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Abstract
The paper presents a new multi-material topology optimization method with a novel adjoint sensitivity analysis that can
accommodate not only multiple plasticity but also multiple hardening models for individual materials in composite structures.
Based on the proposed method, an integrated framework is developed which details the nonlinear finite element analysis,
sensitivity analysis and optimization procedure. The proposed method and framework are implemented and illustrated by three
numerical examples presented in this paper. An in-depth analysis of the numerical results has revealed the significant impact of
the selection of plasticity and hardening model on the results of topology.

Keywords Multi-material topology optimization . Elastoplastic yield criterion . Strain hardeningmodel . Sensitivity analysis

1 Introduction

Due to the increasingly high demand for lightweight materials
with specific mechanical characteristics in various fields, such
as structural engineering and aerospace, composite structures
have drawn wide attention from both the research and design
community. Composite designs are highly diverse, and the
composite materials can be easily placed into free-form com-
binations, to achieve specific and more desirable designs.
These designs exhibit increased strength, toughness, erosion
resistance and antifatigue properties compared to single mate-
rials. A two-phase composite, where one material, acting as a
reinforcing element, is embedded into another material matrix
in the form of strips, sheets, or grids, is becoming more

attractive for many practical applications. The material for
these phases can be steel, aluminium, polymer, wood, con-
crete, etc., and there is a need to distribute these materials
efficiently to maximize the contribution of each material.

The topology optimization technique is an effective tool,
especially with complex boundary and loading conditions, that
has been used by researchers to design a conceptual structural
layout. Extensive research has been conducted on the imple-
mentation of topology optimization on single materials with
linear elastic properties (Guan 2005; Bruggi 2009; Bruggi
2010). The resulting truss-like topology can be regarded as a
strut-and-tie model based on the compression and tension re-
gions. Multiphase linear elastic material optimization has also
been developed by interpolating the lower bound of the design
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variable to a second material candidate (Bendsøe and Sigmund
1999; Huang and Xie 2009). However, linear-elastic material
modelling is inadequate when the structural behaviour of the
realistic real-life design exceeds the elastic range. Studies
emerged to address the problem, especially for those materials
such as concrete or soil that have unequal compression and
tensile strength incorporating the different mechanical proper-
ties of composite materials into topology optimization (Querin
et al. 2010; Victoria et al. 2011; Liu and Qiao 2011; Luo and
Kang 2012; Luo et al. 2015). In recent decades, the nonlinear
material behaviour has also been considered to achieve a more
reliable design by topology optimization. Initial studies consid-
ering topology optimization with material nonlinearity focus on
a singlematerial problem (Yuge andKikuchi 1995;Maute et al.
1998; Schwarz et al. 2001; Yoon and Kim 2007). In the most
recent research, Wallin et al. (Wallin et al. 2016) succeeded in
combining finite strain isotropic hardening plasticity with to-
pology optimization. Zhang and Lei (Zhang et al. 2017) went
further and accounted for plastic anisotropy in conjunction with
topology optimization. The BESO optimization method, con-
sidering the von Mises isotropic hardening plasticity, is also
applied in layout design in (Xia et al. 2017). Li et al. (Li et al.
2017) proposed a topology optimization procedure incorporat-
ing with the von Mises criteria employing various hardening
rules to maximize the energy dissipation under cyclic loading.

In two-phase elastoplastic material optimization, the ob-
tained topology significantly depends on the loading whether
it is elastic or plastic dominated (Kato et al. 2015). However,
there are few studies considering material nonlinearity for a
multiphase optimization problem. For example, Swan and
Kosaka (Swan and Kosaka 1997) presented a framework of
continuous structural topology optimization for elastoplastic
applications based on the Voigt and Reuss mixing formula-
tion. An approach presented in Bogomolny and Amir’s
(Bogomolny and Amir 2012) work applied the topology op-
timization method in a concrete and steel layout design taking
into account both the yield criteria and the post yielding per-
formance. Nakshatrala and Tortorelli (Nakshatrala and
Tortorelli 2015) proposed a framework to distribute the two
elastoplastic material phases to optimize energy dissipation
under impact loading. Kato et al. (Kato et al. 2015) developed
an analytical sensitivity approach for topology optimization in
nonlinear composites.

The vonMises plastic material model is adopted in most of
the aforementioned studies, and they all employ the isotropic
hardening rule, where the radius of the yield surface increases
based on the accumulated effective plastic strain. However,
kinematic hardening, where the radius remains constant but
the centre of the subsequent yield surface is moved by shift
stress, is often overlooked, despite many practical materials
such as polycrystalline metals, exhibiting combined properties
of isotropic and kinematic hardening. In addition, except for
the commonly used yielding criterion of von Mises that is

widely applied to model metal materials, the Drucker-Prager
yield criterion is usually used to describe pressure-dependent
materials such as concrete or soil (Luo and Kang 2012;
Bogomolny and Amir 2012; Li and Zhang 2018).

There is an increasing demand for the topology optimiza-
tion technique to efficiently distribute material phases for
composite structures. Therefore, it is necessary to consider
more types of hardening rules, following multiple yield
criteria, and incorporate the topology optimization method to
achieve a more realistic and reliable design.

This study proposes a topology optimization procedure for
a multiphase material distribution problem. Here, the material
candidates are associated with kinematic hardening or mixed
isotropic and kinematic hardening with the flexibility of com-
bining different plasticity models. Moreover, the proposed
framework also offers the flexibility of assigning different
hardening rules to each single material phase by using the
design variables to interpolate the permissible yielding stress
surface into the topology optimization. For example, the von
Mises or the Drucker-Prager plasticity model is applied to
both phases, but one follows the isotropic hardening rule
while kinematic hardening is assigned to the other. To illus-
trate the advantage of the proposed framework and method,
three design examples are tested, and the results are presented
in this paper. In the first two examples, several material
models were created including (1) the von Mises and the
Drucker-Prager yield criterion applied to each phase, respec-
tively; (2) the vonMises yield criterion applied to both phases;
and (3) the Drucker-Prager yield criterion applied to both
phases. All cases in model (1) employ the kinematic harden-
ing, while in model (2), they employ the combined isotropic/
kinematic hardening rule, which enables the investigation into
the influence of the plasticity model on the resulting topology.
In the third example, several material models using the same
plasticity model are employed for the composite structure but
following various hardening rules. Isotropic, kinematic, or
mixed isotropic and kinematic hardening was performed to
study whether the post-yielding behaviour would affect the
optimization results of multiphase material distribution.

This work successfully achieved the above objective
of incorporating structural analysis with specific multi-
phase plasticity into topology optimization. The residual
equilibriums on an integration point level are defined
based on various plastic material modelling. The corre-
sponding path-dependent sensitivity analysis expression
is derived in this paper, by using a path-dependent ad-
joint method that followed the framework described by
Michaleris et al. (Michaleris et al. 1994). The method of
moving asymptotes (MMA) (Svanberg 1987) was applied
to update design variables. Through a comparative anal-
ysis, this study highlights the importance of considering
material properties with precision for multiphase optimi-
zation design.
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2 Elastoplastic material with strain hardening
model

2.1 Yielding criterion

The behaviour of some material is initially elastic and be-
comes plastic with the existence of the irreversible strain when
the applied force exceeds the elastic limit, which is known as
elastoplasticity. In this study, two types of yielding criterion
are considered to describe the material elastoplasticity. The
von Mises yielding criterion is widely used to predict the
yielding of metals that have equal strength in compression
and tension. In contrast, for those pressure-dependent mate-
rials, e.g. rock or soil, the Drucker-Prager yielding criterion is
generally employed to consider the hydrostatic pressure. It is
obtained by adding a mean stress term on the vonMises yield-
ing based formulation as

f ¼
ffiffiffiffiffiffiffiffi
3J 2

p
þ αI1−k; ð1Þ

where the material constant α is equal to zero when it corre-
sponds to the von Mises yield function and k represents the
permissible yielding stress surface, which will be discussed in
the next subsection. The first invariant of the stress tensor I1
and the second invariant of the deviatoric stress tensor J2 are
written as

J 2 ¼ 1

6
σx−σy
� �2 þ σy−σz

� �2 þ σx−σzð Þ2
h i

þ τ2xy þ τ2yz þ τ2xz; ð2Þ

and

I1 ¼ σx þ σy þ σz: ð3Þ

2.2 Strain hardening model

When the plastic loading progresses, the yield stress may in-
crease rather than remain constant according to the plastic
deformation, which is called strain hardening. For some ap-
plications, the ideal assumption of material with elastic per-
fectly plasticity may not be adequate to simulate the problem;
therefore, the strain hardening is essential to be considered in a
two-material topology optimization. Here, three types of hard-
ening models are applied: isotropic, kinematic and combined
isotropic/kinematic hardening. In the isotropic hardening
model, the yield surface with a fixed central location grows
uniformly according to the effective plastic strain. However,
the kinematic hardening rule enables the elastic domain stays
constant while the subsequent yield surface moves following
the strain hardening. Moreover, some materials are generally
described by a combination of these two models as follows:

k ¼ σY þ 1−ϕð ÞHpep; ð4Þ

where σY denotes the initial yield stress, ep is the effective
plastic strain and the plastic modulus Hp is a constant, as all
hardening rules are assumed to be linear in this paper. ϕ is a
parameter representing the combined effect for a combined
isotropic/kinematic hardening model. For the isotropic hard-
ening, ϕ equals 0, and for the kinematic hardening, ϕ equals 1.

2.3 Elastoplasticity model

According to the assumption in the small deformation

elastoplasticity, the rate of the total strain ε̇ can be

decomposed into the rate of the elastic strain ε̇
e
and the plastic

strain ε̇
p
as

ε̇ ¼ ε̇
e þ ε̇

p
: ð5Þ

The elastic strain relates to the stress by using the fourth-
order constitutive tensor D. And the plastic strain evolves in
the direction normal to the flow potential that is associated to
the yield function f in this study, which is given by

ε̇
p ¼ γ

∂ f
∂σ

; ð6Þ

where γ is the non-negative plastic consistency parameter. It is
governed by the Kuhn-Tucker conditions, i.e.

γf ¼ 0; γ≥0; f ≤0: ð7Þ

3 Nonlinear finite element analysis

The global equilibrium for the complete structure should be
satisfied in the finite element analysis, which can be expressed
as

Rn ¼ Rn
ext−R

n
int ð8Þ

with

Rn
int ¼ ∑

nele

e¼1
∫
Ve

ΒTσndVe

� �

Rn
ext ¼ ∑

nele

e¼1
∫
Ve

f nBdVe þ ∫
Se
f nSdSe

� �
þ Pn

ð9Þ

where Rn represents the residual on the global level in loading
step n, which is equal to the difference between the external
applied force Rn

ext and the internal force Rn
int in the same step.

B is the strain-displacement matrix.fB, fs and P denote the
internal body force, surface traction and the external concen-
trated load, respectively. Also, the local residuals on each
integration point are constructed and required to be sufficient-
ly small throughout the analysis. In this study, a four-node
quadrilateral plane stress element with four integration points
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is utilized for all examples. Thus, the expression of residual H
on the loading increment n for a full structure is formed by
embedding the local residuals on each integration point of
each element into a global matrix:

Ηn ¼ Ηn
1; Ηn

2; …; Ηn
nele;

� �T
Ηn

e ¼ Ηn
e1; Ηn

e2; Ηn
e3; Ηn

e4;½ �T
Ηn

ei ¼ Ηn
ei1; Ηn

ei2; …; Ηn
eij;

� �T ð10Þ

where e is the number of elements, i represents the num-
ber of integration points, and j corresponds to the number
of local residuals required on an integration point level
based on the specified plasticity model and hardening
rule. In the elastic incremental stage, for the material can-
didate modelled with either the von Mises or the Drucker-

Prager yielding criterion, the local residuals Ηn
eij are de-

fined in the same formulations as

Ηn
eij ¼

Ηn
ei1

Ηn
ei2

Ηn
ei3

Ηn
ei4

2
664

3
775 ¼

σn
ei−σ

n−1
ei −D0

e : ΒeU
n
e−ΒeU

n−1
e

� � ¼ 0
anei−a

n−1
ei ¼ 0

epnei−ep
n−1
ei ¼ 0

Δγnei ¼ 0

2
664

3
775 ð11Þ

Here the above residual describes the condition when the
elastoplastic material model follows the kinematic or com-
bined hardening rule, where Ue is the elemental nodal dis-
placement vector; σei, aei and epei represent the stress, back
stress and the equivalent plastic strain obtained on each inte-
gration point, respectively.

However, in the plastic stage, the local residuals for both
materials using the von Mises model with kinematic or com-
bined hardening rule are given by

Ηn
eij ¼

Ηn
ei1

Ηn
ei2

Ηn
ei3

Ηn
ei4

2
664

3
775 ¼

σn
ei−σ

n−1
ei −D0

e : ΒeU
n
e−ΒeU

n−1
e

� �þ 2μeΔ
n
ei

∂ f
∂η

� �n

ei
¼ 0

anei−a
n−1
ei −

2

3
ϕHpeΔγnei

∂ f
∂η

� �n

ei
¼ 0

epnei−ep
n−1
ei −

ffiffiffi
2

3

r
Δγnei ¼ 0

ηk knei−
ffiffiffi
2

3

r
σYe þ 1−ϕð ÞHpeep

n
ei

� � ¼ 0

2
666666666664

3
777777777775

ð12Þ

where η is the shifted stress deviator defined as the difference
between the stress deviator s and the back stress deviator a, i.e.
η = s − a.

When one of the material phases is modelled by the
Drucker-Prager yield criterion and accompanied with the iso-
tropic hardening, the corresponding local residuals become

Ηn
eij ¼

Ηn
ei1

Ηn
ei2

Ηn
ei3

Ηn
ei4

2
664

3
775 ¼

σn
ei−σ

n−1
ei −D0

e : ΒeU
n
e−ΒeU

n−1
e

� �þ D0
eΔγnei

∂ f
∂σ

� �n

ei
¼ 0

anei−a
n−1
ei −

2

3
ϕeHpeΔγnei

∂ f
∂σ

� �n

ei
¼ 0

epnei−ep
n−1
ei −

ffiffiffi
2

3

r
Δγnei ¼ 0

ηk knei−
ffiffiffi
2

3

r
αeI1nei−

ffiffiffi
2

3

r
σYe þ 1−ϕeð ÞHpeep

n
ei

� � ¼ 0

2
666666666664

3
777777777775

ð13Þ

where the material constant αe and the hardening combined
effect parameter ϕe corresponding to a specified element e are
related to the density design variables. Also, due to the nature
of the Drucker-Prager model where the hydrostatic pressure is
considered, the direction of the plastic strain normal to the
flow potential is described as

∂ f
∂σ

¼ η
ηk k þ

ffiffiffi
2

3

r
α
∂I1
∂σ

ð14Þ

while in the previous case presented in (12), based on the von
Mises yield criterion, the yield function is defined in a
deviatoric space only as the volumetric stress is independent
of plastic deformation. Thus, the plastic strain evolves in the
direction:

∂ f
∂η

¼ η
ηk k ð15Þ
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In the case where isotropic hardening is applied to both
materials, the centre of the yielding surface is fixed on a cer-
tain point means that the back stress a does not exist so as the
related residual equation in both elastic and plastic stage is
eliminated. Correspondingly, only three variables on each in-
tegration point are considered, i.e. vn ¼ σn

ei enpei Δγnei
� �

.
However, in the kinematic/combined hardening model, the
yielding surface moves following the plastic deformation;
therefore, the required variables would be defined as
vn ¼ σn

ei anei enpei Δγnei
� �

.

4 Topology optimization

4.1 Problem statement

For the linear elastic material topology optimization, minimiz-
ing the mean compliance is often used as the objective func-
tion. While for elastoplastic materials, minimizing the end
compliance or maximizing the total plastic energy is common-
ly used as the objective function in topology optimization. In
this paper, the displacement loading method is applied
throughout the nonlinear analysis due to its relative stability.
And the end compliance–related objective function is
achieved by maximizing the final equivalent external load
corresponding to the prescribed displacement. Also, based
on the consideration of the material nonlinearity, the optimi-
zation statement should be coupled with the global equilibri-
um and the local residual conditions that satisfied at each step
as shown below:

min c xð Þ ¼ −φNPref u
N

s:t: ∑
nele

e¼1
vexe≤V*

xmin≤xe≤1; e ¼ 1; 2;…; neleð Þ
Rn un; un−1; vn; vn−1; x

� � ¼ 0
Ηn un; un−1; vn; vn−1; x

� � ¼ 0
n ¼ 1; 2;…;N ;

ð16Þ

where xe depicts the elemental design variable updated in
each iteration and V∗ is the prescribed target volume frac-
tion of the design domain. Pref is a constant external load
vector in which each element corresponding to a degree of
freedom. When there is a prescribed displacement applied
on a degree of freedom, the corresponding element equals
to 1 otherwise will be 0. φN denotes the load factor at the
final loading step calculated from the global equilibrium,
and it is a scalar. The objective function stated in (16) is
only valid under certain load conditions and will lead to a
complicated sensitivity analysis. Thus, Amir et al.
(Bogomolny and Amir 2012) proposed a simplified hy-
brid approach using the load-controlled concept to gener-
ate a more applicable objective function as follows:c(x) =

PNuN, but the actual nonlinear analysis is performed
through a displacement-controlled method.

4.2 Material interpolation

In this paper, the elastoplastic behaviour of a two-material-
phase problem will be interpolated into topology optimization
by utilizing the design variable. The elastic constitutive tensor
can be written as

D ¼ λ1⊗1þ 2μI ð17Þ
with

λ ¼ Ev
1þ vð Þ 1−2vð Þ

μ ¼ E
2 1þ vð Þ

l ¼ δij
� �

I ¼ I ijkl
� � ¼ 1

2
δikδjl þ δilδjk
� �	 


ð18Þ

where l is the second-order unit tensor and I is the sym-
metric fourth-order unit tensor. v is the Poisson’s ratio,
and from the relationship presented above, it can be ob-
served that the Lame’s constants λ and μ are proportional
to Young’s modulus E. The following shows the interpo-
lating functions:

λe ¼ λmin þ λmax−λminð Þxpλe
μe ¼ μmin þ μmax−μminð Þxpμe
σY e ¼ σYmin þ σYmax−σYminð ÞxσYe
Hpe ¼ Hpmin þ Hpmax−Hpmin

� �
xHp
e ;

ð19Þ

Particularly, when different plasticity model and hardening
rules are adopted by each material phase, e.g. the von Mises
model with kinematic hardening is applied to the first materi-
al, and the secondmaterial employs the Drucker-Prager model
with isotropic hardening, two more interpolation functions
need to be considered as

αe ¼ αmax− αmax−αminð Þxpαe
ϕe ¼ ϕmin þ ϕmax−ϕminð Þxpϕe ;

ð20Þ

where the penalisation value pλ ¼ pμ ¼ pσY ¼ pHp ¼ pα ¼
pϕ ¼ 3 is assumed throughout this study. A lower penalty
number may lack effectiveness to distinguish intermediate
densities to black and white, while if it is too high, the model
would risk unfavourable instability induced by nonlinearity.
Therefore, a penalty number equal to 3 is widely used in many
literatures (Bendsøe and Sigmund 1999; Huang and Xie 2009;
Luo and Kang 2012; Luo et al. 2015). Equation (20) is one of
the important interpolations proposed in this paper which de-
velops a straightforward approach for adopting different plas-
ticitymodels and hardening rules for eachmaterial phase. This

Topology optimization of multi-material structures with elastoplastic strain hardening model



is the pivoting interpolation that later articulated with (36–37),
a key step to convert conventional adjoint sensitivity analysis
for the single material phase to dual-material phase analysis.
In particular, a specific yielding criterion or strain hardening
model can be derived as a special case of (20), i.e. when xe = 1
yields a material phase with von Mises yielding criterion
(αe = αmin = 0) and kinematic hardening (ϕe = ϕmax = 1).
More details are given in Tables 1, 2 and 3 of the examples
in Section 6.

5 Sensitivity analysis

5.1 Adjoint sensitivity analysis

The path-dependent adjoint method is applied to compute the
sensitivity of the objective with respect to the design variables.
The augmented objective function can be built by adding the
global and the local residuals that are infinitely approaching to
zero. Also, the objective function c and the global residual R
only depend on the nodal displacement u and the variable v,
respectively:

bc ¼ c x; uð Þ þ ∑
N

n¼1
ξnTRn un; un−1; vn; vn−1; x

� �þ ∑
N

n¼1
θnTΗn un; un−1; vn; vn−1; x

� �
¼ c uð Þ þ ∑

N

n¼1
ξnTRn vnð Þ þ ∑

N

n¼1
θnTΗn un; un−1; vn; vn−1; x

� �
;

ð21Þ

where ξn and θn are the adjoint vectors calculated during the
sensitivity analysis. The differentiation of the objective func-
tion c is equivalent to the derivative of the augmented functionbc with respect to design variables, and it can be decomposed
into an explicit term and an implicit term

∂c
∂x

¼ ∂bc
∂x

¼ ∂bcexp
∂x

þ ∂bcimp
∂x

ð22Þ

In order to eliminate the unknown term of derivatives ∂un
∂x

and ∂vn
∂x , the backward incremental calculation approach is ap-

plied to obtain the Lagrange multipliers θn and ξn for all in-
crements n = 1, …, N:

∂bcimp
∂x

¼ ∂bcNimp
∂x

þ ∑
N−1

n¼1

∂bcnimp
∂x

∂bcNimp
∂x

¼ ∂c
∂uN

þ θN
T ∂ΗN

∂uN

� �
∂uN

∂x
þ

ξN
T ∂RN

∂vN
þ θN

T ∂ΗN

∂vN

� �
∂vN

∂x
∂bcnimp
∂x

¼ ∂c
∂un

þ θn
T ∂Ηn

∂un
þ θnþ1T ∂Ηnþ1

∂un

� �
∂un

∂x
þ

ξn
T ∂Rn

∂vn
þ θn

T ∂Hn

∂vn
þ θnþ1T ∂Ηnþ1

∂vn

� �
∂vn

∂x

ð23Þ

Table 1 Summary of test set up in example 1

Plasticity model for material phase 1 Plasticity model for material phase 2 Strain-hardening for both material phases

Case A Elastic Elastic –

Case B von Mises von Mises Kinematic (ϕ=1)

Case C Drucker-Prager Drucker-Prager Kinematic (ϕ=1)

Case D von Mises Drucker-Prager Kinematic (ϕ=1)

Table 2 Summary of test set up in example 2

Plasticity model for material phase 1 Plasticity model for material phase 2 Strain hardening for both material phases

Case A Elastic Elastic –

Case B von Mises von Mises Combined isotropic/kinematic hardening (ϕ=0.5)

Case C Drucker-Prager Drucker-Prager Combined isotropic/kinematic hardening (ϕ=0.5)

Case D von Mises Drucker-Prager Combined isotropic/kinematic hardening (ϕ=0.5)

M. Li et al.



For the final step N

∂c
∂uN

þ θN
T ∂ΗN

∂uN
¼ 0

ξN
T ∂RN

∂vN
þ θN

T ∂ΗN

∂vN
¼ 0

8><
>: ð24Þ

For steps from n = 1 to N − 1

∂c
∂un

þ θn
T ∂Ηn

∂un
þ θnþ1T ∂Ηnþ1

∂un
¼ 0

ξn
T ∂Rn

∂vn
þ θn

T ∂Ηn

∂vn
þ θnþ1T ∂Ηnþ1

∂vn
¼ 0

8><
>: ð25Þ

Therefore, based on the obtained adjoint vector and the
derivative of the explicit term, the design sensitivity with re-
spect to the design variables can be written as follows:

∂c
∂x

¼ ∂bcexp
∂x

¼ ∑
N

n¼1
θnT

∂Ηn

∂x
ð26Þ

Furthermore, the derivatives ∂c
∂uN ,

∂Hn

∂un ,
∂Hnþ1

∂un , ∂H
n

∂vn ,
∂Hnþ1

∂vn and ∂Rn

∂vn

are required to solve the above equilibriums presented in (24)
and (25). This will be discussed in the next subsection.

5.2 Derivative calculation

When the elastoplastic material employing kinematic or com-
bined hardening rule, the variables vn on integration-point

level consist of stresses σn, back stress an, equivalent plastic
strain enp, and the plastic multiplier Δγn, whereas the back

stress an is neglected when the isotropic hardening is applied.
Corresponding to the material with elastoplastic kinematic or
combined hardening, the required derivatives in matrix form
are given as follows:

∂Ηn
ei

∂vnei
¼

∂Ηn
ei1

∂σn
ei

∂Ηn
ei1

∂anei

∂Ηn
ei1

∂epnei

∂Ηn
ei1

Δγnei
∂Ηn

ei2

∂σn
ei

∂Ηn
ei2

∂anei

∂Ηn
ei2

∂epnei

∂Ηn
ei2

Δγnei
∂Ηn

ei3

∂σn
ei

∂Ηn
ei3

∂anei

∂Ηn
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When the material response stays in the elastic stage

∂Ηn
ei

∂vnei
¼

I 0 0 0
0 I 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð31Þ

∂Ηn
ei

∂xe
¼ −

∂D0
e

∂xe
: Βeiu

n
e−Βeiu

n−1
e

� �
0 0 0

	 
T
ð32Þ

In the plastic stage, for both materials modelled with von
Mises yield criterion, the derivatives of the local residual with
respect to the variable v and the design variable x can be
derived as follows:
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Table 3 Summary of test set up in example 3

Hardening model for
material phase 1

Hardening model for material phase 2

Case A – Isotropic

Case B – Kinematic

Case C – Combined isotropic/kinematic (ϕ=0.5)

Case D Isotropic Elastic perfectly plastic

Case E Isotropic Isotropic

Case F Isotropic Kinematic
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where Idev ¼ I− 1
3 1⊗1 is the fourth-order unit deviatoric ten-

sor. However, for the material phases associated with different
plasticity models coupled with various hardening rules, the
corresponding derivatives become
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Since the volumetric parts of stress (first invariant of stress
tensor) I1 are a first-order differential equation in terms of σ,

the following expression ∂ f
∂σ∂σ and ∂ f

∂σ∂a are equivalent to
∂ f

∂η∂σ

and ∂ f
∂η∂a as stated in (35). Opposite to the derivatives of Hn

with respect to the internal variable vn and the design variable
x that are different for materials incorporating with various
yielding function in the elastic and plastic step, the following
derivatives do not depend on the finite element analysis re-
sponse:
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Therefore, the matrix of the differentiation of Hn need to be
adjusted according to the trial elastic condition, which keeps
consistency with the analysis at each increment. Also, for the
yield criterion incorporating with isotropic hardening, the de-
rivatives of the global residual Rn and the local residual Hn are
matrices of smaller size due to the elimination of one variable
(back stress an).

6 Examples

Three numerical examples, a simply supported beam, a canti-
lever beam with a circular opening and an L-shaped bracket,
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are examined to evaluate the impacts of different yielding
criterion and hardening rules on the resulting topologies
through the proposed optimization framework for structure
with two elastoplastic material phases. All examples are as-
sumed to be in plane stress condition. The optimization pro-
cedure is either stopped by the limiting convergence tolerance
(10−4in our case) or a stable topology achieved after an ade-
quate number of iterations (300 to 500 in our case).

To accelerate the speed to obtain a stable topology with a
clear boundary between the two materials, a step-contract fil-
tering scheme is adopted. By gradually reducing the filter
radius during the optimization procedure, a distinct layout
can be achieved within 300–500 iterations, with no significant
change in topology after these adequate number of iterations.
A typical setup of such a filter scheme was designed as fol-
lows: filter radii are equal to 5 mm, 2 mm and 1.2 mm when
the iterations are between 0 and 150, 150 and 200 and 200 and
300/500, respectively. When a gradual refinement is used, the
optimization benefits from obtaining a distinct layout as well
as saving computational cost by quickly escaping from the
emergence of ‘grey’ areas.

The termination conditions are empirical conditions based
on the try-and-error numerical trials. A filtering scheme using
a step-contract filter radius was employed to accelerate the
topological concentration process during the optimization
procedure.

6.1 Simply supported beam

A simply supported beam, length-to-height ratio equals to 4, is
shown in Fig. 1. A downward distributed prescribed displace-
ment is applied to the central portion of the top edge. The
whole design domain is discretized into 3600 (120 × 30) ele-
ments. And the desired volume fraction to the whole design
domain is 30%. The prescribed displacement load of U ∗ =

0.5 mm is assumed throughout this example to achieve a plas-
tic design.

In this example, each material phase has the flexibility of
adopting different elastic and plastic material model accom-
pany with various hardening rules. The cases examined in this
example include (1) both material with elastic model; (2) both
material phases with the von Mises plasticity model and the
kinematic hardening; (3) both material phases with the
Drucker-Prager plasticity model and the kinematic hardening;
and (4) onematerial phase with the vonMises plasticity model
while the other with the Drucker-Prager plasticity model and
the post-yielding behaviour of both follow the kinematic hard-
ening, as detailed in Table 1.

The purpose of this example is to investigate the influence
of the plasticity model on the results of the optimization de-
sign. The mechanical properties of the twomaterial candidates
are detailed as follows:

E1 ¼ 206GPa;HP1 ¼ 2060MPa;σ0
Y1 ¼ 250MPa;

E2 ¼ 30GPa;HP2 ¼ 300MPa;σo
Y2 ¼ 7MPa

Poisson’s ratio v = 0.3 is adopted for both material candi-
dates. If the Drucker-Prager model is adopted, the material
parameter α is required and assumed to be equal to 0.8 in this
example. The material models are derived from steel and con-
crete with reasonable simplification and enable the following
numerical simulations. To maintain comparability, the values
of the material properties remain constant for all cases.

The resulting distribution of two material phases is shown
in black and green in Fig. 2. The first material is presented in
black while the second material is presented in green. One can
notice that the resulting topology of cases C and D is very
similar. This is because material 1 has much higher-yielding
strength than material 2. Material 2 may enter the plastic stage
much earlier than material 1. When under a relatively small
loading/deflection, material 1 may still well be in the post-

Fig. 1 Design domain of the
simply supported beam
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elastic/early plastic stage, while material 2 has entered the full
plastic stage. If different yielding criteria were used for mate-
rial 1, but the same yielding criterion for material 2, they will
not have a significant impact on the resulting topology. Using
the resulting topology as the final design, the contour plots of
the second principal stress for cases A–D are shown in Fig. 3,
which is able to highlight the microstructure of the final de-
sign. For clarity, only the stresses of material 2 are plotted, and
that of material 1 is plotted as void.

Several important findings are summarized below:

1) Adopting different plasticity models for material 2 results
in different final topologies. When von Mises plasticity
model is used, the mechanical properties are symmetrical
in tension and compression, and both of them are much
weaker than phase material 1. This leads to an arch shape
of topology as shown in Fig. 6(b) in which the structural
skeleton, no matter in compression (the arch) and tension

(the tie), is all made of material 1 as material 2 is not able
to take the loading. As shown in Fig. 3 (b), it is noticeable
that around the top-middle area of the beam where the
prescribed loading is applied, there is a chuck of material
1 allocated due to the high compressive stress concentra-
tion in this area.

In cases C and D, while using Drucker-Prager plasticity
model for the second material, empowered with the ability
of modelling the relatively higher compressive and lower ten-
sile yielding strength, different resulting topologies are obtain-
ed as shown in Fig. 2(c) and (d). In comparison with Fig. 2 (b),
there are two main differences that can be observed from the
contour plots, (i) some parts of the structural members, as
shown in Fig. 4(a), filled with material 1 suffering from com-
pression are replaced by a block ofmaterial 2, as shown in Fig.
4(b–c), acting as struts; (ii) the resulting topologies developed
in different cases demonstrate different ways to address the

material 1 

material 2 
(a)

material 1 

material 2 
(b)

material 1 

material 2 
(c)

material 1 

material 2 
(d)

Fig. 2 Optimized layouts of cases A–D. a Case A, b Case B, c Case C, d Case D

Fig. 3 The corresponding contour plots of the second principal stress for cases A–D. a Case A, b Case B, c Case C, d Case D
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compressive stress concentration around the loading area. A
pad-shaped structure as shown in Fig. 5(a) is formed by stiff
material 1 supported by soft material 2 under. While in Fig.
5(c) and (d), showing the results of cases C and D, respective-
ly, material 2 is modelled with the Drucker-Prager yielding
criterion, which allows material 2 to sustain a much higher
compression, a pile-shape structure is evolved taking the ad-
vantage of the end support underpinned by the Drucker-Prager
model.

Although adopting different plasticity models for mate-
rial phase 2 leads to noticeable different topologies as
shown in Fig. 2, the fundamental principle of loading
transfer through the structure and optimized topology con-
stituted is quite similar.

As shown in Fig. 6, the components of the beam can be
easily identified in three common parts: the arch, the tie and
the punching stiffener. The arch is spanning between the two
supports demonstrating the arch effect. In Fig. 6(b), case B,
whenmaterial 2 is modelled by vonMises plasticity model with
a relatively lower compressive strength, the arch is formed by
material 1 only. While in cases C and D, as shown in Fig. 6 (c)
and (d), the parts of the arch between the structural support and
the upper chord of the arch are replaced by material 2.

The same situation can be observed in case A as shown in
Fig. 6 (a), in which both materials are simulated with linear
elastic model. In this model, without considering the yielding

behaviour, the compressive stress in material 2 can become
infinitely large, which allows material 2 to replace material 1
in some regions of the arch. Although themodels used in cases
A, C and D are different, the reason for material 2 distributing
in these regions is the same: compressive strength. In all four
cases, the bottom ties are all made of material 1, and the
plasticity model of material 2 has a strong impact on the shape
of tie in the resulting topology.

Apart from the arch and tie, the punching stiffener is an-
other important component in this structure. Their shapes are
similar in cases A, C and D, all are pile-shaped structures. For
case B, it is a pad-shaped structure instead. The evolutionary
histories of the objective function are shown in Fig. 7.

It can be concluded that although the obtained topologies
look different, the optimized microarchitecture of the internal
mechanical system will not change fundamentally.

6.2 Optimization of a cantilever beam with a circular
opening

In this example, the design of the two-phase material layout
for a cantilever beam with a circular opening is considered, as
shown in Fig. 8. The radius of the hole R = 60 mm and the

Fig. 4 Comparison of the arch components of case B to cases C and D. a
Case B, b Case C, c Case D

Fig. 5 Comparison of the punching stiffeners of case B to cases C and D.
a Case B, b Case C, c Case D
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distance from the centre of the opening to the left and the top
edge are 400 mm and 150 mm, respectively. The beam is
subjected to a prescribed distributed displacement of 2 mm
applied at 50-mm-long central region of the right vertical

edge. The left side edge is fully clamped. The FE mesh with
an element size of 10 mm is shown in Fig. 9. The design
variables for the elements within the circular opening are
equal to zero and not updated during the optimization

Fig. 6 Summary of microstructures in the resulting topology for cases A–D. a Case A, b Case B, c Case C, d Case D

Fig. 7 Evolutionary histories of the objective function for the simply supported beam example. a Case A, b Case B, c Case C, d Case D
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procedure. The percentage of material 1 used in the whole
domain is limited to 50%. The mechanical properties of the
two material candidates are the same as those presented in the
previous example. The Poisson’s ratio and the material param-
eter α for the Drucker-Prager model remain unchanged. All
the plasticity models adopt a combined isotropic and kinemat-
ic hardening rule with the combined effect parameter φ = 0.5.
The cases examined in this example are detailed in Table 2.

The resulting topologies of different cases are shown in
Fig. 10, and the corresponding contour of the second principal
stress is shown in Fig. 11. The evolutionary histories of the
objective function are shown in Fig. 12. For the sake of clarity
of the following discussion, all the areas filled with material 1
are removed, and only the stress distribution of material 2 is
plotted. Several important findings are presented as follows:

1) When material elastoplasticity is considered, i.e. cases B,
C and D, similar to the previous example, the type of
plasticity model adopted for material 2 has a great impact
on the design results. As indicated in Fig. 10(b) (case B),

when von Mises plasticity model is applied to material 2,
a truss-shaped skeleton of material 1 is generated to con-
tribute more in resisting the structural response, due to its
stiffer material property and equivalent strength in com-
pression and tension. While in cases C and D, when using
the Drucker-Prager model for material 2, their resulting
topologies are remarkably different from case B results,
though the two topologies themselves are quite similar to
each other. One noticeable minor difference between
cases C and D is the shape and pitch of the diagonal bar
made of material 1 located at the middle of the beam,
which hints that the plasticity model of material 1 does
have some level of influence on the final topology but less
intensive than the choice of model for material 2.

2) As shown in Fig. 11, when using Drucker-Prager mod-
el to simulate the material 2 with a higher compressive
strength but lower tensile strength, a leg of the truss
member in compression made of material 1, as shown
in Fig. 11(b) (case B), is replaced by material 2 to take

Fig. 8 Design domain of the
cantilever beam with a circular
opening

Fig. 9 Mesh condition of the
cantilever beam with a circular
opening
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the advantage of its compressive strength that comes
with Drucker-Prager model. This similar situation is
noticed in example 1. The results of both examples
revealed the impact of the type of plasticity models
on the material distribution for a nonlinear multi-
material-phase optimization design.

6.3 Optimization of an L-shape bracket

The purpose of this example is to investigate the impact
of the post-yielding behaviour on the resulting topology.
As there are few previous studies on the impact of the
post-yielding hardening model on the resulting topologies

Fig. 11 The corresponding
contour plots of the second
principal stress for cases A–D. a
Case A, b Case B, c Case C, d
Case D

material 1 

material 2 
(a)

material 1 

material 2 

material 1 

material 2 

material 1 

material 2 

(b)

(c) (d)

Fig. 10 Optimized layouts of cases A–D. a Case A, b Case B, c Case C, d Case D
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Fig. 12 Evolutionary histories of the objective function for cantilever beam with a circular opening. a Case A, b Case B, c Case C, d Case D

Fig. 13 Design domain of the L-
shaped bracket
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even for single material nonlinear optimization design, it
is the intention to evaluate the significance of its impact
on the optimized layout for both single and two-material
phase optimization.

As shown in Fig. 13, an L-shape bracket with 600-mm
equal length of legs is subjected to a prescribed 1-mm uniform
displacement applied to the 3.75-mm long centre region of the
right-end surface of the horizontal leg. The top surface of the
vertical leg is fully clamped. The FEmesh is shown in Fig. 14.
The volume fraction of the first material to the whole compos-
ite domain is limited to 40%.

For single material design problem, the von Mises plastic-
ity model is adopted in all three cases (Fig. 15), while each
case is coupled with isotropic, kinematic, and combined

isotropic/kinematic hardening (φ = 0.5), respectively. The ini-
tial stiffness is Y.

E = 30 GPa and yield stress σ 0 = 7MPa are set up the same
as for the second material in the next step. For two-material
design problem, both materials phases adopt the von Mises
plasticity model to eliminate the influence of the plasticity
model so that the impact of the hardening rule can be insulat-
ed. In the three cases considered, the first material phase em-
ploys the isotropic hardening while the second phase is asso-
ciated with various hardening models: (1) elastic perfectly
plastic(without strain hardening); (2) isotropic hardening;
and (3) kinematic hardening.

The plastic modulus Hp is equal to 2060 MPa for both
materials and not modified by the design variables, while all

Fig. 14 Mesh condition of the L-
shaped bracket

Fig. 15 Optimized layouts of
cases A–C
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the values of the other plastic material parameters are exactly
the same as the previous examples. A summary of the hard-
ening rule employed is presented in Table 3.

Several important findings are concluded as follows:

1) The results obtained from the single material design cases
A, B and C are presented in Fig. 13(a), (b) and (c), respec-
tively. It can be easily found that the resulting topologies
are similar. Hence, in single material design cases, where
the design material is associated with the same plasticity
model but follow a different strain-hardening rule, the

impact of the post-yielding hardening on the resulting
topology is not significant.

2) Contrary to the single material cases, different post-
yielding hardening models do produce palpable differ-
ences among the resulting topologies in cases D, E and
F examined in this example for two-material phase
optimization. The optimized layout and the corre-
sponding contour of the first principal stress for the
part of the lower horizontal structure marked in a red
rectangular box are presented in Fig. 16. The contour

(b) (c)(a)
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Fig. 16 Optimized layouts and the corresponding contour plots of the first principal stress for cases D–F. a Case D, b Case E, c Case F

Fig. 17 Strut-and-tie, smeared-strut-and-tie analogy for cases D–F. a Case D, b Case E, c Case F
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plot of the first principal stress can clearly reveal the
tensile zone in the part of the structure. It can be ob-
served from Fig. 16(a–c) that the two vertical branches
in the left upper structure end up with similar material
distributions, and for the inclined branch in between,
its position and the amount of material used show a
remarkable difference in Fig. 16(a) in comparison with
the other two designs where the strain hardening is
considered for the secondmaterial. Also, the optimized
layouts of the lower structure of the bracket are obvi-
ously different in these three cases. Figure 16(a) shows

the result of case D in which the second material is
described as elastic perfectly plastic, i.e. no hardening
after yielding, the tensile tie at the top of the horizontal
leg, and the compressive strut at the bottom is made of
material 1, as material 2 is limited by its weaker yield-
ing strength.

While for cases E and F, as shown in Fig. 16 (b) and (c), in
which isotropic and kinematic hardening is applied to material
2, respectively, a noticeable change can be observed in the
final topologies. The top ties are replaced by a smeared-

Fig. 18 Evolutionary histories of objective function for the cantilever beam with a circular opening. a Case A, b Case B, c Case C, d Case D, e Case E, f
Case F
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strut-and-tie microstructure as illustrated in Fig. 17. The evo-
lutionary histories of the objective function are shown in
Fig. 18.

7 Conclusion and discussion

In this paper, a framework for multiphase material non-
linear topology optimisation is developed, implemented
and validated. This new framework offers the flexibility
that highly desired in complex composite structural opti-
mization when each material has different nonlinear char-
acteristics and hardening behaviours. As in this type of
multiphase material nonlinear optimization, each material
phase will not only associate with different plasticity
models but also following different hardening rule so that
each material elastoplastic properties can be closely char-
acterized during the optimization process. In some practi-
cal design optimizations, having the flexibility of model-
ling the different actual material elastoplasticity, for ex-
ample, von Mises plasticity with isotropic hardening for
one material, while Drucker-Prager plasticity with kine-
matic hardening for the other, will lead to a better approx-
imation of the real optimum design. Few studies focused
on this area, and even fewer studies achieved this level of
flexibilities that come with the proposed framework.

In supporting the proposed framework, a modified path-
dependent adjoint sensitivity analysis is developed for calcu-
lating the design sensitivities when the two-phase elastoplastic
materials are associated with various hardening rules.

As demonstrated in the examples, the proposed frame-
work is effective, versatile and highly adaptive to the dif-
ferent elastoplastic and hardening models. The results of
the example presented in this paper have also revealed the
impact on the resulting topology when adopting different
plasticity models and hardening rules in a composite struc-
tural optimization which has also demonstrated the flexi-
bility of adapting to different material combinations for
modern composite structures. Some of the topologies pro-
duced by the proposed method are novel yet fulfil the en-
gineering common sense when looking into the details of
microstructures.
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