
Research Article
An Improved Genetic-Shuffled Frog-Leaping Algorithm for
Permutation Flowshop Scheduling

Peiliang Wu,1,2,3,4 Qingyu Yang,1 Wenbai Chen,5 Bingyi Mao,1,3 and Hongnian Yu 4

1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China
3,e Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China
4School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
5School of Automation, Beijing Information Science & Technology University, Beijing 100101, China

Correspondence should be addressed to Hongnian Yu; yu61150@ieee.org

Received 27 June 2020; Revised 11 September 2020; Accepted 16 October 2020; Published 28 November 2020

Academic Editor: Zhile Yang

Copyright © 2020 Peiliang Wu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the NP-hard nature, the permutation flowshop scheduling problem (PFSSP) is a fundamental issue for Industry 4.0,
especially under higher productivity, efficiency, and self-managing systems. +is paper proposes an improved genetic-shuffled
frog-leaping algorithm (IGSFLA) to solve the permutation flowshop scheduling problem. In the proposed IGSFLA, the optimal
initial frog (individual) in the initialized group is generated according to the heuristic optimal-insert method with fitness
constrain. +e crossover mechanism is applied to both the subgroup and the global group to avoid the local optimal solutions and
accelerate the evolution. To evolve the frogs with the same optimal fitness more outstanding, the disturbancemechanism is applied
to obtain the optimal frog of the whole group at the initialization step and the optimal frog of the subgroup at the searching step.
+e mathematical model of PFSSP is established with the minimum production cycle (makespan) as the objective function, the
fitness of frog is given, and the IGSFLA-based PFSSP is proposed. Experimental results have been given and analyzed, showing
that IGSFLA not only provides the optimal scheduling performance but also converges effectively.

1. Introduction

With the advancement of Industry 4.0, the demographic-
dividend is gradually replaced by the technology-dividend
[1, 2]. In the flowshop, designing an intelligent scheduling
algorithm can effectively improve manufacturing systems
and production efficiency of enterprises. Although sched-
uling is a very active field with a high practical relevance,
there are still many challenging problems in the flexible
manufacturing systems of Industry 4.0.

Among these challenging problems, the permutation
flowshop scheduling problem (PFSSP) has been researched
for more than half a century due to its complexity. It can be
described as N jobs that are processed on M different
machines in the same order. +e processing time of the n-th
job on them-th machine is known in advance and fixed.+e

task is to solve the processing order of each job so that the
objective function (generally refers to the time when the last
job is processed on the last machine) is optimal [3–6].
Nowadays, there are a variety of dynamic factors in a highly
intelligent flowshop. A reasonable scheduling method can
control the production process, so that enterprises should
effectively face the unexpected situation in production and
processing to maximize the benefits of enterprises [4–6].+e
most commonly used scheduling index is the minimum
production cycle, also called as makespan, referring to the
minimum time to complete the processing of all jobs [7–11].

When the number of jobs is small, the PFSSP can be
solved by the deterministic solution methods [3], such as
dynamic programming method and branch and bound
method [12]. PFSSP becomes an NP-hard problem when the
number of jobs is large [13]. It is a challenging task to solve

Hindawi
Complexity
Volume 2020, Article ID 3450180, 15 pages
https://doi.org/10.1155/2020/3450180

mailto:yu61150@ieee.org
https://orcid.org/0000-0003-0669-4894
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3450180

mainly because that a machine needs to process multiple
jobs, and a job needs to be sequentially processed on
multiple machines [14, 15]. +e increase in the number of
jobs and machines will make the optimal solution process
very complicated, and the solution will be more difficult.+e
metaheuristic algorithm [16, 17] provides a feasible solution
to the NP problem which is difficult to be solved by tra-
ditional optimization algorithm, and this kind of algorithms
has been widely used in PFSSP [18–20]. +e study in [21]
uses genetic algorithm to solve PFSSP. +e authors in
[22–24] study the simulated annealing algorithm. +e au-
thors in [25, 26] study the particle swarm optimization. +e
authors in [27–29] study the artificial bee colony algorithm.
However, each single metaheuristic algorithm has its dis-
advantage and some combination approaches have been
proposed.

+e genetic-shuffled frog-leaping algorithm (GSFLA) is
a swarm intelligence optimization algorithm that simulates
the process of frog foraging behavior [30–34]. It combines
the advantages of the memetic algorithm (MA) based on
memetic evolution [35] and the particle swarm optimization
algorithm (PSO) based on swarm behavior [36]. GSFLA can
realize the sharing and exchanging of group information and
has the characteristics of scattered search and global in-
formation exchange. Now, GSFLA has been applied to solve
generator maintenance scheduling (2015), time-optimal
traveling salesman problem (2018), text document clustering
(2019), and neural network structure optimization (2020).

In this paper, we propose an improved GSFLA called as
IGSFLA and apply it to solve the PFSSP.+is paper has three
contributions: (1) a heuristic optimal-insert method with
fitness constrain is applied to generate the frog (individual)
group; (2) the crossover mechanism is applied to both the
subgroup and the global group to avoid the local optimal
solutions and make the evolution faster; (3) the disturbance
mechanism is applied both in the initialization step and the
local searching step to evolve the frogs with the same optimal
fitness.

+e remainder of the paper is structured as follows:
Section 2 gives a brief overview of related work that deals
with the PFSSP. +e details of the IGSFLA algorithm and
IGSFLA-based PFSSP are presented in Section 3. +e ex-
perimental results and analysis are reported in Section 4 and
in Section 5 by the conclusion.

2. Related Work

+e manufacturing problems can be classified according
to different characteristics, for example, the number of
machines (one machine and parallel machines), the job
characteristics (preemption allowed or not and equal
processing times), and the number of objective (single
objective usually the makespan, biobjective, and multi-
objective). When each job has a fixed number of oper-
ations requiring different machines and all jobs share the
same route, we are dealing with a flowshop scheduling
problem. If each machine has to process the jobs in the
same order, the problem is named as permutation
flowshop scheduling problem (PFSSP).

Up to now, lots of methods to provide exact or ap-
proximate solutions have been presented for the PFSSP over
the last 60 years, including reinforcement learning based
method [37]. Ruiz has presented a review of approximate
methods for PFSSP, including almost heuristics and meta-
heuristics with the makespan criterion [38]. Among these
solution approaches, metaheuristic approaches have become
more popular, but according to [38], the current state-of-
the-art approach is far from easy to identify. In this section,
wemainly list and analysis some of them related to our work.

2.1. Genetic Algorithms and Utilization to PFSSP. Genetic
algorithm (GA) is originated from the computer simulation
study of the biological system [21, 39]. It imitates the
mechanism of biological evolution in nature, borrows from
Darwin’s theory of evolution and Mendel’s theory of he-
redity, and is essentially an efficient, parallel, and global
search method, which can automatically acquire and ac-
cumulate knowledge about the search space during the
search process, and adaptively control the search process to
obtain the optimal solution. GA mainly consists of three
operations, namely, selection, crossover, and mutation,
which are performed by calculating the fitness of the group
to evolve and produce new frogs continuously.

Zhang et al. [40] proposedHGA-RMA for the PFSSP and
achieved optimal performance at that time. However, due to
the slow convergence speed of GA, it is still easy to fall into
local optimal solutions. +is issue inspires researchers to
combine the genetic algorithm with other algorithms to
solve PFSSP. +e characteristics of noncompact flowshop
scheduling plans in manufacturing enterprises are analyzed,
and a scheduling strategy based on the nondominated
sorting genetic algorithm (NSGA) is proposed in [21].
NSGA can guarantee the diversity and evolutionary effect of
the group in the multiobjective scheduling model of non-
compact flowshop.

A hybrid algorithm combining genetic algorithms and
generative adversarial networks (GAN) is proposed to solve
scheduling problems in [30]. +e algorithm uses GAN to
minimize sample information. Compared with traditional
optimization algorithms, the algorithm can avoid premature
local optimal solutions.

Genetic simulated annealing algorithm is proposed in
[41] and improves flowshop scheduling with a makespan
criterion, but the improvements are not satisfied.

Recently, Kurdi [42] combines the genetic algorithm,
simulated annealing, and NEH to construct a memetic al-
gorithm with novel semiconstructive evolution operators to
solve the permutation flowshop scheduling problem, and the
proposed MASC can be considered as one of the best-so-far
methods for PFSSP.

2.2. Shuffled Frog-Leaping Algorithm. +e idea of the
shuffled frog-leaping algorithm (SFLA) is inspired from a
group of frogs with differences among frogs living in a
certain area. Each frog with the same structure represents a
solution, and the frog group constitutes the solution space.
+e whole frog group is divided into several subgroups, and

2 Complexity

each of which has its own scheduling strategies and executes
local search strategies in a certain way. Each frog in the
subgroup has its own scheduling strategies, which affect
other frogs in and beyond this subgroup. +e frogs can
exchange information in a global scope.

SFLA combines particle swarm optimization (PSO) [43]
based social behavior and shuffled complex evolution (SCE)
[44] based complex search. As a kind of deterministic
strategies, PSO allow the algorithm to effectively use re-
sponse information to guide the heuristic search [42].
Meanwhile, as a kind of stochastic strategies, SCE ensures
the flexibility and robustness of the search mode.

Independently, SCE and PSO have been applied to solve
the PFSSP, called as SCEOL [45] and PSOENT [46] cor-
respondingly. When the number of jobs and machines are
less than 20, PSOENT obtains a better performance than
GA-based HGA-RMA [40] and vice versa.

SFLA has been applied tomultiobjective flexible job shop
scheduling problem (MOFJSSP), and one of an approximate
optimal solution can be obtained by iterating the global
search several times [47]. Another solution can be obtained
with an improved SFLA under four types of energy con-
sumption [48].

Besides, the memeplex grouping SFLA is proposed and
applied to solve the distributed two-stage hybrid flowshop
scheduling problem (DTHFSSP) in a multifactory envi-
ronment to minimize manufacturing time and the amount
of delayed work [32].

Above all, SFLA has been applied to deal with MOFJSSP
and DTHFSSP. Its performance to deal with PFSSP will be
given in our experiments.

2.3.Genetic-ShuffledFrog-LeapingAlgorithm. Because of the
deficiency of SFLA itself, researchers have proposed some
approaches that combine SFLAwith other heuristic methods
to solve different problems. Among them, the genetic-
shuffled frog-leaping algorithm (GSFLA) has been proposed
by combining GA and SFLA. In the local search of GSFLA,
the concept of crossing between the optimal frog and the
worst one is adopted to replace the jump operation in the
traditional SFLA, to complete the evolution of the worst frog.
At the same time, to avoid premature convergence of the
algorithm, the idea of frogmutation is introduced to increase
the diversity of the group. After the mutation, a comparison
with the original frog is performed to avoid losing the
optimal frog. In summary, the local search consists of the
crossover of different frogs and the selective mutation of frog
frogs.

As mentioned above, GSFLA has been applied to solve
scheduling and clustering problems. G. Giftson Samuel
proposed a hybrid PSO-based GA and hybrid PSO-based
SFLA for solving long-term generation maintenance
scheduling problem by considering a security constrained
model [49]. Zhang et al. [50] proposed a hybrid SFLA-GA to
solve the time-optimal traveling salesman problem (TOTSP)
to reflect the change of traffic over time. +e hybrid SFLA-
GA has shown stronger search capability and fast conver-
gence speed.

Alhenak and Hosny [51] propose a genetic frog-leaping
algorithm for text document clustering in order to extract
useful information from large collections of documents. In
their work, the GA performs feature selection and the SFLA
performs clustering. While the proposed algorithm should
require longer computational time.

Inspired by above work, we try to solve the PFSSP with
GSFLA. While as shown in our experiments, the traditional
GSFLA is not good enough to solve the PFSSP, and in this
paper, we propose an improved GSFLA and apply it to solve
the PFSSP better.

3. Improved GSFLA for PFSSP

3.1. Improved GSFLA. We improve the traditional GSFLA
by improving the initialization step and optimizing the
crossover and disturbance mechanisms. Our crossover
mechanism utilizes three traditional crossover operators.
However, comparing with the traditional GSFLA crossover
mechanism between the optimal frog and the worst one, we
crossover all frogs in the subgroup with the optimal frog of
this subgroup. Moreover, the frog of the subgroup will also
crossover with the global optimal frogs to avoid local optimal
solutions. Our mutation mechanism utilizes three tradi-
tional mutation operators. Comparing with the traditional
GSFLA, we introduce frog disturbances to evolve the op-
timal frogs that have the same fitness in the subgroup. +e
essence of disturbances is mutations, and frogs with dis-
turbances can explore better results.

+e IGSFLA includes heuristic initialization, subgroup
division, search, and shuffle.

3.1.1. Heuristic Initialization. Initialization is the first step of
both traditional GSFLA and our IGSFLA to generate the
frogs as a group and then to divide it into different sub-
groups. Here, each frog (also called as individual) presents a
candidate scheduling solution of PFSSP.

For the traditional initialization of GSFLA and SFLA,
frogs are initialized in a random way. Considering that the
number of frogs is far less than the size of solution space, the
initialized frog group is hard to simulate the optimal
solution.

Considering that if the initialized frogs contain one frog
that is close to the optimal solution, then the other group
individuals will evolve toward to the optimal solution at high
probability. In order to make the optimal initialized frogs
close to the optimal solution, in this paper, we present the
following optimal-insert-based heuristic initialization with
optimal-fitness constraint to generate the optimal initialized
frog of the whole group.

Generate the optimal initialized frog as follows:

Step 1. Choose the first item of the jobs as the first gene
to form the gene queue of a frog.
For each following item in the jobs,
Step 2. Insert one job as a new gene into different
positions of the gene queue to form different updated
gene queues of the frog.

Complexity 3

Step 3. Calculate each fitness of the updated gene
queues.
Step 4. Sort the gene queues and select the one with
optimal fitness.
Step 5. If there are several gene queues with the same
optimal fitness (as called multioptimal frogs), then
utilize disturbance operators to evolve them and go to
Step 3.
End for
Step 6. Select the gene queue with optimal fitness as the
optimal initialized frog.

Generate the other initialized frogs as follows:
A random method is utilized to generate the other

initialized frogs of the group.

3.1.2. Division of Subgroups. +e traditional division of
subgroups is cutting the whole initialized frog group simply
according to the size of subgroup. In this paper, to keep the
variety of frogs, distribute different level frogs into each
subgroup with the following division strategies:

Step 1. Calculate the fitness of the initialized frogs in the
whole group.
Step 2. Sort the frogs according to the fitness in
descending order.
Step 3. Record the frog with optimal fitness as Px which
denotes the current optimal solution of PFSSP.
Step 4. Distribute the sorted frogs into the each subgroup
according to a snake-order. If the number of subgroups
is popnum sub, for the i-th frog in the group, calculate
MOD(i, popnum sub), where MOD(·) is the modulus
operation. When MOD(i, popnum sub) is not zero, the
i-th frogs will be distributed into the subgroup with
number MOD(i, popnum sub), otherwise, into the
subgroup with number popnum sub.

3.1.3. Search Process of IGSFLA. +e search process includes
local search and global search.

Local Search in Each Subgroup.

Step 1. Sort the frogs in the subgroup according to their
fitness in descending order.
Step 2. Crossover:

(1) Selection: select frog Pb with optimal fitness in the
subgroup, and represent other frogs as Pi.

(2) Crossover: other frogs perform one of the crossover
operations mentioned in following Section 3.2
randomly with Pb to produce offspring PF1. Pb

performs one of the crossover operations randomly
on Px to produce offspring PF2 to ensure that each
round of local search can learn from the global
optimal frog.

(3) Judgment:
If fPF1 >fPi, PF1 replaces Pi

else, Pi and Px crossover to produce PF3
If fPF3 >fPi, PF3 replaces Pi

else, stochastic feasible solution replaces Pi

If fPF2 >fPb, PF2 replaces Pb

else, Pb remains unchanged

Step 3. Mutation:

(1) Selection: calculate the probability of mutation for
each frog. Set the range of probability c as
c ∈ [cmin, cmax], the maximum fitness of the sub-
group is recorded as fmax, the average fitness is
recorded as favg, and calculate c according to the
following formula:

c �

cmax − cmax − cmin(×
f − favg

fmax − favg
, f>favg,

cmax, f≤favg.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

(2) Mutation: perform one of the mutation operations
(mentioned in Section 3.3) randomly to produce
offspring.

(3) Judgment:
If fPmut
>fPori

, Pmut replaces Pori

else, Pori remains unchanged
where Pori denotes the original frog and Pmut denotes
the mutated frog.

Step 4. Frog disturbance to the multioptimal frog:
(1) Selection: select each frog Pb in the multioptimal

frogs in each subgroup.
(2) Mutation: perform one of the mutation operations

randomly to produce offspring.
(3) Judgment:

If fPdis
>fPb

, Pdis replaces Pb

else, Pb remains unchanged
where Pdis denotes the disturbed frog
Step 5. Reorder subgroups and iterates:

Global Search.

Step 1. Perform local search on subgroups (as shown
above), and this step mainly applied three traditional
operations: crossover, mutation, and disturbance.
Step 2. Shuffle the subgroups and recalculate Px.
Step 3. Verify whether the convergence condition is
satisfied. If so, output the result; otherwise, return to
Step 3.

3.2. Detailed Operation of Crossover. +ree traditional
crossover operators are applied in this paper: position-based

4 Complexity

crossover, sequence-based crossover, and loop-based
crossover.

3.2.1. Position-Based Crossover

(1) Select the 1/2 genes in parent frog Pp1 randomly
(2) Record and sort the positions of unselected genes in

Pp1

(3) In parent frogs Pp2, find the corresponding genes
which are the same as the selected genes in parent
frogs Pp1

(4) Record and sort the positions of unselected genes in
Pp2

(5) Crossover the unselected genes according to the
sorted positions in (2) and (4)

To demonstrate the position-based crossover operating,
an example of schematic diagram is given in Figure 1. As
shown in the figure, in order to generate offspring Po1 and
Po2 from the parent frogs Pp1 and Pp2, firstly, the genes of
[g2, g4, g5] in Pp1 are selected randomly with their positions
[2, 4, 5], and so the unselected genes in Pp1 are [g1, g3, g6]
with their positions [1, 3, 6]. According to the selected [g2,
g4, g5] in Pp1, we find the same [g2, g4, g5] with their
positions [2, 3, 5] in Pp2, and then the unselected positions
are [1, 4, 6] with genes [g3, g6, g1] in Pp2; we crossover the
corresponding genes in unselected [g1, g3, g6] of Pp1 and
unselected [g3, g6, g1] of Pp2, and then we obtain the off-
spring Po1 and Po2.

3.2.2. Sequence-Based Crossover

(1) Select the 1/2 genes in parent frog Pp1 randomly
(2) Record and sort the positions of selected genes in Pp1

(3) In parent frogs Pp2, find the corresponding genes
which are the same as the selected genes in parent
frogs Pp1

(4) Record and sort the positions of selected genes in Pp2

(5) Crossover the selected genes according to the sorted
positions in (2) and (4)

Schematic diagram of the sequence-based crossover is
shown in Figure 2.

3.2.3. Loop-Based Crossover

(1) Initialize order number j as 1 and position queueK as
NULL.

(2) While the gene at position j in Pp2 differs from the
first gene in Pp1,
update j with the position order of gene in Pp1 which
is the same to the one at position j in Pp2

put j into position queue K
End while

(3) Generate Po1 by gathering genes in the position
queue K in Pp1 and genes beyond the position queue

K in Pp2. Generate Po2 by gathering genes in the
position queue K in Pp2 and genes beyond the po-
sition queue K in Pp1.

Schematic diagram of loop-based crossover is shown in
Figure 3.

3.3. Detailed Operation of Mutation. +ree traditional mu-
tation operators are applied in this paper: inverted mutation,
transformation mutation, and insertion mutation.

3.3.1. Inverted Mutation

(1) Randomly select two genes on the frog
(2) Reverse the order of the genes between the two

selected genes

Schematic diagram of inverted mutation is shown in
Figure 4.

3.3.2. Transformation Mutation

(1) Randomly select two genes on the frog
(2) Swap positions for the two selected genes

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6

g3 g2 g4 g6 g5 g1

1 2 3 4 5 6

Pp1

Pp2

g3 g2 g6 g4 g5 g1

1 2 3 4 5 6

g1 g2 g4 g3 g5 g6

1 2 3 4 5 6

Po1

Po2

Figure 1: Schematic diagram of position-based crossover.

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6

g3 g2 g4 g6 g5 g1

1 2 3 4 5 6

Pp1

Pp2

g4 g2 g3 g5 g1 g6

1 2 3 4 5 6

g3 g2 g1 g6 g4 g5

1 2 3 4 5 6

Po1

Po2

Figure 2: Schematic diagram of sequence-based crossover.

Complexity 5

Schematic diagram of transformation mutation is shown
in Figure 5.

3.3.3. Insertion Mutation

(1) Randomly select two genes on the frog
(2) Forward insert: insert the second selected gene in

front of the first gene
(3) Backward insert: insert the first selected gene after

the second gene

Schematic diagrams of forward insert and backward
insert are shown in Figures 6 and 7.

3.4. ,e Mathematical Model of PFSSP. PFSSP refers to the
processing flow of N jobs Jobn

N
n�1 on M machines

Machinem
M
m�1. +e processing time of each job on each

machine is known, so the scheduling algorithm needs to give
the processing order of each job on each machine to fit the
following additional hypotheses.

Hypotheses about jobs are as follows:

+e processing order of each job on each machine is
the same and known
Each job can only be processed on one machine at a
time
Each job is independent of each other

Hypotheses about machines are as follows:

Each machine can only process one job at a time
Each machine is independent of each other

Hypotheses about production process are as follows:

Each job has no processing priority
+e transmission time of a job between machines is
considered negligible

Mathematical model:

Let the PFSSP processing order be represented as a
permutation λ � λ(1), λ(2), . . . , λ(N){ }, where λ(n)

denotes the index of job arranged at the n-th position
of λ. According the following set of recursive equa-
tions, we could calculate the completion time of each
job tλ(n),m, n � 1, 2, . . . , N, m � 1, 2, . . . , M [42]:

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6

Pp

g1 g5 g4 g3 g2 g6

1 2 3 4 5 6

Po

Figure 4: Schematic diagram of inverted mutation.

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6
Pp

g1 g5 g3 g4 g2 g6

1 2 3 4 5 6

Po

Figure 5: Schematic diagram of transformation mutation.

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6
Pp

g1 g5 g2 g3 g4 g6

1 2 3 4 5 6

Po

Figure 6: Schematic diagram of forward insert.

g4 g6 g3 g1 g5 g2

1 2 3 4 5 6
Pp1

g5 g6 g2 g3 g4 g1

1 2 3 4 5 6

Pp2

g4 g6 g2 g3 g5 g1

1 2 3 4 5 6

g1 g6 g3 g1 g4 g2

1 2 3 4 5 6

Po1

Po2

(1) (2)

K = [5, 1]

Figure 3: Schematic diagram of loop-based crossover.

6 Complexity

tλ(1),1 � sλ(1),1,

tλ(1),m � tλ(1),m−1 + sλ(1),m, m � 2, 3, . . . , M,

tλ(n),1 � tλ(n−1),1 + sλ(n),1, n � 2, 3, . . . , N,

tλ(n),m � max tλ(n−1),m, tλ(n),m−1 + sλ(n),m, n � 2, 3, 4, . . . , N; m � 2, 3, 4, . . . , M,

(2)

F λ∗(≤F(λ), (3)

F(P) � −F(λ) � −tλ(N),M. (4)

where tλ(n),km denotes the time when the n-th job is
processed on the m-th machine. sλ(n),m denotes the
processing time of the n-th job on the m-th machine.
+e makespan F(λ) � tλ(N),M denotes the time when
the last job is processed on the last machine.
Objective function:
where F(λ) � tλ(N),M.
+e definition of fitness:
As mentioned above, the fitness function is needed to
determine how good a frog is. For the frog P in PFSSP,
the fitness function is defined simply as the minus of
makespan:

3.5. IGSFLA-Based PFSSP. +e IGSFLA-based PFSSP in-
cludes group initialization, group division, local search, and
global search. Local search is mainly to complete the evo-
lution of the frogs in the subgroup. Global search is mainly
to search for the most adaptable frogs in the group and to
complete the group division and merge the subgroups. In
this paper, the process is described as follows:

Step 1. Mathematical modeling and parameter setting:
construct the time matrix T � (M, N) according to the
PFSSP. To ensure that the time matrix is the same when
the number of machines and jobs are the same, the state
parameter is introduced. Initialize the number of
subgroups popsize num and the number of frogs in a
subgroup popsub num, so the size of the whole group
is popsize � popsize num × popsub num.

Step 2. Heuristic group initialization: initialize the frog
group according to Section 3.1.1. Sort the fitness of
frogs according to the fitness, and represent the globally
optimal frog as Px.
Step 3. Group division: divide the frog into several
subgroups utilizing the snake-order-grouping method
according to Section 3.1.2.
Step 4. Local search according to Section 3.1.3.
Step 5. Global search: shuffle all subgroups and sort all
frogs in order of fitness from largest to smallest, and
record the global optimal frog Px.
Step 6. Go back to Step 3 until the conditional output is
reached.

4. Experiments and Analysis

In this section, firstly, we test the parameters that need to be
set for the proposed IGSFLA, which are the number of
subgroup iterations c and the number of frogs in the sub-
group popsize num. +en, we compare the results of ran-
dom initialization and heuristic initialization with
optimal-insert in GSFLA and IGSFLA to demonstrate the
effectiveness of the proposed heuristic initialization with the
optimal-insert method. +irdly, PFSSP based on IGSFLA is
compared with IGSFLA-no-disturbance (which lacks the
disturbance mechanism compared to IGSFLA), GA, SFLA,
and GSFLA, to show the effectiveness and convergence of
disturbance mechanism. Finally, we compare our IGSFLA
with two kinds of state-of-the-art methods on open datasets.

g1 g2 g3 g4 g5 g6

1 2 3 4 5 6
Pp

g1 g3 g4 g5 g2 g6

1 2 3 4 5 6

Po

Figure 7: Schematic diagram of backward insert.

Complexity 7

+e experiments are executed on a laptop withWindows
10 OS, Intel Core i5-3230M CPU and 8G RAM.

4.1. Algorithm Parameter Testing

4.1.1. ,e Number of Subgroup Iterations. To test the
number of subgroup iterations c, the number of subgroups is
fixed as popsize num � 30 and the number of frogs in a
subgroup as popsub num � 30. 9 kinds of combinations
with N jobs andM machines are set up as shown in Table 1.
+e experiment is repeated 10 times under 5 conditions of
c � 15, 30, 50, 75, and 100. Keeping the optimal value of
each experiment, the averages of each 10 experiments are
calculated and shown in Table 1. Because the NP-hard
nature, we do not need to find the real optimal makespan.
For the algorithms in our experiments, the makespan ob-
tained after iterating 50 times is considered as the optimal
value.

+rough analyzing the experimental results in Table 1, it
can be found that the value of c has an impact on the al-
gorithm performance. If c is set too small, too many global
exchanges will result in poor accuracy of the algorithm.
However, if c is too large, the global mixing times will be
reduced correspondingly, the algorithm will lose the ad-
vantage of global search, the subgroup frogs will not be able
to communicate well with the global optimal solution, and
the increase of local search times will lead to the increase of
computation, making the algorithm less efficient. In the
above parameter combination, when the number of ma-
chines and the number of jobs are small, the value c is not so
important. However, when the number of machines and the
number of jobs become large, a large c will cause a lot of
unnecessary calculations; otherwise, a small c will reduce the
calculations more effectively. +e optimal c depends on the
number of machines and jobs. With the increasing in the
number of jobs and machines, the optimal c should be
increased. In our experiments, the proposed algorithm can
achieve optimal when c � 50 for 9 kinds of combinations in
Table 1.

4.1.2. ,e Number of Frogs in the Subgroup. To test the
number of frogs in the subgroup popsub num, the total
group size is fixed as popsize � 900 and the number of
subgroup iterations as c � 50. 5 kinds of job and machine
combinations are set up, and the experiment is repeated 10
times under conditions of popsub num � 10, 20, 30, 40,

50, and 60. Keeping the optimal value of each experiment,
the averages of the results of 10 experiments are calculated
and shown in Table 2.

+rough analyzing the experimental results in Table 2, it
can be found that the proposed IGSFLA could perform
better when popsub num is between 30 and 40. +e results
show that popsub num is not as large as possible. If
popsub num is too small, the subgroup cannot adequately
communicate with each other, and the algorithm loses the
advantage of local search. If popsub num is too large, the
algorithm is easy to fall into local optimization.

4.1.3. ,e Heuristic Initialization with Optimal-Insert
Method. To test the effect of heuristic initialization with the
optimal-insert method, the total group size is fixed as
popsize � 900, the number of subgroup iterations as c � 50,
and the number of frogs in a subgroup as popsub num � 30.
5 kinds of jobs and machine combinations are set up and the
experiment is repeated 10 times under the traditional ran-
dom initialization and our heuristic initialization. Keeping
the optimal value of each experiment, the averages of the
results of 10 experiments are calculated and shown in
Table 3.

From Table 3, it can be found easily that the heuristic
initialization with the optimal-insert method of fitness
constraint could generate high-quality frogs, especially the
initialized frog that has the optimal fitness. Based on the
high-quality initialization, it is much easier to obtain better
makespan in both traditional GSFLA and our IGSFLA.

4.2. Optimization Result Testing. First, the number of sub-
groups is set as popsize num � 30, and the number of frogs
in a subgroup is set as popsub num � 30. +en, 9 kinds of
combinations with N jobs and M machines are set up as
shown in Table 2. +e experiment is repeated 10 times using
5 different algorithms, which are GA, SFLA, GSFLA,
IGSFLA-no-disturbance, and IGSFLA. Following the con-
trast principle, the same parameters are set in the 4 algo-
rithms of SFLA, GSFLA, IGSFLA-no-disturbance, and
IGSFLA. Keeping the optimal value of each experiment, the
averages of the results of 10 experiments are calculated and
shown in Table 4.

From Table 4, it can be seen that with the increase in the
number of jobs and the number of machines, the proposed
IGSFLA gradually shows its advantages. Comparing with
GA, SFLA, and GSFLA, IGSFLA can get a better solution
because of its powerful search ability. Besides, the distur-
bance could improve the performance obviously. As men-
tioned above in Sections 3.1.1 and 3.1.3, the disturbance
works effectively in two places, which are the initialization
step and the local searching step. +is could evolve the frogs
with the same optimal fitness more outstanding, so the
group could simulate the optimal situation more effectively.

4.3. Algorithm Convergence. In the actual flow workshop,
the improvement of production efficiency is an overall
problem. +e scheduling system needs the scheduling al-
gorithm to give an excellent scheduling plan in a short time.
+erefore, the convergence of the algorithm is also very
significant.

To test the convergence of IGSFLA, the number of jobs is
fixed as N � 50, and the number of machines as M � 20.
SFLA, GSFLA, IGSFLA-no-disturbance, and IGSFLA are set
with the same parameters: c � 50, popsize num � 30, and
popsub num � 30. Each algorithm is iterated for 50 times.
While for GA, iterated here refers to the completion of an
overall evolution, and for SFLA, GSFLA, IGSFLA-no-dis-
turbance, and IGSFLA, iterated here refers to the completion
of a global search. +e Gantt charts of the solution with
above algorithms are provided in Figures 8–12. +e

8 Complexity

convergence graph is drawn according to the data. +e
results are shown in Figure 13.

For actual production tasks, the scheduling system often
does not need an optimal result, but a suboptimal that can be
obtained in a short time is good enough. To quantify the
convergence of the algorithms, the statistical results are
shown in Table 5. Here, the optimal result of GA with 86
iterations is considered as the benchmark and the number of
iterations required by the other algorithms to achieve the

benchmark is given. It can be seen that to achieve the same
optimal result of benchmark, IGSFLA-no-disturbance needs
15 iterations, while GSFLA and IGSFLA only need 2
iterations.

Combining the convergence comparison shown in
Figure 13 and Table 5, it can be seen that IGSFLA converges
faster and gets better results than IGSFLA-no-disturbance,
GSFLA, SFLA, and GA. Comparing with GSFLA, IGSFLA
further improves the scheduling ability by optimizing the

Table 4: +e average value of makespan under different algorithms (unit: second).

N×M GA SFLA GSFLA IGSFLA-no-disturbance IGSFLA
10× 5 712.59 712.64 712.57 712.56 712.56
10×10 1092.34 1098.23 1094.97 1093.83 1092.29
10× 20 1662.31 1670.64 1659.27 1659.64 1662.29
20× 5 899.64 904.18 899.69 904.18 898.19
20×10 1567.90 1543.32 1521.29 1527.45 1522.81
20× 20 2410.29 2385.02 2363.80 2362.87 2357.39
50× 5 2848.84 2862.13 2830.59 2837.47 2830.59
50×10 3332.76 3255.98 3146.25 3169.22 3099.38
50× 20 4084.05 4023.12 3954.47 3965.84 3884.92

Table 2: +e average value of makespan under different values ofpopsub num (unit: second).

N×M 10 20 30 40 50 60
10× 20 1659.27 1659.27 1659.27 1659.27 1659.27 1659.27
20×10 1529.86 1527.25 1499.27 1536.02 1537.18 1564.53
20× 20 2370.41 2371.81 2358.26 2372.14 2378.05 2335.64
50×10 3193.02 3182.44 3133.23 3129.48 3136.75 3133.64
50× 20 3928.76 3948.46 3903.56 4038.94 4002.01 3973.42

Table 3: +e average value of makespan under two different initialization methods (unit: second).

N×M Random initialization +GSFLA Heuristic initialization +GSFLA Random initialization + IGSFLA Heuristic
initialization + IGSFLA

10× 5 712.57 712.62 712.56 712.56
10×10 1094.97 1092.29 1093.56 1092.29
10× 20 1659.27 1659.27 1662.63 1662.29
20× 5 899.69 898.19 898.19 898.19
20×10 1521.29 1525.39 1520.10 1522.81
20× 20 2363.80 2374.36 2364.89 2357.39
50× 5 2830.59 2831.18 2830.95 2830.59
50×10 3146.25 3109.21 3121.39 3099.38
50× 20 3954.47 3929.23 3894.31 3884.92

Table 1: +e average value of makespan under different values of c (unit: second).

N×M c� 15 c� 30 c� 50 c� 75 c� 100
10× 5 712.51 712.51 712.51 712.51 712.51
10×10 1092.53 1092.01 1092.01 1092.56 1092.01
10× 20 1659.27 1659.27 1659.27 1659.27 1659.27
20× 5 1326.53 1326.53 1326.53 1326.53 1326.53
20×10 1537.18 1536.02 1499.27 1499.27 1499.27
20× 20 2378.05 2372.14 2358.26 2358.26 2356.26
50× 5 2832.57 2831.28 2831.53 2832.57 2831.53
50×10 3223.09 3222.34 3133.23 3133.23 3133.23
50× 20 4105.62 4093.42 3903.56 3963.42 3890.75

Complexity 9

initialization and improving the crossover and disturbance
mechanism, converges faster, and gets better results with less
iteration times.

4.4. Further Comparison and Discussion. In 1989, Taillard
chose the hardest problems and their optimal solutions to
construct the Taillard dataset. +e new optimal solution will
be updated into the dataset when it is appeared and
confirmed.

Here, the scheduling results executed on the Taillard
dataset are listed and compared with the proposed IGSFLA

and with some other methods besides metaheuristic
methods.

As shown in Table 6, our IGSFLA could perform better
than the Q-learningmethod proposed in 2017 which belongs
to a new self-learning method called as reinforcement
learning. Besides, our proposed IGSFLA could nearly
achieve the optimal solution of MASC in 2020. Furthermore,
the IGSFLA could perform as well as MASC when the
number of machines is less than 20. While with the in-
creasing of machine number, the deficiency of IGSFLA
between the state-of-the-art method appears, which should
be researched in our further work.

M1
M2
M3
M4
M5
M6
M7
M8
M9

M
ac

hi
ne M10

M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

0 500 1000 1500 2000
Time

2500 3000 3500 4000

Figure 8: Gantt chart of the solution with GA (workpiece: 50, machine: 20, makespan: 4017.85).

M1
M2
M3
M4
M5
M6
M7
M8
M9

M
ac

hi
ne M10

M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

0 500 1000 1500 2000
Time

2500 3000 3500 4000

Figure 9: Gantt chart of the solution with SFLA (workpiece: 50, machine: 20, makespan: 4003.70).

10 Complexity

M1
M2
M3
M4
M5
M6
M7
M8
M9

M
ac

hi
ne M10

M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

0 500 1000 1500 2000
Time

2500 3000 3500

Figure 10: Gantt chart of the solution with GSFLA (workpiece: 50, machine: 20, makespan: 3948.57).

M1
M2
M3
M4
M5
M6
M7
M8
M9

M
ac

hi
ne M10

M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

0 500 1000 1500 2000
Time

2500 3000 3500

Figure 11: Gantt chart of the solution with IGSFLA-no-disturbance (workpiece: 50, machine: 20, makespan: 3986.37).

Complexity 11

M1
M2
M3
M4
M5
M6
M7
M8
M9

M
ac

hi
ne M10

M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

0 500 1000 1500 2000
Time

2500 3000 3500

Figure 12: Gantt chart of the solution with IGSFLA (workpiece: 50, machine: 20, makespan: 3866.45).

GA
SFLA
GSFLA

IGSFLA-no-disturbance
IGSFLA

3800

3900

4000

4100

4200

4300

4400

M
ak

es
pa

n

20 30 40 50 60 70 80 90 10010
Number of iteration

Figure 13: Convergence comparison graph (unit: second).

Table 5: Convergence comparison (unit: second).

Optimal value Benchmark Iterations
GA 4017.87 4017.87 86
SFLA 4003.70 4017.87 54
GSFLA 3948.57 4017.87 2
IGSFLA-no-disturbance 3986.47 4017.87 15
IGSFLA 3866.45 4137.98 2

12 Complexity

5. Conclusion

Technological developments along with the emergence of
Industry 4.0 call for new algorithms to solve fundamental
industrial problems, especially the flowshop scheduling
problem. In this paper, to improve the efficiency of per-
mutation flowshop scheduling, the IGSFLA algorithm is
proposed and applied to solve the PFSSP. In IGSFLA, to
enhance the local search ability, the crossover mechanisms
are optimized, and the disturbance mechanism is utilized.
+e mathematical model of PFSSP is established and solved
based on the proposed IGSFLA algorithm. Experimental
results show that, compared with other algorithms, IGSFLA
could converge quickly by giving an approximately optimal
value with fewer iterations and achieve the optimal sched-
uling solution when the number of machines is small. +e
following work is to improve the performance to deal with
complicated PFSSP with enormous number of jobs and
machines.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was partially supported by the National Key R&D
Program of China (2018YFB1308300), the European
Commission Marie Skłodowska-Curie SMOOTH (smart
robots for fire-fighting) project (H2020-MSCA-RISE-2016-
734875), the China Postdoctoral Science Foundation
(2018M631620), the Natural Science Foundation of Beijing
Municipality (4202026), and the Doctoral Fund of Yanshan
University (BL18007).

References

[1] E. Oztemel and S. Gursev, “Literature review of Industry 4.0
and related technologies,” Journal of Intelligent Manufacturing,
vol. 31, no. 1, pp. 127–182, 2020.

[2] H. J. Kim and J. H. Lee, “Robot task sequencing for a flexible
assembly system with 3D printers,” in Proceedings of the 2017
4th International Conference on Control, Decision and In-
formation Technologies, pp. 1–5, Barcelona, Spain, April 2017.

[3] R. Ruiz and J. A. Vázquez-Rodŕıguez, “+e hybrid flow shop
scheduling problem,” European Journal of Operational Re-
search, vol. 205, no. 1, pp. 1–18, 2010.

[4] C. Lu, L. Gao, X. Li, and Q. Wang, “Energy-efficient per-
mutation flow shop scheduling problem using a hybrid multi-
objective backtracking search algorithm,” Journal of Cleaner
Production, vol. 144, pp. 228–238, 2017.

[5] M. Pan, G. Manogaran, and D. El-Shahat, “A hybrid whale
optimization algorithm based on local search strategy for the
permutation flow shop scheduling problem,” Future Gener-
ation Computer Systems, vol. 85, pp. 129–145, 2018.

[6] K. Z. Mirjalili, P. N. Suganthan, Q. K. Pan, T. X. Cai, and
C. S. Chong, “Discrete harmony search algorithm for flexible
job shop scheduling problem with multiple objectives,”
Journal of Intelligent Manufacturing, vol. 27, no. 2, pp. 363–
374, 2016.

[7] J. B. Chua, J. Xu, and J. Yang, “Bicriterion optimization for
flow shop with a learning effect subject to release dates,”
Complexity, vol. 2018, p. 12, Article ID 9149510, 2018.

[8] T.-S. Yu and M. Pinedo, “Flow shops with reentry: revers-
ibility properties and makespan optimal schedules,” European
Journal of Operational Research, vol. 282, no. 2, pp. 478–490,
2020.

[9] S. R. Hejazi and S. Saghafian, “Flowshop-scheduling problems
with makespan criterion: a review,” International Journal of
Production Research, vol. 43, no. 14, pp. 2895–2929, 2005.

[10] R. Ruiz, Q.-K. Pan, and B. Naderi, “Iterated Greedy methods
for the distributed permutation flowshop scheduling prob-
lem,” Omega, vol. 83, pp. 213–222, 2019.

[11] L. Meng, C. Zhang, X. Shao, and C. Ren, “Mathematical
modelling and optimisation of energy-conscious hybrid flow
shop scheduling problem with unrelated parallel machines,”
International Journal of Production Research, vol. 57, no. 4,
pp. 1119–1145, 2019.

[12] S. Ren, M. Liu, and C. Chu, “A branch-and-bound algorithm
for two-stage no-wait hybrid flow-shop scheduling,” Inter-
national Journal of Production Research, vol. 53, no. 4,
pp. 1143–1167, 2015.

[13] H. Röck, “+e three-machine No-wait flow shop is NP-
complete,” Journal of the ACM, vol. 31, no. 2, pp. 336–345,
1984.

[14] Y. Yin, K. E. Stecke, and D. N. Li, “+e evolution of pro-
duction systems from Industry 2.0 through Industry 4.0,”
International Journal of Production Research, vol. 56, no. 1-2,
pp. 848–861, 2018.

[15] A. Dolgui, D. Ivanov, and S. P. Sethi, “Scheduling in pro-
duction, supply chain and Industry 4.0 systems by optimal
control: fundamentals, state-of-the-art and applications,”
International Journal of Production Research, vol. 57, no. 2,
pp. 411–432, 2019.

[16] Y. Sokolov, Y. P. Chen, M. X. Zhao et al., “Optimization of
planning layout of urban building based on improved logit

Table 6: Comparison between IGSFLA and some approaches on Taillard’s instances (unit: second).

Dataset (N×M) Instance Optimal value QL (2017) MASC (2020) IGSFLA
20× 5 Ta001 1278 1278 1278 1278
20× 5 Ta005 1236 1236 1236 1236
50× 5 Ta036 2829 2831 2829 2829
50× 5 Ta037 2725 2728 2725 2725
20×10 Ta011 1582 1583 1582 1582
20×10 Ta017 1484 1484 1484 1484
20× 20 Ta024 2223 2229 2223 2223
20× 20 Ta027 2273 2295 2273 2276

Complexity 13

and PSO algorithms,” Complexity, vol. 2018, Article ID
9452813, 11 pages, 2018.

[17] Y. A. Wu, G. Z. Peng, H. W. Wang et al., “A heuristic al-
gorithm for optimal service composition in complex
manufacturing networks,” Complexity, vol. 2019, Article ID
7819523, 20 pages, 2019.

[18] Y. Yu, H. Ma, M. Yu, and X. Chen, “Multipopulation man-
agement in evolutionary algorithms and application to
complex warehouse scheduling problems,” Complexity,
vol. 2018, Article ID 4730957, 14 pages, 2018.

[19] R. Ye, “Computational complexity and solution algorithms
for flowshop scheduling problems with the learning effect,”
Computers & Industrial Engineering, vol. 61, no. 1, pp. 20–31,
2011.

[20] C. W. Qu, Y. M. Fu, Z. J. Yi et al., “Solutions to no-wait flow
shop scheduling problem using the flower pollination algo-
rithm based on the hormone modulation mechanism,”
Complexity, vol. 2018, Article ID 1973604, 18 pages, 2018.

[21] W. Chen and Y. F. Hao, “Genetic algorithm-based design and
simulation of manufacturing flow shop scheduling,” Inter-
national Journal of Simulation Modelling, vol. 17, no. 4,
pp. 702–711, 2018.

[22] H. Guo, C. D. Li, Y. Zhang et al., “A nonlinear integer
programming model for integrated location, inventory, and
routing decisions in a closed-loop supply chain,” Complexity,
vol. 2018, Article ID 2726070, 17 pages, 2018.

[23] B. Naderi, R. Tavakkoli-Moghaddam, and M. Khalili, “Elec-
tromagnetism-like mechanism and simulated annealing al-
gorithms for flowshop scheduling problems minimizing the
total weighted tardiness and makespan,” Knowledge-Based
Systems, vol. 23, no. 2, pp. 77–85, 2010.

[24] E. Torabzadeh and M. Zandieh, “Cloud theory-based simu-
lated annealing approach for scheduling in the two-stage
assembly flowshop,” Advances in Engineering Software,
vol. 41, no. 10-11, pp. 1238–1243, 2010.

[25] D. Tang, M. Dai, and M. A. Salido, “Energy-efficient dynamic
scheduling for a flexible flow shop using an improved particle
swarm optimization,” Computers in Industry, vol. 81,
pp. 82–95, 2016.

[26] M. R. Giret, M. Singh, S. S. Mahapatra et al., “Particle swarm
optimization algorithm embedded with maximum deviation
theory for solving multi-objective flexible job shop scheduling
problem,” International Journal of Advanced Manufacturing
Technology, vol. 85, no. 9–12, pp. 2353–2366, 2016.

[27] D. Gong, Y. Han, and J. Sun, “A novel hybrid multi-objective
artificial bee colony algorithm for blocking lot-streaming flow
shop scheduling problems,” Knowledge-Based Systems,
vol. 148, pp. 115–130, 2018.

[28] X. Li, Z. Peng, B. Du,W. Xu, and K. Zhuang, “Hybrid artificial
bee colony algorithm with a rescheduling strategy for solving
flexible job shop scheduling problems,” Computers & In-
dustrial Engineering, vol. 113, pp. 10–26, 2017.

[29] M. F. Guo, Q.-K. Pan, and P. N. Suganthan, “A discrete
artificial bee colony algorithm for the total flowtime mini-
mization in permutation flow shops,” Information Sciences,
vol. 181, no. 16, pp. 3459–3475, 2011.

[30] M. H. Chen, R. R. Yu, S. J. Xu et al., “An improved algorithm
for solving scheduling problems by combining generative
adversarial network with evolutionary algorithms,” in Pro-
ceedings of the 3rd International Conference on Computer
Science and Application Engineering, pp. 1–7, Sanya, China,
October 2019.

[31] D. M. Lei and X. F. Tan, “Shuffled frog-leaping algorithm for
order acceptance and scheduling in flow shop,” in Proceedings

of the 35th Chinese Control Conference 2016, pp. 9445–9450,
Chengdu, China, July 2016.

[32] D. Lei and T. Wang, “Solving distributed two-stage hybrid
flowshop scheduling using a shuffled frog-leaping algorithm
with memeplex grouping,” Engineering Optimization, vol. 52,
no. 9, 2019.

[33] P. Kaur and S. Mehta, “Resource provisioning and work flow
scheduling in clouds using augmented Shuffled Frog Leaping
Algorithm,” Journal of Parallel and Distributed Computing,
vol. 101, pp. 41–50, 2017.

[34] D. Lei, Y. Zheng, and X. Guo, “A shuffled frog-leaping al-
gorithm for flexible job shop scheduling with the consider-
ation of energy consumption,” International Journal of
Production Research, vol. 55, no. 11, pp. 3126–3140, 2017.

[35] J. Deng and L. Wang, “A competitive memetic algorithm for
multi-objective distributed permutation flow shop scheduling
problem,” Swarm and Evolutionary Computation, vol. 32,
pp. 121–131, 2017.

[36] J.-q. Li, H.-y. Sang, Y.-y. Han, and K.-z. Gao, “Efficient multi-
objective optimization algorithm for hybrid flow shop
scheduling problems with setup energy consumptions,”
Journal of Cleaner Production, vol. 181, pp. 584–598, 2018.

[37] Y. C. Wang, Y. Martinez-Jimenez, and A. Nowe, “Q-learning
algorithm performance for M-machine, N-jobs flow shop
scheduling problems,” Revista Investigacion Operacional,
vol. 38, no. 3, pp. 281–290, 2017.

[38] V. Fernandez-Viagas and R. Ruiz, “A new vision of ap-
proximate methods for the permutation flowshop tominimise
makespan: state-of-the-art and computational evaluation,”
European Journal of Operational Research, vol. 257, no. 3,
pp. 707–721, 2017.

[39] J. Framinan, L. Li, F. Zhao, and Q. Zhao, “A multi-level
optimization approach for energy-efficient flexible flow shop
scheduling,” Journal of Cleaner Production, vol. 137,
pp. 1543–1552, 2016.

[40] R. Zhang, C. Maroto, and J. Alcaraz, “Two new robust genetic
algorithms for the flowshop scheduling problem,” Omega,
vol. 35, no. 4, pp. 461–476, 2006.

[41] H. Wei, S. Li, H. Jiang et al., “Hybrid genetic simulated
annealing algorithm for improved flow shop scheduling with
makespan criterion,” Applied Science, vol. 8, no. 12, Article ID
26212018, 2018.

[42] M. Kurdi, “A memetic algorithm with novel semi-construc-
tive evolution operators for permutation flowshop scheduling
problem,” Applied Soft Computing, vol. 94, p. 106458, 2020.

[43] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping
algorithm: a memetic meta-heuristic for discrete optimiza-
tion,” Engineering Optimization, vol. 38, no. 2, pp. 129–154,
2006.

[44] C. Sivamathi and S. Vijayarani, “mining high utility itemsets
using shuffled complex evolution of particle swarm optimi-
zation (SCE-PSO) optimization algorithm,” in Proceedings of
the 2017 International Conference On Inventive Computing
And Informatics (ICICI), Coimbatore, India, November 2017.

[45] J. Zhang, C. Wang, and A. Zhang, “Shuffled complex evo-
lution algorithm with opposition-based learning for a per-
mutation flow shop scheduling problem,” International
Journal of Computer Integrated Manufacturing, vol. 28, no. 11,
pp. 1220–1235, 2015.

[46] Y. Marinakis and M. Marinaki, “Particle swarm optimization
with expanding neighborhood topology for the permutation
flowshop scheduling problem,” Soft Computing, vol. 17, no. 7,
pp. 1159–1173, 2013.

14 Complexity

[47] J. Li, Q. Pan, and S. Xie, “An effective shuffled frog-leaping
algorithm for multi-objective flexible job shop scheduling
problems,” Applied Mathematics and Computation, vol. 218,
no. 18, pp. 9353–9371, 2012.

[48] X. X. Zhang, Z. C. Ji, and Y. Wang, “An improved SFLA for
flexible job shop scheduling problem considering energy
consumption,” Modern Physics Letters B, vol. 32, pp. 34–36,
2018.

[49] G. G. Samuel and C. C. Asir Rajan, “Hybrid: particle swarm
optimization-genetic algorithm and particle swarm optimi-
zation-shuffled frog leaping algorithm for long-term gener-
ator maintenance scheduling,” International Journal of
Electrical Power and Energy Systems, vol. 65, pp. 432–442,
2015.

[50] Y. Zhang, X. X. Gao, Y. J. Wang et al., “Solving the time
optimal traveling salesman problem based on hybrid shuffled
frog leaping algorithm-genetic algorithm,” Journal of Elec-
tronics and Information Technology, vol. 40, no. 2, pp. 363–
370, 2018.

[51] L. Alhenak and M. Hosny, “Genetic-frog-leaping algorithm
for text document clustering,” Computers, Materials &
Continua, vol. 61, no. 3, pp. 1045–1074, 2019.

Complexity 15

