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Abstract

Neural Referring Expression Generation (REG) models have shown promis-
ing results in generating expressions which uniquely describe visual objects.
However, current REG models still lack the ability to produce diverse and
unambiguous referring expressions (REs). To address the lack of diversity, we
propose generating a set of diverse REs, rather than one-shot REs. To reduce
the ambiguity of referring expressions, we directly optimise non-differentiable
test metrics using reinforcement learning (RL), and we show that our ap-
proaches achieve better results under multiple different settings. Specifically,
we initially present a novel RL approach to REG training, which instead of
drawing one sample per input, it averages over multiple samples to normal-
ize the reward during RL training. Secondly, we present an innovative REG
model that utilizes an object attention mechanism that explicitly incorpo-
rates information about the target object and is optimised using our proposed
RL approach. Thirdly, we propose a novel transformer model optimised with
RL that exploits different levels of visual information. Our human evaluation
demonstrates the effectiveness of this model, where we improve the state-of-
the-art results in RefCOCO testA and testB in terms of task success from
76.95% to 81.66% and from 78.10% to 83.33% respectively. While in Ref-
COCO+ testA we show improvements from 58.85% to 83.33%. Finally, we
present a thorough comparison of diverse decoding strategies (sampling and
maximisation-based) and how they control the trade-off between the quality
and diversity.
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1. Introduction

Referring Expression Generation (REG) aims at generating natural lan-
guage descriptions for objects within scenes called referring expressions (REs)
(Krahmer and van Deemter, 2012). The recently released datasets RefCOCO,
RefCOCO+ and RefCOCOg (Yu et al., 2016; Mao et al., 2016a) which con-
tain natural images of cluttered scenes impose new challenges to the task.
Referring to objects in open domain images requires in depth understanding
of the global concepts of the image, as well as their attributes and rela-
tionships. Deep learning approaches have yielded promising results on this
task (Yu et al., 2016, 2017; Zarrieß and Schlangen, 2018; Castro Ferreira
et al., 2019). Such approaches derive their inspiration from the recently in-
troduced encoder-decoder paradigm (Narayan and Gardent, 2020) originally
proposed for machine translation (Sutskever et al., 2014; Cho et al., 2014)
and since have been widely used in various NLG sub-fields such as storytelling
(Fan et al., 2018; Holtzman et al., 2018), summarization (Tan et al., 2017;
Guo et al., 2018), dialogue systems (Vinyals and Le, 2015; Li et al., 2016),
and image captioning (Vinyals et al., 2015; Xu et al., 2015). This architec-
tural scheme utilizes a deep convolutional neural network (CNN) (Krizhevsky
et al., 2012) to extract a vector representation of an image or image region,
and a variation of recurrent neural networks (RNNs) (Jain and Medsker,
1999), e.g. a Long Short-Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) to generate the output.

Despite the substantial progress in recent years, REG models are still
far from being perfect. Our survey in Section 2 reveals that existing neu-
ral REG attempts focus mostly on the generation of unambiguous referring
expressions. However, other essential natural language attributes such as di-
versity and naturalness have received less attention. Existing efforts focus on
training objectives that promote resemblance to the ground truth sentences
in order to reduce ambiguity. Secondly, due to their autoregressive nature,
exact inference for generating the most likely output is intractable. Thus, it
is necessary to resort to approximate search algorithms such as beam search
(Koehn, 2004). However, despite the widespread adaptation of beam search,
it has been found that the output decoded with beam search lacks in diversity
(Vijayakumar et al., 2016a; Wang and Chan, 2019; Holtzman et al., 2020).
As shown in Figure 1, beam search produces near identical expressions, with
minor morphological variations (Vijayakumar et al., 2016b; Holtzman et al.,
2020).
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Figure 1: An example image associated with the top three referring expressions decoded
with standard beam search and those provided by humans annotators. The target object
is highlighted with the green box.

Diversity is important for a number reasons. First, an image contains
multiple concepts at various levels of detail, and thus a RE describes a set
of attributes that are interesting to the human speaker that uttered the ex-
pression. It has been shown that the content of a RE is speaker dependent
(Viethen and Dale, 2010a). In other words, for the same referential envi-
ronment (e.g. image), different speakers will often utter diverse expressions,
a property that is reflected by the naturally existing human text. Interest-
ingly, each of the REG datasets used in this study, namely RefCOCO and
RefCOCO+, average 3 REs per object. Hence, from a machine learning
standpoint, it is reasonable not only to evaluate the modes of the learned
conditional distribution that reflect the accuracy, but also its variance which
reflects the diversity of the generated output (Wang and Chan, 2019).

Therefore, in this work we explore an alternative approach as to what a
“good” referring expression is. Our goal is to produce referring expressions
that are: (1) unambiguous : the generated expressions should describe the
object univocally; (2) natural : the referring expressions should be less dis-
tinguishable from the human ones; (3) diverse: the REG model should be
able to produce a set of referring expressions for a given target object that
are notably different.

We first propose to incorporate spatial attention to the standard RNN
network that has been used so far in REG. Under the standard RNN frame-
work, the generation of the next word is conditioned on the previously gen-
erated words. While this may suffice when the visual stimuli is relatively
simple, for complex cluttered scenes a more fined-grained visual represen-
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tation is required in order to generate high quality output. The attention
mechanism bridges this gap by learning to focus on regions that are salient.
In our case, the attention mechanism receives only the region of the target
object, instead of receiving spatial features of the entire image. We find that
the inclusion of an attention mechanism has significant benefits for REG.
Our results on RefCOCO and RefCOCO+ show an increase, on average, of
0.24 in CIDEr scores (Vedantam et al., 2015) in both datasets compared to
the state-of-the-art results (Yu et al., 2017).

To further demonstrate the benefits of attention in neural REG, we inves-
tigate a transformer-based architecture (Vaswani et al., 2017). Transformers
have revolutionized NLG fields such as machine translation, where the ma-
chine generated translations surpass the performance of those produced by
human experts (Vaswani et al., 2017). However, there are limited attempts
to incorporate the transformer models in vision & language tasks. To bridge
this gap, we investigate the effectiveness of the original architecture and we
propose a different layer configuration in order to provide the network with a
global “context” signal by connecting each layer of the encoder with the re-
spective layer of the decoder. We show that the proposed transformer model
is highly effective. We report significant improvements, both quantitative
and qualitative, over baseline methods and our results compare favorably to
the state-of-the-art results not only in automatic metrics but also in human
evaluation.

The encoder-decoder models are trained mostly to maximize the likeli-
hood of the generated word given the history of generated words that far.
This approach has been coined in literature as “Teacher-Forcing” (Bengio
et al., 2015). A limitation that stems from this approach is that the model is
never exposed to its own predictions during training, while during generation
the model uses its own predictions to generate the next word. Furthermore,
there is a loss-evaluation metric mismatch coined as exposure bias (Ranzato
et al., 2016). During training the model utilizes a word-level loss, while during
generation its goal is to generate an expression that improves sequence-level
metrics.

There is a large body of work that proposes solutions to the aforemen-
tioned exposure bias. Those approaches utilize reinforcement learning tech-
niques (Sutton and Barto, 2018). For example, Ranzato et al. (2016) pro-
pose the use of the REINFORCE algorithm to directly optimize the non-
differential evaluation metrics. A major limitation that stems from this
method is that, the expected gradient exhibits high variance and without
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careful normalization is often unstable (Rennie et al., 2017). An extension to
the REINFORCE algorithm includes the bias correction with learned “base-
lines” (Schulman et al., 2016; Zaremba and Sutskever, 2015). Rennie et al.
(2017) propose an alternative way to normalize the reward. Specifically, they
propose the self-critical sequence training (SCST), where instead of approx-
imating the reward signal with learned “baselines”, it uses the output of the
current model at test-time to calibrate the observed reward. A limitation of
this approach is that it utilizes only one sample per data point that might be
insufficiently expressive for an observation. As a result, samples that poorly
describe the observation will be heavily penalized, pushing the model to cover
only high-probability zones. To minimize this effect, we propose a simple but
effective way to calculate the baseline of the REINFORCE algorithm. Our
approach, normalizes the reward by averaging over multiple-samples per ob-
servation. We hypothesize that drawing multiple diverse samples allows the
construction of a robust baseline due to the diversity of the samples that are
considered. In other words, averaging over multiple samples lifts the burden
of having each sample to explain the observation well. We show that the
proposed approach results in lower variance of the gradient than SCST.

Lastly, to overcome the lack of diversity we extend our investigation in
generating sets of referring expressions. Specifically, we investigate the ef-
fect of different decoding strategies and training recipes by comparing their
performance along the entire quality-diversity space. The importance that
NLG systems place on these two criteria, is application dependent. For ex-
ample, the goal of an open domain dialogue generation system is to be able
to converse for a variety of topics and thus places more weight in the di-
versity of the output (Li and Jurafsky, 2016a). However, in REG the most
important attribute of the output is to successfully identify the target object.
Thus, generating a set of expressions is useful only if it does not come on
the expense of the quality. Therefore, we present the first large-scale human
evaluation to measure how the hyperparameters of each decoding algorithm,
affect the diversity and the quality of sets of referring expressions.

Therefore, the contributions of this work are as follows:

• We propose an attention-based LSTM model which leads to signifi-
cant improvements over the standard LSTM. Instead of letting the
language model to hallucinate over the attributes that sound plausible,
the attention mechanism enables the language model to be exposed
to multiple salient regions of the object during generation. Thus, our
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language model considers all the information pertaining to an object
simultaneously.

• We propose a novel transformer-based language model for REG. Due
to transformers’ limited adaptation to multi-modal tasks, we investi-
gate their applicability to REG and we propose an architecture that
injects context with different degrees of modification to the architec-
ture, by connecting each layer of the encoder to the respective layer of
the decoder.

• We present a novel optimization approach to REG based on the REIN-
FORCE algorithm, that utilizes multiple samples per input to construct
the baseline, rather than estimating the reward based on one sample.
We found that the proposed RL objective reduces the variance of the
gradient compared to SCST training.

• Finally, we extend our investigation to the generation of sets of re-
ferring expressions. We present the first detailed comparison of how
the hyperparameters of commonly-used decoding strategies affect the
quality-diversity trade-off. Specifically, we conduct the first large-scale
human evaluation that measures the impact that diversity has on the
quality of sets of referring expressions. We found that the recently
proposed nucleus sampling (Holtzman et al., 2018), at equal points
of diversity produces sets with higher quality compared to all other
decoding algorithms evaluated in this work.

The rest of this work is organised as follows. Section 2 reviews existing
approaches to Neural REG and inference in sequence to sequence models.
Section 3 describes the proposed language models used in this work. Section
4 introduces the reinforcement learning strategy we propose to optimize REG
models. Section 5 describes the decoding strategies that are compared in
this work. Section 6 presents the implementation choices for each of the
models used in this work, the datasets used, and the evaluation protocol
that was followed. Section 7 demonstrates the effectiveness of the proposed
approaches in generating one-shot referring expressions. Finally, in Section
8, we present a comparison of how existing decoding algorithms navigate
the quality-diversity space when generating a set of REs, followed by the
conclusions.
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2. Related Work

Traditional view of REG: Traditionally, REG systems have been seen
as a multi-step process that includes a number of choices in order to trans-
form the input to a natural language description. The first choice is which
form a referring expression will assume, i.e. whether the target object will
be referred to with a proper name, a definite description or a pronoun. If
the chosen form is a description, the second step is the determination of the
content, that is the selection of properties that distinguish the target ob-
ject from potential distractors (i.e. objects similar to the target) in a given
context. The last step is the linguistic realisation of all the properties to a
fully-fledged description. The large body of existing work in REG, focuses
on the determination of content for definite descriptions (Krahmer and van
Deemter, 2012). Content selection algorithms search for a combination of
properties that distinguishes the target object univocally. The termination
criterion of the search depends on the modeler’s interpretation of what con-
stitutes a “good” referring expression. A large body of literature defines that
a “good” referring expression is that which does not violate the Maxim of
Quantity (Grice, 1975). In other words, a referring expression should convey
just enough information to unambiguously identify the referent but no more.
What constitutes “enough information” has lead to a number of algorith-
mic definitions. First, the full brevity algorithm (Dale, 1989) exhaustively
searches the space of possible properties of the referent in order to produce
the smallest set that unambiguously identifies the referent. Due to its high
algorithmic complexity, a greedy heuristic approach was proposed by Dale
(1989), which incrementally chooses the properties that rule out the most
distractors in the domain. One of the most influential algorithms, the in-
cremental algorithm (Dale and Reiter, 1995) that serves as basis for a wide
range of approaches, chooses the properties incrementally based on a domain-
depended preference order.

Early work in content selection did not take into consideration that speaker-
dependent variation is one of the most important factors that governs the
content selection process (Viethen and Dale, 2010a). However, there is a
number of works that investigate the speaker-dependent variation in content
selection. For instance, Bohnet (2008) extends the incremental algorithm
by considering the recency of each speaker when the attributes are selected.
Di Fabbrizio et al. (2008) generate all possible descriptions for a given target,
and then the most recent or frequent descriptions of each speaker are selected.
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Other speaker-dependent REG models for content selection are presented by
Viethen and Dale (2010b); Ferreira and Paraboni (2014). More recently,
models that capture the speaker-dependent variation in the referential form,
are introduced by Castro Ferreira et al. (2016a,b).

Neural REG: Neural REG approaches that follow the encoder-decoder
paradigm (Mao et al., 2016a; Yu et al., 2016, 2017; Luo and Shakhnarovich,
2017; Zarrieß and Schlangen, 2018), have seen a surge of interest due to the
availability of larger and more complex REG datasets such as RefCOCO (+)
(Yu et al., 2016) and RefCOCOg (Mao et al., 2016a). The underlying idea of
the encoder-decoder is the following: a convolutional neural network (CNN)
processes the image region in order to extract a vector representation that
is used to initialize the decoder (e.g. a recurrent neural network). Given the
previous generated words, the next word in the sentence is predicted sequen-
tially. Neural REG approaches rely on incorporating contextual information
by using visual features, appearance attributes (Yu et al., 2016), location
features (Yu et al., 2016) and global image features as target object repre-
sentation. Mao et al. (2016a) were the first to apply the encoder-decoder
architecture. In particular, they use a convolutional neural network to ex-
tract visual features and an LSTM to generate the expression. The language
model is trained to maximize the mutual information between the object and
the associated expression through the Maximum Mutual Information objec-
tive. Yu et al. (2017) use a pre-trained comprehension module that serves
as a “critic” to the language model in order to reduce the ambiguity of the
produced referring expressions. Specifically, in order to guide the generation
process towards unambiguous referring expressions, the language model is
updated through reinforcement learning where the comprehension module
plays the role of the reward function. To further reduce ambiguity, Yu et al.
(2017) trained the language model jointly with the comprehension module.
Similarly, Luo and Shakhnarovich (2017) utilize a comprehension module
that steers the language model towards the generation of more informative
expressions. Subsequently the listener module is used to re-rank the output.

Inference for conditional language models: Despite recent efforts in
modeling context and learning, decoding has received little attention, with
the notable exception of, for example, Zarrieß and Schlangen (2018). During
inference all proposed methods in REG utilize a standard decoding algo-
rithm, e.g. greedy search or beam search. Specifically, words that maximize
the likelihood are drawn sequentially. However, what is the best decoding
strategy for NLG models still remains an open challenge. Although the maxi-
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mization of the likelihood as training objective produces high quality models,
the maximization-based decoding algorithms produce text that is repetitive
(Ippolito et al., 2019a; Holtzman et al., 2020; Vijayakumar et al., 2016b). A
number of diversity promoting variants of beam search have been proposed
for different NLG tasks. Specifically, the noisy parallel approximate decod-
ing was proposed by Cho (2016) for machine translation. Random noise is
added to the hidden state of the decoder at each generation step. Diverse
beam search (Vijayakumar et al., 2016b) was proposed for image caption-
ing as it promotes diversity by penalizing new hypotheses that share same
tokens with previously generated hypotheses. For machine translation and
open dialog generation, top-g capping beam search was proposed by Li and
Jurafsky (2016b), where only the top-g hypotheses from the same ancestor
hypothesis are kept. The iterative beam search, that was originally proposed
for dialog generation, runs multiple iterations of beam search while excludes
any previously explored space.

A strand of research investigates the augmentation of beam’s search ob-
jective by training an additional network that provides a supplementary score
to the likelihood. Specifically, Li et al. (2017) train an additional neural net-
work to predict a reward for each partial hypothesis. Similarly, Zhang et al.
(2018) train a network to predict dialog participants personality traits based
on a partial conversation and re-ranks the candidate responses. Trainable
decoding was attempted by Zarrieß and Schlangen (2018) where they adopt
the trainable decoder proposed by Chen et al. (2018). Specifically, an “ac-
tor” network is trained to manipulate the hidden state of the language model
before it is passed to the decoding layer.

Another approach to the decoding step, is to sample from the model’s
learned distribution. Under this scheme, at each time step, sampling-based
decoding algorithms sample the next word by drawing a word from the condi-
tional language model. While text generated by this method shows significant
diversity, it can easily become incoherent because words from the model’s less
robust confidence areas can be drawn (Holtzman et al., 2018). To the best
of our knowledge, three different ways have been proposed to address this
issue: (1) the use of temperature to reduce the entropy of the distribution
leading to a more skewed distribution towards the high confidence zones; (2)
top-k sampling (Fan et al., 2018), where a fixed number of k tokens is kept
and the next word is sampled from this truncated vocabulary; (3) nucleus
sampling (Holtzman et al., 2020), that keeps those tokens whose cumulative
probability exceeds a pre-defined threshold.
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3. Language models

In this section, we describe the language models used in this work. In
Section 3.1, we describe our LSTM baseline. In Section 3.2, we describe our
attention LSTM and in Section 3.3, we present our transformer model.

3.1. LSTM

The first model is a standard sequence encoder (Rennie et al., 2017;
Vinyals et al., 2015). We first extract the representation of the target object
with the use of a CNN, and then this representation is embedded through a
linear projection WI . Each word xt is represented as one-hot vector, mapped
to the same space as the object representation through a linear embedding.
The start of each sequence is denoted by a special BOS token, while the
special stop token EOS denotes the end of the sequence. For the generation
of the sequence of words, we use an LSTM model. The image features are
only used as an input to t = 0 in order to initialize the LSTM with visual
features. Then, at each time step t, its output depends on the previously
generated words and the hidden units, which encode the knowledge of the
observed input up to this time step. More formally, the model is defined by
the following update rules:

it = σ(Wixxt +Wimmt−1 + bi) (Input gate) (1)

ft = σ(Wfxxt +Wfmmt−1 + bf ) (Forget gate) (2)

ot = σ(Woxxt +Wommt−1 + bo) (output gate) (3)

ct = ft � ct−1 + it � σ(Wcxxt +Wcmmt−1 + bc) (memory cell) (4)

mt = ot � tanh(ct) (hidden state) (5)

pt+1 = softmax(mt) (6)

where σ is the sigmoid function and pt+1 is the probability distribution
over all words. The W , b matrices are learnable parameters and biases.

3.2. LSTM+ATT

Instead of utilizing a static visual representation, as the model described
previously, attention-based models dynamically re-weight the spatial visual
features to “attent” on specific visual regions at each time step. In this paper,
we consider a modification of the architecture proposed for image captioning
by Anderson et al. (2018). In particular, the attention model consists of two
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LSTM layers. The first layer implements the attention mechanism, while
the second plays the role of a language model and follows the update rules
described in Section 3.1. The input to the LSTM attention layer is the
following:

vi = [r, ō, Ī , hLt−1] (7)

where ō is the concatenation of the mean-pooled object region features
(i.e. ō = 1

k

∑
i oi); r, I are the CNN extracted features for the target object

and image respectively and hLt−1 is the previous hidden state of the language
LSTM. We assume that this input representation is expressive enough for
the context of the image and the state of language model in order to steer
the model to information that is important for the target object.

We compute the attention weighted annotation vector ai,t for the uniform
grid of the object region as follows:

ai,t = wT
a tanh (Woavi +Whah

1
t ) (8)

αt = softmax (at) (9)

whereWoavi ∈ RA×D,wa ∈ RA andWha ∈ RA×d are learnable parameters
and A indicates the dimensions of the attention layer. Finally, the attention
derived object visual features that will be used as input to the language
LSTM is given by:

ôt =
K∑
i=1

αi,toi (10)

Specifically, the input to the language LSTM is the combination of the
attended object features and the hidden state of the attention LSTM hat .
Formally the input ilt is the following:

ilt = [ôt, h
a
t ] (11)

3.3. Transformer

Despite the success that attention models have achieved, there are two
limitations that stem from such architectures. First, the attention mechanism
only models the relationship between visual features and words, while ne-
glecting the word-to-words interactions. Secondly, the LSTM-based models
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are shallow, thus they may fail to capture abstract concepts and complex re-
lationships due to the lack of a corresponding visual signal. The transformer
model was proposed to fill this gap by simultaneously capturing the intra
and inter modal interactions in a self-attention fashion using a deep stack
of attention blocks. It can be conceptually divided into an image encoder
and a decoder module. The encoder learns in a self-attention fashion visual
representations, while the decoder makes use of the attention-derived visual
representations to generate the output. In order to handle variable-length
inputs, such as image regions and text sequences, the transformer employs
two attention mechanisms: (1) the scaled dot-product attention; and (2) the
multi-head attention. We first introduce the former type of attention since
it is the most important function of the transformer model.

The scale-dot product function receives as an input: a query q ∈ Rd, a
set of keys kt ∈ Rd and values vt ∈ Rd, where t ∈ {1, 2, ..., n}. It outputs the
weighted sum of value vectors vt. For practical reasons, all the keys and values
are packed into matrices K = [k1, ..., kn] ∈ Rn×d and V = [v1, ..., vn] ∈ Rn×d

respectively. More formally, given a set of queries Q = [q1, ..., qm] ∈ Rm×d

the scaled dot-product attention operator is defined by:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (12)

where d is a scaling factor. We follow the implementation of Vaswani
et al. (2017), and we use a scaling factor of d = 64, that indicates the
cardinality of the value, key, and queries vectors. In order to attend different
representation sub-spaces, the multi-head attention is introduced. It consists
of h independent scaled dot-product operators named as “heads”. Each
attention head first calculates the queries, keys, and values that are projected
into h sub-spaces as follows:

MultiHead(Q,K, V ) = Concat(h1, ..., hh)W
o (13)

Hi = Attention(QWQ
i , KW

K
i , V W

V
i ) (14)

where WQ
i ,W

K
i ,W

V
i ∈ Rd×dh are the projection matrices for the h inde-

pendent heads, while WO ∈ Rh∗dh×d is the output projection matrix that
aggregates the information from h heads. In this work, we empirically found
that the optimal number of heads is eight. Therefore, all of the transformer-
based architectures in this work employ eight heads.
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Figure 2: Overview of the transformer architecture (Vaswani et al., 2017). The red arrows
illustrate the original connectivity between the encoder and decoder, while the green arrows
illustrate the proposed connectivity.

The transformer leverages stacks of identical layers to mimic the encoder-
decoder architecture. The overall architecture of a transformer-based model,
is illustrated in Figure 2. Specifically, the encoder is a stack of N identical
layers. Each layer is comprised of a multi-head attention mechanism given
by the Equation 13. The second component is a position-wise feed-forward
network that is applied to the output of the multi-head attention layer as
follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (15)

where W1, b1,W2, b2 are the weights and biases of the two fully connected
layers. Finally, residual-connections (He et al., 2016) that are followed by
layer-normalization (Ba et al., 2016) are applied to the outputs of the self-
attention and the feed-forward layer. The decoder’s first layer receives as
input the output of encoder’s last layer. Similarly to the encoder, the decoder
is a stack of N identical layers. However, in addition to the two sub-layers in
each encoder layers, a third module is added to the decoder layers to perform
multi-head attention over the encoder’s output.

In this work, we propose a different connectivity pattern between the
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encoder and the decoder. Specifically, we connect each layer of the encoder
with the respective decoder layer. The proposed connectivity is illustrated in
Figure 2 with the green arrows, while the original connectivity is shown with
red arrows. Specifically, in order for a word to be predicted there should be
a form of visual information that influences the likelihood. The original con-
figuration utilizes a fixed representation throughout the network. However,
fixed visual representations might be unable to capture the transitioning dy-
namics between the visual focus and words. Therefore, we incorporate visual
features with different degrees of modification at each layer, to better model
the interdependencies of different visual elements and words.

3.4. Token level objective

Let θ denote the parameters of the language models described in Sections
3.1, 3.2 and 3.3. Let {x∗1, x∗2, ..., x∗T} be a ground-truth referring expression,
the model parameters θ are trained to minimize the cross entropy loss as
follows:

L (θ) = −
T∑
t=1

log
(
πθ
(
x∗t
∣∣x∗1:t−1, I, r)) (16)

where πθ (xt |x1:t−1, I, r ) is the probability distribution of the token xt given
all the previous generated tokens {x1, x2, ..., xt−1} and the visual features I, r.
T denotes the length of the sequence.

4. Training REG with Reinforcement Learning

There are two limitations that stem from training a model with the cross
entropy loss. The first is the exposure bias. Specifically, during training the
model uses ground-truth words at each time step. However, during testing
the model is fed with its own predicted words. This missmatch between train-
ing and testing, leads to error accumulation during testing, since the inferred
words are different from the ground-truth. The second limitation is that
during testing, the model is evaluated based on its ability to generate a high
quality sequence by non-differentiable metrics, such as CIDEr. However, the
model is trained to minimize a word-level objective, which leads to an incon-
sistency between the training objective and the evaluation metrics. Recently
it has been shown that reinforcement learning techniques can bridge the gap
between training and testing, by directly optimizing evaluation metrics (e.g.
CIDEr) at training time.
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In the classical reinforcement learning paradigm, the goal of an agent is to
maximize the expectation of the reward rt it receives for each action ŷt when
interacting with its environment. More formally, an agent aims to maximize
the following objective:

Eŷ1,··· ,ŷT∼πθ(ŷ1,··· ,ŷT )[r(ŷ1, · · · , ŷT )] (17)

where ŷt is the word (i.e. action) sampled by the model at time t and
r(ŷ1, · · · , ŷT ) is the observed reward for the actions ŷ1, · · · , ŷT . Each agent
performs an action under a specific policy πθ. The nature of the policy is
application dependent. In the context of REG, the parameters of the agent
(i.e. language model) define a policy. The agent selects an action, which is a
candidate token from the vocabulary under the policy, until it generates the
special token that denotes the end of the sequence. Once the agent reaches
the end of the sequence, it compares the sequence of actions under the current
policy ŷ against the ground-truth sequence y and calculates a reward based
on any task specific metric (e.g. CIDEr). The goal of the training is to
parameterize the agent in order to maximize the reward. Formally:

Lθ = −Eŷ1,··· ,ŷT∼πθ(ŷ1,··· ,ŷT )[r(ŷ1, · · · , ŷT )] (18)

In practice, however, the expected gradient is computed with only one
sample acquired from the policy πθ as follows:

∇θLθ = − E
ŷ1···T∼πθ

[∇θ log πθ(ŷ1···T )r(ŷ1···T )] (19)

Applying the chain rule we have:

∇θLθ =
∂Lθ
∂θ

=
∑
t

∂Lθ
∂ot

∂ot
∂θ

(20)

where ot indicates the input to the softmax function. Thus, the estimate
of the gradient Lθ with respect to ot is given by (Zaremba and Sutskever,
2015):

∂Lθ
∂ot

=
(
πθ(yt|ŷt−1, ht)− 1(ŷt)

)
(r(ŷ1, · · · , ŷT )− rb) (21)

where rb is a baseline reward. The role of the baseline is to guide the
model towards actions with a reward r > rb and penalize those that have a
reward r < rb. Furthermore, subtracting a quantity from the learning signal
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leads to lower variance, since it reduces its magnitude. This transformation
leaves the gradient estimator unbiased because the baseline is a quantity that
has zero expectation under the policy, since in this case:

Eŷ1···T∼πθ [∇θ log πθ(ŷ1···T )rb] = rb
∑

ŷ1···T
∇θπθ(ŷ1···T )

= rb∇θ

∑
ŷ1···T

πθ(ŷ1···T ) = rb∇θ1 = 0
(22)

This shows that the subtraction of the baseline leaves the gradient esti-
mator unbiased. This algorithm has been coined in literature as the REIN-
FORCE with a baseline (Williams, 1992). The reward, for example, could
be calculated as the mean of the N rewards that are observed.
Self-critical sequence training (SCST): An alternative way of reducing
the variance was proposed by Rennie et al. (2017). In SCST, the reward is
obtained by applying greedy search, the inference algorithm that is used at
test-time. Thus, we obtain the following REINFORCE estimator:

Lθ = 1
N

∑N
i=1 log πθ(ŷi)

(
r(ŷi,1, · · · , ŷi,T )− r(ŷgi,1, · · · , ŷ

g
i,T )
)

(23)

where ŷgi,t is an action sampled with greedy decoding. In practice, how-
ever, only a single sample is used to compute the expectation. From a classic
RL point of view, using a single sample is a reasonable strategy, since we
might be unable to score multiple sampled actions for a state. However,
from a data point of view, this is inefficient. Specifically, multiple samples
can be evaluated without additional computational load. Secondly, opti-
mizing a powerful model using one sample might have detrimental effect on
its capacity. The assumption that one sample is sufficiently expressive does
not always holds. As mentioned before, samples with higher rewards will
be favored, while heavily penalizing samples that explain the observation
poorly, leading to a lower bound of the likelihood. Therefore, the model
will cover only the high-probability zones. An intuitive way to limit this
crippling effect is to average over multiple samples per data point. The use
of multiple samples per data point, provides sophistical information leading
to the construction of a more robust local baseline. Thus, we propose to
use the REINFORCE with multiple-samples per input. A similar strategy,
has been used on the travelling salesman problem presented by Kool et al.
(2019) where they use REINFORCE without replacement and in variational
inference presented by Mnih and Rezende (2016).
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Algorithm 1 REINFORCE algorithm with multiple-samples per data point.
Require:

A pre-trained policy (πθ).
Input: Input (X), ground-truth expressions (Y ),
Output: A fine-tuned policy with REINFORCE with multiple-samples.
Training Steps:
while not converged do

Produce a mini- batch of size N from X and Y .
for each element in N do

Generate K full sequences of actions:
{ŷ1, · · · , ŷT ∼ (ŷRS1 , · · · , ŷRST )}K1 .
Observe the sequence rewards and calculate the baseline bi = 1

K−1
∑
i 6=j r(ŷ

j).
end for
Calculate the loss according to Eq. (24).
Update the parameters of network θ ← θ + α∇θLθ.

end while

REINFORCE with multiple-samples per data point: Granted that
the samples within the set are independent, we can construct a baseline b for
the i − th item of a set by averaging over the rest samples. We used both
the arithmetic mean and the geometric mean bi = 1

K−1
∑

i 6=j r(ŷ
j) and we

empirically found a slight superiority of the latter. Therefore, the estimator
in the Equation 24 becomes:

Lθ = 1
N

∑N
i=1 log πθ(ŷi)

(
r(ŷi)− 1

K−1
∑

i 6=j r(ŷj))
)

(24)

One of the advantages of the self-critical sequence training is that the
baseline is based on the inference algorithm that is used at test-time without
having to train an additional “critic” network. In particular, the greedy
decoding was used (see section 5.1.1). However, greedy decoding can only
produce one sample. Therefore, for generating a set of samples we resort
to the use of sampling, which produces k independent samples by sampling
from the model’s distribution that are diverse. As an alternative, one can
use beam search that focuses on high-probability samples. However, we
empirically found that the diverse sets produced by random sampling, are
more informative to the gradient estimation compared to the less diverse sets
produced by beam search. Algorithm 1 summarizes the required steps for
the proposed approach.

17



5. Decoding Methods

This section presents the decoding algorithms used to decode the output.
Section 5.1 describes the maximization-based decoding strategies, namely
greedy decoding (§5.1.1), beam search (§5.1.2), and diverse beam search
(§5.1.3). Section 5.2 presents the decoding strategies that rely on random-
ness, namely random sampling with temperature (§5.2.1), top-k sampling
(§5.2.2) and nucleus sampling (§5.2.3).

5.1. Maximization-based decoding methods

5.1.1. Greedy Decoding

Greedy decoding (GD) can be seen as a naive inference method for con-
ditional language models. It chooses the most likely token of the sequence,
in a left to right manner, under the conditional probability:

x̂t = arg max
xt

P (xt|x<t,, I, r)

The process continues until the end symbol is produced. Although it is
computationally efficient, it can often lead to sub-optimal solutions (Cho,
2016). A significant drawback of this approach is that, the high-probability
choices in earlier generation steps, can lead to an overall low likelihood se-
quence due to low probabilities choices later on.

5.1.2. Beam Search

Beam search (BS) is an inference algorithm that explores in a greedy left-
right manner the search space. Instead of extending a single hypothesis, at
each time step, it extends a set of K hypotheses Ht:

Ht = {(x11, . . . , x1t ), . . . , (xK1 , . . . , xKt )}. (25)

The next set of partial hypotheses is created by expanding all the hy-
potheses inHt with each token from the vocabulary V . Then, each candidate
hypothesis hi

xit
from Ht is scored as:

s(h̃ivj) = s(hiỹit
) + log p(vj|x̃i≤t). (26)

The K highest ranked hypotheses are selected as the new candidate set
to be expanded in the next step. Among the top hypotheses, those whose the
last token is the special EOS token are no longer expanding. The remaining
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hypotheses continue to expand, however, with K reduced by the number of
complete hypotheses. This process terminates until K reaches zero, and the
best completed hypotheses are returned.

The space that beam search performs is the union of all the current hy-
potheses in Hk. Thus, the K decoded sequences are from the same high-
likelihood subspace. Consequently, generating a set of notable different ex-
pressions for a target object is not trivial.

5.1.3. Diverse Beam search

Diverse Beam Search (DBS) (Vijayakumar et al., 2016b) is a variant of
beam search that tries to alleviate the redundancy of the search lists. DBS
introduces a dissimilarity term θ that measures the difference between the
current hypotheses with those produced in the previous step. It achieves
that by augmenting the log-likelihood before re-ranking. More formally, each
candidate hypothesis h̃i≤t is scored as:

s(h̃i≤t) = s(hi≤t) + λθ(hi≤t, Ht−1).

where λ is a factor that regulates the strength of diversity. Another impor-
tant hyperparameter is the dissimilarity function θ. We follow Vijayakumar
et al. (2016a) and as dissimilarity function we use the Hamming distance
that was reported to perform best.

A limitation that stems from this approach is that the fixed diversity
strength is not optimal in every scenario. Vijayakumar et al. (2016b) reported
that complex images benefit more from diversity-promoting inference than
simpler images.

5.2. Sampling-based decoding methods

An alternative to decoding based on maximization is the introduction of
some element of randomness by sampling from the model’s learned distribu-
tion. In this scenario, at each time step t the next word is randomly drawn
from the conditional language model as:

xi ∼ P (x|x1:i−1, Ii, ri) (27)

While output generated using this process avoids repetitions, it can be-
come incoherent by sampling from model’s low confidence zones (Holtzman
et al., 2020). REG is a low tolerance task; only one word is enough for an
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unsuccessful referring expression (e.g. color or location words). To avoid sam-
pling words from the tail of the distribution, which contains a large number of
tokens assigned with low probability, three solutions have been proposed: (1)
sampling with temperature; (2) top-k sampling; (3) and nucleus sampling.

5.2.1. Sampling with temperature

One common approach to control the entropy of the distribution is the
use of temperature (Goodfellow et al., 2016; Ficler and Goldberg, 2017):

p(x = Vl|x1:i−1, I, r) =
exp(ul/T )∑
l′ exp(ul/T )

. (28)

The use of temperature T ∈ [0, 1) reduces the risk of sampling words with
very low probability, by skewing it towards high-probability zones (Holtzman
et al., 2020).

5.2.2. Top-k Sampling

Top-k sampling that was proposed by Fan et al. (2018), is an intuitive
solution that truncates the distribution by maintaining a subset of high-
probability tokens. At each time step a fixed number of k words are selected
that maximize p′ =

∑
x∈V (k) P (x|x1:i−1,I,r). Then, the next words are drawn

from the top-k vocabulary V (k) ⊂ V based on their relative probabilities.
Formally, the next words are drawn as follows:

P ∗(x|x1:i−1, I, r) =

{
P (x|x1:i−1, I, r)/p′ if x ∈ V (k)

0 otherwise
(29)

5.2.3. Nucleus Sampling

An alternative to top-k sampling is nucleus sampling proposed by Holtz-
man et al. (2020). The fundamental difference between those two sampling
strategies is that nucleus sampling instead of having a fixed number of to-
kens as subspace, it uses those tokens whose cumulative probability mass
surpass a pre-define threshold q. Thus, the next words are drawn from the
vocabulary V (q) ⊂ V which is the smallest set that:∑

x∈V (p)

P (x|x1:i−1, I, r) ≥ q. (30)
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Figure 3: Human written referring expressions for target objects (green box) in RefCOCO
and RefCOCO+ images.

6. Experimental Setup

6.1. Datasets

We trained our models on RefCOCO and RefCOCO+ (Yu et al., 2016)
which are built on MSCOCO dataset (Lin et al., 2014). The collection of
the expressions for RefCOCO(+) datasets was based on the ReferIt Game
(Kazemzadeh et al., 2014), an interactive game where two players alternate
between two roles: (1) speaker: generating referring expressions; (2) listener:
identifying the described object within an image. The RefCOCO(+) images
contain on average 3.9 objects of the same category and they contain ap-
proximately 150k referring expressions for 50k objects. Although the images
in both datasets are similar, the referring expressions for each dataset are
quite different due to different data collection instructions. In particular,
for RefCOCO+, the use of absolute location words (e.g. top right, bottom
left, etc.) was not allowed and thus the referring expressions are appearance
focused, while for the RefCOCO the use of location is essential in order for
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the target object to be successfully identified. Examples of human written
expressions of each dataset are shown in Figure 3. Furthermore, for each
dataset different test splits are provided. The predefined test splits for both
datasets are divided between person vs object splits. In particular, images
containing people are in “testA” and images that contain all other object
categories are in “testB”.

6.2. Implementation Details

Visual Features. The visual representation that was used is a 4096-dimensional
vector that is a concatenation of: (1) a 2048-dimensional vector of the tar-
get object region; (2) a 2048-dimensional vector representation of the whole
image that serves as context features. As main feature extractor we used
ResNet-152 (He et al., 2016). In more detail, for the object region features,
the aspect ratio of the region was kept constant and was scaled to 224× 224
resolution. The margins were padded with the mean pixel value, following
(Mao et al., 2016b). The attention features were extracted as follows. First,
each target region was encoded with the final convolutional layer of ResNet-
152. Then, bilinear interpolation was applied to resize the output to a fixed
size representation of 7 × 7, 10 × 10 and 14 × 14. However, we empirically
found that the 14× 14 performs best. Both the object region and image fea-
tures are pre-extracted and no fine-tuning was performed. The input visual
representation was kept fixed across all the experiments.

Training. For our best performing LSTM and LSTM+ATT, we set the di-
mensions of the LSTM’s hidden state, image feature embeddings, and word
embeddings to 512. The batch size is set to 128 objects. The learning rate is
initialized to be 5× 10−4, and decays by a factor of 0.8 every three epochs.

Our best performing transformer model consists of 3 fully connected en-
coding and decoding layers. The dimensionality of each layer was set to 512
and 8 attention-heads were used. Every feed-forward layer is followed by a
dropout with a rate of 0.1. The learning rate is initialized to be 5×10−4 and
decays by a factor of 0.8 every three epochs, with 20000 warmup steps. The
batch size was set to 10 objects.

All of our RL models are trained according to the following scheme. We
first pre-train the REG models using MLE, optimized with Adam (Kingma
and Ba, 2014). At each epoch, we evaluate the model on the validation set
and we select the model with the best CIDEr score as an initialization for
RL training. We then run RL training initialized with the MLE model to
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optimize the CIDEr metric using ADAM with a fixed learning rate of 5×10−5

for the LSTM-based models, while for the transformer the learning rate was
set to 1× 10−5.

6.3. Evaluation

Neural REG approaches are evaluated to produce one shot-referring ex-
pressions. However, multiple different referring expressions are often correct
for a target object. Therefore, our evaluation is two-fold:

1. Generation of a single RE: Taking the traditional view of REG,
where from one input, a single RE is generated. Under this setting,
we evaluate the ability of our language models and training strategy to
produce a single high quality referring expression per target object.

2. Generation of a set of REs: A set of REs is generated instead of a
single RE for a target object. Different human speakers would probably
utter referring expressions that are notably different with each other.
However, this diversity is not equally reproduced by existing systems.
Thus, we evaluate sets of REs in terms of quality and diversity.

Evaluation of one-shot referring expressions:. We first focus on the
evaluation of a system’s ability to generate a single RE. In the experiments
below, we use the standard automatic metrics that have been used in REG
(Mao et al., 2016a; Zarrieß and Schlangen, 2018; Yu et al., 2016) that compare
the generated referring expression with the human ones. First we evaluate
our models on BLEU1 for uni-grams (due to the fact that models favor-
ing shorter expressions), CIDEr and METEOR. However, previous work has
shown that automatic evaluation metrics do not correlate well with human
judgments (Yu et al., 2016, 2017; Zarrieß and Schlangen, 2016; Kilickaya
et al., 2017). Therefore, we randomly selected 60 objects from each test
set and we collected human judgments on Amazon Mechanical Turk. In all
experiments, participants were presented with an image and an expression
and were asked to draw a box around the referent object which they thought
as the best match. In order for a RE to be considered successful, two an-
notators had to draw a box around the correct object. In addition to the
evaluation of the success of referring expressions, annotators were asked to
rate the statements below following Mitchell et al. (2012):

• Q1-Grammaticallity: The description is grammatical correct.
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• Q2-Main aspects: The description does not describe the main at-
tributes correctly.

• Q3-Correctness: This description does not include extraneous or in-
correct information.

• Q4-Naturalness: It sounds like a person wrote that description (Yes/No)

Evaluation of a set of referring expressions:. In order to evaluate a
set of referring expressions two criteria are required to be taken into consider-
ation: accuracy and diversity. For the former, the commonly used approach
is to average a similarity score (Ippolito et al., 2019b), e.g. CIDEr, over the
set. Evaluating the accuracy of a particular system is not sufficient to reflect
the overall performance of a model; the diversity of the output should also
be considered. The diversity of a set is computed using Self-CIDEr (Wang
and Chan, 2019), that computes a diversity score by calculating the eigen-
values of a kernel matrix that contains similarities scores (i.e. CIDEr) for all
sentences pairs within the set (Wang and Chan, 2019).

Furthermore, we conducted human evaluation on Amazon Machine Turk
and we asked humans to rate the diversity and the quality of a set of re-
ferring expressions. Specifically, we randomly selected 25 target objects and
we generated 5 expressions for each object. For each expression in the set,
three workers were asked whether or not the expression describes the ob-
ject unambiguously. A referring expression was considered successful if two
workers found that the expression unambiguously describes the object. We
then required the workers to rate the diversity of the set on a 5-point Likert
scale, where 1 indicates that the expressions are identical, and 5 that the
expressions are significantly different with one another. In our instructions,
diversity refers to different words, phrases, sentence structures, semantics or
other factors that impact diversity. The diversity score for each set is the
average score given by the 3 workers.

7. Generation of one-shot Referring Expressions

7.1. Attention-based REG

In order to demonstrate the advantages of the proposed object atten-
tion, we performed a detailed comparison between the attention model and
the standard LSTM. For each of the considered metrics, we performed a
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RefCOCO RefCOCO+
testA testB testA+ testB+

Model
Type

Decoding
Method

BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr

LSTM
Greedy 0.490 0.762 0.523 1.332 0.444 0.633 0.373 0.710
Beam 0.477 0.758 0.510 1.340 0.429 0.656 0.384 0.837

LSTM +ATT
Greedy 0.594 1.033 0.609 1.552 0.512 0.884 0.424 0.858
Beam 0.577 1.013 0.599 1.573 0.491 0.881 0.424 0.857

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 1: Comparison of different automatic metrics for the attention model (denoted as
“LSTM-ATT”) and the standard LSTM model. The proposed attention model results
in significantly higher CIDEr and BLEU1 scores in both datasets. The p-values are the
result of two-tailed t-tests using paired samples.

two-tailed t-test with paired samples in order to determine whether the dif-
ference caused by incorporating the object attention was statistically signif-
icant. The results for the two considered datasets are shown in Table 1. We
first note that the proposed attention model results in higher scores than the
standard LSTM. The difference in scores was found statistically significant
(using a significance level α = 0.05). The significant improvements in CIDEr
and BLEU1 are in line with our expectation that adding the object atten-
tion mechanism would assist the model in determining both the relationship
between objects, but also determine fine appearance details of the target ob-
ject. This is due to the fact that our approach is able to consider all the
information pertaining to an object simultaneously.

To illustrate the advantages of the proposed approach, we present exam-
ples of objects with the corresponding referring expressions generated by each
model (see Figure 4 and Figure 5 ). The referring expressions presented here
were generated using the following steps: both models were trained with MLE
and were greedily decoded. We chose those examples for which there was a
significant improvement between the CIDEr scores of the expressions gen-
erated by the attention model and those generated by the standard LSTM.
The collection of objects and expressions for RefCOCO and RefCOCO+ is
shown in Figure 4 and Figure 5 respectively. It should be noted that, during
the collection of RefCOCO dataset, no restrictions were placed on the type of
language that can be used in the referring expressions, while in RefCOCO+
dataset location words were not allowed. Thus, this dataset contains refer-
ring expressions that are based on appearance attributes. Specifically, the
images in testA that are presented in Figure 4, illustrate an improvement in
determining when a relationship between objects should be expressed, as well
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Figure 4: Examples of objects and expressions drawn from RefCOCO dataset, for which
the CIDEr scores of the attention model show an improvement over the standard LSTM.
The target object is highlighted with a red box.

Figure 5: Examples of objects and expressions drawn from RefCOCO+ dataset, for which
the CIDEr scores of the attention model show an improvement over the standard LSTM.
The target object is highlighted with a red box.
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RefCOCO RefCOCO+
Model testA testB testA testB

CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1

Transformer 6 0.837 0.506 1.340 0.546 0.772 0.460 0.763 0.387
Transformer 6 (OURS) 0.852 0.513 1.355 0.552 0.798 0.467 0.791 0.395
Transformer 3 0.922 0.524 1.442 0.581 0.911 0.515 0.894 0.412
Transformer 3 (OURS) 0.938 0.586 1.464 0.586 0.938 0.529 0.913 0.424

Table 2: The impact of depth in the performance of the transformer model. Transformer 6
and 3 indicate that the decoder and the decoder consist of 6 and 3 layers respectively. The
layer configuration follows the one proposed by Vaswani et al. (2017). “Ours” indicates
that each layer of the encoder is connected with the respective layer of the decoder.

as in determining what that relationship should be. In addition, the images
in testB presented in Figure 4, illustrate an improvement in including ap-
pearance and location attributes. The improvement in including appearance
attributes can be further noticed in the referring expressions of RefCOCO+
dataset presented in Figure 5.

7.2. Transformer-based REG

Table 2 shows the results for our ablation study regarding the transformer
model discussed in Section 3.4. We show the original configuration (denoted
as Transformer 6 in Table 2) of the transformer (Vaswani et al., 2017) as
our baseline. To determine whether the changes in the configuration of the
model result in statistically significant differences for each of the considered
metrics, we performed a two-tailed t-test with paired samples as described
in Section 7.1.

We first investigate the effect of the number of layers. Our hypothesis is
that, given the model was initially proposed for machine translation, a task
with considerable longer sentences than REG and larger training sets, a shal-
lower architecture might result in better performance. Table 2 shows that
reducing the depth (Transformer 3 in Table 2) of the network leads to con-
siderable improvements in both BLEU1 and CIDEr scores. For instance, in
RefCOCO+ testA, decreasing the number of layers leads to an improvement
from 0.772 to 0.911 in CIDEr values. The score difference was statistically
significant (using a significance level α = 0.05).

We then investigate the effect of connecting each layer of the encoder to
the respective layer of decoder. The results are shown in Table 2, where
“Transformer (OURS)” stands for the proposed model. Specifically, for all
of the considered metrics, the proposed transformer produces higher scores
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Figure 6: Examples of objects and expressions drawn from both RefCOCO and Ref-
COCO+ datasets, for which the CIDEr score for the proposed transformer model show
an improvement over the standard transformer. The target object is highlighted with a
red box.

than the standard transformer.
Examples of generated REs are illustrated in Figure 6. The referring ex-

pressions presented here were generated using the following steps: both mod-
els were trained with MLE and were decoded using greedy decoding. In all
images presented in Figure 6, we observe that the proposed model improves
over the standard transformer in inferring fine appearance (e.g. “number
29” top left image in Figure 6) and location attributes of the target object.
This is in line with our expectation that utilizing features with different de-
grees of modification at each layer, will better model the interdependencies
of different visual elements and words.

7.3. Training REG with Reinforcement Learning

Next, we compare the proposed RL method (see Section 4) with self-
critical sequence training. First, we explore which reward function to use to
evaluate the sequences. We experimented with training directly with different
evaluation metrics that have been used in neural REG literature, i.e. BLEU1

and METEOR, as well as a combination of metrics. The results are shown
in Table 3. As expected, optimizing towards a particular evaluation metric
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RefCOCO
testA testB

Training
Metric

CIDEr BLEU1 METEOR CIDEr BLEU1 METEOR

MLE 0.762 0.490 0.177 1.332 0.523 0.208
CIDEr 0.978 0.556 0.211 1.498 0.536 0.229
BLEU1 0.811 0.512 0.190 1.342 0.501 0.211
METEOR 0.762 0.489 0.178 1.331 0.522 0.209
CIDER+BLEU1 0.914 0.534 0.202 1.422 0.527 0.223

RefCOCO+
testA+ testB+

Training
Metric

CIDEr BLEU1 METEOR CIDEr BLEU1 METEOR

MLE 0.633 0.444 0.167 0.710 0.373 0.159
CIDEr 0.847 0.500 0.203 0.980 0.288 0.169
BLEU1 0.760 0.480 0.189 0.914 0.299 0.163
METEOR 0.729 0.442 0.179 0.932 0.321 0.169
CIDER+BLEU1 0.845 0.517 0.207 0.979 0.299 0.171

Table 3: Performance of different reward functions for the LSTM model. When the
language model is optimized with the CIDEr metric, we observe an significant increase
to all other evaluation metrics. All models were decoded using greedy decoding. The
performance of the seed model is also reported. The best overall values for each metric
are emphasized with bold.

Figure 7: Gradient variance of the proposed RL objective compared to the SCST for the
proposed attention and transformer model.
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RefCOCO RefCOCO+
Model testA testB testA testB

CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1 CIDEr BLEU1

LSTM +ATT + MLE 1.033 0.594 1.552 0.609 0.884 0.512 0.858 0.424
LSTM + ATT + SCST 1.089 0.597 1.565 0.570 1.065 0.563 1.054 0.323
LSTM + ATT+ RL(OURS) 1.204 0.636 1.646 0.605 1.077 0.563 1.074 0.323
p-value <0.001 0.01 <0.001 0.01 0.01 0.63 0.01 0.15
Transformer 0.938 0.529 1.464 0.586 0.938 0.529 0.913 0.424
Transformer + SCST 1.255 0.650 1.710 0.650 0.967 0.532 0.974 0.308
Transformer + RL(OURS) 1.261 0.665 1.732 0.656 1.020 0.546 1.003 0.294
p-value 0.01 0.01 0.01 0.01 <0.001 <0.001 <0.001 <0.001

Table 4: Performance of the best attention (denoted as LSTM +ATT) and transformer
model (denoted as Transformer ) trained with maximum likelihood estimation (denoted
as MLE), self-critical sequence training (denoted as SCST) and the proposed RL objective
(denoted as RL (OURS)). The p-values are the result of two-tailed t-tests using paired
samples.

during training leads to an increase on that particular metric during testing.
However, we found that CIDEr optimization increases the performance of
all other metrics considerably. We further noticed that when a model is
optimized with either BLEU1 or METEOR, produces shorter sentences than
a model that is optimized with CIDEr. Hence, we hypothesize that the
brevity penalty in BLEU1 (Papineni et al., 2002) and METEOR’s length
penalty (Banerjee and Lavie, 2005) adversely affect the score. Therefore, for
the rest of this work, all RL models are based on CIDEr optimization.

Next we evaluate whether the proposed RL objective reduces the variance
of the gradient compared to self-critical sequence training. We hypothesize
that using multiple samples to estimate the expectation will reduce the vari-
ance. Figure 7 compares the variance of the two methods. Although both
techniques lead to unbiased estimators of the gradient, our proposed method
results in lower gradient variance for both language models that were tested.
Interestingly, SCST has much higher gradient variance than the proposed RL
objective during the first epoch of training. We hypothesize that the samples
drawn from the model’s distribution score lower than the sentences produced
by greedy decoding.

Table 4 presents the results on RefCOCO and RefCOCO+ for the pro-
posed attention model and the transformer model optimized with the pro-
posed RL training strategy and SCST. Both RL based models are fine-tuned
from the same pre-trained model. Again, for each of the considered metrics,
we performed a two-tailed t-test in order to determine whether the difference
in scores between the two RL methods was statistically significant. We first
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RefCOCO RefCOCO+
Model testA testB testA testB

CIDEr CIDEr
speaker+listener+MMI+rerank (Yu et al., 2017) 0.763 1.306 0.500 0.734
speaker+reinforcer+MMI+rerank (Yu et al., 2017) 0.748 1.311 0.499 0.729
speaker+listener+reinforcer+MMI+rerank (Yu et al., 2017) 0.775 1.320 0.520 0.735
LSTM+ ATT 1.033 1.552 0.884 0.858
Transformer 0.938 1.464 0.938 0.913
LSTM+ ATT + RL 1.204 1.646 1.077 1.074
Transformer + RL 1.261 1.732 1.020 1.003

Table 5: Comparative analysis to existing state-of-the-art approaches.

note that when a model is optimized with the proposed RL objective achieves
higher CIDEr scores than SCST. The score difference was statistically sig-
nificant. Second, the BLEU1 score difference was statistically significant
in RefCOCO and RefCOCO+ testB. Third, we observe that the attention
model achieves higher scores when trained with MLE in both datasets com-
pared to transformer. However, when both models are trained with RL, the
transformer presents higher scores than the attention LSTM in RefCOCO.

Finally, we compare our best performing models against the three best
models presented by Yu et al. (2017). Table 5 shows the scores as re-
ported by the authors along with our best performing models. The model
“speaker+listener+MMI+rerank” is a generative model that receives as ad-
ditional input a listener-aware representation. The second model “speaker+
reinforcer +MMI+rerank” utilizes a pre-trained comprehension module to
update the parameters of the generative module through reinforcement learn-
ing. The last model is the combination of all aforementioned modules. Addi-
tionally, all three models use a comprehension model as a post-ranking tool
to rank a set of referring expressions. First we note that, the systems when
trained with MLE outperform the three best models reported by Yu et al.
(2017). Further improvements are noticed when the models are trained with
the proposed RL method.

7.4. Human evaluation of one-shot Referring Expressions

Previous work has shown that automatic evaluation metrics do not corre-
late well with human judgments (Yu et al., 2016, 2017; Zarrieß and Schlangen,
2016; Kilickaya et al., 2017). Unlike other generation tasks such as image
captioning, here a referring expression is successful if it describes the target
object unambiguously. Thus, we conduct human evaluation on 60 randomly
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Figure 8: Examples of objects and expressions for which human annotators successfully
identified the described object when the model was trained with MLE, while failed to
identify the object when the model was fine-tuned with RL.

RefCOCO testA
Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 71.66% 92.85% 4 (3.41, 0.68) 2 (2.23, 0.92 3 (3.30, 0.77)
Trasnformer 78.33% 96.42% 4 (3.69, 0.62) 3 (2.87, 0.88) 4 (3.64, 0.88)
Transformer+ RL 81.66% 85.71% 3 (3.39, 0.64) 2 (2.14, 0.87) 4 (3.83, 0.78)
Best by Yu et al. (2017) 76.95% - - - -

RefCOCO testB
Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 66.66% 98.92% 4 (3.71, 0.83) 2 (2.23, 0.92) 3 (3.30,0.77)
Transformer 73.33% 98.21% 3 (2.78, 0.61) 3 (2.28, 0.79) 3 (2.85, 0.71)
Transformer+ RL 83.33% 96.42% 4 (3.80, 0.54) 2 (2.12, 0.85) 3 (2.96, 0.49)
Best by Yu et al. (2017) 78.10% - - - -

RefCOCO+ testA
Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 76.66% 93.64% 4 (4.12, 0.92) 2 (1.91, 0.93) 3 (3.25, 0.96)
Transformer 80.00% 95.44% 4 (3.82, 0.38) 3 (2.11, 0.68 ) 4 (3.78, 0.55)
Transformer+ RL 83.33% 92.85% 3 (3.30, 0.49) 2 (1.23, 0.87) 4 (3.92, 0.25)
Best by Yu et al. (2017) 58.85% - - - -

RefCOCO+ testB
Task success Naturalness Grammaticality Main Aspects Correctness

LSTM+ATT 55.00% 71.42% 4 (4.17, 0.92) 2 (1.91, 0.93) 3 (3.25, 0.96)
Transformer 58.33% 92.85% 4 (3.62, 0.51) 3 (2.89, 0.64 ) 3 (3.07, 0.59)
Transformer+ RL 51.66% 90.78% 4 (3.67, 0.84) 3 (2.26, 0.99) 3 (2.91, 1.31)
Best by Yu et al. (2017) 58.20% - - - -

Table 6: Human Evaluation results. Median scores for systems, mean and standard devi-
ation in parentheses.

selected objects for each test set. We ask Amazon Mechanical Turk workers
to draw a box around the object that they believe is best described by a given
expression. If two workers chose the correct object, then the expression was
considered successful. Furthermore, we extend the existing human evaluation
protocol, by collecting ratings (from strongly disagree to strongly agree) for
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naturalness, grammaticality, main aspects and correctness (see Section 6.3).
We report the scores for the systems in Table 6.

We first evaluate the proposed attention model against the transformer.
The results presented in Table 6 demonstrate that the proposed transformer
model is more effective in task success compared to the attention model. Ad-
ditionally, we observe that it scores higher in naturalness of the produced re-
ferring expressions across datasets. Then, we evaluate whether the proposed
RL objective further improves the performance. The results are shown in
Table 6. We note that the proposed RL objective improves the success of
the produced referring expressions in RefCOCO dataset and in RefCOCO+
testA. However, it reduces the performance in RefCOCO+ testB. In order
to better understand the failure modes of our model, we present example ob-
jects with the corresponding referring expressions generated by each model
in Figure 8. We chose those examples for which human annotators success-
fully identified the target object described by an expression produced by the
transformer model trained with MLE, but failed to identify the same object
described by an expression produced by the transformer model optimized
with RL. For all three expressions generated by the MLE trained model pre-
sented in Figure 8, the human annotators found that the main aspects of
the objects were not described accurately but the objects were successfully
identified. Thus, we hypothesize that optimizing a model towards CIDEr,
concentrates the probability distribution to words that improve CIDEr, while
suppress those that are not beneficial for the metric. However, this concen-
tration of the probability around words that are beneficial for CIDEr might
adversely affect the success of REs.

8. Generation of a set of REs

This section aims to explore how decoding algorithms, training procedures
affect the accuracy-diversity trade-off. As our language model we chose the
transformer model (see Section 3.3) that achieved state-of-the-art results in
human evaluation for the one-shot generation. As training objective we use:
(1) the cross-entropy loss (see Section 3.4); and (2) the proposed RL method
(see Section 4). Table 7 shows the diversity parameter that controls the
accuracy-diversity trade-off for each of the employed decoding strategies.

Secondly, most of the published models are trained to generate a single
referring expression, thus we adapt the decoding strategies to generate a set
of REs. In particular, we use two approaches to generate a set: (1) for the
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Decoding method Hyperparameter
Random Sampling (RS) Temperature T
top-k Sampling The number k of tokens to be kept.
Nucleus Sampling (NS) The probability threshold q
Diverse beam Search (DBS) The diversity strength parameter λ
Beam search (BS) Temperature T

Table 7: The hyperparameter that controls the quality-diversity trade-off for each of the
decoding strategies used in this work.

Figure 9: Self-CIDEr and average CIDEr scores for random sampling with different tem-
perature values. The language model used is the proposed transformer trained with cross-
entropy (XE) and fine-tuned with the proposed RL objective.

randomization-based algorithms (e.g. random sampling), a set of referring
expressions is constructed by randomly sampling from the model’s learned
distribution; and (2) for normal and diverse beam search we use the beam
width to generate the set.

8.1. Random Sampling-based Decoding Methods

We first investigate how temperature affects the accuracy-diversity trade-
off for random sampling. As illustrated in Figure 9, higher sampling tem-
peratures result in both an increase in Self-CIDEr scores and a reduction
in average CIDEr scores. Interestingly, using CIDEr reward to fine-tune
the model will drastically reduce Self-CIDEr, while will increase the average
CIDEr score. Optimising the CIDEr reward encourages syntactic similarity
between the generated expressions and the ground truth expressions which
leads to low diversity. To illustrate the differences between the two objectives
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Figure 10: Self-CIDEr and average CIDEr scores for top-k and nucleus sampling for varying
k and q values. The temperature was set to T = 1. The language model used is the
proposed transformer trained with cross-entropy.

and how different temperature values affect the output, we present example
objects with the corresponding expressions generated by each model in Figure
11. First, we observe that for both objectives when the sampling temper-
ature is set to 0.1, the text is highly repetitive, mimicking greedy search.
Furthermore, when the temperature is set to 0.9, the model trained with
cross entropy produces output that is less fluent and incoherent (see Figure
11). However, minor changes are noticed to the output of the RL-trained
model. One interpretation of this behavior is that, the RL-trained model is
concentrated around words that benefit CIDEr. In other words, the learned
distribution of a RL-model is already skewed towards a few high probable to-
kens and thus invariant to the effect of temperature. Hence, we focus mainly
on the XE trained models.

Top-k and nucleus sampling have become an alternative to random sam-
pling. Both strategies sample from a truncated distribution. The difference
between the two is how they truncate the distribution; top-k sampling keeps
a fixed number of k tokens that have been assigned high-probability, while
nucleus sampling keeps those tokens whose cumulative probability mass ex-
ceeds a pre-defined threshold q. Figure 10 illustrates how the two strategies
affect the accuracy-diversity trade-off. We observe that nucleus sampling
achieves higher avg. CIDEr compared to top-k sampling. We hypothesize
that the reason for which top-k results in lower avg. CIDEr scores is that, the
distribution is truncated to a fixed number of tokens regardless of the input.
There might be cases that there are too many or too few probably tokens.
Thus, the fixed number of tokens could potentially lead to sub-optimal solu-
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Figure 11: Examples of objects and sets of expressions drawn from RefCOCO and Ref-
COCO+ datasets decoded with random sampling with varying temperature values. Hu-
man written expressions are also presented.

tions. On the contrary, nucleus sampling addresses this issue by dynamically
distilling the learned distribution.

8.2. Maximization-based Decoding Methods

The cross-entropy loss (see Equation 16) is minimized when the learned
distribution concentrates to the correct ground-truth token. This, ideally,
leads to a peaked probability distribution. Hence, the maximization-based
decoding methods assume that the model assigns higher probability to higher
quality output, and thus they strive to find the sequence with the highest
probability tokens. However, the model’s high-confidence over regions of the
vocabulary overestimates the use of frequent words resulting in repetition of
common words and phrases. Thus, we first investigate how the model’s con-
fidence affects the trade-off between diversity and accuracy for beam search
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Figure 12: Self-CIDEr and average CIDEr scores for beam search and diverse beam search
with varying temperature and diversity strength values for RefCOCO dataset.

by varying the softmax temperature. Figure 12 (top left and right) shows
how the temperature modulates the quality-diversity trade-off for RefCOCO
dataset. We first observe that unlike the random-based methods, lowering
the temperature increases the diversity. As temperature increases (6 1.5),
beam search generates sets with higher average CIDEr. Further increase in
temperature (> 2) hurts both accuracy and diversity.

Next we investigate how diverse beam search (see Section 5.1.3), a diversity-
promoting variant of beam search modulates the accuracy-diversity trade-off.
The trade-off is controlled by the diversity strength parameter λ, which we
vary between [0.1, 2]. We follow Vijayakumar et al. (2016b) and we set the
number of groups equal to the beam width (i.e. 5). In Figure 12 (bottom
left and right) we observe that as in sampling with temperature, lowering
the λ values decreases the diversity. Comparing the DBS with BS with tem-
perature, we notice that for same average CIDEr values BS achieves higher
diversity.
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Figure 13: Human judgment scores for quality and diversity for different hyperparameter
configurations.

Random Sampling T ∈ [0.3, 0.5, 0.7, 0.9]
top-k Sampling k ∈ [2, 5, 10, 15]
Nucleus Sampling q ∈ [0.3, 0.5, 0.7, 0.9]
Diverse beam Search λ ∈ [0.3, 0.6, 0.9, 1.4]
Beam search T ∈ [0.1, 1]

Table 8: Hyperparameter configurations used in our human evaluation for each of the
decoding strategies.

8.3. Human evaluation of sets of Referring Expressions

The analysis performed in the previous sections gave us vital insights into
how the different decoding methods move in the accuracy-diversity space.
However, human evaluation is still required to measure the quality and the
diversity of the generated expressions. Thus, we conducted human evalua-
tion in order to evaluate the performance of the decoding algorithms along
the entire quality-diversity space. In other words, the objective of our hu-
man evaluation is to measure the effect that diversity has on the quality of

38



sets of referring expressions. The decoding strategies used along with the
chosen hyperparameters are shown in Table 8. As language model we used
the transformer model described in Section 3.3 trained with MLE. Our hu-
man evaluation protocol is the following. First, we randomly selected 25
objects and for each object we created a set of 5 expressions. Second, we
showed each object along with a set of referring expressions to three human
annotators. For each of the expressions within a set, human annotators were
asked to evaluate whether or not the expression describes the referent object
unambiguously. An expression was considered successful if two annotators
agreed that the object is described unambiguously by the expression. The
quality score of a set is the number of successful referring expressions it con-
tains, while the overall quality score for a hyperparameter configuration is
the average number of successful referring expressions of all sets. Further-
more, human annotators were asked to give a diversity score (from 1 to 5,
the higher the better) for each set. The diversity score of a set is the average
score given by the three human annotators, while the diversity score for each
hyperparameter configuration is the average diversity score of all sets.

Figure 13 presents the results of our human evaluation study. We first
note that beam search and diverse beam search do not produce sets with
the highest generation quality. Nucleus sampling with q = 0.3 consistently
produces sets that have the highest quality ratings in both datasets. A natu-
ral question that arises is why maximization-based algorithms underperform
when it comes to the generation of a high quality set. Figure 14 shows ex-
amples of referent objects and the associated sets of referring expressions
for both decoding strategies for different hyperparameters. We observe that
both decoding strategies generate duplicate expressions within a set that
contain incorrect or shorter expressions that do not convey enough infor-
mation to facilitate the identification of the target object. Thus, reducing
the overall quality of the set. Furthermore, comparing the default softmax
temperature for beam search (T = 1) with a sharper distribution (T = 0.1),
we observe that the latter produces sets that have higher quality and diver-
sity. We hypothesize that reducing the temperature, leads to the exploration
and expansion of hypotheses that do not stem from one predominant root
hypothesis. This is consistent with the examples presented in Figure 14.

Furthermore, we observe that the quality of the sets varies significantly
for different levels of diversity for all decoding algorithms. The diversity
of the sets when aligned with the quality is comparable between all the
randomization-based decoding algorithms. It is at the extremes of their hy-
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Figure 14: Examples of objects and sets of expressions drawn from RefCOCO and Re-
fCOCO+ datasets. The expressions were decoded with beam search and diverse beam
search.

perparameters range, where the decoding algorithms heavily affect sampling
that their performance diverges. Based on the results shown in Figure 13 the
following observations can be made:

• Higher diversity results in lower human judgement scores for quality.

• Nucleus sampling produces sets with higher quality for the same level
of diversity between all the decoding strategies, with random sampling
performing second best, followed closely by top-k sampling.
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• Diverse beam search produces consistently sets with the least diversity.

• Beam search produces higher quality and diversity sets when the soft-
max temperature is set to T = 0.1 compared to the default value.
Interestingly, it produces sets with higher diversity than diverse beam
search.

9. Conclusions

There are three building blocks for neural REG models that follow the
encoder-decoder architecture: (1) the network architecture; (2) the decoding
algorithm; and (3) the learning strategy. In this work, we explored how the
choices for each of the three building blocks affect the generation of one-shot
expressions as well the generation of sets of referring expressions. First, we
demonstrated the benefits of incorporating an object attention mechanism
in the language model. Our approach allows the attention mechanism to be
calculated at the level of the referent object. We demonstrated that applying
this approach to REG results in significant benefits compared to the standard
LSTM model. Our results on RefCOCO and RefCOCO+ shows an increase,
on average, of 0.26 and 0.12 in CIDEr scores respectively. Our qualitative
analysis showed that the attention mechanism results in an improvement in
determining fine appearance attributes of the target object as well as an
improvement in expressing the absolute and relative location of the target
object. Unlike the standard LSTM, the proposed attention mechanism allows
the language model to consider all the information pertaining the referent
object at once. In other words, instead of letting the language model to
hallucinate over the attributes of the target object, the attention mechanism
enables the language model to take multiple glimpses of the salient parts of
the object’s region during generation. Our human evaluation study showed
that the proposed model performs comparable with the state-of-the art (Yu
et al., 2017). In particular, in RefCOCO+ testA it achieves an increase from
58.85% to 76.66% in task success.

Furthermore, to demonstrate the benefits of attention in REG, we care-
fully devised a transformer architecture that is noticeably effective in REG.
We showed that reducing the depth of the network from 6 layers to 3 results
in an improvement in automatic metrics. Moreover, we proposed a different
connectivity pattern between the encoder and the decoder, by connecting
each layer of the encoder with the respective decoder layer. Our results on
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RefCOCO and RefCOCO+ datasets demonstrate significant improvements
over the standard architecture. We also presented qualitative examples of
how the proposed connectivity improves the spatial awareness and the infer-
ence of fine appearance attributes. Our human evaluation study showed that
the proposed transformer produces expressions that are more human-like, ac-
curate and describing the main aspects of the target object better than the
proposed attention LSTM. In addition, our results in task success improves
over the state-of-the-art results in RefCOCO testA from 76.95% to 78.33%
and in RefCOCO+ testA from 58.85% to 80.00%.

Next, we presented a simple and efficient approach to effectively train
our language models on non-differentiable sequence metrics. Our approach
is a variation of the popular REINFORCE algorithm that utilizes multiple
samples per input to normalize the reward that it observes. We showed that
the proposed approach reduces the variance of the gradient more effectively
compared to the self-critical sequence training. Empirically we found that
directly optimizing the CIDEr metric is highly effective. Our human evalua-
tion results on RefCOCO and RefCOCO+ dataset establish a new state-of-
the art. We improved the results in ReFCOCO testA and testB from 76.95%
to 81.66% and from 78.10% to 83.33% respectively. While in RefCOCO+
testA we improved the best results from 58.85% to 83.33%.

Finally, the choice of the decoding strategy is critical in controlling the
trade-off between quality and diversity. Thus, we evaluated the ability of
existing decoding algorithms to generate sets of referring expressions by com-
paring their performance along the entire quality-diversity space. We intro-
duced the first large-scale human evaluation study in REG, that compares
the quality of sets of referring expressions at the same levels of diversity.
We found that beam search produces sets with higher quality and diversity
when the softmax temperature is set to T = 0.1 compared to the default
value T = 1. Second, both beam search and diverse beam search result in
less successful expressions per set compared to the rest decoding algorithms
at equal points of diversity. We showed that duplicate wrong expressions
within the sets reduce the quality significantly. Finally, our findings suggest
that nucleus sampling, produces higher quality sets at the same levels of
diversity amongst the compared decoding strategies, with random sampling
performing second best, followed by top-k sampling.
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