination and mutation,
both of which contain random elements. Solutions are
then potentially incorporated within the population using
a replacement strategy (Holland et al., 1992). The random
variations and chance of survival underpin the evolution-
ary search process. These are difficult to justify, but they
are the means by which success is achieved. Explaining this
process to an end-user can therefore present difficulties.
Hart and Ross (2001) attempted to produce a visualisation
of an Evolutionary Algorithm (EA) by tracking solutions
and showing their antecedents. The number of operations
(e.g. mutation and recombination) within an EA can make
such visualisations difficult to follow and of limited value
when trying to explain how the characteristics of the final
solution were determined.

The MAP structure within MAP-Elites provides a means
of identifying the "timeline" of a solution within a partic-
ular "bin". Assuming that the user has an interest in the
final solution occupying a bin we can generate a history of
that bin as shown in table 1. It is important to emphasise
that this table presents the the history of the cell and not
the history of the solution.

The table shows that 12 (update 13 represented a change
to the existing solution) solutions have occupied the bin.

Where two other bins are referenced then a crossover
operator, followed by a mutation was used, where only
1 bin is referenced then the new solution was created by
cloning followed by a mutation. Each change results in
an improvement in fitness, accompanied by some form
of change in one or more characteristics. If we examine
the final change we note that the number of couriers
does not change but the emissions drop and the distance
drops fractionally, whilst the overall time increases. We
can surmise that this change is most likely a change in
courier type to a lower emissions courier for a delivery run
which results in less CO2, but takes slightly longer.

The information used to compile table 1 is generated from
meta-data recorded by the algorithm to a log file during
executing. The meta-data records changes within the MAP
structure, this provides information that can be inter-
preted by an algorithmic expert, e.g. by interpreting the
keys contained within the origin column. Future work in
this area requires the meta-data to be enhanced to include
phenotype information that would allow a solution to be
visualised by the domain expert showing and highlighting
the differences between solutions over the timeline, the aim
being to answer questions as to why particular features are
or aren’t present in a solution.

Increasing Trust by Presenting Alternatives Expert
users (e.g. logistics planners) may have greater trust in
a solution, if they have been able to use their expertise
within the solution construction. MAP-Elites allows end-
users to select the final solution from those presented in
the archive of elites. Browsing the characteristics of such
solutions and making the final selection can allow the
expert user to view the range of solutions that are possible.

It can be argued that MAP-Elites is a solution space
filter – it takes the initial solution space (which is too
large for the user to comprehend) and filters out a set of
solutions that are representative of the solution space. In
the case of the problem under discussion, the capacity of
the map (assuming all bins are filled) is 204 = 160000.
From a practical perspective, it may be that MAP-Elites
is taking the massive initial solution space, and replacing
it with a smaller search space that is still, from a user’s
perspective, too large to be of use. For instance, is asking
a user to select a solution from a set of 160,000 any
improvement over asking them to select a solution from
the initial solution space? It becomes necessary to support
the end user through the selection of the final solution. If
that support allows the end user to make a choice from
thousands of alternatives then we are, perhaps, making
best use of their expertise.

The end user may be supported by visualising the map
of solutions using a technique such as Parallel Coordinate
(PC). Within a PC plot solutions are represented as a
Polyline that intersects vertical axis at the appropriate
points, for a full description of the technique the reader is
referred to Inselberg (2009). A PC plot of the output from
a typical run of MAP-Elites may be seen in figure 2. In
order for the plot to form part of a tool that supports the
user it is desirable that the user interacts with the plot.
The authors present the ELite VISualisation (ElVis) tool



Fig. 1. A visualisation of a 4-dimensional elite archive, shown as a set of 2D heat maps

Table 1. The "history" of a specific bin (20:20:9:18) within the archive. Each row represents an
update of the cell contents, at each point the fitness improves. The details of the change made

may be ascertained by examining the solution characteristics.

Time Origin Updates Fitness
Solution Characteristics

Couriers Emissions Distance Time

5704 12:4:9:11/12:12:4:17 0 977.11 5 45.48 21.25 11.66
5779 17:16:9:19/19:20:7:9 1 930.21 5 48.15 21.04 12.106
14252 17:16:11:18 2 922.87 5 42.97 21.19 10.55
17036 20:20:9:18 3 922.01 5 42.59 21.14 10.55
50723 11:16:9:18/12:8:7:11 4 919.24 5 40.92 21.10 10.61
55009 11:10:9:5/19:17:7:15 5 881.60 5 48.70 21.15 11.41
124016 13:12:9:7/18:17:9:4 6 880.66 5 47.90 21.21 12.24
130454 15:15:11:18/14:7:7:19 7 878.25 5 46.12 21.28 10.77
207786 19:19:11:12/15:12:11:10 8 878.22 5 47.49 20.85 11.1
229666 10:16:7:6 9 877.06 5 46.58 20.90 11.06
417443 14:13:13:16/16:15:7:16 10 875.85 5 44.97 21.16 10.54
863310 18:18:4:2 11 875.32 5 45.53 20.88 10.67
1195610 20:20:7:20 12 874.23 5 44.88 20.87 11.00

(Urquhart, 2019) 1 which allows a .CSV file containing
summary details of a MAP to be visualised as a PC plot.
ElVis supports user-interaction with the PC plot. Figure 3
demonstrates how ElVis allows the user to highlight areas
of interest on the 2nd and 3rd axis (time and vehicles)
leading to the selection only those solutions that match
the users’ criterion being highlighted. In this way the
user may be guided through the the solutions found and
be able to visualise alternatives as they are supported
towards making their the final choice. The user has used
their domain knowledge to choose a solution, rather than
simply being presented with a solution by the optimisation
algorithm. ElVis allows this choice to be informed, by
allowing the user to gain an understanding of the solution
space and what options are available to them.

Using Patterns to Understand Solutions. The domain
knowledge and experience of an expert user will lead to
them having expectations of the solution, this may take the
form of specific features that they expect to see within the
solution. The confidence that the expert has in a solution
may be increased if the solution contains elements that
match the expectations of the user. Assuming that the user
has confidence in their own knowledge then this confidence
may well extend to a solution if that solution contains
features that reflect the users’ knowledge. Where a solution
is identified by the optimisation algorithm as being of a
high quality and reflects the users’ beliefs then we have
match between the users’ expectations and the algorithms
quality measure (fitness function), we hypothesise that this
will increase trust felt by the user towards the solution.
When the algorithm allocates a low quality value to a
solution that contains features that the user expects, then
we have a mismatch between the users’ model of a quality

1
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solution and that modelled within the algorithm. In this
situation a number of possible outcomes exist

• The user can find another solution within the MAP
that meets their requirements

• The user learns from the solution presented, accepts
it and revises their expectations

• The fitness function is modified to closer match the
users’ expectations

• The user does not accept the presented solution and
there is a breakdown in trust between the user and
system

The first outcome is the most desirable and represents
a specific advantage of an illumination algorithm such
as MAP-Elites. The second outcome very much depends
on the willingness of the user the evaluate the solutions
presented by the algorithm and accept them. The third
option is a longer-term answer as it may have a software
development cost, but ultimately it may lead to software
that produces solutions that match the expertise of the
user. Machine learning may allow fitness functions to
learn from the user and so adjust the weightings given to
solutions that the user favours. The last option represents
a failure of the optimisation process to correctly mirror
the users’ expectations. This may be due to incorrectly
specified software or more likely a development process
which was not able to solicit the end user requirements in
sufficient detail.

If we take vehicle routing as an example, the user might
expect to find two customers that are physically adjacent
to be adjacent within the solution. Alternatively the user
might expect that a customer is serviced by particular
modes, for instance a customer located within a pedestrian
precinct might expect to be serviced by a courier on foot
or on a bicycle.
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Fig. 2. A Parallel Coordinate plot of a MAP of Elite solutions for a problem with 4 characteristics.

emissions time vehicles dist

Fig. 3. The plot shown in figure 2, but with the user specifying criterion on two axes in order to highlight specific
solutions.

Table 2. An example of a MDVRP solution encoded in the format < Mode > || < Depot ><

CustMode >, along with an explanation of the solution.

Encoding VC1VC2VD1C3WC4WD3C5EC6E

Explanation Customers 1 and 2 served by van from MD d1, customers 3 and 4

served by walking from MD d3 etc.

Table 3. Examples regular user expectations,
encoded as regular expressions, which may
be applied to a problem encoded as per the

example in table 2.

Expectation Regex
Cust 2 is served by bike C2B

Cust 1 is followed immediately by Cust 2 C1\DC2\D

Depot D2 is in use ,D2\D

It can be argued that the expectations of the expert
user are a manifestation of the expert knowledge held by
the user. Such expectations can be defined as patterns,
in a similar manner to which the EA encodes potential
solutions. We can allow the user to define patterns and
then note whether they exist in solutions contained within
the map. It could be argued that such patterns could
be expressed as problem constraints (soft or hard as
appropriate), but that would potentially bias the search
and possibly leave out novel solutions that don’t include
these patterns. If a pattern is not found then the user may
be interested in what alternative is presented within the
solution.

For the MD example we could express each solution within
the map as a string of the following format:

< Mode > || < Depot >< CustMode >

An encoding of the solutions using a format such as
that shown above has the advantage that we can encode
patterns that represent the users’ expectations as regular
expressions, which may be applied to the string. Providing
that the users’ expectations can be encoded as a regex then
two opportunities present themselves:

• A confidence factor may be calculated for each solu-
tion, based on the % of regex beliefs that the solution
matches. Such a confidence factor could be used to
highlight solutions within the MAP that reflect the
users’ beliefs. It could be argued that this value could
be incorporated into a fitness function, but this needs
to be treated with caution as it could lead to the
evolutionary process converging on a solution that
reflects the users’ prejudices and views rather than
one that is genuinely optimal.



• The regex represent the beliefs of the expert user,
based on their experiences and, some cases prejudices
of the user. It may be useful to highlight alternatives
that have been evolved in solutions that do not
match. Suppose the user has specified that a customer
should be serviced by a bicycle courier (as per the
first example in table 2). It might be useful to
highlight solutions where the pattern is not present.
For example, if the user considers solutions that
meet the overall objective of low emissions, but don’t
exhibit the pattern, it may become apparent that
customer 2 could be served by a walking courier and
still have the solution meet the users’ requirements.

Conclusions and Future Work The measures outlined
above may be used to attempt to increase the confidence
of expert users when dealing with real-world problems.
Such users have expertise and experience that cannot
necessarily be captured in an evaluation function. Making
use of that expertise through the methods outlined has
significant potential for not only increasing confidence
but also, making use of the expert knowledge within the
problem solving process.

The timeline of solution development described in section
2.1.3 would benefit from improved interpretability by
highlighting the actual differences made to the solution
at each stage. By recording the differences between the
phenotype of the old and new solution. The differences can
then be quantified against the changes in the fitness value
and the problem characteristics. This could take the form
of a visual representation (e.g. a map) of the chromosome.

The pattern matching process proposed in section 2.1.5
could be further adapted by use of a GUI to allow easier
input of the patterns, rather than by specifying them as
regular expressions, which may not be easily understood
by the domain expert.

2.2 Case 2: ECG Analysis

Cardiac arrhythmia and especially atrial fibrillation (AF)
are relevant health problems worldwide. This significance
of AF will further grow with a current estimated preva-
lence of 3.0% in Europe (Kirchhof et al., 2016) and the
expectation of a further rise in the upcoming years (Wilke
et al., 2012; Lane et al., 2017). Individuals suffering AF
have an increased risk for stroke or embolic events as well
as development of heart failure (Bjoerck et al., 2013; Stew-
art et al., 2002). Prevention of these grave consequences of
AF, based on an early identification and adequate therapy,
is of great importance in health care.

Robust, adequate and timely diagnosis of AF is often chal-
lenging as many patients with AF are asymptomatic. This
lack of specific symptoms in AF is seen especially early
after disease onset, hence many patients are not searching
the expertise of a medical doctor specialised in cardiac
diseases at an early time point. This supports the need of
widely available screening tools with a low threshold for
an application. The gold-standard diagnostic instrument
for identification of AF is the electrocardiogram (ECG).
Using an ECG to diagnose cardiac abnormalities, doctors
actually try to identify internalised patterns they learned
in medical school and during training. The ECG provides

the human-interpretable visualisation of the underlying
time series of changes in the electrical activity of the
heart measured via skin electrodes. Exemplary patterns
visualised by an ECG are shown in Figure 4.

The potential applications of artificial intelligence (AI)
for doctors who work with patterns and for doctors who
work without patterns have recently been discussed by
Topol (2019). Examples of such areas and patterns used
by doctors e.g. for diagnosing can be radiologists analysing
output of magnetic resonance imaging devices but also
cardiologists looking for pathological patterns in ECG time
series.

A system that can store and visualise ECG time se-
ries while highlighting suspicious sequences that resemble
known patterns together with a human reader delivers a
blueprint for a system in which healthcare professionals in
general can be assisted by an algorithmic diagnosis tool
providing expert -level knowledge.

Within this second case study, we used an SQL-based
query language in a time-series database (ChronicleDB
(Seidemann et al., 2019)) to prototypically describe a spe-
cific and common ECG pattern, the so-called R peak. This
enabled us to query (see figure 5) all R peaks from an ECG
and to calculate the respective R-R-interval distances. In
healthy subjects (here with constant sinus rhythm), this
R-R-interval shows only a small variance, hence the R-
R-distances in an ECG are situated tightly around the
mean R-R-distance. Certain diseases, concerning the heart
rhythm and especially arrhythmia (e.g. based on AF) yield
a large R-R-interval variance, causing a broader distribu-
tion of R-R-distances around the mean. To explore this
concept, we identified such potentially pathological ECGs
that showed R-R-intervals that differed relevantly from
the mean, here with more than the standard deviation as
threshold.

To provide an interface for the human interpreter, these
abnormal R-R-intervals of interest were highlighted in an
ECG visualisation (see figure 6). The visual inspection of
the ECG by healthcare professionals can be assisted by
highlighting e.g. abnormal R-R-intervals. Trust is provided
by showing a familiar representation i.e. all information
the expert are used to have for diagnosis and, in addition,
visually indicate abnormalities of common ECG patterns.

Besides rhythmic disorders, cardiac diseases that are as-
sociated with structural changes of the heart – such as
myocardial scar – leave only scattered interference in the
ECG time series, producing patterns that are, if visible
at all, only accessible for well-trained expert cardiologists
(Markendorf et al., 2019). However, they can be identified
by an appropriately structured and sufficiently trained
artificial neural network (ANN) (Gumpfer et al., 2019,
2020). Beyond the discriminatory information itself that
can be used in AI-aided diagnostic concepts, such systems
further can be used to visualise areas in its input data
favouring the classification made by the algorithm. Such
visualisations with e.g. heat maps are a common means
of explainable AI with focus on ANNs. Once explained
and shown, doctors can learn and internalise those newly
identified patterns.



Fig. 4. ECG with normofrequent sinus rhythm (heart rate 90/min), normal QRS duration and normal R wave
progression. One ventricular extra beat with missing P wave and broad QRS complex with subsequent ST segment
depression (V3-V6).

SELECT r_r_start, r_r_end, r_r_distance

FROM (

SELECT r_time_1 AS r_r_start, r_time_2 AS r_r_end,

r_time_2 - r_time_1 AS r_r_distance

FROM (

SELECT r_time

FROM myecg1

MATCH_RECOGNIZE(

MEASURES

B.lead_I AS q_value,

E.timestep AS r_time,

E.lead_I AS r_value

PATTERN A B C+ D+ E

DEFINE

A AS TRUE,

B AS PREV(lead_I) >= lead_I,

C AS PREV(lead_I) < lead_I,

D AS (q_value+300) < lead_I AND PREV(lead_I) < lead_I,

E AS (q_value+300) < lead_I AND PREV(lead_I) > lead_I

WITHIN 50 MILLISECONDS )

) AS Peaks

MATCH_RECOGNIZE(

MEASURES

A.r_time AS r_time_1,

B.r_time AS r_time_2

PATTERN

A B DEFINE A AS TRUE, B AS TRUE )

) AS Distances

WINDOW (COUNT 5000 EVENTS JUMP 5000 EVENT)

Fig. 5. R-R-interval query. The pattern is defined similar to
a regular expression. Parts A-E are defined based on
comparison of previous and current value appearing
in the time series. In this example, the R-R-intervals
in lead I of myecg1 are queried, resulting in a set of
start- and end-points as well as distances.

To highlight these parts in the ECG that had the highest
attribution on the prediction of the ANN (see figure 7),
we used Layerwise-Relevance-Propagation proposed by
Bach et al. (2015). In this exemplary heatmap, you can
see that there is much focus on the R peaks (e.g. leads
AVR and V5), but also on the T waves (especially lead
V2). This is reasonable, as differences in height of the
R peak and the T wave are known to be indicators for
structural changes in the myocardium (Petty, 2020, pp.11-
13). Further, there is negative attribution on the prediction
at the beginning of lead V6, what shows that the network
indeed also relies on wrong patterns. In this very case,
this pattern was caused by breathing, what changed the
distance between myocardium and the electrode during
recording, resulting in varying signal intensity. In AI,
uncovering such behaviour is termed as unmasking Clever
Hans Predictors (Lapuschkin et al., 2019).

Such visualisations as shown in figures 6 and 7 can elicit
trust among the healthcare professionals because all infor-
mation used in the conventional, human-based diagnostic
process are still visible. Based on this familiar represen-
tation, the AI can explain its prediction by contextual
integration. Furthermore, confidence in AI is supported by
the identification of known ECG patterns that correspond
with the personal catalogue of patterns for this type of
cardiac diseases.

By feeding patterns newly identified by the AI back into
an externalised catalogue of patterns to be assessed by a
human expert, a learning loop can be established in which
the human expert extends her/his domain knowledge by
using the AI application as an assisting tool and thus
perceiving it not as a potential substitute for his role but
rather as an extension.

An externalised catalogue of patterns can also be used to
compose and refine training data for the AI. Simple ECG
patterns can be pre-extracted by methods as described



Fig. 6. ECG with highlighted R-R-intervals. R-R-intervals that differ relevantly from the mean R-R-interval distance
are marked bold/red. R-R-intervals were calculated based on lead I and extrapolated to the remaining leads.

Fig. 7. Attributions of ECG input on neural network
output. Yellow and red parts correspond to parts
that support the given prediction and blue parts
correspond to parts that support disagreement with
the prediction. This case is a true positive prediction.
The disease of interest is a structural change in
myocardium (e.g. scar).

above and used for labelling or as inputs for the ANN
directly. With this approach, more sophisticated AI appli-
cations can be developed, whose results may be fed back
into the pattern catalogue.

3. PATTERN FRAMEWORK

The analysis of our two cases identified knowledge domains
in which experts possess conceptual patterns, which they
use to solve the demanding tasks of their art. We could
observe this for tasks that have a high diagnostic nature,
like medical diagnosis or the evaluation of complex trans-
portation schemes. These patterns allow experts to assess
assumptions and solutions for problems as appropriate and
fit for the purpose. As such they manifest expectations and
conceptions of the expert in his domain.

Some tasks strongly rely on determining patterns and
deriving results by evaluating and assessing these identified
structures. Doctors that use data and images for their di-

agnosis as radiologists or cardiologists are typical examples
(Topol, 2019). Patterns in the ECG that indicate problems
with the heart are known probably since the moment the
ECG recording was invented and its potential realised.
However, new patterns correlating to diseases have contin-
uously been detected by researching cardiologists and then
been accepted by the community of general practitioners.
This is how knowledge is extended and evolves over time.

From a knowledge management perspective, we can view
patterns as manifestations of knowledge assets. As two
sides of a medal we have intrinsic or internalised knowledge
on one side and what is called externalised knowledge on
the other. This has extensively been discussed in the past
(Nonaka and Takeuchi, 1995). In each of our cases, the
externalisation process maps a knowledge asset onto a
formalised linguistic formulation of a pattern, i.e. a regular
expression or a SQL query. The formal expressions can
be visualised and thus again be used for explanation, e.g.
for a lay person or a student new to the field who then
internalises that particular piece of knowledge.

If algorithms produce new, disruptive solutions they typi-
cally only contain few familiar patterns and potentially lots
of new ones. A frequently cited example for this is Deep
Mind’s Alpha Go Zero (Silver et al., 2017) that calculated
results that even professional Go players could hardly
retrace (WIRED, 2018). We therefore need instruments
that give insight into innovative solutions and with which
a new pattern can first be identified and then be formalised
(Urquhart et al., 2019a).

To illustrate the above we look at the following example.
Assume that an experienced delivery planner on basis
of past experience believes that whenever a delivery van
passes a customer, goods should always be delivered im-
mediately. Let us further assume that an evolutionary
algorithm has constructed a very good solution within
which this is not the case and that this solution is better
from the perspective of the objectives of the underlying
optimisation problem. The expert will very likely reject
the new solution because of the - at least for him - opaque
working of the algorithm and because it contradicts his



Fig. 8. The conceptual framework of pattern detection to
establish trust in real world intelligent systems.

view of what is good, i.e. his patterns of a good trans-
portation plan.

Similarly with diagnoses produced by AI algorithms that
detect patterns in an ECG time series that are not yet
common knowledge of cardiologists. Again visualisation
may act as a bridge and help to define the corresponding
query that retrieves patterns in the time series database.

Popper introduced the idea of three ontological worlds
in his famous epistemological model (Popper, 1972). In
this model, the first world (W 1) is the world of phys-
ical objects and real world processes. Here biology and
medicine are situated. The second world (W 2) is the
world of mental events, processes, and predispositions.
Here we locate beliefs and psychological phenomena. The
third world (W 3) is the world of the products of the
human mind materialised in linguistic formulations either
oral or written. Firestone and McElroy (2003) model the
knowledge acquisition process of organisations through
what they call knowledge claims. Knowledge claims are
conjectures that give tentative solutions for newly stated
problems. In accordance with Popper’s tetradic schema,
they can later either be refuted if they show inconsistencies
(with W 1) - i.e. they are falsified - or get accepted as newly
acquired knowledge if they withstand testing. This model
is based on Popper’s three world model and its knowledge
acquisition process through trial and error.

We will project this three world perspective onto our
discussion of patterns (see figure 8):

Let us call the available internalised patterns the per-
sonal catalogue of patterns of an expert and the set of
externalised patterns of a domain the domain catalogue
of patterns. We see the personal catalogue as an interior
manifestation of knowledge in the mind of an expert.
That domain catalogue of patterns consists of knowledge
patterns that can be expressed in the pattern language

of that catalogue. New patterns are analogous to the
knowledge claims mentioned before. While working on the
diagnosis of a complicated case or while scrutinising the
solution of a complex transportation problem produced
by a non-deterministic algorithm an expert will create
conjectures and hypotheses that help her understand and
assess the quality of the underlying matter. This will lead
to observations that potentially can explain or indicate
solutions. The structure of this observation can become a
claim for a pattern. Analysis and application in further
cases may transform the at first only conjectured pattern
claim into a newly acquired knowledge pattern that is
added to the individual catalogue of that expert. Even-
tually, it can and should be externalised and expressed in
the pattern language by integrating it into the domain
knowledge catalogue and thus extend it. Analogous to
Popper’s W 2, our conceptual framework contains the
more subjective individual personal catalogue of patterns
and the externalised domain catalogue of patterns that
corresponds to W 3 which is then available to a public
discourse and further testing.

Patterns are a useful means to assist in the understanding
of results and diagnoses and may be a catalyst to providing
explanations. Explanations are a key for fostering trust
in AI systems (Samek and Müller, 2019). The right to
explanation has even found its way into the EU’s General
Data Protection Regulation (European Parliament and
the Council of the European Union, 2016). Article 13, 14
and 22 address the use of personal data and article 13
explicitly states that "meaningful information about the
logic involved" shall be provided if collected data is subject
to automated decision making. Moreover, by order of the
German Federal Ministry of the Interior (BMI) a panel of
experts has created a report seeking answers to principal
ethical and legal questions of how data can and should
be used. In this report explainablity, retraceability and
transparency have been identified as crucial requirements
for the use of data processing algorithms (Datenethikkom-
mission, 2019).

We argue that there is a small but significant difference be-
tween explainability and interpretability. Doshi-Velez and
Kim (2017) define interpretability in the context of ma-
chine learning as the ability to explain or to present results
to a human in terms understandable for the human. This
implies that interpretability uses a type of language in its
presentation that is accessible for the human being. Gilpin
and colleagues define interpretability and completeness as
two goals of explainable AI for which an appropriate trade-
off must be found (Gilpin et al., 2018). Explainability does
not necessarily need to fully bridge the language gap to
the user and may stay within the representation of the
algorithm, e.g. be based on a visualisation of the activation
layers of the neural network. According to Lipton (2018)
explanations will reflect the inner workings of a system
or at least deliver useful information about it. Explain-
ability is therefore a mechanism with which an intelligent
systems describes how a certain result was produced e.g.
by highlighting internal structures relevant for the deci-
sion. Phillips et al. (2020) define five dimensions of ex-
plainability with different levels of complexity addressing
different requirements and user groups. Trust is named
as an outcome of understanding which again is supported



by explainability. Diprose et al. (2020) conducted an ex-
emplary survey on a group of physicians applying a ML
risk calculator to solve a diagnostic dilemma. The survey
showed that understanding, explainability and trust are
significantly related. The authors argue that qualitative
studies and opinion articles outline the desire of physi-
cians to understand the logic of an intelligent algorithm
before they are ready to follow its recommendations. In
the case of doctors, understanding results of an intelligent
algorithm depends on interpreting the results in order to
produce a rationale for e.g. a diagnosis. This can obvi-
ously be supported by explanations given by the system,
maybe with model agnostic explanations being preferred
(again see Diprose et al. (2020)). Repetitive, successful and
plausible use of such an instrument will eventually create
inductive trust built on this personal past experience al-
though it could be objected that plausibility is at least par-
tially subjective (see Andras et al. (2018)). Inductive trust
will ideally reduce the requests for explanations to the
more rare and ambiguous cases. Even, as London (2019)
states, doctors have by all means always been willing to
accept opacity in their decision making such trust building
mechanisms will help establish acceptance of intelligent
systems.

We see the basic question of interpretability as Why? and
that of explainability as How?. Our case studies show in
which way the answer to Why? can be given in a pattern
language that is not within the machine learning model
and can therefore be considered as being model agnostic.
The answer to How? links this interpretation to relevant
structures in the ML model. However, combined answers
to both questions, understandable for the user can be a
key to acceptance of unusual, innovative solutions as the
solutions are. Referring back to our transportation expert,
explanations of how the solution was derived together with
why it is a good solution, given in a language that she is
able to understand will create trust in the quality of the
solution and potentially lead to an eventual adaptation of
the catalogues of patterns.

Considering supervised learning which is the case in our
second case study we can speak of a form of induction, i.e.
of drawing conclusions about the future based on past ex-
perience. Popper anticipated long before us thinking about
intelligent systems an "induction machine" that applied to
sequences of coloured counters "...may through repetition
’learn’, or even ’formulate’, laws of succession" while ne-
glecting pure induction as source of scientific knowledge.
The framework presented here helps in creating hypothe-
ses based on observations (e.g. patterns in the ECG) of
W1 objects. These hypotheses formulated as patterns can
undergo inspection and test before being accepted. Trust
in the machines can be established and deepened by such
a learning process in which users can gradually adapt their
expectations to the results explained by the algorithm.
By using intelligent systems they get new insights into
their domain and build new conceptions of it. Algorithmic
results do not have to be simply accepted but can be
scrutinised until they are sufficiently illuminated.

The choice of our case studies shows that we focus on semi-
autonomous systems in which the intelligent algorithms
supports the user in his decision. We do not aim at fully
automated systems. However, patterns can potentially be

used in settings with higher degrees of independence. For
example, tested queries can be used to monitor ECG
recordings collected by wearable devices. Here, again, we
have an analogy to Popper’s knowledge acquisition model:
a testified query has become an accepted and applicable
knowledge asset, which can be used until further refined
or replaced.

4. RELATED WORK

Our conceptual framework can potentially be applied to
a wide variety of algorithms, e.g. deep learning or evolu-
tionary algorithms as demonstrated by our case studies.
In this context, methods of explainability are a valuable
tool with which relevant patterns can be identified and be
made explicit.

In the area of AI-based ECG processing, different ex-
plainability approaches have been proposed. Teijeiro et al.
(2018) used a knowledge-based algorithm relying on ab-
ductive reasoning to train their neural network, what en-
ables explainability by design. Strodthoff and Strodthoff
(2019) have shown that recent explainable AI methods
(Shrikumar et al., 2017; Bach et al., 2015; Sundararajan
et al., 2017) are applicable to different kinds of neural
networks trained on ECGs.

Illumination algorithms create series of possible solutions.
From the perspective of the expert for evolutionary al-
gorithms they illuminate how the algorithm got to the
solution and from the perspective of the domain expert
they present results along the dimensions defined by the
objectives of the optimisation problem (Mouret and Clune,
2015).

The field of Interactive Machine Learning (IML) has the
goal to define machine learning algorithms that incor-
porate meaningful interaction with humans. Dudley and
Kristenson see IML as a paradigm in which input and re-
view by humans iteratively refine the mathematical model
constructed by the learning algorithm (Dudley, 2018).
Moreover, Active Learning requires an oracle, i.e. a human
interacting with the system, to label relevant data points
that are not appropriately labelled to be used in the learn-
ing algorithm. Our paradigm of the catalogue of patterns
also addresses human experts to interact with our system.
But different from IML approaches we do not expect the
user to intervene in the processes of the algorithm itself.
We aim at assisting the user in managing his routine tasks
with her routine assumptions together with the opportu-
nity to create new ways of problem solving and diagnosis.

Abdel-Karim and colleagues focus on human learning
while being in the loop of human-machine interaction in
interactive machine learning (Abdel-Karim et al., 2020).
They propose a contradiction matrix which similarly to
a traditional confusion matrix documents the number of
cases in which human and machine diagnosis are equiv-
alent and in which they are equal. Similar to our ideas
this instrument can be considered as a knowledge manage-
ment instrument. Interactive explanations with WhatIf-
questions have been examined to create glass-box AI sys-
tems (Sokol and Flach, 2020).

However, we see our pattern based approach less as an
instrument of IML but more as a move towards explain-



ability and interpretability. Using queries and patterns in
a more dialogue based form are a potential strand of future
extensions.

5. CONCLUSION AND FUTURE WORK

We have presented an argument that trust in intelligent
systems may potentially be engendered through the use of
tools that formalise and visualise patterns that are integral
components of the way experts in the specific field think
and argue. Two case studies have been discussed in which
users work with intelligent systems. One being the MAP-
Elites algorithm that can help to explain the operation
of stochastic population-based optimisation algorithms to
users. The other, an ANN diagnosing heart diseases in
ECG times series producing visualisations of its internal
inference process.

Future work directions are a formalisation of the catalogue
of patterns and how it evolves. A second research topic
lies in the analysis of how users interact with tools like
those presented in the case studies of this paper. This
interactions may give new insights in how new knowledge
is acquired and how the formal representation of patterns
and the corresponding search process can be automated.
Empirical studies with experts in the fields will extend the
respective catalogues and will deliver data to formalise the
interactions as well as show the scalability of the approach.
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