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Abstract. An adaptive switching feedback control scheme is proposed for classes of discrete-time,
positive difference equations, or systems of equations. In overview, the objective is to choose a control

strategy which ensures persistence of the state, consequently avoiding zero which corresponds to absence
or extinction. A robust feedback control solution is proposed as the effects of different management
actions are assumed to be uncertain. Our motivating application is to the conservation of dynamic
resources, such as populations, which are naturally positive quantities and where discrete and distinct
courses of management actions, or control strategies, are available. The theory is illustrated with
examples from population ecology.

1. Introduction. We present a theoretical robust feedback control solution to the problem of conserving3

temporally-varying, but uncertain, quantities of interest, such as managed populations, through the choice4

of discrete control strategies. The problem of making decisions which lead to desirable outcomes arises in5

almost all scientific and engineering disciplines, including natural resource management and conservation.6

The academic literature is consequently vast, with monographs including [8, 10]. The motivation for7

our study is to establish theoretical results related to the management of poorly understood or poorly8

modelled, but important dynamic resources. Our starting point is that the quantity of interest, denoted9

x(t), varies temporally with fixed discrete time-step t. Here x(t) may be scalar- or vector-valued, the10

latter permitting the modelling of structured quantities. The variable x(t) is naturally nonnegative, as its11

components denote necessarily nonnegative quantities, such as concentrations, densities or abundances.12

To affect a change in the dynamics for x, we posit that q distinct control strategies (also termed courses13

of management action) are available, and that the choice of which control action is applied over time is14

determined by the user and may change. Accommodating the above considerations and the dependence15

of the dynamics on the control strategy naturally leads to a model for x comprising a so-called switched16

system of positive difference equations of the form17

x(t+ 1) = F (h, x(t)), x(0) = x0, t ∈ Z+ := {0, 1, 2, . . . } , (1.1)18
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where x0 is the initial condition. Here the first variable h of the function F in (1.1) determines which of the1

q control strategies is being applied. For fixed first argument, the function F (h, ·) describes the dynamics2

of x. The assumed property that F (h, 0) = 0 for all h means that zero is a constant (equilibrium) solution3

of (1.1), corresponding to absence of x.4

Given the above setup, the problem is essentially to choose a control strategy which ensures persistence of5

x, that is, which avoids x(t) → 0 as t → ∞. Persistence is now a well-established concept, and captures6

the extent to which non-zero solutions are bounded away from zero; see, for instance [15, 30]. There7

are many possible solutions to the problem described so far. If the functions F (h, ·) are known, then8

the particular goal is evidently achieved by choosing the appropriate h which gives the desired dynamic9

behaviour. However, in many real-world situations, the effect of the distinct control strategies is not10

known, meaning that the F (h, ·) are not known exactly. Another approach is to seek to identify F (h, ·),11

so that the above solution may be applied. For identifiability references in an ecological context, we refer12

to [20, 28]. Here we do not pursue this approach, one reason being that in ecological models, unlike many13

engineered systems, it is often not practicable to excite the system with specific known inputs to generate14

input-output data, see [19].15

The novel solution we propose is a feedback control approach. We design an algorithm for switching16

between strategies which identifies (or learns) a suitable strategy that ensures persistence. To give an17

outline of our approach, we highlight our previous work [18] which addressed the problem of eradication18

of pests using a so-called adaptive feedback control scheme, where the feedback switches through a19

number of distinct control strategies. Adaptive control is a broad term, with no one single agreed20

definition, and traces its roots back to the control of aircraft in the 1950s. The early history is discussed21

in the review [2], and [3] is a more recent review. We note that in natural resource management the22

word “adaptive” generally means a feedback, see [36]. Under the assumption that at least one of these23

strategies is stabilizing, and by carefully exploiting the rules by which switching is determined, in [18] we24

were able to demonstrate convergence of the scheme with switching terminating at a strategy that was25

itself stabilizing. In developing this approach, much use was made of the underlying positive systems26

structure, that is, dynamical systems whose evolution map leaves a positive cone invariant; see, for27

instance [4, 5].28

The current problem is, in some sense, the opposite problem to that in [18]. So rather than stabilization29

corresponding to the eradication of a resource, we instead seek persistence of that resource. Key to30

the present study is further exploitation of the underlying positive systems structure. In fact, in some31

sense this structure is far more crucial in a context of persistence than it is in a context of stabilization.32

Roughly, this is because, under reasonable conditions, the trajectory x(t) of a system of positive difference33

equations can be bounded from above and this proves crucial in deriving the switching rules. Where34

positive systems differ from general systems is that we can also bound trajectories from below or, in fact,35

bound 1/‖x(t)‖ from above. This simple observation then means we can develop switching mechanisms for36

persistence built around the behaviour of 1/‖x(t)‖ in a way similar to the how the switching mechanisms37

for stabilization were built in [18] around ‖x(t)‖.38

Thus, here we present theoretical results relating to the dynamic behaviour of our so-called adaptive39

switching feedback control scheme under different scenarios for the dynamics of x, that is, the functions40

F (h, ·) in (1.1). Our main results are Theorems 2.1 and 2.4 which, broadly, provide sufficient conditions on41

the functions F (h, ·) in (1.1) under which the switching sequence asymptotically identifies and converges42

to a desirable strategy. We consider both linear and classes of nonlinear systems of positive difference43

equations, the latter including as a special case classes of scalar difference equations, sometimes called44

(nonlinear) maps in the difference equations literature.45

The paper is organised as follows. We first gather some preliminaries. Section 2 is the technical heart of46

the manuscript and worked examples relating to the conservation of managed populations are presented47

in Section 3. A summary is contained in Section 4. Proofs of our results appear in the appendices. The48

present work shall contribute to the doctoral thesis of the third author, and shall appear in an expanded49

form in her forthcoming thesis [32].50

1.1. Preliminaries. We collect notation and terminology used throughout our work. Let51

Z+ :=
{

m ∈ Z : m ≥ 0
}

and R+ :=
{

h ∈ R : h ≥ 0
}

.52

For n ∈ N, we let R
n and R

n×n denote the real n-dimensional Euclidean space and the set of n × n53

matrices with real entries, respectively. As usual, we denote the identity matrix by I.54
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We set q := {1, 2, . . . , q} for q ∈ N, to avoid repeatedly writing the more cumbersome {1, 2, . . . , q}.1

Given a matrix A ∈ R
n×n, we let r(A) denote the spectral radius of A. For A, B ∈ R

n×n with entries2

aij and bij , respectively, we write3

A ≥ B if aij ≥ bij ∀ i and j ,4

A > B if A ≥ B and A 6= B ,5

A≫ B if aij > bij ∀ i and j .6
7

We let R
n
+ denote the nonnegative orthant in R

n and let R
n×n
+ denote the set of nonnegative matrices,8

that is, A ∈ R
n×n
+ if A ≥ 0. The matrix A is said to be positive or strictly positive if A > 0 or A ≫ 0,9

respectively, with the corresponding conventions for vectors v ∈ R
n
+. A nonnegative square matrix A is10

irreducible if, for every i and j, there exists nonnegative integer k such that (Ak)ij > 0. We recall that11

the Perron-Frobenius theorem ensures that if A is irreducible then r(A) is a positive eigenvalue of A,12

with corresponding left and right eigenvectors which can be chosen to be strictly positive. A nonnegative13

square matrix A is primitive if there exists a nonnegative integer k such that Ak ≫ 0.14

Throughout we equip Euclidean space R
n with the one-norm ‖ · ‖ := ‖ · ‖1. We also use the symbol ‖ · ‖15

to denote the corresponding induced matrix norm. We comment that our results hold for any monotonic16

norm on R
n.17

2. An adaptive switching feedback control scheme. We present our algorithm for switching between18

strategies. Recall the context that x is assumed to be governed by (1.1), where strategy h ∈ q is to be19

determined. To apply feedback control requires some per time-step measurements of the quantity x. We20

assume that the whole state x(t) is not necessarily known. Indeed, in an ecological setting, there may21

be stage-classes which are expensive, laborious or ineffective to measure, such as pelagic or subterranean22

stage-classes. Thus, we assume that23

y = Cx , (2.1)24

that is, y(t) contains the information about x(t) which is assumed available to the modeller at time-step25

t for feedback purposes. The matrix C is order p× n, where n is the dimension of the state vector, and26

p denotes the number of per time-step measurements taken. Of course, the case C = I corresponds to27

the situation where complete knowledge of x(t) is available. Further, C is assumed throughout to have28

no zero rows as these correspond to trivial (zero) measurements of x, and are as such inappropriate.29

We introduce a sequence τ satisfying30

(T) τ is a positive, strictly increasing and unbounded (scalar) sequence with τ(0) = 0 and such that31

τ(j + 1)

τ(j)
→ ∞ as j → ∞ .32

Intuitively, (T) means that asymptotically τ grows faster than exponentially, for any exponent.33

Given such a τ , we define K : R+ → {1, 2, . . . , q} by34

K(z) :=

{

1, z = 0 ,

(j mod q) + 1, z ∈ (τ(j − 1), τ(j)], j ∈ N .
35

Assumption (T) implies that K(z) is well-defined for all z ≥ 0. Moreover, for given z ≥ 0, the evaluation36

K(z) returns an integer in q which shall index the strategy to be applied.37

We consider the following switched system38

x(t+ 1) = F (K(s(t)), x(t)), x(0) = x0, t ∈ Z+ , (2.2)39

where the sequence s is called the switching sequence and is to-be-determined as a function of the40

measured variable y.41

We propose the following update law for the switching sequence42

s(t+ 1) = s(t) +







0, M ≤ ‖y(t)‖, ‖y(t)‖ = 0 ,

1

‖y(t)‖
, ‖y(t)‖ < M ,

s(0) = s0 , (2.3)43

where M > 0 and s0 are design parameters, and y is given by (2.1).44



4 DANIEL FRANCO AND CHRIS GUIVER AND PHOEBE SMITH AND STUART TOWNLEY

The feedback interconnection of (2.2) and (2.3) gives rise to the system of difference equations1

x(t+ 1) = F
(

K(s(t)), x(t)
)

, x(0) = x0 ,

s(t+ 1) = s(t) +







0, M ≤ ‖y(t)‖, ‖y(t)‖ = 0 ,

1

‖y(t)‖
, ‖y(t)‖ < M ,

s(0) = s0 ,



















t ∈ Z+ , (2.4)2

which we call an adaptive switching feedback control scheme. It is clear that, for each fixed (x0, s0) ∈3

R
n
+ × R+, and sequence τ satisfying (T), there is a unique solution of (2.4) which we denote by (x, s).4

When x0 = 0, this solution is the trivial solution (0, s0) which we shall avoid by assuming that x0 > 0.5

The proceeding two subsections investigate the asymptotic behaviour of (2.4) under different assumptions6

for the terms F (h, ·) in (2.4).7

2.1. The linear case. Here we shall assume that F : q × R
n
+ → R

n
+ in (2.4) is given by:8

F (h, z) := Ahz ∀ (h, z) ∈ q × R
n
+ , (2.5)9

for A1, . . . , Aq ∈ R
n×n
+ . Thus, associated with (2.4) are10

x(t+ 1) = F (h, x(t)) = Ahx(t) , x(0) = x0 , t ∈ Z+, h ∈ q , (2.6)11

which are linear systems of positive difference equations.12

We formulate the following assumption.13

(L1) For each h ∈ q, the matrix Ah ∈ R
n
+ is irreducible.14

Here L stands for linear and (L1) ensures that solutions of the difference equation (2.6) remain non-15

negative when x0 is nonnegative, for any sequence of switches. The irreducibility assumption in (L1) is16

natural in many applied settings, for instance in ecological models, see [33].17

As is well-known, for each h ∈ q, the asymptotic dynamics of (2.6) are determined by r(Ah). We formulate18

the following assumption for h ∈ q:19

(L2) One of the following holds:20

r(Ah) < 1(a) r(Ah) > 1.(b)21

Clearly, for each fixed h ∈ q such that (L1) and (L2)(a) holds, there exist Nh > 0 and λh ∈ (0, 1) such22

that the solution x of (2.6) satisfies23

‖x(t+ θ)‖ ≤ Nhλ
t
h‖x(θ)‖ ∀ t, θ ∈ Z+ . (2.7)24

In other words, under these strategies, the solution x(t) decays to zero exponentially over time, which is25

the situation we wish to avoid, and consequently we term these strategies undesirable.26

Similarly, for each fixed h ∈ q, assumptions (L1) and (L2)(b) entail that the solution x of the difference27

equation (2.6) diverges in norm as t→ ∞, for all nonzero x0. In other words, under these strategies the28

growth of x is unbounded, and consequently we term these desirable strategies. Unbounded exponential29

growth is not realistic in applied settings, and is a deficiency of linear models. These shortcomings are30

addressed in Section 2.2 where nonlinear models are considered. However, linear models are ubiquitous in31

applied sciences, a linear model serves to illustrate the key ideas, and may be valid for the initial growth32

of small quantities (such as populations, which are likely to be the subjects of conservation management).33

An essential ingredient for the adaptive switching feedback control scheme (2.4) is a coupling condition34

between the dynamics generated by F (h, ·) in (2.5), determined in this case by a common lower bound35

A− for the Ah, and the measurements y = Cx. We propose the following.36

(L3) There exists irreducible A− ∈ R
n×n
+ such that Ah ≥ A− for all h ∈ q. Further, there exist k ∈ Z+37

and w ∈ R
p
+ such that wTCAk

− ≫ 0.38

Recalling that C is always assumed to have no zero rows, assumption (L3) is satisfied, for instance, if39

• there exists primitive A− ∈ R
n×n
+ such that Ah ≥ A− for all h ∈ q;40

• C ≫ 0, that is, C is strictly positive.41

Briefly, a consequence of (L3) is that, for some constants c1, c2 > 042

c1‖x(t)‖ ≤ ‖y(t)‖ ≤ c2‖x(t)‖ ∀ t ∈ Z+, t ≥ k ,43

so that, after k time-steps, the norm of the (known) measured variable y(t) is equivalent in the above44

sense to that of (the unknown) x(t).45
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Our main result of this section is the following.1

Theorem 2.1. Consider (2.4) where F is as in (2.5) with q ≥ 2. Assume that τ satisfies (T), that (L1)–2

(L3) hold, and that (L2)(b) holds for at least one h ∈ q. Then, for each (x0, s0) ∈ R
n
+×R+, with x0 6= 0,3

the following statements hold4

(i) s is bounded, and hence (as non-decreasing) convergent;5

(ii) K(s(t)) → h as t→ ∞ where h is such that (L2)(b) holds;6

(iii) x is divergent.7

We provide some commentary on the above theorem.8

Remark 2.2. (a) In words, Theorem 2.1 states that the adaptive switching feedback control system (2.4)9

identifies (or learns) a desirable strategy, assuming that there is one to be found. This is without10

knowing the underlying model for the dynamics of x exactly or the effects of the strategies, rather,11

the qualitative assumptions (L1)–(L3) are imposed.12

(b) For simplicity, we have excluded the case that there are strategies for which r(Ah) = 1, which13

corresponds to asymptotic stasis of the solution of (2.6). More discussion of this case shall appear14

in [32].15

(c) We comment on the choice M . Whilst the conclusions of Theorem 2.1 hold for any M > 0, the16

choice of M can control the speed with which s and K(s) converge. Roughly speaking, if M is17

picked to be small, then s will grow slower as ‖y(t)‖ > M leads to s(t+1) = s(t). This may lead to18

an intolerably small ‖y(t)‖ before a desirable strategy is chosen. Conversely, if M is large, then s is19

“more likely” to grow faster, which on the one hand may lead to a desirable strategy being chosen20

faster, but on the other may lead to inadvertently switching away from a desirable strategy. ⋄21

As a corollary we consider the situation wherein C = I. In this special case we are able to drop the22

coupling condition (L3).23

Corollary 2.3. Consider (2.4) where F is as in (2.5) with q ≥ 2 and assume that C = I. Assume24

that τ satisfies (T), that (L1) and (L2) hold, and that (L2)(b) holds for at least one h ∈ q. Then the25

conclusions of Theorem 2.1 hold.26

2.2. A nonlinear case. We next consider F : q × R
n
+ → R

n
+ in (2.4) with the following nonlinear27

structure28

F (h, z) := Ahz + bhgh(f
T
h z) ∀ (h, z) ∈ q × R

n
+ . (2.8)29

Here, for each h ∈ q, we have Ah ∈ R
n×n
+ , bh, fh ∈ R

n
+, and further, gh : R+ → R+ are (nonlinear)30

functions. For each fixed h ∈ q, the model31

x(t+ 1) = F (h, x(t)) = Ahx(t) + bhgh(f
T
h x(t)), x(0) = x0, t ∈ Z+ , (2.9)32

contains a linear component Ahx(t), and a structured (rank-one) nonlinear component bhgh(f
T
h x(t)).33

We formulate the following assumptions.34

(NL1) There exist A± ∈ R
n×n
+ , b±, f± ∈ R

n
+ with b−, f− 6= 0 such that35

A− ≤ Ah ≤ A+, b− ≤ bh ≤ b+, and f− ≤ fh ≤ f+ ∀ h ∈ q .36

Furthermore, r(A+) < 1 and A− + b−f
T
− is irreducible.37

(NL2) The gh : R+ → R+ are locally Lipschitz, positive definite functions with gh(0) = 0, for every38

h ∈ q. Further, there exist χ > 0 and η ∈ (0, p+) such that39

gh(z) ≤ ηz + χ ∀ z ≥ 0 ,40

where p+ := 1/fT+ (I −A+)
−1b+ ∈ (0,∞).41

Here NL stands for nonlinear. Assumptions (NL1) and (NL2) together entail that solutions of the42

system of nonlinear difference equations (2.9) for initial condition x0 ∈ R
n
+ are nonnegative for each43

h ∈ q. We note that if gh is bounded for every h ∈ q, then the affine linear bound in (NL2) is satisfied,44

and the conjunction of (NL1) and (NL2) entails that solutions of (2.9) are bounded by [14, Theorem45

4.4, statement (a)]. The assumption that gh(0) = 0 implies that (x, s) = (0, s0) is a constant solution46

of (2.4), for any s0 > 0.47

For each h ∈ q, the asymptotic dynamics of (2.9) are determined by the interplay of the linear data,48

namely Ah, bh and fh, captured through the quantity49

ph := 1/(fTh (I −Ah)
−1bh) ,50
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and the nonlinear term gh. Assumption (NL1) guarantees that ph is positive and finite. We record the1

following qualitative properties of the functions gh.2

(NL3) One of the following holds:3

lim inf
zց0

gh(z)

z
> 0 and sup

z>0

gh(z)

z
< ph(a) lim inf

zց0

gh(z)

z
> ph .(b)4

Figure 2.1 contains a typical illustration of the conditions (NL3)(a) and (b).5

z

gh(z)

0

(a)

z

gh(z)

0

(b)

Figure 2.1. Illustration of the conditions (NL3)(a) and (NL3)(b) in panels (A) and
(B), respectively. The dashed straight lines have gradient ph > 0.

Under assumptions (NL1), (NL2), and for h ∈ q such that (NL3)(a) holds, it follows from [14, The-6

orem 2.3] that there exist Nh > 0 and λh ∈ (0, 1) such that solution x of the difference equation (2.9)7

satisfies (2.7). Consequently, we term strategies for which (NL3)(a) hold undesirable.8

However, assumptions (NL1), (NL2), and (NL3)(b) together imply that there exists Kh > 0 such that,9

for all nonzero x0 ∈ R
n
+, there exists t∗ = t∗(x0) ∈ Z+ such that10

‖x(t+ t∗)‖ ≥ Kh ∀ t ∈ Z+ .11

In other words, under these strategies, the difference equation (2.9) is strongly ‖ · ‖-persistent in the12

terminology of [30, Definition 3.1]. We call such strategies desirable.13

Finally, to parallel (L3), a coupling condition between the dynamics generated by F (h, ·) and the meas-14

urements y = Cx is required. We propose the following.15

(NL4) There exist k ∈ Z+ and w ∈ R
p
+ such that wTC(A− + b−f

T
−)k ≫ 0.16

Recalling that C is always assumed to have no zero rows and A−+b−f
T
− is assumed irreducible in (NL1),17

it is routine to verify that assumption (NL4) is satisfied, for instance, if18

• A− + b−f− is primitive;19

• C ≫ 0, that is, C is strictly positive.20

Our main result of this section is the following.21

Theorem 2.4. Consider (2.4) where F is as in (2.8) with q ≥ 2. Assume that τ satisfies (T),22

that (NL1)–(NL4) hold, and that (NL3)(b) holds for at least one h ∈ q. There exist M > 0 and23

K > 0 such that, for all (x0, s0) ∈ R
n
+ × R+ with x0 6= 0, the following statements hold24

(i) s is bounded, and hence (as non-decreasing) convergent;25

(ii) K(s(t)) → h as t→ ∞ where h is such that (NL3)(b) holds;26

(iii) lim inf
t→∞

‖x(t)‖ > K.27

We provide some commentary on the above theorem.28

Remark 2.5. Although Theorem 2.4 does guarantee that a switching threshold M exists for the adaptive29

switching feedback control system (2.4) which ensures (asymptotic) selection of a desirable strategy, a30

drawback is that a suitable thresholdM is not explicitly constructed. As outlined above the statement of31

theorem, a key argument in the proof of Theorem 2.4 is to exploit persistency-type results. Roughly, M32

must be chosen below a persistency threshold for x(t) in order for that persistent strategy to be deemed33

desirable. Thus, in applications, the choice of M may need to be supported by other considerations. ⋄34
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We conclude this section by noting that the material considered here encompasses certain classes of scalar1

difference equations. As is well-known, difference equations have been proposed as a suitable model for2

species with non-overlapping generations; see, for instance [21]. In particular, by taking n = 1, Ah = 0,3

bh = fh = 1 for all h ∈ q, the model (2.9) reduces to the (switched) difference equation4

x(t+ 1) = F (h, x(t)) = gh(x(t)), x(0) = x0, t ∈ Z+ . (2.10)5

Here the measured output y is assumed just to equal x.6

Assumption (NL1) holds with A± = 0, b± = f± = 1. Now ph = p+ = 1 for all h ∈ q and assump-7

tion (NL2) holds if gh : R+ → R+ is locally Lipschitz and positive definite for all h ∈ q, and there exist8

γ ∈ (0, 1), Γ > 0 such that9

gh(z) ≤ γz + Γ ∀ (h, z) ∈ q × R+ . (2.11)10

Furthermore, assumption (NL3) becomes11

(NL3)′ One of the following holds:12

lim inf
zց0

gh(z)

z
> 0 and sup

z>0

gh(z)

z
< 1(a) lim inf

zց0

gh(z)

z
> 1 .(b)13

Finally, in this special case, assumption (NL4) is always satisfied. Therefore, the conclusions of The-14

orem 2.4 apply to (2.4) with F as in (2.10) provided that (2.11) and (NL3)′ hold, and that (NL3)′(b)15

is satisfied for at least one h ∈ q.16

3. Examples. Here we apply the theory developed in the previous sections to several examples from17

population ecology. Our main results are Theorems 2.1 and 2.4 and, roughly, both state that the adaptive18

switching feedback control scheme (2.4) finds or selects a strategy under which x persists in some form,19

assuming that there is such a strategy to be found. This persistence could be: that x exhibits unbounded20

growth; that x exhibits persistent fluctuations, or; that x converges to a nonzero equilibrium. Moreover,21

the non-decreasing switching sequence s which determines the choice of strategy via K(s(t)) converges.22

The section is organised as follows. Example 3.1 illustrates the theory from Section 2.1, and Examples 3.223

and 3.3 illustrate the theory from Section 2.2. Some discussion of performance is considered in Section 3.1.24

All numerical simulations were performed in MATLAB R2018a, and random numbers are actually25

pseudorandomly generated. We note that in order to numerically simulate models, the models must be26

specified. By specifying a model, it can clearly a fortiori be seen which strategies are desirable, and which27

are undesirable. However, recall our standing assumption that the effect of the control strategies is not28

known in practice.29

Example 3.1. We consider an example which fits the framework of Section 2.1. In an ecological setting30

the discrete-time linear system of difference equations (2.6) is called a matrix population project model31

(PPM); see, for instance [7]. The state x(t) describes the discrete stage structure of the population at32

time-step t ∈ Z+. Discrete stage-classes may be structured according to age or developmental stages,33

such as insect instars. We illustrate our results from Section 2.1 by considering a matrix PPM for North34

Atlantic right whales (Eubalaena glacialis) [16] — which becomes a model of the form (2.5) under the35

inclusion of control by application of a discrete management strategy. In this model, time-steps correspond36

to years and units correspond to 100 whales. We use the female population model with four stage classes,37

where stage classes 1–4 represent: calves; immature females; mature females; and, mature females with38

newborn calves (mothers), respectively. Calves are defined to be individuals that are sighted along with39

their mother. Similarly, mothers are females that are sighted with a newborn offspring. Immature females40

are those that are known to be less than nine years old, whilst mature females are those that are known41

to be at least nine years old or have previously been spotted with a calf.42

The North Atlantic right whale has a declining population and has been categorised as endangered by the43

IUCN Red List of Threatened Species [9], thus they are of conservation interest. The species is a partial44

migrant that is known to use feeding grounds in and around the Gulf of Maine during spring through45

to autumn and calving or overwintering grounds off the southeastern United States (SEUS) during the46

winter [17]. The SEUS can be used by all demographic groups as an overwintering ground, but there is47

much variation in the number of non-breeders carrying out the migration across the years [17]. However,48

the SEUS is established as a calving ground. Hence, mothers are more likely to be observed than non-49

breeders. The probability that mothers are captured (observed) at least once during a given winter is50

close to one [16, 17]. To account for this, C takes the form51

C :=

(

1 0 0 0
0 0 0 1

)

,52
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meaning that mothers (stage 4) and their calves (stage 1) are observed per time step.1

We assume that two management strategies are available. We assume that the population projection2

matrix, for both strategies, is of the form3

Ah =









0 f1,2 f1,3 0
s2,1 s2,2 0 0
0 s3,2 s3,3 s3,4
0 s4,2 s4,3 0









h ∈ {1, 2} . (3.1)4

Here sj,i represents the transition probability from stage i to stage j (not to be mistaken with the5

switching sequence s), and f1,i represents the probability that a female in stage i gives birth to a female6

calf and that the calf survives long enough to be catalogued. It is assumed that calves are catalogued7

on average midway through their first year, and that the mother must also survive this long for the8

calf to survive. It is assumed that all probabilities are positive, and depend on the strategy indexed by9

h ∈ {1, 2}. Thus, the matrix Ah is clearly nonnegative and is irreducible. Hence, assumption (L1) is10

satisfied. The vital rates used in (3.1) for each strategy are given in Table 3.1.11

Strategy (h) Vital rates
s2,1 s2,2 s3,2 s3,3 s3,4 s4,2 s4,3 f1,2 f1,3

1 0.85 0.85 0.08 0.8 0.64 0.02 0.19 0.0080 0.0760
2 0.92 0.86 0.08 0.8 0.83 0.02 0.19 0.0091 0.0865

Table 3.1. Vital rates used in the population projection matrices Ah in (3.1).

Strategy 2 corresponds to the average vital rates from 1980–1995 in [7]. Whereas strategy 1 corresponds12

to the vital rates of 1995 in [7], where the authors note that the mortality has increased, especially in13

mother whales. Studies cited by Fujiwara and Caswell in [7], as well as more recent studies, attribute14

the increased mortality of mothers to: collisions with ships; entanglement with fishing gear; and, changes15

in prey availability caused by climate-associated fluctuations in prey availability [6, 24, 25]. The vital16

rates for strategy 1 lead to ρ1 := r(A1) = 0.9762. Thus, (L2)(a) is satisfied, in other words strategy 117

is undesirable in the present context. Whereas, ρ2 := r(A2) = 1.0098, hence (L2)(b) is satisfied and18

strategy 2, of the two strategies, is deemed desirable.19

It is clear from Table 3.1 that A2 ≥ A1 and a routine calculation shows that CA2
1 ≫ 0. Consequently,20

the coupling condition (L3) holds with A− := A1, k = 2 and for any w ≫ 0.21

In the simulations, we set s0 := 0.2, M := 1.2, that is 120 whales, and define the sequence τ via22

τ(j + 1) = 0.35 + (j + 1)τ(j), τ(0) = 0, j ∈ Z+ , (3.2)23

which evidently satisfies the growth assumption (T).24

We perform three simulations, each with a different initial condition xi0, given in (A.1) in Appendix A.1.25

The initial conditions are random perturbations of the so-called stable stage structure of either strategy26

1 or 2 (randomly chosen), that is, perturbations of a strictly positive wh ∈ R
n
+ such that27

Ahwh = r(Ah)wh h ∈ {1, 2} ,28

which are uniquely determined up to a multiplicative constant. We take x0 such that29

0.5× 4.58 ≤ ‖x0‖ ≤ 1.5× 4.58 .30

The figure 4.58 is a recent estimate of the population size of North Atlantic right whales from [26].31

Numerical simulation results are plotted in Figure 3.1. Each panel contains three simulations, corres-32

ponding to the three initial conditions. Figure 3.1(a) plots the observed population size, ‖y(t)‖, against33

time t. We see that for each of the initial conditions there is eventually unbounded exponential growth34

of y, and hence x. Figures 3.1(b) plots the switching sequence, s(t), against time t. The switching35

sequences are bounded and eventually constant. The North Atlantic right whale has a generation length36

of 24 years [9], thus our model has been run for 12.5 generations.37

Figure 3.1(c) shows the time over which each strategy is applied, that is, K(s(t)) is plotted against t. We38

see that K(s(t)) → 2 as t→ ∞, that is the switching sequence eventually settles on the second strategy,39

which recall is the desirable strategy in this example. Figure 3.1(d) illustrates the early switches in more40

detail, and shows how switches can skip strategies leading in this example to no change of strategy. For41

example, strategy 1 is applied at time t = 0 for each initial condition x0; then, at t = 1, the first initial42
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condition switches, but skips a whole τ interval, and so strategy 1 is still applied. The second and third1

initial conditions, however, switch to strategy 2 at t = 1. It is also interesting to note that, for small2

t, initial conditions 2 and 3 exhibit similar growth of s, however, from initial condition 3, we see that3

K(s(t)) converges to a desirable strategy much faster than either of other initial conditions. ⋄4
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(a) Trajectories of the observed population
size ‖y(t)‖ at time t. The first, second and
third initial conditions are represented by: a
solid line; a dash-dot line; and a dashed line,
respectively.
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(b) Graph of the switching sequence s(t) at
time t. The first, second and third initial con-
ditions are represented by: a solid line; a dash-
dot line; and a dashed line, respectively.
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(c) Graph of the strategy applied K(s(t)) at
time t. The first, second and third initial con-
ditions are represented by: medium; dark; and
light grey, respectively.
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(d) Representation of the switching sequence
s(t) at time t, for the first three time steps.
The dark and light grey shaded regions cor-
respond to strategies 1 and 2 being applied,
respectively.

Figure 3.1. Numerical simulations of the adaptive switching feedback control
scheme (2.4) for the North Atlantic right whale model described in Example 3.1.

Example 3.2. We consider an example which fits the framework of Section 2.2. Before which, we give5

some further motivation and background in an ecological context for models of the form (2.9), that is,6

x(t+ 1) = F (h, x(t)) = Ahx(t) + bhgh(f
T
h x(t)), x(0) = x0, t ∈ Z+ . (2.9)7

As with the structured linear models in Section 2.1, here the state variable x(t) describes the discrete8

stage structure of the population at time-step t ∈ Z+. In contrast to (2.6), the model (2.9) contains a9

structured, nonlinear component, and so (2.9) can model both so-called density-independent and density-10

dependent biological processes. As already stated in Section 2.2, the conjunction of (NL1) and (NL2)11

entails that solutions of both (2.4) and (2.9) are bounded.12

Omitting the subscripts from (2.9) for clarity, typically, the matrix A in (2.9) captures survival and13

movement between stage-classes, whilst the term bg(fTx(t)) models transitions which are limited by14

density, such as recruitment. In this case, the vector term b usually models the distribution into population15

structure of new recruits, fTx(t) is the density of possible recruits at time-step t. Then g(fTx(t)) gives16

the establishment probability of a possible recruit, given fTx(t) possible recruits. Another interpretation17
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is that fT is a vector containing the per time-step fecundity of each stage class, leading to fTx(t) new1

individuals per time-step. The function z 7→ g(z)/z denotes the density-dependent per-capita survival2

probability of a new recruit, leading to g(fTx(t)) new recruits per time-step. We refer the reader to [11]3

for further biological interpretation of models of the form (2.9), and note that there are now numerous4

papers which consider such models in an ecological setting, including [12, 13, 27, 31, 35]. Models of the5

form (2.9) are reasonably well-understood and amenable to mathematical analysis, yet also display a rich6

variety of realistic dynamical behaviour.7

To illustrate our results we consider a density-dependent population projection matrix model for the trout8

cod (Maccullochella macquariensis) [34] — which becomes a model of the form (2.8) under the inclusion9

of control by application of a discrete management strategy. In this model units correspond to 103 fish.10

We use the female population with an annual time step and seven stage classes, where stage classes 1–411

represent juveniles, that is 1, 2, 3 and 4–year old individuals, respectively. Stage classes 5–7 represent12

adults, that is sexually mature female fish aged 5, 6 and 7+ years, respectively.13

The trout cod has been categorised as vulnerable by the IUCN Red List of Threatened Species [23].14

There is only one natural self-sustaining population [22, 34], located in a 200km stretch of the Murray15

River [34]. Thus, the trout cod is of conservation interest and has been the subject of reintroduction16

programs [22, 34]. In our simulations we have assumed that there are only two available strategies for17

management of the species, and that they only affect the nonlinear term gh in (2.8). In particular,18

A1 = A2 = A, and similarly for b and f . We assume that the linear data are given by19

A :=







0 0 0 0 0 0 0
0.3759 0 0 0 0 0 0

0 0.6014 0 0 0 0 0
0 0 0.7023 0 0 0 0
0 0 0 0.7591 0 0 0
0 0 0 0 0.7954 0 0
0 0 0 0 0 0.8203 0.8931






, b :=







1
0
0
0
0
0
0






, f :=







0
0
0
0

0.9711
0.9711
2.5512






. (3.3)20

The spectral radius of A is r(A) = 0.8931 < 1. We set A± = A, b± = b and f± = f . In this case,21

A− + b−f
T
− is primitive (and hence irreducible), and so the assumption (NL1) on the linear data holds.22

We assume that for both strategies the functions gh : R+ → R+ are Ricker functions, that is,23

gh(z) = σhze
−z/RCCh ∀ z ≥ 0, ∀ h ∈ {1, 2} , (3.4)24

where σh and RCCh are positive parameters given in Figure 3.2b. Specifically, RCCh is the carrying25

capacity for larval recruits. The functions gh evidently satisfy (NL2), noting that the affine linear bound26

clearly holds as the functions gh are bounded. Since the linear data are the same for both strategies27

considered, we have ph = p = 0.4792. The functions gh are plotted in Figure 3.2a, with parameters as28

in Figure 3.2b.29

Figure 3.2a illustrates that strategy 1 satisfies (NL3)(b) and is, therefore, desirable. From the same30

figure we see that strategy 2 satisfies (NL3)(a) and is, therefore, deemed undesirable.
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0

1

2

3

4

5

6

Strategy 1

Strategy 2

z

g
(z
)

(a) Graphs of g1 (solid) and g2 (dashed)
from (3.4). The dotted line has slope p.

Strategy (h) Parameters
σ RCC

1 1.3026 11.417
2 0.3257 11.417

(b) Parameters for gh in (3.4).

Figure 3.2. Functions gh, panel (a), with parameters, panel (b), from Example 3.2.
31

For our simulations, we assume that all adult fish can be observed, that is stage classes 5–7. Thus, C32

takes the form33

C :=





0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



 . (3.5)34
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Since A− + b−f
T
− = A + bfT is primitive, it follows that the coupling condition (NL4) holds. The1

sequence τ is defined by (3.2). Therefore, the hypotheses of Theorem 2.4 are satisfied.2

For the following numerical simulations, we set s0 := 0.2, M := 5, that is, 5000 fish.3

As in the linear case, we perform three simulations, each with a different initial condition xi0, given4

in (A.2) in Appendix A.1. The initial conditions are random perturbations of the equilibrium x∗ of (2.9)5

associated with strategy 1, meaning6

x∗ := (I −A)−1bz∗ where z∗ > 0 solves g1(z
∗) = pz∗ .7

Numerical simulation results are plotted in Figure 3.3. Each panel contains three simulations, corres-8

ponding to the initial conditions in (A.2). The panels mirror the first and third panels of Figure 3.1.9

Figure 3.3a plots the observed population size, ‖y(t)‖, against time t. We see that for each of the initial10

conditions, ‖y(t)‖ eventually converges to a stable equilibrium, and importantly, persists at a level greater11

than M . This indicates that M has been chosen sufficiently small in this example. Figure 3.3b shows12

the time over which each strategy is applied, that is, K(s(t)) is plotted against time t. We see that, for13

each initial condition, K(s(t)) → 1 as t → ∞, which recall in this example corresponds to the desirable14

strategy where (NL3)(b) holds.15

To illustrate the robustness of the adaptive feedback switching control model (2.4) with respect to uncer-16

tainty in initial conditions, we simulate (2.4) for the trout cod model considered here with 100 random17

initial conditions x0. The results are plotted in Figure 3.4. In Figure 3.4a we see that, for all initial18

conditions, x converges to the equilibrium x∗ as t→ ∞ and, hence persists, whilst Figure 3.4b shows the19

convergence of s(t) as t→ ∞. ⋄20
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(a) Trajectories of the observed population
size ‖y(t)‖ at time t. The first, second and
third initial conditions are represented by: a
solid line; a dash-dotted line; and a dashed
line, respectively.
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t
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(b) Graph of the strategy applied K(s(t)) at
time t. The first, second and third initial con-
ditions are represented by: medium; dark; and
light grey, respectively.

Figure 3.3. Numerical simulations of the adaptive switching feedback control
scheme (2.4) for the trout cod model from Example 3.2.

Example 3.3. We consider a scalar example which fits the framework of the switched difference equa-21

tion (2.10) from Section 2.2. Specifically, we consider the Ricker model, see [29], namely22

x(t+ 1) = g(x(t)) = x(t)e−(µ+η) + αx(t)e−βx(t) ∀ t ∈ Z+ , (3.6)23

for the Gold-spotted grenadier anchovy (Coilia dussumieri), where the state x(t) describes the biomass24

of mature individuals in a population at time-step t ∈ Z+. The function g : R+ → R+ is given by25

g(z) = e−(µ+η)z + αze−βz ∀ z ≥ 0 . (3.7)26

Here µ and η are nonnegative parameters denoting the natural mortality and fishing mortality, respect-27

ively. The positive parameter α > 0 is the maximum per-capita reproduction rate and β > 0 affects the28

density-dependent mortality near equilibrium abundance [29, Supporting Information]. Recall that the29

model (3.6) is a special case of (2.9) with n = 1, Ah = 0 and bh = fh = 1 for all h ∈ q.30
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(a) Trajectories of the observed population
size ‖y(t)‖ at time t.
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(b) Semilog plot of switching sequence s(t) at
time t. The dark and light grey shaded regions
denote strategies 1 and 2, respectively.

Figure 3.4. Numerical simulations of the adaptive switching feedback control
scheme (2.4) for the trout cod model from Example 3.2 with 100 random initial con-
ditions x0.

In the model (3.6), time-steps correspond to years and units correspond to biomass in kg. This anchovy1

is of economic importance and has a gradually increasing demand [1], which motivates appropriate man-2

agement. The difference equation (3.6) becomes a model of the form (2.8) under the inclusion of control3

by application of a discrete management strategy, here meaning that µ = µh, η = ηh, α = αh and β = βh,4

for strategies indexed by h, with corresponding function gh of the form (3.7). In light of (3.7), it is clear5

that the functions gh satisfy (2.11), provided that µh + ηh > 0.6

We assume that there are two management strategies available with associated parameter values recorded7

in Figure 3.5b. The functions gh and associated parameter values are plotted in Figure 3.5. Figure 3.5a8

shows that (NL3)′(a) and (b) are satisfied by strategies 1 and 2, respectively. Thus, in this example,9

strategy 2 is the desirable strategy. We note that the linear component e−(µh+ηh)z in the functions gh10

yield that the gh are unbounded. However, since e−(µ1+η1) ≈ 10−3, the contribution to gh(z) from the11

linear terms e−(µh+ηh)z is very small relative to that from the nonlinear terms αhze
−βhz, certainly when12

z ∈ [0, 0.5× 103], as seen in Figure 3.5a.13

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Strategy 1

Strategy 2

z

g h
(z
)

(a) Graph of gh, see (3.7) for strategies h ∈
{1, 2}, with dotted line with unity slope.

Strategy (h) Vital rates
µ η α β

1 2.46 5.20 0.8187 0.001
2 1.68 3.10 15.3329 0.001

(b) Parameters for gh.

Figure 3.5. Functions gh, panel (a), with parameters, panel (b), from Example 3.3.

To simulate (2.4) in the current setting, we define the switching sequence τ via (3.2). With these choices,14

the hypothesis of Theorem 2.4 are satisfied. For the following simulations, we set s0 := 0.2 andM := 200.15

As before, we perform three simulations, with the following randomly generated initial condition xi0,16

x10 := 123.70 , x20 := 1515.1 , x30 := 2899.2 . (3.8)17

Numerical simulations are plotted in Figure 3.6. Each panel contains three simulations corresponding18

to the initial conditions in (3.8). The panels mirror those in Figure 3.3. Figure 3.6a plots the (scalar)19
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population size x(t) against time t. We see that for each of the initial conditions, there are eventually1

persistent fluctuations. Figure 3.6b plots K(s(t)) against time t, that is, the strategy applied at time-step2

t. We see that in each case the desirable strategy is found. ⋄3
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(a) Trajectories of the observed population
size x(t) at time t. The first, second and third
initial conditions are represented by: a solid
line; a dash-dot line; and a dashed line, re-
spectively.
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(b) Graph of the strategy applied K(s(t)) at
time t. The first, second and third initial con-
ditions are represented by: medium; dark; and
light grey, respectively.

Figure 3.6. Numerical simulations of the adaptive switching feedback control
scheme (2.4) for the Gold-spotted grenadier anchovy model from Example 3.3.

3.1. Performance of the adaptive feedback switching control scheme. We conclude this section4

by discussing some aspects of the performance of the adaptive feedback switching control scheme (2.4).5

First, our proof does not show this but, in the context of Theorem 2.4, it appears numerically that some6

persistent strategies may be ruled out by choosingM too large. In this sense, it appears numerically that7

the choice of M can filter between persistent strategies, so that some are deemed undesirable, and others8

desirable. This allows the situation, for instance, where every strategy is persistent, and M is used to9

asymptotically select a strategy which persists above a desired threshold.10

Second, and as commented in Remark 2.2, our main results are asymptotic in nature. Of course, in the11

potential real-world applications we have in mind such as conservation, time is often of the essence, and12

it is imperative that control actions, or management strategies, perform well over short time periods.13

The power of our results is that they place relatively few constraints on required knowledge of the to-be-14

controlled models. This is advantageous when seeking to control highly uncertain or poorly understood15

systems. They are also (at least theoretically) very simple to implement. There is also some considerable16

freedom in certain design parameters, such as the switching threshold M , the initial state s0 of the17

switching sequence, and the underlying sequence τ which determines the rate of switching via the defining18

property that K(z) = (k mod q) + 1 for all z ∈ (τ(k − 1), τ(k)] for given k ∈ N selects strategy (k19

mod q) + 1. A tradeoff with the choice of τ is that if the τ intervals are too “small”, then the strategy20

may change too often, and not give desirable strategies sufficient time to establish ‖y(t)‖ ≥ M . If the τ21

intervals are too “large”, then the dynamics may spend unnecessarily long under an undesirable strategy22

before switching again. We note that the sequence τ only needs to grow “faster than exponentially”23

asymptotically, and can be chosen to increase linearly or quadratically at first, for instance. The purpose24

of the present paper is to establish a theoretical underpinning of the novel adaptive feedback switching25

control scheme (2.4), and in our numerical simulations we have not tried to optimise or realistically tune26

any of these quantities. Other considerations may provide insight into how to choose these parameters27

in any given bespoke context.28

We have observed that performance may be poor when there are many more undesirable strategies than29

desirable strategies, meaning informally that the system (2.4) spends considerable time applying undesir-30

able strategies before trialling a desirable strategy. Although these situations satisfy the hypotheses of31

our main results, and a desirable strategy is eventually found, the time taken for K(s(t)) to converge32

can become very large. As an illustration, we simulated the nonlinear model from Example 3.2 but in-33

troduced many more undesirable strategies. Recall that in this example the linear data A, b, f are fixed,34

and the nonlinear terms gh depend on the strategy h ∈ q. We retained the single desirable strategy35
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from Example 3.2, but included 19 other undesirable strategies by randomly generating the σh parameter1

in (3.4) so that σh ∈ (0, p). Numerical simulation results are plotted in Figure 3.7 from ten randomly2

generated initial conditions. In each case x(t) persists asymptotically, see Figure 3.7a; and s(t) does3

eventually converge, as seen in Figure 3.7b. However, the response time is very slow, as K(s(t)) cycles4

through every undesirable strategy consecutively, during which the intervals (τ(k− 1), τ(k)] become very5

large, meaning that it takes even longer to switch strategy again. This situation can be mitigated against6

by having fewer strategies in total, or a higher ratio of desirable to undesirable strategies.7
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(a) Trajectories of the observed population
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(b) Semilog plot of the switching sequence s(t)
at time t. The dark and light grey shaded re-
gions correspond to desirable and undesirable
strategies, respectively.

Figure 3.7. Numerical simulations of the adaptive switching feedback control
scheme (2.4) for the trout cod model discussed in Section 3.1.

4. Summary. A novel theoretical robust feedback control solution has been proposed for the problem8

of preservation of dynamic nonnegative quantities managed by choice of discrete control strategy. A9

motivating application is to the conservation of managed populations. We have proposed the so-called10

adaptive switching feedback control scheme (2.4) which uses a measured variable to inform the choice of11

control strategy. Our main results are Theorems 2.1 and 2.4 which provide sufficient conditions under12

which (2.4) identifies (or learns), and converges to, a strategy which results in persistence, under different13

assumptions on the class of underlying dynamic models F (h, ·) in (1.1) for x. We prove our results14

by critically exploiting both the positivity and exponential rates of change of the underlying models, in15

conjunction with the faster-than-exponential growth of the sequence τ .16

The assumptions we place on F (h, ·) are structural, and are satisfied in reasonable physically-motivated17

scenarios. Our scheme does not require knowledge of the F (h, ·) to be implemented and, as mentioned in18

the Introduction, our scheme is intended for use in the situation wherein the F (h, ·) are unknown, as other19

solutions to the main problem considered are available otherwise. Some discussion of the performance of20

the models is provided in Section 3.1. Our work is in the spirit of robust control and, consequently, our21

results are not expected to be optimal in any sense. Arguably, optimality has been traded off against22

ensuring strong robustness properties. However, our results may have utility when models are so poor23

that optimal controls may not function or perform as intended. This comment also naturally raises a24

future research direction, which we hope to address, which is to combine elements of the theoretical25

foundation laid here with methods for improving performance in bespoke situations.26

Appendix A. .27

A.1. Additional material for the examples. The initial conditions used in the simulations in Ex-28

ample 3.1 are29

x10 :=









0.1224
0.6196
1.5709
0.2231









, x20 :=









0.2398
1.5278
3.5706
0.7903









, x30 :=









0.3014
2.1859
3.9035
0.6244









, (A.1)30

where we recall the units of 100 whales.31
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The initial conditions used in the simulations in Example 3.2 are1

x10 :=





















0.9624
0.4000
0.1807
0.1256
0.1070
0.0647
0.2899





















, x20 :=





















8.5315
2.6647
1.8178
1.3227
0.8446
0.5622
3.1954





















, x30 :=





















17.2480
6.7629
4.3956
2.5322
1.8469
1.2930
7.2362





















, (A.2)2

where we recall the units of 1000 fish.3

A.2. Proofs of results. We provide outline proofs of our results. For full details we refer the reader4

to [32]. The proofs are somewhat long, but intuitive and use elementary (if not careful) arguments.5

Proofs for Section 2.16

We let q
e
, q

p
⊆ q index the strategies for which (L2)(a) and (L2)(b) hold, respectively. By definition7

and assumption q
e
and q

p
partition q, and q

p
is non empty.8

A key estimate which is a routine consequence of (L3) is that there exist k ∈ Z+ and d > 0 such that9

‖CAk
−x‖ ≥ d‖x‖ ∀ x ∈ R

n
+ . (A.3)10

Proof of Theorem 2.1. The proofs of statements (i)–(iii) are linked and the statements are, more or less,11

proven simultaneously. We proceed in steps.12

Step 1: s cannot always avoid desirable strategies. A consequence of the lower bounds Ah ≥ A−13

for all h ∈ q and monotonicity of the one-norm is that14

Cx(t+ k) ≥ CAk
−x(t) ≥ 0 and so ‖Cx(t+ k)‖ ≥ ‖CAk

−x(t)‖ ∀ t ∈ Z+ .15

Therefore, invoking (A.3), there exist ρ− > 0 and δ− > 0 such that16

‖Cx(t+ k)‖ ≥ ‖CAk
−x(t)‖ ≥ d‖x(t)‖ ≥ dδ−ρ

t
−‖x0‖ ∀ t ∈ Z+ . (A.4)17

An application of (A.4) and a telescoping series argument gives the following upper bound for s,18

s(t+ k) ≤ s(k) +
t−1
∑

j=0

1

‖Cx(j + k)‖
≤ s(k) +

1

dδ−‖x0‖

t−1
∑

j=0

(

ρ−1
−

)j
∀ t ∈ N . (A.5)19

20

We see that s grows at fastest exponentially. The faster-than-exponential growth assumption (T), how-21

ever, ensures that s cannot only switch between strategies indexed by h ∈ q
e
.22

Step 2: s cannot become bounded under an undesirable strategy. Let h ∈ q
e
, and letm1 ∈ Z+23

denote a time when the h-th strategy is entered. As a linear system of difference equations there exist24

δh > 0 and ρh ∈ (0, 1) such that25

‖Cx(θ + t)‖ ≤ δhρ
t
h‖C‖‖x(θ)‖ ∀ t, θ ∈ Z+ with θ ≥ m1 , (A.6)26

(strictly, at least until another switch happens). Since ρh ∈ (0, 1), it follows that ‖Cx(t)‖ → 0 as t→ ∞,27

and so there exists m2 ∈ N, m2 ≥ m1, such that ‖Cx(t+m2)‖ < M for all t ∈ Z+.28

Therefore, invoking (A.6), we estimate that29

s(t+m2) = s(m2) +

t+m2−1
∑

j=m2

1

‖Cx(j)‖
≥ s(m2) +

1

‖C‖δh‖x(m2)‖

t−1
∑

j=0

(ρ−1
h )j ∀ t ∈ N .30

31

We see that s grows at least exponentially, and thus diverges. Hence, at some future time a switch of32

strategy will occur.33

To summarise the above two steps, for large times every strategy must be cycled through consecutively.34

Thus, at some (possibly large) time a desirable strategy is applied where (L2)(b) holds. Hence, state-35

ments (i)–(iii) are proven once we establish that the switching sequence is eventually bounded (constant,36

in fact) in a desirable strategy.37

Step 3: s converges under a desirable strategy. Let h ∈ q
p
and let θ be the first time that the38

h-th strategy is (re)applied. An application of (A.3) and routine estimates give that39

‖y(t+ θ + k)‖ = ‖Cx(t+ θ + k)‖ ≥ d‖x(t+ θ)‖ ≥ c3ρ
t
h‖x0‖ ∀ t ∈ Z+ , (A.7)40

41
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for some constant c3 = c3(θ), whilst the h-th strategy is applied. Here ρh > 1. Therefore, as y, and hence1

x, diverges in norm under this strategy, there exists ψ = ψ(x0) ∈ Z+ such that ‖y(t + θ)‖ ≥ M for all2

t ∈ Z+ with t ≥ ψ. Therefore, s(t+ ψ + θ) = s(ψ + θ) for all t ∈ Z+, whilst still in this strategy.3

Thus, all that remains to prove is that the strategy has not switched again. However, this essentially4

follows as, in light of the exponentially growing lower bound (A.7) for ‖y‖, the switching sequence s5

admits the upper bound (A.5) but with ρ−1
− replaced by ρ−1

h < 1 (and a relabelling of constants), which6

is summable. Hence, s is convergent, and although its limit may be large, the faster-than-exponential7

growth (T) ensures that, at least for θ large enough, no further switching occurs.8

Proof of Corollary 2.3. The proof is very similar to that of Theorem 2.1, only differing in that the as-9

sumptions (L1) and (L2) together are sufficient for the estimates (A.4) and (A.7) to hold.10

Proofs for Section 2.211

The ideas behind the proofs for this section are very similar to those in the linear case, but the estimates12

become more technical.13

Proof of Theorem 2.4. Steps 1 and 2 in the proof of Theorem 2.1 apply here and the proofs use similar14

estimates (adapted for the nonlinear setting) — the upshot being that the switching sequence cannot15

become bounded in an undesirable strategy, and grows at fatest exponentially, so cannot always avoid16

desirable strategies. Our assumptions imply that whilst ‖x‖ is small, the solution of x+ = F (h, x) admits17

a linear lower bound which is exponentially growing (cf. [14, Theorem 4.4, statement (b)]). In particular,18

persistence of ‖x(t)‖ follows. IfM is chosen sufficiently small so that the linear lower bound for x applies,19

then a similar argument to that in Step 3 of the proof of Theorem 2.1 now shows that s is bounded, and20

hence convergent, under a desirable strategy.21
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