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Abstract

Hyper-heuristics is a collection of search methods for selecting, combining and generating heuris-

tics used to solve combinatorial optimisation problems. The primary objective of hyper-heuristics

research is to develop more generally applicable search procedures that can be easily applied to a

wide variety of problems. However, current hyper-heuristic architectures assume the existence of a

domain barrier that does not allow low-level heuristics or operators to be applied outside their de-

signed problem domain. Additionally the representation used to encode solvers differs from the one

used to encode solutions. This means that hyper-heuristic internal components can not be optimised

by the system itself. In this thesis we address these issues by using graph reformulations of selected

problems and search in the space of operators by using Grammatical Evolution techniques to evolve

new perturbative and constructive heuristics. The low-level heuristics (representing graph transfor-

mations) are evolved using a single grammar which is capable of adapting to multiple domains. We

test our generators of heuristics on instances of the Travelling Salesman Problem, Knapsack Problem

and Load Balancing Problem and show that the best evolved heuristics can compete with human

written heuristics and representations designed for each problem domain. Further we propose a

conceptual framework for the production and combination of graph structures. We show how these

concepts can be used to describe and provide a representation for problems in combinatorics and

the inner mechanics of hyper-heuristic systems. The final contribution is a new benchmark that can

generate problem instances for multiple problem domains that can be used for the assessment of

multi-domain problem solvers.
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Chapter 1

Introduction

Combinatorial problems pervade human activities: from scheduling classes for schools (from primary

to higher education), scheduling staff in businesses (from restaurants to hospitals, shops and facto-

ries), organising deliveries, structuring the topology and running of networks (electric, gas, water

and data), to budgeting, stock trading and management of portfolios, supply chain management

and more [104]. Although new methods are continuously developed and the computational power

we have access to has increased exponentially for several decades, we still struggle to apply compu-

tational methods to optimise these problems efficiently. Going from identification of the problem to

implementation of a computer mediated solution takes significant amount of time and effort, and

this can be exacerbated if the condition of the problem changes or new problems appear.

A common approach used to solve these types of problems is to implement heuristic methods that

can trade the solution’s optimality for resources (such as time and/or memory) required to compute

the solution. This allows the creation of less than optimal solutions in “reasonable” time for human

applications. What a “reasonable” amount of time is depends on the specifics of each problem and

may vary from milliseconds to months. The advantage behind this idea is that heuristic methods

allow us to go from unfeasible to feasible strategies (in terms of physical or budgetary requirements

rather than mathematical limits). However, the creation of heuristics for real-world applications is

still in large an art that requires human intuition and ingenuity [79, 35].

On this matter, the field of hyper-heuristics [23] has devoted the last two decades to increasing

1



CHAPTER 1. INTRODUCTION 2

the generality and applicability of heuristic methods to combinatorial optimisation problems. At

the highest level hyper-heuristics have already developed a number of techniques in the spirit of

cross-domain applicability. This has taken various forms such as selecting heuristics from a pool

of available heuristics [46], generating new heuristics from components [25] or combining multiple

existing heuristics that become tailored to solve specific problem classes [132]. These heuristics

are normally called “high-level heuristics”. They normally manage “low-level heuristics”, which

are heuristics that directly manipulate the solution of a given problem. One of the main issues of

low-level heuristics is that they operate only on a specific representation of a problem (i.e. list of

booleans, integers or matrices). They are only applicable to the original representation they were

designed to operate on and not on any other representation. This limits the generality of solver

systems and makes it difficult to solve problems from new domains that require the manual creation

of new low-level heuristics or representations.

In this thesis we embrace the hyper-heuristic philosophy and investigate various approaches that

could help advance the generality and applicability of this methodology. We investigate methodolo-

gies that allow hyper-heuristic systems to generate low level heuristics, applicable to combinatorial

optimisation problems belonging to different domains that are as generic as possible. While the

question is often “how do we solve this specific problem to optimality?” our desire is to investigate

“how can we solve this new problem that we currently do not have methods to deal with?”. This

is a much broader question that guides the choice of use cases described in this thesis. Sim [145],

who developed techniques able to tackle problems from different classes within a domain efficiently,

previously speculated that hyper-heuristic methods could transcend domain boundaries. This is

something that the field of meta-heuristics have been attempting to achieve for about half a century

now, yet the bulk of the research in the field tends to focus on specific problem domains and specific

strategies that help the algorithm reach new levels of optimality within a single domain.

The work presented here can be divided into three parts.

The first part, composed of Chapter 2 (Fundamentals) and 3 (Theoretical and Practical Tools),

sets the scene by introducing the fundamental ideas about combinatorial optimisation, hyper-

heuristics and graph based representation. Respectively, the problems we wish to solve, the solvers
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we apply and the abstraction used to represent them. This is followed by a review of Grammati-

cal Evolution, which is a methodology inspired by evolutionary processes used to produce snippets

of code in an arbitrary language, order theory and geometry which are disciplines from which we

borrow ideas and use them to develop the heuristic generators from Chapter 4 and 5.

The second part is composed of Chapter 4 (Synthesising Constructive Heuristics) and 5 (Syn-

thesising Perturbative Heuristics) that has strong empirical component and is dedicated to the

evaluation of whether we can automate the production of heuristics where a single grammar based

approach and representation are used to produce heuristics for multiple domains. These genera-

tors of heuristics are tasked with producing heuristics for the Travelling Salesman Problem and the

Multidimensional Knapsack Problem. In particular, contrary to common approaches, we study how

heuristics can be evolved so that they can efficiently be applied on representations that are not

“natural” to the problem, forcing different problem domains to share the same representation. This

allows operators to become applicable on both problem domains and the bulk of the computational

effort is spent searching for variants of the operators that work well for each specific problem do-

main. We show how different heuristic operators, produced by a single system, can be evolved to

solve different problems encoded over the same representation and we compare them with other

methods taken from the literature.

The third part of the thesis is more theoretical in nature. Following the results of the experiment

on generative hyper-heuristics we develop a representation that could suit future experiments with

the goal of establishing methods that can be applied to as many domains as possible. In particular

we developed a representation that could also be used to model the various part of hyper-heuristic

systems themselves so they could be rewritten and optimised automatically.

In Chapter 6 we show that the mechanics normally present in hyper-heuristic systems can be

described with the language and notation we have suggested. Finally we implement a scenario

generator that makes use of the proposed formalism and produces scenarios for 3 different domains.

The scenarios are combinatorial optimisation problems related to logistics. The purpose of the

generator is multi-fold. It shows that the formal description can be translated into an empirical

model and at the same time it is developed to facilitate the evaluation of multi-domain problem

solvers. As algorithms tend to be evaluated over specific problem domains, there is a lack of tools for
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the evaluation of algorithms over a range of different problem domains. This is the case even though

real problems are notoriously multi-domain i.e. factories have to manage staff shifts, deliveries, assign

jobs to machines and schedule maintenance all in the same environment, classical meta-heuristics

would require a user to work with multiple representation and algorithms. Even from a purely

academic research standpoint this would be inconvenient due to the fact that evaluations based

on comparative approaches would require the use of different benchmarks with different encoding.

Testing solvers on them would require a new interface for each new domain which become unfeasible

as the number of domains grows.

1.1 Research Questions

In this thesis we explore the idea that one representation can be used for a large variety of tasks

given a number of trade offs. This is in contrast to the approach of using specific representations

for each specific problem domain or subdomain. This is investigated as a possible complementary

pathway that could increase the generality of multi-domain problem solving systems.

The thesis addresses the following questions:

1. To what extent can a single hyper-heuristic generator be used to synthesise heuristics for

multiple combinatorial domains, assuming a common representation?

2. To what extent is a graph-based formalism able to express combinatorial problems and the

constituent parts of complex hyper-heuristic algorithms so that more general hyper-heuristic

optimisers could be developed?

Question 1 is answered in Chapter 4 and 5 where two grammars are proposed and developed in

order to automatically synthesises heuristics for different combinatorial optimisation problems. The

heuristics evolved with this approach are tested on well established benchmarks for each problem

domain and compared with other techniques taken from the literature.

Question 2 is answered in Chapter 6 where first we propose a formalism for the definition and

combination of graph structures and then implement some of its elements in Chapter 7 where it

is shown empirically that it can be used to generate problem instances from a variety of domains

constructed using data from real world road networks and synthetic data.
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1.2 Thesis Contributions

• A novel algorithm and grammar for the generation of constructive heuristics that can evolve

domain specific heuristics for the Travelling Salesman Problem and Multidimensional Knap-

sack Problem (Chapter 4). Empirical evaluations of the system have shown that it is feasible

to use a single representation for more than one domain as long as an appropriate operator

is applied to it. In contrast to previous results that used custom human heuristics, in these

experiments heuristics for both domains are automatically generated.

• A novel algorithm and an alternative grammar for the generation of perturbative heuristics that

can evolve domain specific heuristic for the Travelling Salesman Problem, Multidimensional

Knapsack Problem and Load Balancing Problem (Chapter 5). The results of the experiments

reconfirmed that, given sufficient computation, an appropriate operator can be evolved from

building blocks that permute and invert elements of a sequence.

• The development of a meta-modelling language for the description of high level properties of

graphs and their specific low level structure (Chapter 6). It is shown that the language devel-

oped can be used to easily describe the fundamental components of hyper-heuristic systems

and their mechanics.

• The definition and implementation a problem specification describing a collection of combi-

natorial optimisation problems from different domains. The implementation makes use of the

language to describe the problem’s high level constraints. Real world data are fed in the

problem synthesiser to create a novel set of new benchmark problem instances (Chapter 7)

1.3 Layout of the thesis

• Chapter 2 Fundamentals: a review of the fields that the thesis builds upon. It introduces

the idea of Combinatorial Optimisation as the main category of problems we wish to address,

hyper-heuristics in their various forms as the main tool set to address the problems and finally

Graphs and Graph Transformations that will be our representation instruments describing

problems and solvers.
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• Chapter 3 Theoretical and Practical Tools: a review of the most important tools and methods

used in the thesis, starting with Grammatical Evolution that is the engine that produces and

evolves heuristics, Order theory that provide notions vital to the approaches developed such

as ranking, sorting, inversions and permutations. Finally Geometry that gives the bases of

measures and the properties used in the grammar developed in Chapter 4

• Chapter 4 - Synthesising Constructive Heuristics: Contains an empirical study on generating

constructive heuristics for multiple domains applied to the same representation

• Chapter 5 - Synthesising Perturbative Heuristics: Contains an empirical study on generating

perturbative heuristics for multiple domains

• Chapter 6 - A Conceptual Framework for the production of Graphs: presents a meta-modelling

language for the high level description and manipulation of graph structures and a description

of common hyper-heuristic mechanics

• Chapter 7 - Graph Based Problem Scenario Synthesis - presents the definition and implemen-

tation of problem domains and instance generators modelled using the proposed framework

• Chapter 8 - Conclusions: this is the final Chapter of the thesis which summarises the main

outputs of the thesis and pathways for future research

1.4 Publications

• Stone, Christopher, Emma Hart, and Ben Paechter. “Automatic generation of constructive

heuristics for multiple types of combinatorial optimisation problems with grammatical evolu-

tion and geometric graphs.” Applications of Evolutionary Computation - 21st International

Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018, Proceedings. Volume 10784.

Pages 578–593. Springer, Cham, 2018.

• Stone, Christopher, Emma Hart, and Ben Paechter. “On the Synthesis of Perturbative Heuris-

tics for Multiple Combinatorial Optimisation Domains.” Parallel Problem Solving from Nature

- PPSN XV - 15th International Conference, Coimbra, Portugal, September 8-12, 2018, Pro-

ceedings, Part I. Volume 11101. Pages 170-182. Springer, Cham, 2018.



Chapter 2

Fundamentals

This thesis revolves around three main disciplines that are broad fields of study: Combinatorial

optimisation problems (the problem), hyper-heuristics methodologies (the solver) and graphs (their

representation).

In this chapter they will be briefly introduced. In particular the ubiquity of combinatorial

optimisation problems which form a giant family of related, yet extremely diverse, problems will be

stressed. This is followed by a review of hyper-heuristics that is the chosen approach to deal with

the issue of having to solve many different problems from different domains.

2.1 Combinatorial Optimisation

Combinatorial Optimisation (CO) is concerned with finding an optimal configuration among a set of

discrete and finite amount of objects or structures. If in combinatorics the foundational question is

“how many combinations?” in combinatorial optimisation it is often “what is the best combination

of them all?”. This is assuming that we are able to measure in some way the quality of the possible

combinations. Combinatorial optimisation problems arise in many fields, from operations research,

network design of all kinds, to telecommunication and computer science [83]. Many sub-problems

within these fields are part of a grand family of problems all related to each other as they belong to

the complexity class of NP-complete problems. While an important characteristic of NP-complete

7
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problems is that one can reformulate one problem into any another (i.e. a routing problem into

a boolean satisfiability problem or a bin packing into a routing problem), this operation is not

trivial [118] and may add significant computational costs, more precisely in polynomial time. An

even bigger issue is that different problems, even belonging to the same class, may require different

solving strategies to be solved efficiently. Below we describe a small sample of these problems to

convey an idea of their diversity and pervasiveness.

It should be clarified that the word “solve” and “solved” have different meanings in different

fields. In mathematics, a problem in optimisation is considered “solved” when the point of global

maximum or minimum has been found. While in management engineering, an optimisation problem

is considered “solved” when a sufficiently good solution has been found even if better solutions may

exist. In this manuscript we will use the latter interpretation of the word. Further, the use of the

word “solving” will mean “searching for a solution” regardless of the outcomes of the search.

A common example of a CO problem is the Travelling Salesman Problem (TSP) where an agent

has to visit n cities and has to visit every city and return home and must minimise the amount of

distance travelled [97]. The number of possible routes available is given by the formula x = (n− 1)!,

a TSP where an agent has to visit 100 cities contains already more than 10155 possible routes and

it is not trivial to prove that any given solution is better than all the others. This example does

not take into consideration time, traffic or routes that are incorrect such as the agent visiting the

same city multiple times or not arriving at home as the last stop. Similar examples can be made for

counting the number of ways a circuit can be wired or a timetable organised [65].

Many routing problems are combinatorial in nature. For example delivering multiple packages,

picking up people or packages, organising repairman routes or nurses visits [159]. This extends to

the routing of data within a network. It is easy to see that sub-optimal solutions to these problems

lead to an increase in costs, time of execution, resources used and potentially amount of pollution

caused with large scale economic and social effects.

Packing problems are another large class of combinatorial problems [38] where a number of

objects have to be packed in some container. This is not just a problem of objects to be placed

in a container for delivery but the problem of choosing a subset from a larger set while trying to

maximise some objective, i.e. buying assets within a budget in order to resell them and maximise
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profits, loading cargo in a balanced manner or fitting tiles within a surface.

Scheduling problems are the class of mathematical optimisation problems that formalise assigning

tasks to resources at a particular time and/or in a particular order [81]. The problem is usually for-

mulated by declaring two collections : n jobs J1,J2...Jn to be processed and m resources R1,R2,...Rm

in which these tasks may be completed. The problem is to minimise the makespan C, where C is

the total amount of time required to complete all the jobs. Timetabling problems are a common

example of resource allocation and scheduling within education establishments. In particular they

normally come with a large amount of constraints e.g.

• no students can be scheduled at more than one event at a time

• the room meets all features required by the event

• room capacity is respected

• no more than one event is allowed per room and per timeslot

Special cases and extensions of this problem can take various forms: jobs can be programs to

be executed and the resources can be collections of computers, jobs can be objects to be built and

workers can be human employees. Alternatively the amount to minimise could be both time and

the energy consumed to complete all the jobs, jobs can be lecturers and the resources classrooms

and the goal could be minimising student and time constraints.

Configuration of networks of all kinds leads to combinatorial optimisation problems. For example,

in the construction of water networks the type and size of pipes have to be decided, as well as the

number of valves, size of the valves and the specific state of the valves [93]. This problem reappears

in a variety of other network, such as electric networks, where the type and size of wires, number

and size of electric switches and again their state have to be decided. The same could be stated

for gas networks, oil networks, or networks for any other type of fluid up to road networks and

vehicle traffic. This can also be extended to data networks where valves are substituted with relays

and optic switches and connections can be optic, electric and wireless. These decisions ultimately

determine the configuration of the network, its cost, how long is going to take to build and maintain

it, and what is the flow that the network will be able to sustain. It is important to highlight that

the economic consequences of these decisions can influence the budgets of nations for decades.
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Furthermore, it is important to highlight how in real scenarios different types of network are

tightly connected, for example as a spill of water can interrupt a road network and may interrupt

electric and communication networks. To an even greater extent this can be said for oil and gas

networks. Car accidents (road network spills) can damage other networks and this happens globally

with considerable frequency.

However this is rarely true for models as each network exists in its own silo and breaking a

constraint usually means the solution receives a single penalty (often fixed extra cost or time) [30].

This is a known issue and examples already exist in the attempt to tackle this matter such as the

travelling thief, that nest the problem of optimising routes and packing [19]. This is not just a

problem of a reality gap between the model and the real world but a modelling problem too. In the

sense that the most common graph theoretical models used in combinatorial optimisation literature

cannot describe multi-typed networks in which chain reactions that modify the configuration and

topology of the networks across types take place. In the majority of cases only single type static

networks are considered [93].

In order to solve these types of problems, or at least simplified models of the problems, a large

collection of methodologies have been developed in the past century. In particular a surge in effort

sprung during the Second World War as more principled and mathematical approaches become

dedicated to issues such as logistics and resource allocation. In particular Kantorovich developed

mathematical methods for the optimal allocation of resources when he was consulting with the Soviet

government in 1939 [84] that led to him winning a Nobel prize in 1975; and independently Dantzig

developed the ground breaking simplex method while working for the U.S. Air Force which was

published in 1947 [155]. These results paved the way to a variety of approaches for combinatorial

optimisation that relied on geometric and algebraic methods [67].

An important property of NP-Complete problems is that they can be “reduced” to other problems

of equivalent difficulty. Reductions are the most common tool used to verify the computational

complexity of new problem classes. This is also exploited so that specific solvers such as SAT-solvers

can be applied to a variety of problems as long as the appropriate reduction or reformulation is

applied [68]. Like other methods this has a number of advantages and disadvantages that are class

and instance dependent. The main advantage being that one solver can be used for several domains
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and the main disadvantage is that problems, once turned into SAT problems, may take a lot longer

to find solutions or use vastly more memory [103]. This is often the case for satisfiability modulo

theories (SMT) turned into SAT. Also SAT solvers performance may vary greatly on the same

problem depending on the internal heuristics that are implemented [131].

Another approach relies on the use of ‘heuristics’ that do not guarantee optimal results but may

be sufficiently good for the immediate needs. This often involves a trade off between the optimality

of the results and the time taken to generate a solution to the problem [37]. Along this ideas the

field of meta-heuristics started using higher level procedures that make little assumption about the

underlying problem in order to be applicable to a larger variety of problems [16]. Genetic algorithms

[101] and ant colony optimisation algorithms[44] are some of the most famous examples.

One of the most recent approaches to solve combinatorial optimisation problems combines both

collections of heuristics and meta-heuristics under the name of hyper-heuristics.

2.2 Hyper-Heuristics

Hyper-heuristics is a broad approach to problem solving. It uses combinations of heuristics in order

to leverage the strengths of multiple methodologies to increase the generality of problem solvers [23].

Burke et al. define the term hyper-heuristics as: “ an automated methodology for selecting or

generating heuristics to solve hard computational search problems.”

One of the first uses of this kind of approach, even if under another name, was implemented by

Denzinger et al in 1996 [43] where they created an automatic theorem proving engine based on a

collection of AI techniques that would prove simple theorems and use them to create more complex

proofs. In their work they call this methodology “TEAMWORK”. Their principle was based on

the idea of having a collection of agents specialised in different methods that work concurrently and

cooperatively. Some agents look for new solutions while others look at old problems and assess how

similar they are to the new problem and may suggest them for consideration. But the methodology

of using collections of heuristics, in the context of automated problem solving, can be traced back

to 1959 where Gelernter [59], in his work on “The Geometry Machine”, used it to prove theorems in

Euclidean geometry (incidentally using diagrams and graphs to construct solutions) and also used

to investigate the potential of heuristic methods for mathematical discovery. His prototype was able
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to find proof for problems in geometry normally given to high-school sophomores.

The term “hyper-heuristic” was coined by Cowling et al in 2000 [39], in order to highlight the

higher level of abstraction compared to meta-heuristic approaches. Over time the meaning of the

term has evolved from “heuristics to choose heuristics” to encompass a number of diverse methods

which include the generation of new heuristics and learning mechanisms. An extensive survey about

the inception of hyper-heuristics approaches has been written by Burke et al in [23], which also

gives an account of the various domains tackled using these approaches including scheduling [75],

timetabling [29], packing [132] and vehicle routing [57].

Figure 2.1: Classification of hyper-heuristics approaches taken from [24]

Figure 2.1 [24] shows a diagram of the most modern interpretation of hyper-heuristic methods

where a main hyper-heuristic system orchestrates the use of lower level heuristics, by choosing

available heuristics or generating new ones. Heuristics can be constructive, which start from an

empty solution and construct a complete solution one step at a time, or perturbative, which means

that they take a complete solution as an input and modify it according to some heuristic method

often called a move operator. The system may have different kinds of learning methodologies or

none at all. Learning is usually divided in two main styles: Online Learning and Offline Learning.

Online Learning is the ability of a hyper-heuristic system to evaluate information gathered during

the current search and utilise it to guide the successive steps of the search in the heuristic landscape.

The information is normally discarded at the end of the search [147]
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Offline Learning : Learning is achieved by using previous searches as a training set. It is usually

done before the new problem is tackled and independently from it [107].

Perturbative Heuristics are heuristics that start from an already complete solution and at-

tempt to improve it by perturbing some property of the solution while maintaining its validity [127].

This could affect the order of the items in a solution or the values of the variables in a solution

and depends on the specific problem class. This is usually achieved using operators borrowed from

classical meta-heuristics algorithm such as mutation, hill climbing, annealing operators or what are

generally called neighbourhood operators. Perturbative heuristics can be applied an arbitrary num-

ber of times to the solution, usually determined by number of iterations, time or fitness attained by

the solution.

Construction Heuristics are those heuristics that can build a solution “from scratch” [1].

This means that they are able to start from an empty set and iteratively add elements until a valid

solution is completed. An example of this heuristic is the nearest neighbour algorithm that is used

to solve instances of the travelling salesman problem [86]. At each iteration a new edge is connected

simply by selecting the vertex that is closest to the previously connected vertex until all vertices are

connected.

Generative hyper-heuristic techniques involve the production of new heuristics using some other

heuristic or meta-heuristic approach. The majority of modern hyper-heuristic frameworks utilise

Genetic Programming(GP) for the production of heuristics. Genetic Programming is a collection

of techniques that explore the space of programs using Darwinian principles similar to Genetic

Algorithms. In its classical implementation, developed by Koza [91], programs are represented as

trees. Depending on the domain of the problem the resulting output of the program could be

anything from a collection of objects to be packed, a list of cities to be visited or the program itself

could be a mathematical formula that is used to determine some decision. For example the chances

of visiting any given city next.

Selection hyper-heuristics are methods with which the system chooses heuristics from an avail-

able pool of heuristics [27]. The heuristic selected can be either constructive or perturbative. Nor-

mally the heuristics that can be selected are called low-level heuristics and their applicability depends

on their compatibility with the solution’s representation.
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These techniques, combined with suitable low-level heuristics, are able to tackle a wide variety

of problem classes and have been applied successfully to combinatorial problems outperforming

current state-of-the-art approaches [148] [15]. Projects such as HyFlex are built with the goal of

being applicable to as many problem as possible [106]. In HyFlex, high level heuristics manage a

collection of problem specific heuristics in a modular way. These problem specific heuristics can

each be applied to one domain and together can tackle a diverse set of problem domains. In its

present implementation, six different hard combinatorial optimisation problems are implemented.

Nevertheless low-level heuristics are tied to their representation in their applicability to a solution.

This characteristic is embedded in hyper-heuristics practices and all systems assume that there is

a “domain barrier” that make operators inapplicable across domains. Differently from classical

practices, this thesis builds around the idea that the barrier is only between specific operators and

representations but not between problem domains per se. In Section 2.2 a typical diagram of a

hyper-heuristic system [154] can be seen referring to the domain barrier which prevents operators

from being applied. It is the belief of the author that it would be more correct to call this limitation

a representation barrier . This is due to the fact that it is the representation that ultimately

precludes the applicability of a heuristic and if two different domains are modelled using the same

representation then a given heuristic could be applied to both.
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Figure 2.2: Common hyper-heuristic diagram taken from [154]

One of the goals of this work is increasing the generality of hyper-heuristic methods. This

is achieved using a single representation for multiple different problem domains and synthesising

collections of operators that are specialised to be effective on the specific domains. This is in

contrast to the classical approach of designing domain specific representations and tailing operators

around the specific combination of problems and representations. The specialisation happens using

general methods of evolving low-level heuristics that are applicable to graph based representations.

The low-level heuristics evolved in such a way that they are tied to the constraints of the problem

instead of the specific representation chosen for the problem. In the following section we will take

into consideration how and why graphs can be used to fulfil these needs.

2.3 Graphs and Graph Rewriting

One of the arguments put forward in this thesis is based on the impracticality of hand-designing

specific representations for each single domain, which for large multi problem systems is equivalent
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to saying that each subsystem that deals with a different domain should be represented differently

in some “optimal” way. This task is almost entirely left to the expertise of the developer deciding

on encodings and mappings. In the majority of cases the recommendations that can be found in

the literature, based on empirical results, are only applicable to the specific benchmarks on which

the representation was tested. In real scenarios the actual problem will be different from any given

benchmark and hence results may be vastly different.

Here we consider the approach of using graphs as higher-level representations that describe

problem structures, but can also be utilised for describing solver mechanics as well. This is important

because hyper-heuristics are not only a tool for solving CO problems, but hyper-heuristic systems

themselves contain CO problems within their own internal mechanics (i.e. selecting a subset of

heuristics, choosing in which order to apply a sequence of heuristics and how many times each

operator should be applied). Therefore it is desirable to be able to describe both using the same

type of representation.

A graph is a mathematical structure formed by vertices and edges connecting the vertices. De-

pending on the author, vertices can be called nodes or points and edges may be called arcs. More

formally a graph G = (V,E) consists of a set of objects V = v1,v2, ...,vn called vertices and a set of

objects E = e1,e2,...,en called edges which are a subset of VxV.

Any object that involves points and connections between them may be called a graph. Configu-

ration of vertices and edges occur in a great diversity of applications. They may represent physical

networks, such as electrical circuits, roadways, or organic molecules. They are also used in represent-

ing less tangible interactions such as ecosystems, sociological relationships, databases, or in the flow

of control in a computer program. There is no unique way of drawing a graph; the relative positions

of points representing vertices and lines representing edges have no significance (with exceptions

such as in Euclidean graphs).

Various forms of graph theory have been used in the context of combinatorics to model problems

in a formal manner. In particular, graph based models have been used to encode constraints within

problems such as in [22] by Bujstas et al which models a bin-packing problem where some item

types cannot be placed in the same bin, thus creating a conflict graph where the items are encoded

as nodes and conflict between items as edges between those nodes. Travelling salesman problems
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are often two dimensional and modelled as planar graphs forming a Hamiltonian path in which the

goal is to minimize the total length of all the edges [14]. Scheduling problems are normally turned

into graph colouring problems where the problem can be represented by a conflict graph where the

vertices are the jobs and the edges represent a conflict between two jobs sharing the same resources.

Each time slot (or resource) is represented by a colour (or an integer) that is assigned to the vertices

of the graph. This becomes equivalent to finding the chromatic number of the graph (which is still

NP-hard) [94]. Scheduling problems can take different forms such as the Nurse Scheduling Problem

[63], Exam Timetabling [139], the Job Shop Scheduling Problem [90], aircraft scheduling or TV

program scheduling [117].

Graph theoretical approaches have been used to provide insight and basis for models in the

area of Operations Research [66]. In [157] Wagner and Neshat measure and manage supply chain

vulnerabilities using graph modelling. Graph based descriptions are used in the catalogue of global

constraints in an effort to accelerate and improve the areas of constraint programming and related

operations research activities [13]. An example of adaptive workflow scheduling that considers

resource allocation constraints and network dynamics that are built upon a graph theoretical model

can be found in [10].

In electrical engineering, graph theory provides an elegant formulation of Kirchhoff’s laws [80],

allows the modelling of electronic circuits, facilitates the synthesis of circuit paths [156], describes

signal flows, assists in fault diagnosis [153] and finally it has been used to provide an underlying

model for the automated design of efficient digital circuits by mean of evolutionary computation

[100]. Graph theory is used for scheduling tasks in multi-core processors in order to simultaneously

optimise performance and energy consumption [31]. In industrial engineering it is used to model the

production planning and control, and assist with the design of the layout of physical facilities [143].

Graph theory is used as an abstraction tool in many successful industrial applications, where

efficiency is a vital element, such as: Google’s page rank algorithm [116], Amazon and Netflix

recommendation systems[18], Drug Discovery [5], General Electric’s power distribution system[53]

and GSM mobile phone network frequency assignments[56]. While the success of a company is

dictated by many other variables, it is encouraging that they choose graphs to model their framework.

Nonetheless aligning the modelling standards of hyper-heuristics to one used in the industry could
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be valuable in its own right. The results of this research will provide an empirical evaluation to

establish if these speculations are correct and to what degree.

Graph rewriting or graph transformation systems [77] are collections of substitution rules that

define languages that modify graphs in order to produce new graphs. This type of system can be

used to describe the mechanics of algorithms that aim at modifying or constructing graphs where

graphs are solutions to combinatorial optimisation problems. Thanks to the work of Ehrig [52] on

graph grammars and typed graphs, it was shown that graph transformation systems can be used as

models of computation: further this model of computation has been shown to be Turing complete

[71]. This means that, potentially, any program that can be computed by a Turing machine can also

be simulated by a Graph Transformation system.

The notion of Graph Transformation comprises the concepts of graph grammars and graph

rewriting. It is a discipline in Computer Science which dates back to the early 1970s. Its core idea

is the rule-based modification of graphs, where each application of a graph rule leads to a graph

transformation step [134]. Methods, techniques and results from the area of graph transformation

have already been studied and applied in several fields of computer science, including compiler

construction, software engineering, modelling of concurrent and distributed systems, database design

and theory, logical and functional programming and artificial intelligence and visual modelling [7]

[49].

Graph Transformation has three different roots [51]:

• from Chomsky grammars on strings to graph grammars,

• from term rewriting to graph rewriting,

• from textual description to visual modelling.

One of the main drivers for the creation of the concept of Computing by Graph Transformation

was to move away from computation based on term rewriting and tree transformation, because trees

do not allow sharing of common substructures which is one of the main reasons for efficiency problems

in functional and logical programs. This computational model is applicable at low levels and is able

to provide specification and implementation of systems by graph transformation. Graphs and their

transformations provide an expressive way to represent entities via vertices and relationships between
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them as edges and in this model computation is achieved by describing the changes in the relations

between the entities, the entities themselves or by changes in the attributes of the graph’s elements.

Graph transformations are implemented via rule-based modification of graphs. The core of the

rule or production p = (L,R) is a pair of graphs L,R, called left hand side L and right hand side

R. Applying the rule p means finding a match of L in a source graph and replacing L with R and

connecting R with the context of the graph [50]. Where the context are all those elements connected

to L. This can also be interpreted as a rule where L contains the pre-condition necessary for the

application of the rule and R the post-conditions that are implemented after the application of the

rule. This simple approach provides a mathematical formalism that gives a way to prove that a

condition of the system is met and to modify the system while ensuring that the specified properties

are preserved after some change.

It should be highlighted that while graph transformations and hyper-heuristics are both part of

Computer Science they barely interact within or outside academia. The former is used to develop

precise formalisms for graph databases, formal languages, model driven development, code generation

and compiler optimisation with well defined policies [52], while the latter is mostly driven by heuristic

rules and a lack of theoretical foundations which, in most cases, is developed in an attempt to

understand how these algorithms can be so successful [122].

2.4 Summary

In this chapter we covered three broad fields presenting the usefulness of hyper-heuristics methods.

We highlighted that the field focuses on combining strategies and often assumes that a set of low-

level heuristics is available. Further, we noted that there is a lack of methods for generating low-level

heuristics that can produce heuristics for more than one specific domain. Finally we considered the

versatility of graph based representation that seem an ideal candidate for increasing the number

of domains a representation can cover. We will now introduce some specific tools that play an

important role in the proposed research.



Chapter 3

Theoretical and Practical Tools

In this chapter we introduce theoretical and practical tools that are employed to model key elements

of the systems developed in this manuscript and used in the implementations of our experiments.

It begins by introducing grammatical evolution that is a methodology inspired by evolutionary

processes which can construct sequences in an arbitrary language. This methodology is used for the

synthesis of both constructive and perturbative heuristics. Finally some elements of geometry are

reviewed; a field precursor of graph theory, that is interested with points, lines, angles, distances,

shapes and proportions. These notions are integral to the grammar developed for the synthesis of

constructive heuristics in chapter 3 and to the idea of transforming a set of parameters into a point.

This allows the use of spatial properties between points as a source of information which can be used

to make a heuristic decision. The chapter concludes with a section on order and ordering heuristics

which are pivotal in the mechanics of both constructive and perturbative heuristics.

3.1 Grammatical Evolution

Grammatical Evolution (GE) is a population based evolutionary computation approach used to

construct sequences of symbols in an arbitrary language defined by a grammar. Michael O’Neill

proposed the first version of a GE based algorithm in 1998 [136]. The main contribution of GE

with respect to previous methods such as Genetic Programming (GP) [91] is the introduction of an

20
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intermediate mapping between genotype and phenotype.

Grammatical Evolution is taken in consideration, among other reasons such as its proven appli-

cability over a large variety of domains [135] and the availability of software libraries that facilitate

prototyping, due to the fact that the mapping mechanic uses the same principle, called production

or rewriting rules, used by Graph Transformation Systems. These production rules substitute the

symbols in the left-hand side of a rule and replace them with the symbols in its right-hand side. It

is possible that this equivalent mechanic will facilitate the unification of hyper-heuristic processes

under one model.

The mapping between genotype and phenotype is defined in a grammar by a collection of pro-

duction rules which are selected by the values within a genotype. Each specific derivation sequence

produces a specific phenotype which, in most cases, is an executable computer program. The result

of the execution of the phenotype/program is then used to determine its fitness as in GP or other

evolutionary computing methods. GE uses a search mechanism, most often a Genetic Algorithm

(GA), to modify the genotype and explore its space of possible configuration. The most common way

to specify a grammar is the use of a Backus–Naur form (BNF) notation. A BNF Grammar consists

of a set of production rules composed of terminal and non-terminal symbols. The production rules

are used to substitute the non-terminal symbols with other symbols, which can be both non-terminal

or terminal symbols, repeatedly until a whole sequence of terminal symbols is composed. Each non

terminal symbol has its own set of production rules. Codons (Our implementations represented as

a single integer) specify which specific production rule should be chosen at each step.

BNF Grammar example:

<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr> )

| <var>

<op> ::= +

| -

| /

| *

<var> ::= X
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In this example, the non-terminal symbol <expr> can produce three possible results. The specific

choice will depends on the codon value within the genome. Similarly for the terminal node <op>

a codon will select one of the four available options. The complete transcription will produce an

arithmetic formula in one variable X.

Figure 3.1: GE modular architecture

Figure 3.1 shows a basic diagram of the modules that are present in GE systems.

Fitness Function. The function, sometime called reward/objective/goal, that associates a fitness

value to each genome. These values will determine if the genome is selected and used in successive

iteration.

Grammar. The collection of production rules that transform a genotype into a phenotype. Each

production rule substitutes the symbols on the left hand-side of the rule that appear in a string with

the symbols on the right hand-side of the rule.

Search Method. The type of algorithm used to search over the space of genomes. In classical

Grammatical Evolution a genetic algorithm is used as search method.

The modular nature of GE allows to swap any of the fundamental components with ease and

a vast number of studies have been published in the past two decades on the effects that specific

techniques have on different applications. This method and its variants have been used for a large

number of applications in the past 21 years such as finance [112], where it has been used to estimate
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the credit rating for bond-issuer in a financial context [20], bioinformatics [102], neural networks

[152], engineering [108], game AI [119], cyber security [78], classification and several others [135].

Grammatical evolution has also been used in the context of hyper-heuristics to evolve new heuris-

tics used in time-tabling problems [137], 1-D packing problems [26] and vehicle routing problems [45].

It has been used to evolve Multi-Objective Evolutionary Algorithms applied to the Test Ordering

Problem [98] and decision trees for classification problems. [12]. We highlight that in all these cases

the grammar used and the heuristic generated are always applied to one specific domain.

3.2 Geometry

Geometry is a field of studies that dates back to the second millenia BC and is concerned with the

measure and construction of geometric objects with the use of points, lines and areas [92]. It was

used, and still is, in construction, measurement of distant objects and astronomy [151]. Geometry

has been incorporated by several fields in order to provide a spacial frame of reference. This has been

particularly successful in physics, engineering and architecture where spacial properties are naturally

present in almost all applications of these fields [69]. Geometry has also been usefully applied to more

abstract domains such as statistics where the idea of ‘distance’ between two probability distributions

can be calculated using generalised forms of geometric distances [4]. This has given rise to the subject

of information geometry.

One of the recent advances in geometry regards the study of combinatorial properties that arise

when combining geometric objects. This field is called “discrete geometry” [99]. From this field we

inherit the idea of measurable combinatorial properties within geometric objects. These concepts

have been used in applications such as: tessellation [161], sphere packing [128], computer vision [64]

and fluid dynamics [58].

Modern geometry definitions of geometric objects have become much more advanced and abstract

that simple points and lines, which seek to be as general as possible by including tensors, bundles,

jets and manifolds [70] [140]. However this is not the one used to model the problems taken in

consideration in this manuscript.

The combination of graph theoretical and geometric notions gave rise to the field of Geometric

Graph Theory [115]. In a broad sense this field is concerned with graphs defined by geometric means.
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In the literature a geometric graph often refers to a graph embedded on a 2 dimensional Euclidean

plane [114], however in this manuscript we will use the broader definition of geometric graphs where

the graph can be embedded in any arbitrary space (both Euclidean and non-Euclidean). This idea

will be used in the chapter dedicated to the synthesis of constructive heuristics (4) where the objects

of the problems are considered vertices; this could be cities, items to be packed or processes to

be executed. The vertices have coordinates associated with them which are the numerical values

associated to the object in the problem, this could be the location of the city or constraints and value

of the items. Once the vertices are placed in a space by some coordinate system their geometric

features are used to make a decision on where to operate next. In our system we can change the

space in which they are embedded as well, which alters the geometric features that can be measured

over them.

3.3 Ordering Heuristics

Concepts related to order are ubiquitous in mathematics and computer science [42] [86] [123] [141].

Formally, a simply ordered set is a binary relation between elements of a set which is anti-symmetric,

transitive and a connex relation.

We dedicate a section to it in the manuscript as it plays a vital role in the following 3 chapters.

In both Chapters 4 and 5 the heuristics that we synthesise rely on the idea that problems that

have no ordering requirements can be treated as ordering problems via special assumptions. For

example in the knapsack problem a number of objects have to be chosen out of a set of objects.

The order in which the objects are placed has no effect on its original formulation. However, we

can heuristically pick one object at a time and subtract the constraints of this object from the total

constraints available. This action alters what items are feasible to be picked next. This causes the

ordering of the choices to have an effect on the solution that will be generated.

As it will be seen in Chapter 4 the technique developed is applicable to graphs by labelling

their vertices via synthesised heuristic functions that give specific ranks to each single vertex. The

problem becomes similar to other known combinatorial problems that revolve around ordering of

vertices such as minimum linear arrangements [144] [6].

In chapter 5 we use a similar approach as each vertex of the graph is labelled by a unique integer
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imposing an ordering over the vertices of the graph. The perturbative heuristics synthesised by our

system then are applied to the graph by re-ordering the vertices in some specific way that depends

on the specific heuristic. In this particular case as each integer is unique they can be considered

equivalent to permutations.

In chapter 6 we construct graphs with specific topological properties with the use of concepts

drawn from order theory. In particular we consider each family of graphs as elements of a partially

ordered set [48] in order to construct new families of graphs that are built by composing the properties

of the lower level graphs similarly to the example in 3.2, also known as an Hasse Diagram.

Figure 3.2: Example of a 3 elements Hasse diagram

In the following chapters we present a series of results on the production of heuristics using

Grammatical Evolution. The results show how navigating the space of heuristics can lead to regions

in which heuristics are good for one problem domain while other regions of the same heuristic space

contains heuristics that are good for a different problem domain.

These engineering and empirical results are used to strengthen the idea of a necessity for a more

abstract and higher level representation that can describe many elements and levels of the system.



Chapter 4

Synthesising Constructive

Heuristics

4.1 Introduction

The canonical hyper-heuristic framework builds around the idea of algorithms that choose heuristics

from a set of low-level heuristics separated by a concept known as a “domain barrier”. The low-level

heuristics are specific to a particular domain, and may be designed by hand, relying on intuition

or human-expertise [23], or can be evolved by methods such as Genetic Programming [146]. The

low-level heuristics can not be applied to domains apart from the one they were designed for as often

they rely on different representations. The success of the high-level heuristic is strongly influenced by

the number and the quality of the low-level heuristics available. Given a new problem domain that

does not map to well-studied domains in the literature, it can be challenging to find a suitable set of

low-level heuristics to utilise with a hyper-heuristic. Although this can be addressed by evolving new

heuristics [11], this process requires in-depth understanding of the problem and effort in designing

a specialist algorithm to evolve the heuristic. The aim of hyper-heuristic systems is to be more

generally applicable, yet most of the recent developments revolve around domain specific solvers

packaged into portfolios where solvers developed or synthesised for one domain cannot be applied to

other domains. If a new domain has to be tackled, new representations and representation-specific

26
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operators usually need to be developed.

We propose to address this by introducing methods of creating new heuristics that are cross-

domain. The methods can be used without modification to create heuristics in multiple domains,

assuming a common problem representation. In this chapter we look at one of the major classes of

hyper-heuristics: generative constructive heuristics, where some technique, in this case Grammatical

Evolution, is used to produce new constructive heuristics. Constructive heuristics can be used to

find an initial solution or as a fast way to produce a final output without further refinements. This

approach works by starting with a completely empty solution and one is constructed by composing

it one element at a time. It is fundamental for a problem solver to be able to go from the state of

“no solution” to the one of “some solution”. In this case, as it is usual in heuristic approaches, the

solution is built one block at a time, chosen according to some evolved criterion.

In particular we study whether one hyper-heuristic generator can be used to produce constructive

heuristics for more than one domain of combinatorial optimisation problems. The study should not

be confused with an attempt to generate better heuristics for each specific domain or to demon-

strate that the produced heuristics are “statistically better” than previous ones, but to gauge the

performance of a system that is forced to operate over multiple different domains. This study looks

at how the system performs if we assume that only one representation is available and we have to

solve problems from more than one domain. The chapter addresses the following questions:

1. Can a single grammar be designed in such a way that it is capable of producing constructive

heuristics for multiple domains? (assuming a common graph-based problem representation)

2. How effectively can the grammar be used to evolve a) reusable and b) disposable heuristics in

multiple domains?

3. What is the cost, in terms of quality of the results, of using the same representation for prob-

lems that are radically different from each other, in this case the Multidimensional Knapsack

Problem and the Travelling Salesman Problem, but both NP-hard?

Furthermore we investigate key differences in the components of the heuristics for each domain

and highlight an affinity between packing problems and heuristics that make use of cosine distance

metric to prioritise the order of packing.
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4.2 Contribution

We describe a novel approach for the automatic generation of low-level constructive heuristics called

constructive Hyper-Heuristic with Grammatical Evolution (cHHGE). Our approach is based on

grammatical evolution which evolve programs that are applicable to geometric graphs in order

to choose a sequence that will become a solution to a given combinatorial optimisation problem.

The heuristics are tested on a set of well known benchmarks for the Travelling Salesman Problem

and Multidimensional Knapsack Problem. The evolved heuristic outperform simple human written

heuristics in both domains. The heuristics generated are further analysed and a relationship between

the cosine distance between pair of objects in the Multidimensional Knapsack Problem and their

preference order is found (Section 4.8.1).

4.3 Benchmarks

Many real world problems can be formulated as ordering problems, however we specifically choose

two problems of which one is a classical ordering problem (routing) and the other is not (packing).

This is due to the fact that we want to investigate further the idea that ordering representations and

heuristics can be used outside their usual domain. Routing problems are a class of mathematical

optimisation problems that formalise the task of visiting a number of locations while minimising

some variable or set of variables such as tour length, fuel consumed, number of vehicles or agents

used, risk, pollution generated. The most well known routing problem is the Travelling Salesman

Problem (TSP) where some agent has to visit n cities and wants to minimise the length of the tour

as in eq.4.1. Solutions of the problem come in the form of a list of weighted edges E = e1,e2,...,en

that connect all the cities where each city is visited exactly once. A precursor of this problem was

formalised by William Rowan Hamilton which also gave the name to the property of a graph in

which every vertex is visited once, each vertex has degree (number of connected edges) equal to 2

and there is only one cycle forming an “Hamiltonian Cycle”.

Minimise:
n∑

i=1

ei (4.1)

Packing problems are a class of mathematical optimisation problems that formalise the task of
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packing items into containers. The two most well known families of these problems are the Knapsack

Problem, where there is one container that has to be packed with maximum density, and the Bin

Packing Problem, where the goal is to use as few containers as possible but all the items have to be

packed.

Knapsack problems have been studied since the work of Dantzig [41], and are researched due

to their immediate applications to operational research, industry and financial management. A

knapsack problem is normally presented as a linear programming problem subject to constraints:

Given a set of n items with profits pi and weight wi which are packed in one or more knapsack

of capacity C as defined in eq. 4.2 and 4.3.

Maximise:
n∑

i=1

pixi (4.2)

Subject to the constraints:

n∑
i=1

wixi ≤ C

xi ∈ {0, 1}

(4.3)

where xi is a binary variable that describe if the i-th object should be placed in the knapsack(1)

or not(0).

Knapsack problems have numerous applications, for example: one investor can choose from a

pool of n projects and the profit obtainable from the i-th project is pi = 1,2,3,...,n. It costs wi to

invest in the project i, and the investor has only C amount of money. An optimal investment plan

could be found by solving the underlying Knapsack Problem. Another application can appear in the

restaurant where a person has to choose k courses, without surpassing the amount of C calories as

defined by his diet. Assuming that there are n dishes to choose for each course i = 1, 2, ...,k and w

is the nutritional value while p is a rating that defines how good each dish tastes. An optimal meal

can be found by solving a knapsack problem.

Knapsack problems appear also in cargo loading, the cutting of material and portfolio manage-

ment. Bin Packing problems are usually classified depending on the dimensionality of the problem:

1-Dimensional: normally deal with problems such as data packets, sets of jobs to be processed
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one at a time, organise containers of equal size.

2-Dimensional: mostly used to describe the optimisation of surface usage, such as a sheet of some

material that has to be cut where the amount of unused material has to be minimised

3-Dimensional: describe problems regarding the volume of the objects and containers they are

placed in, this is especially common in problems related to the transportation of goods.

Multi-dimensional: it is used in problems where there are many constraints, such as budgeting,

where cost, time and number of employees available need to be taken in consideration. This tends

to be the reality of many transportation problems as one must take into consideration various other

factors on top of the volume of an object (i.e. the weight, decay time, temperature etc). This is the

type of knapsack problem that is used in the all empirical evaluations. Specifically we use a set of

benchmarks in which there is one knapsack with a number of arbitrary constraints and a collection

of objects with a cost for each type of constraint and a profit value. The goal is to maximise the

profit of all the objects in the knapsack while respecting the constraints.

4.3.1 Representation

In the proposed system we encode all the properties of the problems into a graph embedded in some

arbitrary space. Whenever possible, we convert properties into some spatial concept to which we

can associate some arbitrary metric. In the case of the Travelling Salesman Problem, the cities to

visit can be trivially encoded as vertices in 2-D Euclidean space. For the knapsack problem we use

one vertex for each object, and one vertex for the knapsack. The properties of the vertex can be

interpreted as coordinates that determine the location of the vertices in some constraint-profit space.

A geometric interpretation of the problem can be intuitively described as follows: when an object is

chosen (connected to the knapsack vertex) the properties of the object are added to the knapsack

and it is moved in the constraint-profit space. The amount of motion is equal to the values of the

object’s vector in constraint space and in the direction of the profit space. The configuration of

objects connected to the knapsack that move the knapsack the furthest in profit space without the

knapsack crossing the line corresponding to its maximum capacity in any of its constraint dimensions

is the best configuration. An example with just one constraint (weight) is drawn in Fig. 4.1.
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Figure 4.1: Geometric interpretation of the knapsack problem simplified to two dimensions (weight
constraint and profit). On the left the knapsack at initialisation has 0 weight and 0 profit. As
objects are connected to the knapsack it is moved by an amount equivalent to the vectors defined
by the sum of the objects.

4.4 Grammatical Evolution

Grammatical Evolution is a population based approach used to construct sequences of symbols by

exploring the space of codon values. The codons are used to chose the production rules, and the

possible expansions within one production rule, in a given grammar. The production rules are then

used to produce the symbols in the defined language. In our case the language described by the

grammar is a subset of the programming language Python. Our implementation builds on top of

the Python implementation of Fenton et al [54]. Their implementation proved to be accessible,

straightforward to reuse and is the most recent version of GE. A description of the algorithm can be

found in Chapter 3.1, and a complete description plus additional information can be found in the

original paper [54]. The code is also open-source and available on github1. Implementation specific

details are as follows:

Genome. Fenton’s implementation uses a linear genome representation that is encoded as a list

of integers (codons). Codons are responsible for selecting the symbols in production rules with more

than one possible product (branches). The mapping between the genotype and the phenotype is

actuated by the use of the modulus operator on the value of the codon, i.e. Selected node = c mod

1https://github.com/PonyGE/PonyGE2
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n, where c is the integer value of the codon to be mapped and n is the number of options available

in the specific production rule.

Mutation. An integer flip at the level of the codons is used. One of the codons that has been

used for the phenotype is changed each iteration and substituted with a completely new codon.

Crossover. Variable one-point crossover, where the crossing point between 2 individuals is

chosen randomly.

Replacement. Generational replacement strategy with elitism 1, i.e one genome is guaranteed

to stay in the pool on the next generation.

Selection. A Tournament based selection of size 2 where the best of each pair is selected.

4.5 Geometric Graph Grammar

The specified grammar is the heart of a Grammatical Evolution algorithm [111]. Symbols in the

grammar can be whole heuristics, mathematical operations, raw numbers and even elements of other

grammars. The grammar is typically defined using Backus-Naur Form (BNF) [113], a notation used

to express grammars in the form of production rules. Similar to the mechanics used in Genetic

Programming, BNF consists of terminal nodes and non-terminal nodes. Terminal nodes are symbols

that can appear in the final language and do not have any successive production rules associated

with them. Terminal nodes are also known as leaf nodes, external nodes or outer nodes in other

applications that rely on tree data structures. Non-terminal nodes are nodes that can be expanded

into one or more nodes (either terminal or non-terminal). Non-terminal nodes are also known as

branch nodes, internal nodes or parent nodes. In BNF notation non-terminal nodes are surrounded

by <>brackets. Production rules consist of instructions on how to substitute (or expand) non-

terminal nodes, starting from a specifically defined non-terminal node, until all the nodes are terminal

nodes. This is often denoted as start. Production rules offer the possibility to substitute one non-

terminal node with more than one possible choice. The different substitution choices are delimited

by the symbol “ | ”. This is a key element of the notation: in Grammatical Evolution the codons of

the genome specify exactly which choice should be made on each branch. In the grammar we have

specified that the terminal nodes are pieces of python programs that can be composed to create an

executable python program which is used as one of our heuristic ranking functions.
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Here, we restrict ourselves to using only basic arithmetic operations and geometric properties of

the given graph (either given or derived). One of the goals is to produce a system that is independent

from the specific problems we are going to solve, yet reducible to concrete or abstract spacial con-

cepts. This includes, measuring distances over a metric space, counting (vertices), measuring areas,

measuring angles, arithmetic operation and basic trigonometry operations. Within the grammar

there are a number of terminal nodes that are custom functions and properties that the generator

can access:

• distance(vertex, metric) returns the distance between the last chosen vertex and the currently

evaluated vertex over a specified metric.

• euclidean selects the euclidean distance as a metric

• cosine distance selects the cosine similarity as a metric

• kd-leg-angle(vertex) returns the angle that would be formed by connecting the currently eval-

uated vertex to the previously chosen vertex

• estimated graph complexity returns the difference between the total number of vertices and

the number of vertices in the convex hull constructed around the graph. We do not give

the program the actual vertices of the hull as this would count as a heuristic and facilitate

excessively the algorithm.

• hull area returns the area of the convex hull constructed around the graph

• longest edge returns the highest value in the distance matrix

• v0 is an optional vertex that can be used as a reference. In the TSP solvers it is used to store

the starting point of the tour. In the MKP solvers it is used for the knapsack.

• chain delta vector sum returns the vectorial sum of the vectorial differences of each pair of

vertices in the order in which they are in the chain.

• distance to v0 returns the distances between the currently evaluated vertex and the reference

vertex using a specified metric
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• vec max returns the highest value of the given vector

• vec min returns the smallest value of the given vector

• elements sum returns the sum over all elements of a vector

The grammar used to generate heuristics for both TSP and MKP can be seen in fig. 5.3 (the

rules are the same for both problems and all rules are used).

Figure 4.2: Complete grammar used to build the heuristics expressed in BNF notation

4.6 Experimental Setup

It is well known that having better training instances leads to better outcomes [23]. However, as

the ultimate goal of this work is to produce a system that can produce acceptable heuristics in

an unknown domain in which good training examples might not be available (or in an existing

domain in which we cannot predict characteristics of future problems) in the following experiments

we synthesise a random set of training instances in each case.

4.6.1 Reusable Heuristics

The first experiment generates reusable heuristics. A training set is synthesised for each domain.

For TSP, a set of cities are generated using a uniform-random distribution over 2 dimensions. Each
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Algorithm 1 Generate Constructive Heuristic

T ← collection of training instances (t)
h← heuristic
p← population of heuristics
Init p
while stop != false do

Select p′ from p
Crossover p′

Mutate p′

for each h in p′ do {Evaluate heuristics}
Tf ← list of fitnesses
for each t in T do
u← unchosen vertices
c← solution chain
while u > 0 do

for each v in u do {Rank unchosen vertices}
Rank v according to h

end for
v∗ ← Lowest value in u
append v∗ to c
remove v∗ from u

end while
f ← fitness of c [The formula is domain specific]
append f to Tf

end for
h′s fitness← Tf’s median

end for
end while
best← Highest value in p
return best
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instance has 50 cities. For MKP, instances have 20 objects with 10 constraints each. 10 instances are

generated for each domain. A uniform random distribution is used to generate the object constraints

and normal distributions for the profits of the objects and the constraints of the knapsack. The exact

parameters of the synthesisers can be found in Table 4.3. The chosen parameters are not the result

of a fine tuning process, but are for the most part default values and in part chosen in such a way

to produce outputs within a reasonable time-frame. For MKP, the mean profit of a single object is

proportional to the total constraints of the objects and the size of each knapsack is large enough

to accommodate, on average, half of the objects in the problem instance. This is to ensure that

there are no cases in which it is possible to fit either all the objects in the knapsack or no objects at

all, which would make the instance useless for training purposes. As in all learning algorithms, the

quality of the training set is important. However, here, we aim to simply give the generator minimal

examples of the type of problem it might expect to solve, assuming we have no a priori information

regarding the specific distributions of points that might be found in future problems. For both the

TSP and MKP instances, the fitness of a heuristic on the training set is calculated as the median

fitness returned from the set of training instances.

For each domain we generate heuristics using the method described in Algorithm 1 and repeat

the process in order to produce 5 TSP heuristics and 5 MDK heuristics. We test the TSP heuristics

over 9 instances from TSPlib benchmark [129]; and we test for MKP heuristics over 7 instances of

the mdknap1 benchmark from the OR-library2. In the case of the TSP instances, due to the fact

that there is a difference of more than 2 orders of magnitude between the synthesised instances and

the test problem, we normalise the coordinate of the data to the range 0-100. For TSP, we compare

against two human-designed heuristics, nearest-neighbour(NN) and insertion based on the minimum

spanning tree (MST) [124]. These heuristics are always applied starting from the same initial city

and hence provide the same results. For MKP, we compare our generated heuristics against a greedy

depth first search algorithm [87].

The experiments are run on a desktop computer with a Intel i5 3.3Ghz CPU and 8 GB of memory.

2http://people.brunel.ac.uk/ mastjjb/jeb/info.html
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Parameter Value

Number of Generations 100
Population 100
Mutation int flip

Crossover Prob. 0.80
Crossover type one point
Max initial tree 10
Max tree depth 17

Replacement generational
Tournament size 2

Table 4.1: Resuable Heuristics

Parameter Value

Generations 200
Population 100
Mutation int flip

Crossover Prob. 0.80
Crossover type one point
Max initial tree 10
Max tree depth 17

Replacement generational
Tournament size 2

Table 4.2: Disposable Heuristics

4.6.2 Disposable Heuristics

The second experiment generates disposable heuristics. This means that for each problem instance

we generate one specialised heuristic that uses the result of only one specific problem as the fitness

function. Normally disposable heuristics work well on the instance they were created for but very

poorly on other instances even of the same domain. For each instance we run GE for 200 iterations

with a population of 100 to produce a single heuristic for the specific instance. Both experiments

are repeated 20 times and we account for best, median and worse cases for each scenario. Creating

disposable heuristics is considerably more computationally expensive therefore the experiments are

run on ”n1-standard-1” instances of Google Compute Engine. The instances have 1 virtual CPU

using 2.3 GHz Intel Xeon E5 v3 (Haswell Architecture) and 3.75GB of Ram. Scenarios that are run

multiple times for statistical validation use multiple independent virtual machines.

4.7 Results and Analysis

Reusable Heuristics: The results in Table 4.4 and Figure 4.3 show a comparison of the best,

worse and median fitness of the evolved heuristics on each problem of the TSP benchmark. These

are compared to the deterministic values obtained from a single run of the human heuristic. It can

be seen that in 5 out of 9 instances the median performance of the evolved heuristics is better than

both the simple human heuristics. In all 9 instances at least one evolved heuristic is better than

both the human heuristics.
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Parameter Value

Number of cities 50
Cities distribution type Uniform
Cities distribution range 0-100

Number of objects 20
Number of constraints 10

Object constraints distribution Uniform
Object constraints range 0-100
Object profit distribution Normal

Object profit mean Sum of constraints

Object profit deviation 15
Knapsack constraints distribution Normal

Knapsack constraints mean 500
Knapsack constraints deviation 100

Table 4.3: Parameters of the problem synthesiser used to produce the traning instances

Figure 4.3: Reusable Heuristics (TSP): optima (green circles), nearest neighbour (blue squares) and
minimum spanning trees (red triangles)
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Instance Optima NN MST Rand cHHGE cHHGE cHHGE
Name Median Best Worse

berlin52 7542 8868 10404 30290 9196 8452 10515
ch130 6110 7575 8277 46099 7501 6942 8469
eil101 629 826 846 3434 803 736 897
eil51 426 521 605 1635 547 451 620
eil76 538 700 739 2494 652 603 678

KroA100 21282 26506 27921 171940 26914 25603 32683
KroB100 22141 29264 28804 170564 30182 26064 32213
oliver30 423 464 513 1379 474 449 499
rd100 7910 10733 11855 55064 9863 9260 11338

Table 4.4: Reusable Heuristics: TSP. Comparison between nearest neighbour, minimum spanning
tree heuristic and constructive Hyper Heuristics with Grammatical Evolution(cHHGE)

From Table 4.5, we can see that the best evolved heuristics for the MKP outperform the greedy

(deterministic) heuristic in 4 out of 7 instances, where in 2 cases the global optima is reached by the

best heuristics. The worst performing evolved heuristics are still better than the greedy heuristic in

3 out of 7 instances. The median profit reached by the evolved heuristics is better than the greedy

heuristic in 2 out of 7 instances instances but an overall statistical analysis using the Wilcoxon rank

test highlighted that they are not significantly better and should be considered on par with the

greedy depth first heuristic.

Instance optima worst median best worst median best worst median best

rand rand rand greedy greedy greedy cHHGE cHHGE cHHGE
mknap1-1 3800 100 1700 3100 1200 2700 3800 1800 3300 3800
mknap1-2 8706.1 1482.1 5059 8687.5 4340.7 6504.8 8650.1 4212.4 7059.8 8706.1
mknap1-3 4015 985 2235 2860 1895 3325 3765 2390 2480 3725
mknap1-4 6120 1320 3240 5820 2460 3525 5390 2480 3020 5640
mknap1-5 12400 3770 7770 10340 7590 8990 11550 6855 8150 10510
mknap1-6 10618 4286 6566 9770 7400 8032 10345 7238 7641 9352
mknap1-7 16537 5661 9509 12769 8770 12363 15330 8335 10887 15668

Table 4.5: Reusable Heuristics: Multidimensional Knapsack Problem. Comparison between ran-
dom search, a greedy depth first heuristic and constructive Hyper Heuristics with Grammatical
Evolution(cHHGE)

Disposable Heuristics: The results in Table 4.6 show the best and median fitness obtained by

evolving a single heuristic per instance. The generator constructs a heuristic that finds the global

optima on the simplest instance (oliver30). It reaches fitness within 15% of the global optima in 8

out of 9 instances.
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The results in Table 4.7 show the best and median fitness reached by the generator directly used

on each problem of the MKP benchmark. Here, the global optima is found on 3 out of 7 instances,

even in the worst run. In 4 out of 7 instances, the global optima is reached by the median performing

generator. In one instance the global optima is missed by only 0.24%. Finally the very worst result

of all 140 runs on the MKP benchmark is only 3.57% away from the global optima which happens

in the hardest instance.

Instance name Optima Best Median

berlin52 7542 8212.09 8972.69
ch130 6110 6781.6 7171.57
eil101 629 724.62 775.47
eil51 426 474.19 509.86
eil76 538 592.08 638.08

KroA100 21282 23866.88 26858.24
KroB100 22141 25019.18 27959.35
oliver30 423 423 442.56
rd100 7910 8796.43 9369.94

Table 4.6: Disposable Heuristics (TSP)

Instance name Optima Best Median

mknap1-1 3800 3800 3800
mknap1-2 8706.1 8706.1 8706.1
mknap1-3 4015 4015 4015
mknap1-4 6120 6120 6120
mknap1-5 12400 12370 12355
mknap1-6 10618 10532 10462
mknap1-7 16537 16260 16022.5

Table 4.7: Disposable Heuristics (MKP)

4.8 Phenotype Analysis

A table with the complete list of heuristics evolved can be found in Appendix A. Below we report a

few examples taken from the results that are particularly small and intelligible.

Listing 4.1: MKD Heuristics

a)

np.exp(np.exp(self.distance\_to\_v0(vertex,’cosine’)))

b)

psqrt(self.distance\_to\_v0(vertex,’cosine’))-

np.sin(plog(np.exp(self.distance\_osms(vertex,’cosine’))))

The python code can be interpreted in natural language as follows:

The priority of the current vertex is equal to:

a) The Euler number to the power of the Euler number to the power of the cosine distance

between the current vertex and the container vertex.
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b) The root of the cosine distance between the current vertex and the container vertex minus

the sine of the distance between the last vertex of the chain and the current vertex

Listing 4.2: TSP Heuristics

c)

self.distance\_osms(vertex,’euclidean’)-

np.exp(np.cos(self.distance\_to\_v0(vertex,’euclidean’)))

d)

self.distance\_osms(vertex,’euclidean’)*pdiv(psqrt(len(self.vertices\_vecs)),

psqrt(self.distance\_to\_v0(vertex,’euclidean’)))

c) The distance between the last vertex of the chain and the current vertex minus the Euler

number at the power of the cosine of the Euclidean distance between the current vertex and the

starting vertex.

d) The Euclidean distance between the last vertex of the chain and the current vertex times the

ratio between the square of the length of the chain and the square of the Euclidean distance between

the current vertex and the starting vertex.

These heuristics albeit convoluted and hard to interpret can be understood with enough famil-

iarity with geometry. This is an highly desirable feature that many modern successful algorithm

(i.e. neural network) do not possess.

4.8.1 Distance metrics usage in the evolved heuristics

The result of the experiments where we produced a collection of reusable heuristics in Table 4.5

highlighted that the phenotype of the evolved heuristics for the knapsack problem appears to use

the gene that takes a measure of the cosine distance when ranking items to be packed in almost

all cases. While the TSP heuristics use, unsurprisingly, Euclidean distance. Therefore we evolved a

supplementary set of heuristics with the goal of measuring the frequency of these genes. In total we

create 100 new heuristics for each problem domain then we account for the usage of cosine distance

metric and Euclidean distance metric within the heuristics. The results confirmed this phenomenon
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as shown in Table 4.8. While it is easy to see why the Euclidean distance is useful when solving TSP

problems, it is not clear why the cosine distance is so effective in the context of Knapsack problems.

4.9 Analysis of the Search Parameters

In this section we expand the range of benchmark instances on which we test our heuristics and

perform a parameter sweep of the Grammatical Evolution around a range of values to verify the

consistency of our results. A total of 20 instances taken from the TSPlib benchmark are used.

For each instance 10 heuristics are trialled and compared with 5 well-known human heuristics. We

account for the best median and worst case scenario in each instance.

While for the MKP we test the heuristic on 6 different benchmarks, with a smaller group of

5 benchmarks that contain 54 instances and a larger benchmark with 270 instances for a total

of 324 instances. The results are compared with a greedy best fit heuristic. Finally we verify the

robustness of the heuristics generator by performing a parameter sweep using a Monte Carlo method

that samples the parameter space of the generator over a range of values. Each sample consists in a

specific configuration of the generator that will output one heuristic that is then used to optimise a

random set of instances taken from the TSPlib and Chu and Baes [34]. In the case of the TSP we

have removed instances that were too easy and increase the overall number slightly. In the case of the

MKP we have substantially increased the number of instances as this is the secondary domain which

uses an usual representation for which more rigorous testing is required. The results are examined

using a Kolmogorov-Smirnov test in order to assess if changing a given parameter effectively changes

the performance of the generator. We provide a confidence measure for each parameter taken into

consideration.

4.10 Results

Euclidean Cosine
TSP 100 12
MKD 17 97

Table 4.8: Frequency of occurrence of the distance metrics (Euclidean/Cosine) in each of 100
heuristics evolved for the each of the two domains
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Dataset %-gap to optima
Evolved Heuristic Greedy

hp 7.386 6.699
pb 5.138 4.562
pet 4.370 7.174
sento 3.231 2.280
weing 3.852 5.224
weish 4.870 7.277

Table 4.9: Average % gap of the best result on MKD instances compounded by dataset

Human Heuristics Reusable Evolved Heuristic

instance nearest cheapest farthest arbitrary nn Best Median Worst

berlin52 9004.9 8983.0 8278.4 8476.2 9313.3 8361.7 8666.7 8971.7

bier127 145508.8 139858.8 127820.7 131273.5 147631.0 127995.2 130854.1 133713.0

ch130 7362.2 7158.3 6644.5 6677.1 7950.3 6734.7 7051.7 7368.7

d198 17831.5 17555.9 16484.1 16718.7 18636.3 16582.1 17365.5 18149.0

eil101 740.8 731.2 681.2 697.4 864.6 691.0 714.7 738.3

eil51 494.8 490.6 450.8 465.6 559.1 458.1 467.3 476.5

eil76 626.0 618.2 586.8 594.5 659.8 590.7 600.0 609.3

kroA150 31153.7 30558.6 28770.4 28848.6 33737.9 28979.4 30016.1 31052.8

kroA200 36362.3 35088.7 31745.0 32791.7 37297.1 32285.5 32596.0 32906.5

kroB150 31973.4 31010.4 27798.9 28281.9 34371.2 27991.2 29228.9 30466.6

kroB200 36326.0 35780.0 32121.2 32012.5 36707.8 32483.0 32650.1 32817.2

kroC100 25807.6 25334.1 21801.8 22827.8 26173.9 22194.8 22527.1 22859.4

kroD100 25199.2 25252.2 22555.9 22923.3 27539.2 22799.2 23500.1 24201.0

kroE100 27168.1 25744.3 23223.6 23838.4 27647.5 23331.1 23716.2 24101.4

lin105 18323.9 17320.3 15559.3 15768.3 18977.7 15647.9 15897.0 16146.0

pr107 52443.7 51185.0 45332.4 45584.1 50678.8 45835.0 48080.3 50325.7

pr136 107128.5 110219.2 105483.2 105029.0 123294.3 106275.5 107913.8 109552.1

pr144 73619.0 71672.1 61710.1 63266.3 65606.2 62731.2 63873.4 65015.7

pr152 87315.8 89237.4 76349.8 78163.8 86472.6 76904.3 80675.9 84447.4

pr226 99460.6 92345.1 82129.1 84146.7 99190.9 83535.0 85518.6 87502.3

u159 51567.0 49852.0 46507.3 46747.8 54587.4 46770.9 47227.2 47683.5

Table 4.10: Comparison between 5 different human heuristics taken from the ’R’ package for TSP
and the evolved heuristics for the TSP

4.11 Discussion

In order to give a more precise account of the frequency with which specific distance measures are

used within the heuristics, we created an extra 200 reusable heuristics. For each heuristic we simply

count if the gene that is associated with each metric, Euclidean or cosine, is present and we show

the totals in the Table 4.8. We count one if the gene is present at least once, which means that
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Parameters Gens. Pop. Samples Crossover Tree size Tree size Tournam.
(start) (max) size

Range 20-100 20-100 400-10000 50-90 5-10 10-20 2-4
Effect(p) 0.09 0.7 0.03 21.7 32.5 12.4 43.6

Table 4.11: Relationship between change in parameter within the range and effect on the generator
(the lower the number the greater the chances of affecting the generator)

if the distance is used multiple times in different parts of the heuristic we still count one. It can

be seen that all the TSP heuristics make use of the Euclidean distance. This is not surprising

as the Euclidean distance is part of the fitness function. Again 97 out of 100 heuristics for the

multidimensional knapsack problem make use of the cosine distance confirming that there is some

correlation between this type of metric and the type of problem. This experiment is not sufficient

to explain what is the reason behind these results, however we can venture into some conjectures:

as the cosine distance is a metric of symmetry or proportions between the variables of two objects,

those objects that are similar or have ratios similar to the container or the amount of constraints

still available in the container are preferable when having to pack them.

The reusable TSP heuristics have been trialled on a larger set of problems from the TSPlib and

compared with 5 very well known heuristics used to initialise TSP problems. These heuristics are

taken from the ’R’ package for the TSP. Specifically nearest insertion, cheapest insertion, farthest

insertion, arbitrary insertion and nearest neighbour. The results are collected in Table 4.10 where the

human heuristics are juxtaposed to the best, median and worst performance of the evolved heuristics.

The median evolved heuristic consistently performs better than 4 out of 5 human heuristics with

the exclusion of the farthest insertion heuristic. This human heuristic differs from the other human

and evolved heuristics as it is a multi steps heuristic which may be the key factor that gives it a

performance advantage.

The reusable MKP heuristics have been trialled on a much larger set of instances from 7 different

datasets. We increase our experiments on the knapsack problem as the representation we have chosen

is commonly used for the TSP and we want to verify that the system is able to tackle new domains

too, in this case the MKP. We compare the results of the evolved heuristic and one common human

greedy heuristic on the first 6 smaller benchmarks in table A.1 (see appendix), a summary of the

results presented as % gap between the known optima and the average best compounded by dataset
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can be seen in 4.9. The experiments show that the heuristics obtain results that are comparable or

marginally better than the baseline greedy heuristic.

The experiments performed on the largest benchmark (from Chu and Beasly [34]) contains 270

instances and in this case we compounded the results into gap ratios (percentage) for each bundle

of instances as this is the most common approach in the literature. This allows us to compare our

results with those from the literature. In Table 4.12 it can be seen that the average performance of

our heuristics is better than two other human heuristics, specifically designed for the MKP, in 7 out

of 9 times. However it should be noted that the improvements are only marginal. Finally a sweep

of the generator’s parameter has been performed in order to verify which parameters most greatly

influence the performance of the generator. It can be seen that in Table 4.11 the strongest factor is

given by the total number of samples used during evolution (given by population size and number

of generations), while parameters such as crossover, initial tree size and tournament size, within the

selected range, are very weakly correlated to the final performance of the heuristic generated.

4.12 Summary

This section presented a study on a generator of heuristics and its application to two different problem

domains in combinatorial optimisation. We proposed a representation based on geometric graphs

and partial permutations with a method to automatically generate low-level constructive heuristics

that are applicable to instances of both the Travelling Salesman Problem and the Multidimensional

Knapsack Problem. In both problems the heuristics work by constructing a solution one vertex at a

time using a rank and choose approach (where the heuristics that assigns priorities to vertices adapt

to use different criteria depending on the problem domain). We have shown that the proposed

grammar and representation, operated by Grammatical Evolution, can be used to develop both

reusable and disposable heuristics using very few simple examples. This empirical study has shown

that, given a “sufficiently general” grammar, it is possible to create heuristics that are comparable

with human made heuristics by searching in the space of heuristics. The analysis of the heuristics

generated by the grammar highlighted that the use of a cosine distance metric is useful when a

priority has to be assigned to items in a Multidimensional Knapsack Problem. Similarly to how

the Euclidean distance provides useful information in the TSP (intuitively cities that are nearer to
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the current city should be preferred) objects that are similar, in the sense of ratios between the

constraints, to the container or the room available in the container should be preferred.

In this chapter we focused on constructive heuristics which is one of the two main approaches to

provide solutions to optimisation problems in hyper-heuristic approaches, the other being iterative

methods that repeatedly modify a solution by applying small changes to it. This will be the focus

of the next chapter where similar ideas will be applied to the generation of perturbative heuristics.
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problem %-gap
m n a M&O V&Z Ours
5 100 0.25 11.57 10.64 9.88

0.5 6.54 7.63 6.64
0.75 4.79 5.29 5.12
average 7.63 7.85 7.21

5 250 0.25 7.69 8.46 7.52
0.5 4.44 4.12 4.2
0.75 3.65 4.34 3.58
average 5.26 5.64 5.10

5 500 0.25 5.08 4.06 4.25
0.5 3.37 3.13 3.02
0.75 2.87 1.77 1.56
average 3.77 2.99 2.94

10 100 0.25 16.06 13.94 12.85
0.5 10.62 9.68 9.6
0.75 5.66 5.68 5.46
average 10.78 9.77 9.30

10 250 0.25 10.62 9.86 8.23
0.5 6.74 6.41 6.35
0.75 4.36 3.74 4.12
average 7.24 6.67 6.23

10 500 0.25 9.22 8.42 8.37
0.5 4.63 4.54 4.35
0.75 3.33 2.89 3.59
average 5.73 5.28 5.44

30 100 0.25 17.9 16.41 15.94
0.5 11.09 9.93 10.45
0.75 6.6 6.81 6.52
average 11.86 11.05 10.97

30 250 0.25 12.75 12.11 12.34
0.5 8.34 7.46 6.12
0.75 4.34 3.9 4.51
average 8.48 7.82 7.66

30 500 0.25 10.34 9.37 9.65
0.5 6.78 5.47 5.33
0.75 3.96 3.21 3.15
average 7.03 6.02 6.04

Table 4.12: Disposable heuristics applied to 270 instances of the MKP grouped by problem size.
Where m is the number of dimensions, n the number of objects and a the ratio between the number
of objects and how many can be fitted in the knapsack



Chapter 5

Synthesising Perturbative

Heuristics

Following the work on the synthesis of Constructive Heuristics in this chapter we look at the second

major class of hyper-heuristics, where some generative technique is used to produce new perturbative

heuristics. Perturbative heuristics can be used after having initialised a solution using some special

techniques or simply by using a randomly initialised solution. This approach proceeds by applying

“small changes” to the solution, sometimes called ‘local moves’ or neighbourhood operators, and

then decide if the new solution is accepted by some criteria (i.e. if the new solution is better keep

it, otherwise keep the previous solution). The solvers synthesised in the study are part of a class

called iterated local search. ILS algorithms solve problems by using an already available solution

and altering it “slightly” according to some move operator. Move operators are also known as

perturbations and the move operators based on heuristic decisions are called perturbative heuristics.

Perturbative Heuristics are heuristics that start from an already complete solution and at-

tempt to improve it by perturbing some property of the solution while maintaining its validity. This

could affect the order of the items in the solution or the values of the variables in the solution

depending on the specific problem class. Perturbative heuristics can be applied an arbitrary number

of times to the solution, usually determined by the number of iterations, amount of time passed or

until the fitness attained by the solution stops improving.

48
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One of the key advantages of perturbative heuristics is their ability to provide an answer if

interrupted half-way through the run. This is thanks to the fact that these heuristics work by

producing a stream of new solutions and if interrupted can provide an answer simply by returning

the last or best-so-far solution.

5.1 Contribution

We describe a novel approach for the automatic generation of low-level perturbative heuristics. Our

approach is based on grammatical evolution which evolve programs that are applicable to sequences

via the modification of a given solution of a given combinatorial optimisation problem. The heuristics

are tested on a set of well known benchmark for the Travelling Salesman Problem, Multidimensional

Knapsack Problem and an additional set of Load Balancing Problems developed as part of this

chapter. The heuristic generated are analysed and compared with the results obtained by other

domain specific techniques taken from the literature.

5.2 Method

Our generator makes use of Grammatical Evolution [109] for the production of new heuristics and

we will refer to it as pHHGE (perturbative Hyper-Heuristic Grammatical Evolution). In particular

we specify one grammar and this single grammar is used to produce heuristics in three different

domains. Our method can be described by four fundamental steps:

1. Represent the problem-domain of interest as an ordering problem

2. Use Grammatical Evolution to breed heuristics that perturb the order of a solution, using a

small training set of examples.

3. Evaluate the heuristics according to their effectiveness as a mutation operator in an iterated

local-search algorithm.

4. Re-use the evolved heuristics on unseen instances from the same domain
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5.3 Grammar and mechanics of the operator

The operator constructed by our grammar can be thought of as a form of k-opt that is config-

urable and includes extra functions to determine where to break a sequence. The formulation and

implementation is vertex centric instead of edge centric. The mechanics of the algorithm are as

follows:

Number of cuts: This determines in how many places a sequence will be cut creating (k − 1)

subsequences where k is the number of cuts. The number of possible loci of the cuts is equal to

n+ 1, where n is the number of vertices (the sequence can be cut both before the first element and

after the last element).

Location of cuts: The grammar associates a strategy to each cut that will determine the

location of the specific cut. A strategy may contain a reference location such as the ends of the

sequence or subsequence, a specific place in the sequences or a random location. The reference can

be used together with a probability distribution that determines the chances of any given location

to be the place of the next cut. These probability distributions de facto regulate the length of each

subsequence. Two probability distributions can be selected by the grammar: a discretised triangular

distribution and a negative binomial distribution. An example can be seen in Fig.5.1-A and 5.1-B.

The former has been chosen as it is the simplest linear non monotonic distributions and the latter

because it is a function that is parametrised by just 3 values but can describe a wide range of natural

phenomenons [158].

After the cutting phase the subsequences are given symbols with S always being the leftmost

subsequence and E being the rightmost subsequence such as in fig. 5.1-C. The start and end

sequences (S,E) are never altered by the evolved operator which only acts on the sequences labelled

α-β in Fig. 5.1-C. Note that subsequences may be empty. This can happen if the leftmost cut is on

the left of the first element (leaving S empty), if the rightmost cut is after the last element (leaving

E empty) or if two different cuts are applied in the same place.

Permutation of the subsequence: After cutting the sequence the subsequences become the

units of a new sequence. The grammar can specify if the subsequence will be reordered to a specific

permutation (including the identity, i.e no change) or to a random permutation. An example can

be seen in 5.2-a.
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Figure 5.1: A) Example of a sequence with one cut and a probability mass function (blue lines) that
will decide the loci of the second cut. B) Both cuts now shown with the probabilities for the loci of
the third cut C) Final set of subsequences after k-cuts

(a) Subsequence permutation (b) Subsequence inversion

Figure 5.2: Example perturbations of the subsequences produced by the grammar
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Inversion of the subsequences: The grammar specifies whether the order of each specific

subsequence should be reversed or if the reversing should be decided randomly for each subsequence

and each iteration.

Iteration effect: Another component of the grammar is the iteration effect which may associate

a specific function that regulates the change or shift in the initial cutting location at each iteration.

We have specified four types of effects: random, which means that the starting location of the first

cut will be random; oscillate that makes the starting position move in a wave like manner and

returns to the initial loci after a number of iterations; step that simply moves one step to the right

of the previous starting position and finally none which has no effect.

Figure 5.3: Grammar used to produce the local search operator

5.4 Benchmarks

In this section we reuse the benchmarks utilised in the previous chapter for both the TSP and

Knapsack problem.

As part of the empirical evaluation of the evolved programs, many instances and several rep-

etitions of each heuristic had to be computed. In order to maximise the utilisation of a 64-core

instance of a Google Compute Engine a load balancing problem had to be solved. This is due to

the fact that instances are divided into groups of different sizes that require substantially different
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Algorithm 2 Generate Perturbative Heuristic

T ← collection of training instances (t)
h← heuristic
p← population of heuristics
Init(p)
while stop != false do

Select p′ from p
Crossover p′

Mutate p′

for each h in p′ do {Evaluate heuristics}
Tf ← list of fitnesses
for each t in T do
c← random solution chain
while iterations < MAXperturbations do
cMutant← perturb c with h
if cMutant.fitness > c.fitness then
c← cMutant

end if
iterations+ +

end while
f ← fitness of c [The formula is domain specific]
append f to Tf

end for
h′s fitness ← Tf’s average

end for
end while
best← Highest value in p
return best
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times to be evaluated and CPUs are paid in blocks, in the sense that if one CPU is computing and

the others are waiting we will still pay for the 64 CPUs. Also we want to have all the results as

soon as possible because until the last instance is computed we cannot proceed with the successive

analysis. Organising the schedule of processes in order to balance the load is a well known combina-

torial optimisation problem, and therefore an ideal candidate to test the ability of the generator of

heuristics to provide heuristics for a new domain. For this reason we add this problem as a specific

use case to our collection of benchmarks.

To do this we calculate the span of the ideal configuration of the relaxed problem. We relax

the constraints of the problem by assuming that the specific jobs can be arbitrarily divided and

assigned to different CPUs and compute the lower bound as the sum of the jobs’ times t divided by

the number of CPUsC.

Lower bound :
n∑

i=1

ti/C (5.1)

We use this bound to estimate the quality of the balancing found by the heuristics.

5.5 Experiments

5.5.1 Travelling Salesman and Knapsack Problems

Training Phase: In our experiments single-point local-search heuristics are generated using an

off-line learning approach. The system is applied separately to each domain, but uses an identical

grammar in both. At each iteration of the GE, each heuristic in the population is applied within

a hill-climbing algorithm to each of the 5 training instances starting from a randomly initialised

solution. The hill-climber runs for x iterations with an improvement only acceptance criteria. For

TSP, x = 1000 and for MKP, x = 2500 (based on initial experimentation). The fitness at the

end-point is averaged over the 5 instances and assigned to the heuristic (i.e. distance for TSP and

profit for MKP). Experiments are repeated in each domain 10 times, with a new set of 5 problems

generated for each run. The best performing heuristic from each run is retained, creating an ensemble

of 10 heuristics as a result. All the parameters of the synthesisers are give in Table 5.1 while the

GE parameters are in Table 5.1b.
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Testing Phase: The generated ensemble is tested on benchmark instances from the literature.

For TSP, we use 19 problems taken from the TSPlib. MKP heuristics are tested on a total of 54

problems from 6 benchmark datasets from the OR-library. Each of the 10 heuristics is applied 5

times to each problem for 105 iterations, starting from a randomly initialised solution, using an

improvement only acceptance criteria (hill-climber). We record the average performance of each

heuristic over 5 runs, as well as the best, and the worst.

For TSP, we compare the results with 50 runs per instance of a classic two opt algorithm,

using the R package TSPLIB that implements the method described by Croes [40], chosen as a

commonly used example of high-performing local-search heuristic. For MKP, the vast majority of

published results use meta-heuristic approaches. We compare with two approaches from [33], the

Chaotic Binary Particle Swarm Optimisation with Time Varying Acceleration Coefficient (CBPSO),

and an improved version of this algorithm that includes a self-adaptive check and repair operator

(SACRO CBPSO), the most recent and highest-performing methods in MKP optimisation. Both

algorithms use problem specific knowledge: a penalty function in the former, and a utility ratio

estimation function in the latter, with a binary representation for their solution. Both are allocated

a considerably larger evaluation budget than our experiments. The heuristics evolved using our

approach would not be expected to outperform these approaches. However, we wish to investigate

whether the approach can produce solutions within reasonable range of known optima that would

be acceptable to a practitioner requiring a quick solution.

5.5.2 Load Balancing

For the load balancing problem we use a different approach as the goal is to find an extremely good

solution to one specific problem instance. In this case we use an on-line-learning approach in which

we try to learn on the fly how to solve the problem and in the mean time produce a set of heuristics

that can be recycled for future problems belonging to the same domain. Using pHHGE we produced

10 heuristics that are the best heuristics picked from 10 independent runs. We plug our problem

directly into pHHGE, differently from previous experiments we do not produce synthetic instances

beforehand, but we use the results of the trials against the problem directly as fitness function. The

results are compared with a maximal hypothetical balancing calculated analytically in section 5.4.
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Parameter Value

Number of cities 100
Cities distribution type Uniform
Cities distribution range 0-100

Number of objects 100
Number of constraints 10

Object constraints distribution Uniform
Object constraints range 0-100
Object profit distribution Normal

Object profit mean Sum of constraints

Object profit deviation 50
Knapsack constraints dist. Normal
Knapsack constraints mean 2500

Knapsack constraints deviation 300

Number of workers 4-256
Number of jobs 16-1024

Jobs length 10-100

(a) Problem synthesisers

Parameter Value

Generations 80
Population 100
Mutation int flip

Crossover Prob. 0.80
Crossover type one point
Max initial tree 10
Max tree depth 17

Replacement generational
Tournament size 2

(b) Grammatical Evolution

Table 5.1: Experimental Parameters. On the left the parameters used to synthesise the training
instances and on the right the parameters used by grammatical evolution to generate heuristics

The 10 heuristics are then used for a new experiment in which the heuristics so generated are

trialled against a set of 100 synthesised problems of the same domain. The instances are in the form

of j jobs that take t(j) times and k identical workers (which is the formulation of load balancing

problems for processors with homogeneous cores). We create instances with k equal to 2 to the

power of n with n from 2 to 11. Furthermore we ensure that in each instance we have at least 4

times as many jobs as there are workers and the biggest job is 10 times the smallest job.

5.6 Results and Analysis

Table 5.3 shows the best, worst and median performance of the evolved heuristics and the two-opt

based algorithm for TSP. With the exception of a single case, the evolved heuristics perform better

in term of best, worst and median results. For each instance, we apply a Wilcoxon Rank-sum

test on the 50 pairs of samples, and provide a p-value in the rightmost column. Improvements are

statistically significant at the 5% level in all cases. Results for MKP the results are reported in

Table A.8, averaged over 10 heuristics in each case. Note that despite the simplistic nature of our

approach, a hill-climber with an evolved mutation operator, our approach out-performs CBSPO in
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22 out of 54 instances when considering average performance1. SACRO-BPSO (currently the best

available meta-heuristic) performs better across the board, as expected.

In Table 5.2 we compare the Average Success Rate (ASR) across all instances group by dataset

against the results presented by [33] on 2 versions of SACRO algorithms and an additional swarm

based method. In [33], ASR is calculated as the number of times the global optima was found for

each instance divided by the number of trials. For pHHGE, we define a trial as successful if at least

one of the 10 heuristics found the optima in the trial, and repeat this 5 times. It can be seen that

the results are comparable to those of specialised algorithms, and in fact outperform these methods

on Weing and HP sets.

In Table A.5 we show the compounded results by average %-gap grouped by instance size and

number of constraints. The %-gap is calculated as the difference between the estimated profit given

by Linear Programming (LP) relaxation and actual profit found. This value is considered as it is the

one used in the results of the approaches we compare ours to. A detailed description of the derivation

method and analysis of its application to the multidimentional knapsack problem can be found here

[125]. In Table 5.4 we show how our approaches compare against 12 other approaches. It is impor-

tant to note that the table include both constructive and perturbative approaches. Here is a brief

explanation of the type of algorithms that appear in the table. Algorithms 11-13 and 14 are single

trial constructive heuristics, algorithm 10 uses a portfolio of mixed algorithms and algorithm 1 is its

latest version, algorithms 2 and 4 use a population of adaptive perturbative heuristics, algorithm 3

selects from a collection of specialised heuristics, algorithm 5 and 6 both use a single human written

perturbative heuristic, algorithm 9 uses a generator of constructive algorithms with specialised com-

ponents (it is the technique most similar to our generator of constructive algorithms at number 12),

our generator of perturbative heuristics performs somewhere in between a meta-heuristics (8) and a

human written perturbative heuristic (6). This table ranks algorithms based on average performance

across all the instances of the dataset. It can be seen that algorithms that are more nuanced and

are built to tackle large sets of diverse instances fare better than single strategy algorithms and that

specialised algorithms tend to fare better than more general approaches as expected. However until

now the ranking only contained specialised representations and operators for those representations,

1We do not provide statistical significance information as the PSO results, which are reported directly from [33],
use a population based approach and vastly different number of evaluations



CHAPTER 5. SYNTHESISING PERTURBATIVE HEURISTICS 58

with these experiments we introduced the idea of non specialised representations with generator of

operators that can synthesise an ad-hoc heuristic for the new problem domain(at the cost of some

computation and some optimality).

In Table A.7 we report the results of the experiments dedicated to our load balancing problem in

which 270 jobs of different length have to be divided among 64 workers. It can be seen that in the

use case scenario the majority of the heuristics can find the optima and when reusing the heuristics

on new synthesised problems at least half the heuristics can find the optima in each instance.

Problem Set Instances ASR
IbAFSA BPSO–TVAC CBPSO–TVAC pHHGE

Sento 2 1.000 0.9100 0.9100 0.90
Weing 8 0.7875 0.7825 0.7838 0.80
Weish 30 0.9844 0.9450 0.9520 0.907

Hp 2 0.9833 0.8000 0.8600 1.00
Pb 6 1.000 0.9617 0.9517 0.967
Pet 6 na na na 1.00

Table 5.2: Comparison with latest specialised meta-heuristics (PSO) from the literature: a fish-
swarm algorithm IbAFSA and the two most recent SACRO algorithms, results taken directly from
[33]

5.7 Conclusions

We have presented a method based on grammatical evolution for generating perturbative low-level

heuristics for multiple problem domains that is cross-domain: the same grammar generates heuristics

for a domain that can be represented as an ordering problem. The method was demonstrated on

three specific domains, TSP (a natural ordering problem), MKP and load balancing. We have

compared the synthesised heuristics with a specialised human-designed heuristic in the TSP domain

where the synthesised heuristic outperformed the well-known 2-opt heuristic. In the MKP domain,

we compared the generated heuristics against two of the latest specialised meta-heuristics. The

heuristics outperform one of these methods, and are at least comparable to the best method. We also

note that the ensemble of 10 generated heuristics demonstrates high success rates in finding known

optima when each heuristic is applied several times. Furthermore we extended our experiments

and evaluated the evolved heuristic using larger MKP problem instances and compared the results
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pHHGE 2-opt
Best Worst Median Best Worst Median Ranksum p-value

berlin52 7793 8825 8170 7741 9388 8310 0.0033

ch130 6418 7108 6722 6488 7444 6984 0.0030

d198 16256 17033 16651 16400 18213 17291 � 0.001

eil101 674 739 702 680 749 709 0.0073

eil51 435 484 456 442 494 473 � 0.001

eil76 563 616 593 583 628 611 � 0.001

kroA150 28109 31473 29344 29223 31994 30509 � 0.001

kroA200 31470 34528 32634 31828 35170 32893 0.0005

kroB150 27028 30283 28767 28114 30941 29134 � 0.001

kroB200 31315 35319 33029 31509 35077 33422 0.0455

kroC100 21418 24353 22885 22953 25503 23977 � 0.001

kroD100 21817 24405 23233 22772 26428 23430 � 0.001

kroE100 22660 25509 24178 23012 26695 24216 0.0021

lin105 14675 16965 15642 14966 17057 16191 � 0.001

pr107 45547 50313 47560 47597 51932 50002 0.0001

pr144 58847 68722 61534 59058 67272 64660 0.0002

pr152 75615 81458 78073 77307 81850 79964 � 0.001

pr226 81811 96484 86244 83566 101582 91512 0.0021

u159 44826 51353 47461 45297 51505 48124 0.1276

Table 5.3: Comparison between evolved heuristics and classic two-opt. For each instance we compute
the Wilcoxon Rank-sum test using 50 pairs of samples

against 12 well established methodologies. In the load balancing domain we used a real problem

encountered during the evaluation of the many instances of the MKP domain and used it as a

use case. We compared the result obtained by our system with analytically derived lower bounds

and showed that the heuristics could find the optima in the majority of cases. The 10 heuristics

synthesised while optimising the load balancing problem were further analysed by testing them on

synthesised instances of the load balancing problem. The results showed that the heuristics generated

can be re-utilised on different problem instances of the same domain at the cost of some drop in

performance.

The approach represents another step towards increasing the cross-domain nature of hyper-

heuristics: current approaches tend to focus on the high-level hyper-heuristics as cross-domain,

while relying on specialised low-level heuristics. Our approach extends existing work by also making

methods for the automated generation of low-level heuristics cross-domain, without requiring spe-

cialist human-expertise. The proposed approach is applicable to a subset of domains that can be

represented as ordering problems. While we believe this subset is large, it clearly does not include

all domains. However, the same approach could be generalised to develop a portfolio of modifiable
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Type Reference %-gap
MIP Drake et al.(CPLEX 12.2) 0.52
MA Chu and Beasley 0.54
Selection HH Drake et al 0.7
MA Ozcan and Basaran 0.92
Heuristic Pirkul 1.37
Heuristic Freville and Plateau 1.91
Generation HH perturbative HHGE 1.96
Metaheuristic Qian and Ding 2.28
Generation HH Drake et al 3.04
MIP Chu and Beasley (CPLEX 4.0) 3.14
Heuristic Akc¸ay et al. 3.46
Generation HH constructive HHGE 6.77
Heuristic Volgenant and Zoon 6.98
Heuristic Magazine and Oguz 7.69

Table 5.4: Ranking of the average performance over the whole Chu and Bae knapsack benchmark
of algorithms taken from the literature and both our methods

grammars, each addressing a broad class of problems. Recall that in each case, HHGE was trained

using a very small, uniformly generated set of instances, and in the case of MKP, applied to a non-

typical representation, yet still provides acceptable results. We believe this fits with the original

intention of hyper-heuristics, i.e. to provide quick and acceptable solutions to a range of problems

with minimal effort. Although specialised representations and large sets of specialised training in-

stances undoubtedly have their place in producing very high-quality results when required, these

results demonstrate that a specialised representation is not strictly necessary and can be off-set by

an appropriate move-operator at the cost of some computation and some optimality.

In this chapter we have confirmed again that we can use a representation designed for a specific

domain and re-use it for a different domain as long as we search for a move operator (perturbator)

appropriate to the new domain. This lead us to the question : Can we design a general, flexible

representation that can be used to represent combinatorial optimisation problems from multiple

domains AND the solvers that are used to optimise them?

In the following chapter we will propose a formalisation of a graph based representation that

has the goal to describe and synthesise combinatorial optimisation problems and solvers structures

without focusing on any one in particular. We equip this representation with a formal language that

can be used to transform the proposed representation.



Chapter 6

A Conceptual Framework for the

Synthesis of Graphs

The previous chapters considered domains in which the solutions were described as graphs. In

particular, in Chapter 4 we defined a generator of algorithms that enabled the construction of a

graph, starting from scratch, using a classical constructive approach that adds and connects one

vertex at each iteration of the algorithm. In chapter 5 we defined another generator of algorithms

that perturbed already fully constructed graphs by modifying the ordering of the vertices of the

graph. The experimental results of the previous chapters showed that, given a scenario in which

a single low-level encoding of the solution is imposed (i.e. a partial permutation), one can spend

computational effort searching for new specific operators that specialise and improve their efficiency

in order to be applicable to new domains. In the previous chapter, it was necessary to separately

define and implement the constraints of the algorithms that evolved these operations in each case.

From an engineering perspective, it would be more convenient if there was a way to describe these

constraints at a generic level that would enable both types of operation (and new ones) to be

composed from a set of basic building blocks, in order to make them applicable to as many domains

as possible.

The goal of this chapter is to introduce a higher level representation as an attempt to provide

a way to specify graphs that have sufficient flexibility to cover very different parts of our system,

61



CHAPTER 6. A CONCEPTUAL FRAMEWORK FOR THE SYNTHESIS OF GRAPHS 62

which include low level operations such as selection of heuristics, heuristic components and learning

mechanisms, yet built on a specific formalism. These types of frameworks are often called Meta-

Models [8].

The key idea is that a representation must be able to describe both heuristic solvers (i.e. a

program generated with grammatical evolution), their management (i.e. a specific selection of

heuristics out of a collection of heuristics) and specific problem domain solutions (i.e. a tour of

a TSP problem or collection of objects that are the solution of a packing problem). Note that

this is a different interpretation of the term “representation” used in evolutionary computation and

hyper-heuristic literature where it typically refers to low level encodings of problem’s solutions and

no other part of the hyper-heuristic system (i.e. the generator and selector of heuristics).

The necessity of introducing this new representation arises as a consequence of the fact that

the low-level solution representations currently available in the literature have different purposes

from the one described above. In the majority of cases the representation specifically targets some

underlying properties of the problem’s domain and exploits these properties to make the problem

easier to solve using some specific operator [133]. This approach becomes inconvenient (i.e. not

manageable from a software engineering perspective) if one has to solve problems from a stream

of problems where the domain of the problems changes over time. Unfortunately this is often the

case in a real world application where business requirements change over time due to expansion or

change in the law. Further problems rarely come one at time in perfect silos, instead they come in

bulk of problems that are interconnected to some degree [2]. In this chapter we also try to address a

current limitation that generative hyper heuristic systems have which is that they can normally only

generate heuristics for one domain at a time. Commonly a different generator must be used for each

problem domain that has a different representation and current systems a use specific representation

for each domain [138] [150].

It is conjectured that in real scenarios any system left operating long enough will likely have

to deal with a problem from a new domain other than that for which it was designed in order to

continue operating. This makes generators of heuristics and representations applicable to multiple

domains beneficial in autonomous systems as having a flexible system can save the effort of having to

manually re-write or re-invent software or can give at least one option when no others are available.
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Further, due to the methods developed so far in the literature being highly specialised in order

to give best results within a domain (or a dataset), these methods tend to be very different from

each other. This is partly due to the importance given to representations tailored around problem

domains. This makes it difficult to build systems that grow in the number of domains that a single

system can tackle as each approach is different/incompatible with the previous ones.

Finally, the goal is to have a tool kit able to describe objects that go from higher dimensional

geometries (i.e. static connected structures like the one utilised in the MKP) to grammars that

generate networks with various structural properties based on graph production rules.

Figure 6.1: Classification of Hyper-Heuristics approaches

We briefly review again the essential methodologies in hyper-heuristic systems that can be seen

in fig. 6.1. Hyper-heuristics may be be driven by creation or selection of heuristics. Heuristics

may construct solutions from scratch or perturb already existing ones. Normally it is sufficient

to implement one of these methodologies to be considered hyper-heuristics. Many hyper-heuristics

focus only on generating new constructive heuristics [61] [29][121] or apply perturbative heuristics

following the use a constructive heuristic [110] , although there are a few exceptions [146].

We define Autonomic Hyper-Heuristics (AHH) as a hyper-heuristic system that: specifies both

low-level components and high-level components. It has a heuristics’ management system that cre-

ates and selects heuristics. It is able to modify elements of the systems at different levels specifically
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heuristics, solutions and generators. It is able to modify its internal parameters. Feedback loops and

memory can be attached to all its elements which can be used for both online and offline learning.

In order to create such a system we need to be able to answer at least these questions:

1. What is the set of components that could describe an Autonomic Hyper-Heuristic system?

2. To what extent can we develop a theoretical framework that can contribute to the HH field

by facilitating the specification of AHH?

3. What are the essential requirements of a language that describes the above in a manner that

is compact/efficient ?

We could tackle the above in a number of ways, e.g. from an algebraic perspective, set theoretic,

logic or agent based. However, extending the knowledge gained in previous chapters, we have

selected to use a graph-theoretic approach. Graph theory ideas have also been previously used in

the HH literature. In particular, graph colouring and hyper-heuristics have been combined to solve

timetabling problems [28]. Hyper-heuristics have also been used in combination with ant algorithms

which require the construction of some graph that the ant must be able to navigate [32].

6.1 Definitions

The remainder of this chapter is going to use a graph based representation to tackle the above

questions but before going into details it is useful to explain some terms:

Graph: a collection of objects and arrows or more formally a labelled multigraph.

Vertex: a generic object. In this manuscript we consider vertices, objects and nodes as equivalent.

Arrow: an ordered pair of vertices. In this manuscript we consider arrows, edges and arcs as

equivalent.

Subgraph: is a graph formed by using a subset of the vertices and arrows of another given graph.

Production rule: is a formal graph rewriting rule composed of two graphs that play the parts of

pre-condition and post-condition respectively. If a match of the pre-condition graph is found

it is substituted by the post-condition graph. A rule is normally written in the form G → H ,

where G is replaced by H.
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Transformation: the execution of a production rule, this is equivalent to a graph rewriting oper-

ation.

Grammar: a collection of production rules which is equivalent to a collection of specific graph

rewriting operations.

Colour: colouring is the graphical representation of types or labels. Vertex or edges of the same

colour correspond to objects of the same type or having the same label.

Heuristic: a choice or decision that come in the form of one or more transformations with at least

partially unknown outcomes and efficiency .

Family: a collection of objects or arrows sharing the same property .

Progenitor: an object with specific properties from which a family can be built, the symbol of a

progenitor will be used to identify the family and their specific shared properties within the

manuscript.

6.2 A Higher Level Graph Representation Language

The key idea behind the proposed representation is that we have one graph “entity” defined as a

collection of objects and arrows with a set of properties that enable the language to describe the

topological structures of the objects required to define a HH system, including problems and solvers.

This allows any object in our system to be morphed into a different encoding which can be reverted

back to what it was or any of the other mappings described. Nevertheless whenever possible we will

encode objects into their most commonly used form, in the sense that each component introduced

has a role that is often mentioned in the literature or is a “common element” within hyper heuristic

systems. For example, genotypes used in grammatical evolution will be sequences, programs will be

trees, collections of solutions will be multisets etc.

We approach this from a first principles approach and propose a set of initial symbols (progen-

itors) that describe container types (in term of fundamental topological features) but also are the

descriptors of types of processes (types of actions). These types are then used to define the types of

objects at the input and output of transformations.
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We propose that four base types (Multiset, sequences, tree and cycles) are required in order

to balance between the ease of use, management of the growth in complexity and in part due to

pragmatic reasons. These types are in fact influenced in large part by structure ubiquitous in

computer science.

All the transformations between these fundamental types form a family of 16 transformations

(each category has 3 functors into other categories and one endomorphism that turns it back into

the same categories for a total of 16 transformations. A diagram of the four types and all the

transformations between these types can be seen in fig. 6.2. These transformations are a small set

of a greater family of transformations. The 4 types of progenitor can be combined and give rise

to 16 hybrid objects (Hasse diagram or powerset) which go from the null object to the object that

has all four topological properties as shown in Fig. A.1. These 16 objects give rise to a total of

256 transformations that describe all the transformations that take one object from one category to

another or themselves. In this chapter we will only describe and show concrete examples of the 16

hybrid objects.

Figure 6.2: The four base categories. Each category has 3 functors into other categories and one
endomorphism that turns it back into the same categories for a total of sixteen transformations
(arrows)
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6.2.1 Four Base Graph Families

Multiset or Disjoint objects(•)

The multiset, fig. 6.3, can be considered as an unordered collection of disjoint vertices. The

smallest element of the family of the non-empty multiset is the single vertex. Multisets appear in a

large variety of combinatorial applications [149].

The property of disjointness describes the possibility of having more than one vertex in the sub-

graph with no relations between them. In our case it has both the role of declaring the existence

of a collection and that the elements of a given collection are disjoint (at least at some level). This

doesn’t mean that the collection cannot have connections among its elements but that the specific

sub-graph should be such that the objects’ connection are not included in the sub-graph. This

property is used to distinguish graphs that are connected from those graphs that are collections of

disconnected graphs.

A graph with only this property is sometimes controversially called an ‘empty graph’ in the

literature. It should be clarified that in this manuscript a graph is considered ‘empty’ only if it has

no vertices, but it may still have labels or properties.

Figure 6.3: Multiset (•): Some arbitrary examples of graphs where the top-left graph is the smallest
non-empty element (progenitor). The property is invariant regardless of quantity, colour and size of
the vertices
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Sequences (→ ) A sequence (fig. 6.4) is a collection of vertices in a given order. The smallest

non-empty sequence contains two vertices and one arrow (that specifies the order). Every sequence

has a defined beginning and end, which must be different vertices. The main interpretations of the

minimal sequences is A becomes B, A is transformed into B and A is followed by B. An important

characteristic of the sequence is that each element is followed by one and only one object, apart

from the end vertex which has no following object. The sequence can be considered equivalent to a

one dimensional ordered set. This is a common object used in computer science and mathematics

as it is used in series, time-series, strings, lists, 1D vectors, serialised objects, numeric notation and

linear forms. The DNA and chromosomes used in meta-heuristic algorithms are often implemented

as sequences.

Figure 6.4: Sequences (→): Some arbitrary examples of sequence graphs where the top-left graph
is the smallest non-empty element (progenitor). The topological property of the sequences is inde-
pendent and invariant regardless of the number of vertices in the chain, their colour or position.

Cycles (�)

A cycle (fig. 6.5) is a collection of vertices in a given order where the beginning node and the end

node are the same node. The minimal cycle is the self-loop composed by one vertex and one arrow

from the vertex into itself. This structure is common in computer science and engineering but it is

also used to describe combinatorial problems such as The Travelling Salesman Problem.
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Figure 6.5: Cycles (�): four examples of cyclic graphs where the top-left graph, the self-loop, is the
smallest non-empty element (progenitor)

Trees (g)

A tree (fig. 6.6) is a collection of connected vertices without cycles. The minimal non-empty

distinguishable tree is the ramification composed of 3 vertices and 2 arrows. Trees are one of the

most important data structure in computer science and are used in file systems, data storage, web-

pages, genetic programming, grammatical evolution, syntax tree, hierarchical models and several

other applications [86].
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Figure 6.6: Trees (g): four examples of trees where the top-left graph, the single ramification, is
the smallest non-empty element (progenitor)

6.2.2 Power Set of the Base Families

Starting from the initial four properties it is possible to combine them and generate their power

set and create more complex graphs which are listed below.

Disjoint Sequences (•,→)

Disjoint sequences (fig. 6.7) are obtained by combining the property of disjoint objects and the

property of ordered sequences and the outcome is a collection of sequences with no relationship

or adjacent vertices between the specific sequences. A population of chromosomes in a genetic

algorithm, a collection of independent time-series, a dictionary of lists or strings are examples of this

category.
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Figure 6.7: Disjoint sequences: four examples of disjoint sequences

Disjoint trees (•,g)

A disjoint collection of trees (fig.6.8) is the result of the combination of disjoint objects and trees

resulting in a collection of trees with no relationship or adjacent vertices across the specific trees. The

definition is equivalent to the one of forest. A population of programs in genetic programming, file

systems in a multi-disk computer, random forests, collections of independent websites and collection

of decision trees are some examples of this category.

Figure 6.8: Disjoint trees: four examples of disjoint trees (forests)
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Collection of Cycles (•,�)

A disjoint collection of cycles (fig. 6.9) is the result of the combination of disjoint objects and cycles

interpreted as a collection of cycles with no relationship or adjacent vertices across the specific loops.

The special case of multiple travelling salesmen that start from different depots and each return to

their own depot is an example of this category.

Figure 6.9: Disjoint trees: four examples of disjoint cycles

Multi tree (→,g)

A multi-tree graph (fig. 6.10) in which the set of nodes reachable from any node form a tree.

In this interpretation of the combination of sequences and trees we assume many roots and many

intersecting leaves. Diamonds are allowed (branches that diverge at one level and then and re-

converge at a lower level). The flow from the roots to the leaves is mono directional and has no

cycles. Examples of this topology appear in P2P systems and databases [95].
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Figure 6.10: Four examples of multi-tree

Branching Cycles (�,g)

A branching cycle or branching loop (fig. 6.11), which is the combination of trees and cycles, can

be constructed using a tree where every leaf is connected back to the root. The circulatory system

and data flow (with return statements after branching statements) in a software program are a few

examples of this category.

Figure 6.11: Four examples of branching cycles
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Sequence of cycles ( →,�)

A sequence of cycles (fig. 6.12) is a joined collection of ordered loops all having the same beginning

and the same end. It is the result of combining the property of sequences and the property of

cycles. A vehicle routing problem where the vehicle has to return multiple times to the depot or

multi-vehicle routing problems where the vehicles start and return to the same depot are examples

of this structure.

Figure 6.12: Four examples of sequence of cycles

Collection of multitree (•,→,g)

A disjoint collection of multitree (forest of multitrees) or more formally a disjoint collection of

directed acyclic graphs in which the set of nodes reachable from any node form a tree. It is the

result of the combination of the properties of disjoint objects, sequences and trees.
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Figure 6.13: Four examples of collections of multitree

Cyclic Multitree (→,g,�)

A cyclic multitree or sequence of branching cycles is constructed using a multitree and connecting

every leaf back to its own roots (fig. 6.14). It is the combination of the properties of sequences,

trees and cycles.

Figure 6.14: Two examples of cyclic multitree

Collection of Branching Cycles (•,g,�)

It is a collection of disjoint branching loops (fig. 6.15). It is the combination of the properties of
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disjoint objects, trees and cycles.

Figure 6.15: Four examples of collection of disjoint branching loops

Collection of Chained Loops (•,→,�)

It is a collection of disjoint chained loops (fig. 6.16) . It can be used to describe special cases of

multi-city, multi-depot vehicle routing problems.

Figure 6.16: Four examples of collections of disjoint chained loops
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Tetra Graph (•,→,�,g)

The tetra graph (fig. 6.17) or collection of cyclic multitrees is a collection of disjoint ordered

branching loops. It is the combination of all four base properties.

Figure 6.17: A single example of a collection of cyclic multitrees

The Null Graph

It is a graph with no labels, no properties, no vertices and no arrows. The null-graph is used as an

empty container (not to be confused with an empty graph). It is important to note that using and

transforming null graphs is not cost-less; however the cost is dependent on implementation details.

The four initial properties and their composition gave us a total of 16 families of graphs. These

graphs cover a very large variety of possible configuration and special cases. However these graphs

should be seen as building blocks that can be “glued” together in order to create vastly more complex

graphs. In the following section we define some approaches where this could be achieved.

6.3 Operating on Graphs

In this section we present a meta-model and an associated transformation system for the representa-

tion of combinatorial optimisation problems and hyper-heuristic solvers. We limit ourselves to using

unary (single transformation or production rule) and a few binary operations (leaving a door open
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for future work that generalises to n-ary operations)

The goal is to provide a language with which problems can be described by abstract models in

the form of graphs, where the language provides tools to alter models and turn them into different

problems. At the same time the language must provide a way to design solvers and give them a

structure in which collection of solvers can be organised. Finally and most importantly, it must be

able to alter them in order to produce new solvers. This is in contrast with the bulk of the effort in

theoretical Evolutionary Computation that focuses on run-time analysis or tries to give guarantees

relative to the performance of specific algorithms [55] [9]. It should be clarified that this is not

the goal of this contribution, which instead attempts to provide a formalisation that is capable of

describing and composing complex structures and is also computable.

Graph transformations provide a theoretical tool-set that allows us to create and edit graphs with

the use of production rules. As discussed in 2.3 a language based on graph transformations equipped

with composition and iteration allows it to be Turing complete. This means that potentially any

program can be produced in this way, however extreme generality is not always ideal as it can cause

specific applications to become longer or more verbose than desired. Therefore on top of the special

families of graphs described in this chapter we define 3 binary graph operations in order to narrow

the scope of the language and equip it with short cuts useful in the areas of hyper-heuristics and

combinatorial optimisation problems.

All the operations take two graphs as an input and return a graph as an output.

Multi-set Disjoint Union is the classic union operator ∪ that combines two graphs without adding

edges or vertices but only modifying subset-hood. This can be expressed as H = G1 ∪G2 in which

VH = V1 ∪ V2 and EH = E1 ∪ E2 where H is the resulting graph, VH its vertices and EH its edges.
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Figure 6.18: Example of the union operator, two graph with one single vertex each turn into a graph
with two disjoint vertices

Sub-graph Multi Assignment: connects all the vertices from the first sub-graph to all the vertices

of the second sub-graphs. This can be expressed as H = G1 + G2 with VH = V1 ∪ V2, EH =

E1 ∪E2 ∪Es, and Es = {e(vi, vj) ∈ VH × VH |vi ∈ V1 ∧ vj ∈ V2} where E1 are the edges of the first

graph, E2 are the edges of the second graph and Es is the set of edges built from the vertices of the

first graph to those of the second graph.

Figure 6.19: Example of the Multi assignment operator, all the vertices of the first graph are now
connected to the elements of the second graph
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Nesting: each vertex of the first graph will contain an instance of the second graph. This can be

expressed as H = G1 ∗ G2 with VH = V ′1 and EH = E2 where V ′1 = {vi ∈ V1|vi ∪ G2}. This will

create as many copies of G2 as there are vertices in G1.

Figure 6.20: Example of the nesting operator, all the vertices of the first graph contain one instance
of the second graph

6.4 Components

In this section some common components used in hyper-heuristic systems are modelled using the

notions introduced in this chapter.

Genotype:

This is a common entity used in evolutionary algorithms. With graphs both Biological DNA and

artificial DNA can be represented. In the case of biological DNA the four letter chains (i.e. A →

G→ T → H) can be thought as a concatenation of objects but also these objects can be described

at a more refined level as complex structure of atoms using a graph [36]. In artificial genotypes used

in computer science the sequence often refers to a sequence of symbols where the most common

underlying type are numbers (binary, integers or real). In our experiments the genotype was always

encoded as a concatenation of Integers.
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Figure 6.21: An example of DNA sequence where each label Xi can be substituted by a number or
a symbol

Genotype to phenotype mapping:

These are the procedures with which the genotype is transformed into phenotype. In O’Neill’s

Grammatical Evolution [111] each element of the genotype sequence triggers a production rule.

Using our proposed language this can be described by:

(→)→ g

This would impose that the input is a sequence and the output a tree.

Classic Heuristic Program:

A decision making criteria, encoded into a software program, with no assurances about the optimality

in space, time or quality of the solution. In the case of hyper-heuristics the heuristic programs are

generally involved in making decisions to solve combinatorial optimisation problems. Heuristics

often trade optimality in exchange of time, this allows a solver to output a solution, at least good

enough, in a feasible time. In many cases (such as generative HH that make use of GP and GE used

in this manuscript), the heuristic program is encoded in a tree which represent what is often called

“phenotype”. This can then take many forms and names depending on the context. i.e. decision

forests[126], regression trees and synthesised programs [91].

Measurements:

These play a central role in all control systems, optimisation and automated learning. In hyper-

heuristic systems several key measures are normally implemented such as: evaluation of the fitness
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function, magnitude of the optimisation cost either in time and or space (e.g. computational mem-

ory), or diversity among solutions or solvers. Graphically we can represent them as the association of

each instance (object or event) to the length of a single arc (belonging to the category of sequences):

(•)→ (→)

It has been shown that in some cases it is useful to change the type of metric used [82], with

known or surrogate ones, however the concept of associating an object with a “measured” value still

holds and the diagram can represent the whole class of possible associations.

Feedback loops:

In conjunction with the measure there is the feedback loop. It is used to adjust parameters in control

systems, for example, they implement the effect of selection in evolutionary optimisation or adjust

mutation parameters, and affect the learning rate and rewards in machine-learning algorithms.

It is simple to define the diagram of a system with feedback loops using the proposed Graph

properties as cycles are one of the base family (i.e. fig 6.22 ).

Figure 6.22: A simple example of feedback loop diagram typical of learning and evolutionary algo-
rithms

Selection of heuristic:

In the beginning the notion of hyper-heuristic was intended as ’heuristics to choose heuristics’. It

focused on the problem of selecting heuristics from an already available collection of heuristics.

The term hyper-heuristics now encompass a much larger variety of tasks, such as generation and

combination of heuristics [24], but heuristics selection is still a fundamental problem that needs to

be managed in some way [96] [160] [47]. The greater the number of heuristics, the number of problem
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domains the system has to deal with, and the more diverse the heuristic available, the greater the

complexity of the problem of selecting a heuristic.

In fig. 6.23 we propose the simplest graph interpretation that models this choice. This can be

seen as an assignment problem in which one arrow associates the problem to the chosen heuristic.

Figure 6.23: Selector: heuristic selection modelled as the assignment of an arrow between the problem
and one of the heuristic available

The finite discrete selection:

It is common among many hyper-heuristic systems to choose an ensemble of heuristics out of a larger

set of heuristics, and combine them to obtain more consistent results [76].

In this case we can model the selection as a tree (or more specifically a star ) as in fig. 6.24

Figure 6.24: Multi-Heuristic Selector: heuristics selection modelled as a tree with the problem as
root and heuristics as leaves
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The multi-problem multi-heuristic selection:

The previous heuristic selection models can be generalised further in order to model the scenario

of primary focus within the manuscript: having to deal with a variety of problem domains and the

possibility of creating a variety of heuristics.

In diagram C we show the case where many problems (possibly of radically different domains)

have many heuristics assigned to them. This model can be described by a simple multi-tree of depth

one as in fig. 6.25

Figure 6.25: Multi-Problem/Heuristic Selector: heuristics selection modelled as a Multi-tree with
the problems as roots and heuristics as leaves

The constructive heuristic:

In chapter 4 we have created a generator of constructive heuristics. Here we provide a diagrammatic

model of the behaviour of a constructive heuristic (fig. 6.26). From the diagram it is easy to see

the relationship between our approach and the use of sequences, trees and cycles. At each step of

the sequence a tree of options is created, when one of these options is chosen a new edge is added.

The edges will eventually form a cycle at the end of the sequence. As the algorithm only moves

forward it highlights how functions such as backtracking are missing from our proposed approach

which would likely improve the quality of the solver.
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Figure 6.26: Example of constructive heuristic where a sequential program assign a tree of candidate
edges and then select one edge to be added to the solution until completion

The perturbative heuristic:

In chapter 5 we have created a generator of perturbative heuristics. Here (fig. 6.27) we provide

a diagrammatic model of the behaviour of perturbative heuristic. At each step of the sequence a

perturbation is applied which changes the connectivity of the graph while leaving invariant the cyclic

property of the graph.

Perturbative heuristics tend to be very different depending on the underlying representation (i.e.

sequences, trees etc). However they all revolve around the idea of Iterated Local Search [74] [127],

where the new solution is in the “neighbourhood” of the previous solution. What usually remains

unvaried is the topology of the solution i.e. sequences will be sequences after perturbation, trees will

stay trees and so on.

The meta-model can specify these requirements with very few symbols. i.e. a perturbation is a

transformation from cycle to cycle (�)→ (�)

Finally it shall be noted from a category theory point of view that all perturbations are endomor-

phisms. This means that perturbing a sequence will generate a sequence, perturbing trees generate

trees and perturbing cycles generate cycles. This vastly restricts the space of possible outputs and

ensures constraint satisfaction.
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Figure 6.27: Example of perturbative heuristic where a sequential program re-orders the vertices of
a cycle

Adaptive grammar modelling capability:

The rule of substitution can be used to substitute the initial properties and morphism with new

ones. This means that a given grammar can transform some of its rules into new different starting

and ending graphs and properties.

It is important to highlight that all the ideas introduced so far dedicated to the modification of

graphs are also applicable in the description and transformation of grammars if the given grammar

is represented as a graph.

6.5 Conclusions

In this chapter we have developed an abstract framework built using ideas and tools borrowed from

graph theory and graph transformations.

The goal was to assemble a small compendium of concepts that can be useful when solving

problems that requires the specification and transformation of some structure. These concepts form

a language that can be used to describe a wide variety of combinatorial optimisation problems, their

representations, and a method for solving them. It is small as it uses very few initial symbols making

them easy to remember and implement however its expressive power allows it to combine properties

that can quickly lead to highly complex objects. The intention is to use these concepts in a variety

of situations and recycle them when new problem domains appear.

The hope is that the tools can provide at least some common/generic way to describe a structure
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and the conditions that defines the ways in which it can be transformed. In this way when a new

problem domain has to be described one can express it with the same building blocks that were used

in previous problems. This is convenient when facing a stream of different problem domains as new

encodings and representations do not have to be developed for each new domain.

These tools do not focus on specifications that assure optimality, completeness or facilitate the

search by a given operator, instead they try to describe the structural characteristic of a system with

some rigour but very few symbols. This formalism become useful when focusing on the specification

of problems’ structural requirements as opposed to implementation choices at the lower level such as

the low level encodings (i.e. using boolean and boolean operators vs using floats and floating point

operations).

In particular we asked the questions: Q1: What are the set of components that could describe

an Autonomic Hyper-Heuristic system?

We have shown that the notions we have proposed can describe the components commonly used

in hyper-heuristic systems and defined the problems that the components are meant to solve. The

language is extremely compact as it uses very few symbols and it is able to describe the components

high level requirements but also describe them diagrammatically at a more fine grained level.

Then we have asked Q2: to what extent can we develop a theoretical framework that can con-

tribute to the HH field by facilitating the specification of AHH?

We have shown that the notions we have borrowed from graph transformations can be utilised to

model both elements of the solver’s internal mechanics but also the problems that hyper-heuristics

system usually tackles. It is useful as the same language and tools can be used to modify and

create very different part of a given system instead of having to use different area of mathematics

that require a multitude of different symbols, semantics and incompatible operators. This is also

fundamental for the development of autonomic hyper-heuristic systems that can adjust their own

parameters and high level heuristics.

Finally: Q3: What are the essential requirements of a language that describes the above in a

manner that is compact/efficient ?

We have proposed 4 fundamental properties that can be used to describe a very large variety of

graph structures usable to define both solvers and problems. We have defined 3 binary operators on
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top of classical graph transformation operators. We have shown that these properties and operators

are sufficient in the description of Selective hyper-heuristics and Generative hyper-heuristics that

uses Grammatical Evolution (an approach we have used to build in chapter 4 and 5) and simple

constructive and perturbative heuristics.

While we have limited ourselves to describe established mechanics in hyper-heuristics and the

tools we used in the previous chapters, in the following chapter we will use the notions proposed

here to implement a number of problem scenario generators with applications in combinatorial

optimisation.



Chapter 7

Graph Based Problem Scenarios

Synthesis

Engineering consideration related to building multi-domain systems.

Due to the focus in the literature on domain specific problem solvers and problem specific repre-

sentations, building heuristic solvers that can tackle a variety of different domains poses a number of

challenges. Firstly, each new domain tends to have its own sets of benchmarks upon which various

different representations, intended as low level encoding, have been developed that are not compat-

ible with each other. This makes creating systems that grow in the number of domains burdensome

especially if each new algorithm requires a comparison over an existing benchmark. Domain specific

benchmarks are not built to fit within complex multi-domain systems, but simply as a specialised

set of problem instances that are used only within a given mono-domain context. At a practical

level this means that each new domain tackled by the system encounters an overhead cost caused

by the necessity of implementing ad-hoc parsers plus the translation required to go from the bench-

mark specific encoding to the solvers specific representation, again intended as low level encoding.

While there are some exceptions to this [21, 60], it is not the norm in evolutionary computation and

hyper-heuristic literature.

A practical example of these issues appears in the TSPlib collection which contains instances of

the travelling salesman problem [130] where some instances are given as list of pairs of coordinates

89
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while other instances are given as square adjacency matrices. So even within the same domain and

same library there isn’t a standardised approach.

In the case of the knapsack problems some benchmarks use the second line of the file for the

profits of the objects [34] while others use the penultimate [47]. Again some benchmarks use the

row of a matrix for the constraints of the objects [120] while others the columns of the same matrix

[47].

This makes testing algorithms over multiple domains cumbersome as each domain, and some-

times instance, requires a unique ad-hoc parser. Finally it is the belief of the author that advanced

optimisation systems should be able to spawn their own synthetic scenarios where they can practice

and guess if a given problem is solvable and to what degree. This approach is already used and has

proved extremely successful in Generative Adversarial Networks in which one network synthesises

instances and another classifies them leading to both networks improving over time [62]. These

are the reasons why in this section we developed a multi-problem benchmark generator that uses a

standardised encoding that allows the creation and parsing of problems from a variety of domains

using the specified language. This fulfils a necessity to have access to multi problem domain bench-

marks that can facilitate assessing the performance of multi-domain-solvers. Further this chapter

completes the previous one (Chapter 6) dedicated to the description and management of solvers

with the description and implementation of some problem domains.

The representation developed in the previous chapter is more complex than other more direct

and minimalistic encodings (such as a list of booleans for the knapsacks problem). On the other

hand now we have a system that can describe the problem, solver and solution graph using the

same building blocks. It can also describe a larger variety of domains. In this chapter we use this

representation to develop a generator of instances for multiple domains.

The contributions of the this chapter are:

1. 3 Graph based models of optimisation problems of public utility

2. An implementation of a system for the embedding of synthetic problems into real world net-

works
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3. An implementation of a system for the extraction of real world road networks and their visu-

alisation

4. A novel generator of semi-synthetic problem instances

5. Baseline results on a sample of instances optimised using well established methods

7.1 Domains considered

We use three use cases to describe a single generic method for creating generators of problem

instances for multiple domains. We demonstrate how to implement generators of problem scenar-

ios/instances. These specific cases are chosen as they have different structures and different goals.

Each problem can be considered as a sub-problem of some larger collection of problems. Allocating

the position of ambulances has a number of related problems to solve (i.e. paramedics shifts, time

of the day, vehicle maintenance schedule and more). However the goal of the present chapter is not

to solve or model any specific problem domain but to create a system of scenarios where algorithms

can be tested on multi-domain problems. The long term goal is to facilitate the implementation

of ‘streams of domains’ as opposed to streams of problems of one specific domain. Clearly three is

hardly a “stream” yet it can be viewed as a step in that direction. The current goal is to develop a

generic method that can be used to generate instances for multiple domains using exactly the same

language.

7.1.1 Ambulance placement problem

Ambulances are vehicles utilised across the world to carry people that need medical attention from

some location to an healthcare facility. Ambulances may be parked at hospitals waiting for an

emergency and intervene. In many cases it can be convenient to place the ambulance somewhere

close to where it is likely to be required such as a large gathering of people (i.e. festivals or football

matches). When the density distribution of the population is not trivial as in festivals it is not obvious

where the most logistically convenient place to wait for an emergency is, so that the intervention

time is minimised. Here we propose a model that contains a collection of vehicles A that can move

across the road network, a collection of hospitals H that are fixed points in the network and a
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collection of emergencies Em that are vertices of the network where the vehicle A must travel and

then go to the nearest hospital.

More formally: Given a network, with nodes associated to a probability P of Em, and a subset

of nodes as H that are fixed, the problem is to place a collection of vehicles A on the network such

that the average intervention time tx calculated as the average travelling time of the shortest paths

between A −→ E −→ H is minimised.

Figure 7.1: Example of an instance of an Ambulance Placement Problem, on the in its more common
form and on the right formulated as a bipartite graph. On the Left location are represented by
vertices, an ambulance placed on a vertex occupies the vertex with vertices placed in space according
to their real position. On the right a bipartite graph interpretation where the vehicle vertices are
assigned to locations via an arrow

7.1.2 Fire Brigade intervention problem

Among the various problems related to firefighting there is a resources allocation problem associated

with each emergency. When one or more fire related emergencies arises the resources available must

be deployed in such a way that all the fires are extinguished with minimal damage but also minimal

costs. In this model we assume the existence of a number of fire stations deployed across a road

network. Each fire station can deploy fire brigades that will move using the shortest path toward an

assigned fire. Depending on the amount of forces deployed and the intensity of the fire, the chances
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of extinguishing the fire are computed.

More formally: Given a network, with nodes embedded on a square lattice where each cell of the

grid is associated with a boolean state F , a collection of nodes FD that contains a set of resources

FDR, where a FDR can be assigned to a node in order to turn the state F to false with some

probability PFE, the problem is to assign the FDR resources to the nodes with state F such that

all the state of the grid are equal to false while minimising the use of the resources (over all FD)

Figure 7.2: Example of an instance of an Fire Brigade intervention problem, on the left in its natural
form and on the right formulated as a bipartite graph

7.1.3 School bus problem

The school bus problem is a combinatorial problem similar to the travelling salesman problem.

Instead of going from city to city to sell items this problem is about picking up students that are

all delivered at once at the last stop (the school). Further, the pick up stops are not given a priory

but must be decided given a collection of houses where the students live. In this model we assume

that the school bus is parked, starts and stops at the school.

Given a network, find the Hamiltonian cycle subset of the network G that includes all the points

from a set of “stop vertices” Where stop vertices are single points each taken from a subset of vertices

of G such that the traversing time of the cycle is minimised and the distance between a stop vertex
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and its associated houses vertices is minimised.

Figure 7.3: Example of a component of the School bus problem where stop vertices have to be
assigned in order to minimise the travel time from each house, on the left in its natural form and on
the right formulated as a bipartite graph

Figure 7.4: Example of a component of the School bus problem where a tour connects all the stop
vertices, on the left in its natural form and on the right formulated as a bipartite graph
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Figure 7.5: Pipeline of the generator that goes from the raw map data (top left) to the final
visualisation of the solution (bottom right)

7.2 Implementation of the generator and data pipeline

In this section we describe the implementation of the models discussed in the previous sections

that are part of the pipeline that extract data from real world road networks such as the location

of buildings, streets and junctions. A diagram of the pipeline can be seen in figure 7.5. The real

world networks extracted from OpenStreetMap via OSMNnx queries are embedded with “problem

scenarios” and the combinations of the two are used to synthesise whole benchmarks. The problem

scenarios can be parameterised and it is possible to input the number of hospitals, ambulances or

other variables that are present in the specific scenario generator. The system can produce extremely

large instances (i.e. the whole road network of the City of London or Scotland can be extracted in

one query) much larger than what can be tested within the scope of this manuscript.

7.2.1 OSMnx

OSMnx 1 is a library created by G. Boeing [17] that uses the Open Street Map API [73] and the

NetworkX library [72] that allows the extraction of real world information and makes them available

1https://github.com/gboeing/osmnx
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as python data structures. The OSMnx library allows one to query OSM about streets, buildings,

terrains and other geographical information. Subset of the map can be selected by specifying the

name of a city or the coordinates and area of the selection. The generator developed in this instance

makes use of road network information, but much more information is available such as walking

trails, shapes of buildings, height maps, rivers, parks, forests, railway networks that could be added

to problem scenarios in the future. We use these OSMnx queries to extract the road network

information and then convert them into NetworkX graph structures.

7.2.2 Scenario Generator

Once the roads information are extracted and turned into a NetworkX graph structure a subset of

the vertices are selected (according to a rule specific to the domain in question) and their IDs added

to new lists.

• In the case of the ambulance problem n vertices are chosen to become hospitals and k vertices

are chosen to become ambulances.

• In the case of the school bus problem n vertices become houses requiring pick ups.

• In the case of the fire brigade intervention problem n vertices become fire department resources

and k vertices become fires.

From a data structure point of view the scenarios are described by two lists of vertices and one

tensor. The dimensions of the tensor can be set to any an arbitrary combination of values, but in

all three use cases it is just a 2D square distance matrix.

The initial graph G extracted from OSM is then embedded with the labels indicated in the two

lists and the single tensor becomes G′. A simple example can be seen in 7.6. The graph G′ is the

instance of the problem. To become a fully fledged problem scenario the instances must be associated

to a “Goal Function”. The goal function or objective may be used directly as fitness function but

doesn’t have to be. One example can be seen in 7.7. The type of graph and goal function pair

determine the domain of the problem.

• In the case of the ambulance placement problem the goal is to minimise the average intervention

time.
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Figure 7.6: The Raw Map contained in Open Street Map is queried and a graph G is extracted.
Some vertices of G are injected with some properties transforming it into G’

Figure 7.7: The instance G′ and the objective function are used as inputs to the solver. The solver
than outputs a solution graph S and an evaluation value E. In this case equal to the sum of the
length edges.
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• In the case of the school bus problem the goal is to minimise the length of the cycle that

connected j points that minimise the maximum distance from houses vertices to stop vertices.

• In the case of the fire brigade problem the goal is to minimise the time required to turn all the

vertices labelled as “fire” to false.

Each graph G′ has a function that associates a morphism M of the graph G′ to a solution graph

of type S and each domain has a specific metric M . In the simplest cases the evaluation graph E

is commonly an arc of some length or a single vertex with an integer or real numbers (i.e. fitness

landscape of single valued outputs) in it. This is also the case in the scenarios generated in this

chapter, however the evaluation graph E can have more complex structures, i.e. stress of the network

or star tree of objectives.

At this point the problem scenario can be turned into a JSON format and exported (in order to

be solved by some other program or visualised) or it can be given to a solver. For practical purposes

we did our experiments directly after generating the instances and packaged the solutions into JSON

format. This may depend on the language that the solver used, in our case the solvers are python

programs and it was convenient to do both generation and solution of the problem instances under

the same environment.

7.2.3 Visualisation

The generators are accompanied with a visualisation tool that allows to plot both problems and

solutions on the browser. This allows to visually inspect the results, a common approach in quality

control [142], and makes them more accessible. The visualisation engine is built in JavaScript and

relies on the Three.JS library 2 for the graphs rendering. The system has a core logic for plotting

the road network and 3 different subsections for each specific domain. In all scenarios the engine

expects a JSON which contains a collection of vertices and edges belonging to the road network. The

vertices are expected to be labelled with OSM ids. Then in the case of ambulance placement domain

the engine expects a list of hospitals locations and ambulances locations, these will be treated as

disjoint points (multiset), optionally the emergency calls and routes used to evaluate the quality of

the choice can be provided and plotted.

2https://threejs.org/
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Figure 7.8: The entire road network of Scotland (islands excluded) containing more than 230k nodes
and 1 million edges

In the case of school bus routing domain the engine expects a list of stop vertices that will be

treated as cycles.

In the case of the fire brigade domain the engine expects a list of fire brigade vertices (multiset),

a list of emergencies (multiset) and a collection of shortest path routes from the chosen resources

and to the emergency locations (as a collection of sequences that will form a forest of multitree but

in the simplest cases they will appear as a tree or a sequence)

The visualisation can handle very large numbers of nodes and edges even on low spec computers.

A laptop without a dedicated graphic card or mid range mobile phone (in the year 2018-19) can

handle graphs with more than 40k nodes and 200k edges. Devices equipped with a modern graphic

card can visualise much larger graphs such as those in the Fig. 7.9 and 7.8.
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Figure 7.9: The entire road network of London containing more than 120k nodes and 590k edges

7.3 Data set Generated

For each domain we generated 10 sample instances for a total of 30 instances. An example of an

instance of the school bus problem can be seen in the figure 7.10, one for the ambulance placement

problem can be seen in the figure 7.12 and one for the fire brigade intervention problem 7.11. For

each instance generated we verified that the type of graph is correct both programmatically and by

visual inspection confirming that the instances have no violations. Specifically we verify that the

solutions to the instances of the school bus problem form cycles, the solutions of the ambulance

placement problem form a collection of disjoint vertices (ambulances) and a tree of depth 2 for each

vertex and finally that the solutions of the fire brigade intervention problem form a tree for each

fire.
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Figure 7.10: Two simple examples of the School bus problem embedded on Edinburgh’s road network.
In green an optimised tour and in orange a non-optimised tour. Both instances have 10 stops
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Figure 7.11: Example of the Fire department intervention problem embedded on Manchester’s road
network. The problem contains 1 fire and the optimised solution uses forces from 5 different sources
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Figure 7.12: Example of the ambulance placement problem embedded on Manchester’s road network.
Pink lines are paths from the chosen location to the emergency location (red points) and blue lines
are paths from the emergency location to the hospital.
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7.4 Testing

In order to empirically verify the validity (in the sense that it contains the required information

in the correct form to be optimised via a solver) of the generated instances we utilise two well

known algorithms, simulated annealing [85] and self-organising maps [88]. These algorithms are well

established and have been used on a large variety of problem domains. Both algorithms are used in

their ‘vanilla’ version and we refer the reader to the original paper for the details of the algorithms.

Each algorithm has a budget of 1000 iterations. In the case of simulated annealing we use a starting

temperature of 10 and a cooling factor of 0.9. The temperature determines the chances of accepting

a worst solution at each step and the cooling factor determines how quickly this value decreases. At

each step the algorithm reorders the vertices of the bipartite graph via a simple swap operator.

In the case of the self-organising maps we randomly initialise NC and we use α(t) = 0.9 ∗ (1 −

t/1000). NC determines the initial state of the mesh and α(t) the amount of displacement of the

mesh vertices overtime. Each vertex of the mesh is associated to the closest vertex belonging to the

problem graph and only one vertex is associated in this way creating a 1-to-1 relationship.

We compare these algorithms with a simple random search where 1000 samples are taken and

the best one selected for comparison.

The algorithms are applied to all the domains. We do not expect optimal results but the objective

is not to show the quality of the results. The purpose is to show that an off the shelf solver can

be plugged to any of the domains, that it can at least trial all the domains available and that the

system functions correctly.

7.4.1 Results

The table 7.1 shows the results of the runs of the 2 algorithms, simulated annealing(SA) and self-

organising maps(SOM), next to runs of a simple random search (RS). Each result is the best value

obtained after 10 restarts for a total of 10000 samples each. All the objective functions lead the

optimisation algorithms in the correct direction: shorter tours in the case of the school bus problems,

faster intervention time in the ambulance problems and faster fire extinguishing time in the fire

brigade problem. We note that in all cases using an optimisation algorithm is better than just using

random search. This means that the instances ares not trivial and some combinatorial structure is
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present in the instances.

7.5 Conclusions

In this chapter we presented the implementation of a single system for the definition and generation

of combinatorial optimisation scenarios using graphs. This method allows the generation of multiple

instances in multiple domains without changing the representation or format.

The problem scenarios use ideas introduced in the previous chapter where we have shown exam-

ples of solvers and hyper-heuristic mechanics. Differently from the previous chapter, that focused

on theory and abstractions, in this chapter we focused on the engineering and practical aspect of

problem scenario generation. We developed a library that extracts data from the real world and uses

it to generate new instances of selected problem domains. These semi-synthetic instances and their

solutions can be visualised in any web browser and can be viewed from both computer desktops and

mobile phones that support WebGL technology. The hope is that these type of tools could make

the work done in operational research more accessible to both academics and non-academics.

It should be highlighted that the goal of the library is not to provide instances from the 3 specified

examples but to demonstrate a methodology that can be used to specify new domains in the context

of multi-domains generators.

Finally we have shown the flexibility of bipartite-graph’s assignments and how graph types can

be turned into different types while maintaining the properties that we desire to optimise.
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Instance Name RS SA SOM
SchoolBus-10 7300 2465 2407
SchoolBus-20 13435 3956 4043
SchoolBus-30 20531 6666 5621
SchoolBus-40 26986 9294 8074
SchoolBus-50 33601 10739 10602
SchoolBus-60 40217 11949 10942
SchoolBus-70 46832 12235 14515
SchoolBus-80 53448 18186 17901
SchoolBus-90 60063 19283 20779
SchoolBus-100 68679 18680 18460
Ambulance-1-1 80 62 53
Ambulance-2-1 63 45 44
Ambulance-2-2 50 34 27
Ambulance-2-3 48 37 39
Ambulance-2-4 45 37 23
Ambulance-3-2 30 22 17
Ambulance-3-3 28 14 19
Ambulance-3-4 25 14 14
Ambulance-3-5 23 13 12
Ambulance-3-6 21 17 11
Firebrigade-7-2 41 23 17
Firebrigade-10-2 35 15 20
Firebrigade-11-3 50 18 18
Firebrigade-11-4 55 24 23
Firebrigade-15-4 42 18 19
Firebrigade-16-4 40 19 26
Firebrigade-20-5 34 17 21
Firebrigade-20-8 60 22 35
Firebrigade-20-10 72 47 39
Firebrigade-22-10 65 33 26

Table 7.1: Best result obtained from 10 runs of the random search (RS), simulated annealing(SA)
and self-organising maps(SOM) applied to the semi-synthetic instances. The number next to school
bus is the number of pick ups with results in meters. The first value next to ambulance is the number
of vehicle and the second value is the number of hospitals with results in minutes. The first value
next to firebrigade is the number of teams available and the second value the number of fires with
results in minutes



Chapter 8

Conclusions

This chapter sums up the previous chapters of this thesis, highlights their contributions to the

objectives set and discusses the finding that emerged during their development. The original aim

of the thesis was increasing the generality and applicability of hyper-heuristic methodologies and

investigating how this could be achieved. To accomplish this we asked the following questions:

1. To what extent can a single hyper-heuristic generator be used to synthesise heuristics for

multiple combinatorial domains, assuming a common representation?

2. To what extent is a graph-based formalism able to express combinatorial problems and the

constituent parts of complex hyper-heuristic algorithms so that more general hyper-heuristic

optimisers could be developed?

To answer these questions we proposed two different methods that utilised a fixed representation

for multiple domains and searched in the space of operators in order to find heuristics that could suit

the specific domains. We showed that given a sufficiently general grammar it is possible to evolve

heuristics adapted to specific representation-problem pairs. Then we proposed a framework for the

production of graphs with different characteristics that can be used to describe both hyper-heuristic

algorithms and combinatorial optimisation problems. The intuition is that if a system is able to

describe and modify both then it will be able to optimise both.

107
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8.1 Generative Hyper-Heuristics

Chapter 4 and 5 focused on heuristic methods that do not make use of existing heuristics but build

heuristics from domain agnostic building blocks. This study helped us determine and measure our

ability to solve problems from new domains when heuristics for that domain are not available neither

are domain specific representation.

In both chapters the generator of heuristics made use of Grammatical Evolution where a gram-

mar contained the building blocks and structure available to produce the heuristics in the form of

Python scripts. A classical evolutionary process refined the heuristics depending on the type of

domain they were evaluated on. In both cases we have shown that even if the representation of the

knapsack problem went from 2n to n! configurations it was possible to find heuristics that operated

intelligently on the representation that led to solutions of quality comparable to the ones obtained

with ideal representation and problem specific operators. These experiments provided a fundamen-

tal contribution to answering Question 1 as it has shown that even if the representation at hand is

not specifically tailored to the domain it is possible to search in the space of heuristics for operators

that, in part, offsets this shortcoming.

8.1.1 Generating Constructive Heuristics

Chapter 4 introduced a grammar that made use of the geometric graph’s properties in order to

build constructive heuristics. This system helped us answering question 1 as it has shown that it

is possible to develop general generative methods applicable to more than one domain and produce

results that are of acceptable quality, even if not optimal and close to optimal in some cases. The

proposed method showed a way to trade more computational resources for increasing the quality of

solution when no handcrafted representations and operators are available.

Of particular interest is the role played by the metric chosen by the heuristics depending on the

problem domain. The grammar available to the generator could optionally use different metrics

when measuring the distance between two vertices. An analysis of the best heuristics in each

domain highlighted that the cosine distance was chosen by the evolutionary process in almost all

the heuristics that were generated for the multidimensional knapsack problem.



CHAPTER 8. CONCLUSIONS 109

8.1.2 Generating Perturbative Heuristics

Chapter 5 introduced a grammar that made use of cuts, inversions and permutation of sub-sequences

of a partial permutation in order to assemble perturbative heuristics. This chapter complemented

Chapter 4 and strengthened the idea that it is possible to develop general methods applicable to

more than one domain with a relatively small loss in terms of optimality of the solutions generated.

The generator of heuristics was tested on instances of the TSP and MKP and compared to other

state of the art methods.

A further case study was investigated using the Load Balancing Problem. This problem had to be

solved to organise the schedule of a large amount of experiments. The same system used to generate

the heuristics for TSP and MKP was used successfully to assign groups of experiments to different

cores of a multicore machine so that all the experiments finished at the same time. This minimised

the cost of the experiments as cloud based multicore machines are paid as a whole regardless of how

many cores are actually used, it is therefore ideal to spread the load among the cores as evenly as

possible.

8.2 Graph Representations for Hyper-Heuristics

Chapter 6 and 7 were dedicated to the creation of representations for graphs with particular topo-

logical structures and ways to describe the composition of these properties to create new types of

graphs. Representation plays a fundamental part in optimisation however we suggest that it is not

feasible to create ad-hoc representations for each single new domain and few representations will

have to suffice for a variety of problem domains. Furthermore a unifying representation for both

solver and problem instances will enable the creation of a system that can synthesise both using the

same building blocks. This would allow hyper-heuristic systems to operate on its own internal me-

chanics that often involve the optimisation of some combinatorial problem. These chapters helped

to answer question 2 as they provided a formalism that describes the structure of graphs, followed

by an explanation on how the graph types developed the mechanics found in hyper-heuristic solvers

and finally an implementation of a set of problem instance generators built using the same concepts.
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8.2.1 Solver Mechanics

In Chapter 6 we presented a graph representation, constructed from first principles, that can be

used to create data structures that are ubiquitous in computer science. Starting with disjoint

collections, sequences, trees and cycles we have built a larger collection of structures using property

composition. We have shown how these graph structures can be used to describe the type of processes

and decision problems within hyper-heuristic systems. This has contributed to answering question

2 as it has shown that this computable language can be use to for different parts of the system.

This provides the groundwork required to build hyper-heuristic systems that can optimise classic

combinatorial problems but are also applicable to hyper-heuristic internal components that also

require optimisation.

8.2.2 Problems instances representation and generation

In Chapter 7 we used the high level graph representations developed in Chapter 6 to describe 3

different models of combinatorial optimisation problems inspired by real world problems. Then we

implemented scenario generators that extract real world network graphs and embed them with the

problems we have modelled. This enabled the automatic creation of semi-synthetic instances that

could be further extended by adding extra information in the network or adding extra models to

it. This chapter focused on the practical and engineering aspects and contributed to answering

question 2 by showing that the same graph structures can be used for both combinatorial problems

and solvers. The part of the work was also an attempt to build a multi-problem benchmark as a

useful tool in the development of future multi-problem solver systems.

8.3 Cost of crossing the domain

This section provides some final insights into the cost of crossing the domain, that is, the price one

has to pay for using a single representation to represent multiple domains and creating a heuristic

generator that manipulates the representation in different ways. This cost spans several measures.

The first is in terms of loss of quality of the output, our experiments confirmed a well known fact

that general systems tend to perform worse than specialised and ad-hoc algorithms given the same
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amount of computation. Then there is the time required to evolve the new heuristics which is orders

of magnitude greater than the time required by the heuristic to solve the problem. This contains

the computational cost required to evaluate all the heuristics that end up being discarded but are

created as part of the evolutionary process. Finally the heuristic generated in this way must be

validated over a collection of problem instances in order to be confident of their performance. These

costs are balanced by the fact that the procedure is automatic and its feasibility depends on the

computational power available.

8.4 Future work

We present some natural extensions to this thesis and ideas for future research.

Automatic synthesis of tuned instances

The instance generators developed in Chapter 7 can produce randomised instances of unspecified

complexity where only the size of the problem can be defined. The natural extension to these

generators would include the possibility to specify how “hard” the instances generated are based on

some criteria of difficulty. Further, each generator is programmed by hand for each specific domain.

Ideally one should be able to define the high level properties, such as the topological characteristic

of the graphs and types of vertices, and a generator of instances should be automatically produced.

These ideas are currently pursued by the author and some results are already available in [3].

Merging automated modelling and hyper heuristics in order to navigate both repre-

sentation space and heuristic space

In this research we have presented a system that forces one representation over multiple problem

domains. It is well understood that a good representation can provide huge efficiency gains when

paired with the right operator. It would be desirable to move in the space of representations in

automated manner in the same way we navigated the space of operators in Chapters 4 and 5. The

field of automated modelling could provide the right tools to achieve this as several applications in

problem reformulation already exist [105]. Research in this direction would require tools to help

facilitating the choice of representation and heuristic pairings as these spaces are vastly larger and
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more complex. Research on this area would also require substantially more computational efforts.

These type of systems would view problems as representable in many different ways and for each

representation a plethora of different strategies and operators could be generated.

Streams of novel domains and novel heuristics in one macro system

In the work presented we have generated heuristics dealing with a small number of domains. The

successive step, following the work on online problem optimisation when a stream of problems of

a specific domain is fed into the system (and possibly generated by it), is to create a system for

online optimisation where each successive problem may belong to a new domain. Similarly on

already existing methodology for online optimisation the system should be able to pick a heuristic

or generate novel ones as required.

What next?

It is fair to assume that autonomous systems will have to deal with problems from a stream (or

multiple streams) of problems from different domains, it would be natural to equip such a system

with some predictive subsystem. Similarly with systems that attempt to predict which instance

(in terms of features, difficulties, size, etc...) will appear next, such a system would be required to

identify what domain the next problems in the stream will belong to. However predicting which

problem domain is most likely to appear next is only part of the problem as this prediction only

commences the search for the strategy that will tackle the problem.

Finally, even if hyper-heuristic systems that go beyond the “domain barrier” are desirable, solving

problems belonging to many different domains and choosing algorithms that are applicable across

several domains is vastly more complex than solving single instances of NP-hard problems. Therefore

it can be expected that hyper-heuristics will benefits and become ever more interconnected to the

topic of algorithm selection and configuration [89].
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Evolved reusable heuristics Greedy heuristic
Dataset Instance Best Worst Average Median Optima Best Average

1 hp hp1 3318 2696 3089.790 2901 3418 3303 2790.9
2 hp hp2 3131 3113 3260.121 3228 3186 2963 2803.8
3 pb pb1 3055 2655 2979.098 2820 3090 2762 2214.1
4 pb pb2 3087 2470 2914.383 2697 3186 2901 2680.5
5 pb pb4 94034 84893 89602.704 88978 95168 84632 76627.5
6 pb pb5 1963 1943 1980.401 1998 2139 1976 1700.5
7 pb pb6 749 663 715.630 692 776 716 674.3
8 pb pb7 965 822 910.350 901 1035 921 752.8
9 pet pet2 79524 66603 73553.746 71482 87061 78619 63628.9
10 pet pet3 3796 3674 3737.356 3863 4015 3852 3113.3
11 pet pet4 5923 5092 5703.799 5662 6120 6029 5947.6
12 pet pet5 11375 9157 10290.201 10183 12400 11989 11530.1
13 pet pet6 9931 8437 9592.361 9033 10618 10296 8453.9
14 pet pet7 16509 13825 15813.989 14971 16537 15001 12699.9
15 sento sento1 7601 6452 7187.535 6970 7772 7424 7137.4
16 sento sento2 7893 7137 7643.002 7520 8722 8428 6900.2
17 weing weing1 135431 127387 135560.0 137406 141278 134060 113855.5
18 weing weing2 119272 108445 114216.0 113873 130883 125028 110224.4
19 weing weing3 90780 86960 90838.0 89999 95677 94598 89136.1
20 weing weing4 112325 100183 107035.6 105563 119337 111737 94311.3
21 weing weing5 95874 78054 91079.5 86996 98796 96943 96830.3
22 weing weing6 120344 103124 111851.1 107599 130623 119183 97484.5
23 weing weing7 1005070 820977 925634.2 903362 1095445 968895 872501.1
24 weing weing8 578621 521090 553942.1 559165 624319 590726 510130.3
25 weish weish01 4461 3915 4382.388 4202 4554 4063 3722.2
26 weish weish02 4224 3884 4106.429 4185 4536 4127 3945.9
27 weish weish03 3962 3484 3883.436 3767 4115 3696 3355.1

Table A.1: Comparison between the evolved reusable heuristics and a greedy heuristics (part1)
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Evolved reusable heuristics Greedy heuristic
Dataset Instance Best Worst Average Median Optima Best Average

28 weish weish04 4299 4038 4329.434 4282 4561 4476 3802.2
29 weish weish05 4429 3597 4065.256 3849 4514 4457 3583.6
30 weish weish06 5474 4642 5168.923 4912 5557 5232 4931.1
31 weish weish07 5362 4502 4948.143 4847 5567 4896 4602.0
32 weish weish08 5392 4712 5137.568 5161 5605 5588 4694.6
33 weish weish09 5226 4228 4870.974 4715 5246 4992 4481.9
34 weish weish10 5741 5126 5649.510 5443 6339 6263 5138.8
35 weish weish11 5107 4415 4988.925 4821 5643 5236 4360.1
36 weish weish12 5715 4573 5370.955 5197 6339 6154 5584.6
37 weish weish13 5759 5623 5926.084 5943 6159 5579 5012.6
38 weish weish14 6565 6154 6514.844 6618 6954 6463 6262.2
39 weish weish15 7405 7017 7253.824 7139 7486 7219 7150.7
40 weish weish16 6977 6340 6723.443 6660 7289 6634 6202.8
41 weish weish17 8079 6556 7497.267 7152 8633 8221 6650.8
42 weish weish18 9498 8281 9074.954 8936 9580 9027 8486.6
43 weish weish19 7612 6681 7327.741 7139 7698 7166 6095.4
44 weish weish20 9244 8736 9228.757 9409 9450 9193 8450.1
45 weish weish21 8415 7098 7848.938 7568 9074 9004 7332.8
46 weish weish22 8079 7360 8094.395 7871 8947 8644 7226.0
47 weish weish23 7553 7004 7426.393 7405 8344 7510 6314.9
48 weish weish24 9496 9118 9546.735 9631 10220 9261 8843.0
49 weish weish25 9614 9048 9529.524 9483 9939 9909 8734.6
50 weish weish26 9429 9005 9318.846 9486 9584 9509 8316.3
51 weish weish27 9569 9167 9799.804 9540 9819 9169 7864.6
52 weish weish28 9371 8022 9023.719 8846 9492 8488 6799.0
53 weish weish29 8504 8432 8724.097 8628 9410 9247 7743.1
54 weish weish30 11044 9867 10483.937 10252 11191 11155 9087.0

Table A.2: Comparison between the evolved reusable heuristics and a greedy heuristic (part2)
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Knapsack Reusable Heuristics
pdiv(pdiv(pdiv(distance to v0(vertex,’cosine’)*plog(psqrt(pdiv(distance to v0(vertex,’cosine’),
e))),len(vertices vecs)),elements sum(ref difference(chain vsum())))+cos(pdiv(len(vertices vecs),
psqrt(longest potential edge)))-len(vertices vecs),pdiv(distance to v0(vertex,’cosine’),
psqrt(distance osms(vertex,’cosine’))))
distance to v0(vertex,’cosine’)+pdiv(exp(pdiv(exp(19.84),exp(vec min(s vertex0)))*
plog(pdiv(hull area(),sin(plog(vec min(chain delta vsum())))))),
exp(distance osms(vertex,’cosine’)))
distance to v0(vertex,’cosine’)-pdiv(tanh(e),plog(psqrt(exp(psqrt(plog(plog(plog(hull area()))-
len(vertices vecs)))))))- hull area()
plog(pdiv(distance to v0(vertex,’cosine’),psqrt(pdiv(49.40,
pdiv(95.05,distance osms(vertex,’cosine’))))+pdiv(sin(47.81),distance osms(vertex,’euclidean’))))
distance to v0(vertex,’cosine’)*plog(pdiv(pdiv(18.71,exp(e)),pdiv(exp(e),plog(cos(pi)))-pi+
exp(plog(elements sum(ref difference(ref difference(vertex))))))*distance to v0(vertex,’cosine’))-
plog(kd leg angle(vertex))
pdiv(distance to v0(vertex,’cosine’),pdiv(elements sum(chain vsum())*
vec max(ref difference(chain vsum())),psqrt(pdiv(distance osms(vertex,’euclidean’)*
exp(pdiv(longest potential edge,pi)),e))))-exp(psqrt(psqrt(pi)))
distance to v0(vertex,’cosine’)+cos(pdiv(distance osms(vertex,’cosine’),
pdiv(len(solution chain),psqrt(18.81))))
plog(pdiv(distance to v0(vertex,’cosine’), exp(pdiv(pdiv(longest potential edge,
len(vertices vecs)), pdiv(e,distance osms(vertex,’cosine’))))))
distance to v0(vertex,’cosine’)-pdiv(tanh(plog(e))*distance osms(vertex,’cosine’),
distance to v0(vertex,’cosine’))
psqrt(distance to v0(vertex,’cosine’))-sin(plog(exp(distance osms(vertex,’cosine’))))
distance to v0(vertex,’cosine’)-psqrt(psqrt(plog(pdiv(distance osms(vertex,’cosine’),
pdiv(76.22,plog(kd leg angle(vertex)))))))
exp(exp(distance to v0(vertex,’cosine’)))
plog(psqrt(pdiv(psqrt(longest potential edge),pdiv(plog(tanh(elements sum(chain delta vsum())-
len(solution chain)))+pi,pdiv(psqrt(distance to v0(vertex,’euclidean’)),
cos(plog(len(solution chain)))-pdiv(distance osms(vertex,’cosine’),
psqrt(pdiv(psqrt(len(vertices vecs)),psqrt(vec max(s vertex0))))))))))
distance to v0(vertex,’cosine’)-exp(pdiv(psqrt(93.73),len(vertices vecs)))-len(solution chain)*
tanh(37.02)-pdiv(exp(e*estimated graph complexity()),
pdiv(38.57,psqrt(distance osms(vertex,’euclidean’))))
exp(plog(exp(pdiv(distance to v0(vertex,’cosine’)-92.38,35.09))*
pdiv(distance osms(vertex,’cosine’)- 62.18,pdiv(exp(pi),e))))*len(solution chain)
psqrt(distance to v0(vertex,’cosine’)+distance to v0(vertex,’cosine’)*
psqrt(exp(exp(pi*tanh(65.33))))-psqrt(vec max(vertex)*psqrt(exp(exp(pi*tanh(63.52))))-
pdiv(pi*tanh(63.59),len(solution chain))))*exp(exp(len(solution chain)))
plog(distance to v0(vertex,’cosine’)*distance to v0(vertex,’euclidean’))*pdiv(tanh(plog(exp(e))),
plog(exp(distance osms(vertex,’cosine’))))
plog(distance to v0(vertex,’cosine’))-pdiv(psqrt(cos(exp(plog(len(solution chain)))*
psqrt(plog(plog(len(solution chain))))*plog(distance to v0(vertex,’euclidean’)))),
psqrt(psqrt(cos(hull area()))))*plog(tanh(pdiv(04.79,len(vertices vecs))))
exp(distance to v0(vertex,’cosine’))+hull area()
psqrt(distance to v0(vertex,’euclidean’))-sin(exp(elements sum(vertex)))+sin(exp(63.02))

Table A.3: Phenotypes of the evolved MKP heuristics
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TSP Reusable Heuristics
psqrt(pdiv(distance osms(vertex,’euclidean’),pdiv(hull area()*distance to v0(vertex,’euclidean’),
longest potential edge)+psqrt(pi+len(vertices vecs))))
distance osms(vertex,’euclidean’)+sin(pdiv(41.83*e,plog(tanh(plog(sin(longest potential edge)+e))
- distance osms(vertex,’euclidean’))))
pdiv(longest potential edge*psqrt(distance osms(vertex,’euclidean’))-
psqrt(10.79),psqrt(distance to v0(vertex,’euclidean’)))
psqrt(distance to v0(vertex,’euclidean’)-pdiv(cos(plog(62.24-25.73)),plog(pi)*vec min(vertex)))*
pdiv(psqrt(len(vertices vecs))*pdiv(plog(pi),pdiv(psqrt(05.77),exp(kd leg angle(vertex)))),
tanh(pdiv(cos(e),pi))*distance osms(vertex,’euclidean’))
pdiv(distance osms(vertex,’euclidean’),kd leg angle(vertex)+
pdiv(psqrt(psqrt(exp(psqrt(kd leg angle(vertex))))-e),plog(pdiv(cos(e),plog(kd leg angle(vertex)-
plog(cos(e)))*plog(distance to v0(vertex,’cosine’))-psqrt(distance to v0(vertex,’cosine’))))))
distance osms(vertex,’euclidean’)-plog(cos(psqrt(pdiv(40.97,vec max(ref difference(vertex))))+
plog(exp(psqrt(plog(20.17))))))
pdiv(distance osms(vertex,’euclidean’),distance to v0(vertex,’euclidean’)*
plog(pdiv(cos(psqrt(82.29)),psqrt(20.27)))+
psqrt(e)+psqrt(plog(vec max(vertex))-psqrt(distance osms(vertex,’euclidean’))))
distance osms(vertex,’euclidean’)*e-psqrt(psqrt(len(vertices vecs)+len(solution chain))+
tanh(vec max(vertex)+ exp(plog(distance osms(vertex,’euclidean’)))+ sin(len(solution chain)*
distance osms(vertex,’euclidean’)))* pdiv(sin(exp(len(vertices vecs))),len(vertices vecs)))
distance osms(vertex,’euclidean’)-plog(psqrt(pdiv(distance to v0(vertex,’euclidean’),
psqrt(plog(len(solution chain))))))*len(solution chain)
distance osms(vertex,’euclidean’)*pdiv(psqrt(len(vertices vecs)),
psqrt(distance to v0(vertex,’euclidean’)))
psqrt(exp(pdiv(pdiv(distance osms(vertex,’euclidean’)-pdiv(cos(len(solution chain)),
tanh(len(solution chain))),psqrt(distance to v0(vertex,’euclidean’))),
psqrt(psqrt(distance osms(vertex,’euclidean’)))*psqrt(sin(psqrt(len(solution chain))))*exp(pi))))
32.30+psqrt(distance to v0(vertex,’cosine’))-cos(len(vertices vecs)*distance osms(vertex,’cosine’))-
pi+distance osms(vertex,’euclidean’)+exp(32.39)
pdiv(distance osms(vertex,’euclidean’),exp(distance to v0(vertex,’cosine’))*e-
pdiv(psqrt(len(solution chain)),
psqrt(60.44)+pi)+plog(sin(39.84*cos(37.06)*37.20-cos(psqrt(len(solution chain))))))+
distance osms(vertex,’cosine’)* distance osms(vertex,’euclidean’)
plog(plog(psqrt(psqrt(exp(distance osms(vertex,’euclidean’)+pi)))+exp(cos(len(vertices vecs)))+
exp(pdiv(cos(sin(plog(plog(59.90))))+plog(tanh(sin(plog(e)))),tanh(plog(kd leg angle(vertex)-
vec max(ref difference(chain vsum()))))))+sin(sin(vec max(vertex))-len(vertices vecs))))
distance osms(vertex,’euclidean’)+e*plog(distance osms(vertex,’euclidean’))*
pdiv(distance osms(vertex,’euclidean’), distance to v0(vertex,’euclidean’))+
81.74-estimated graph complexity()
distance osms(vertex,’euclidean’)-sin(distance to v0(vertex,’cosine’))
distance osms(vertex,’euclidean’)-exp(cos(distance to v0(vertex,’euclidean’)))
distance osms(vertex,’euclidean’)+
exp(sin(plog(psqrt(psqrt(11.39*plog(cos(elements sum(vertex))))))+len(vertices vecs)))
psqrt(pdiv(distance osms(vertex,’euclidean’),exp(distance to v0(vertex,’cosine’)))-
psqrt(pdiv(plog(tanh(exp(sin(psqrt(len(vertices vecs)))))),68.30)))

Table A.4: Phenotypes of the evolved TSP heuristics in their python program form
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MKP group
m n a HHGE
5 100 0.25 2.54

0.5 1.32
0.75 0.58
average 1.48

5 250 0.25 1.07
0.5 0.79
0.75 0.48
average 0.78

5 500 0.25 1.18
0.5 1.32
0.75 0.6
average 1.03

10 100 0.25 3.86
0.5 1.95
0.75 1.26
average 2.36

10 250 0.25 2.26
0.5 0.82
0.75 0.78
average 1.29

10 500 0.25 2.21
0.5 2.35
0.75 1.19
average 1.92

30 100 0.25 5.71
0.5 3.1
0.75 2.01
average 3.61

30 250 0.25 4.11
0.5 2.15
0.75 0.93
average 2.40

30 500 0.25 3.77
0.5 3.21
0.75 1.42
average 2.80

Table A.5: Results grouped by number of constraints (m), size (n), ratio of the expected number
of object that could fit the knapsack (a) and %-gap
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Figure A.1: The diagram of the power-set that contain all the combination of the proposed four
properties
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Jobs Time(s)
5x100 25
5x250 50
5x500 80
10x100 50
10x250 100
10x500 210
30x100 125
30x250 150
30x500 500

Table A.6: Jobs and their execution times used as a use case for the load balancing problem

Heuristic Optimality hits - use case instance(%) Optimality hits - synthesised instances(%)
h1 85 62
h2 86 70
h3 79 68
h4 75 79
h5 89 57
h6 82 79
h7 80 74
h8 85 67
h9 84 80
h10 87 78

Table A.7: Hit percentage of the estimated optima against the synthesised instances of the load
balancing problem
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HHGE CBPSO SACRO-BPSO
Instance Best Worst Average Median Optima Best Average Best Average
hp1 3418 3385 3410.56 3418 3418 3418 3403.9 3418 3413.38
hp2 3186 2997 3171.54 3186 3186 3186 3173.61 3186 3184.74
pb1 3090 3057 3083.32 3090 3090 3090 3079.74 3090 3086.78
pb2 3186 3114 3179.88 3186 3186 3186 3171.55 3186 3186
pb4 95168 90961 93515.54 93897 95168 95168 94863.67 95168 95168
pb5 2139 2085 2120.06 2130.5 2139 2139 2135.6 2139 2139
pb6 776 641 733.12 735.5 776 776 758.26 776 776
pb7 1035 983 1018.9 1025 1035 1035 1021.95 1035 1035
pet2 87061 78574 85409.32 87061 87061 - - - -
pet3 4015 3165 3955.8 4015 4015 - - - -
pet4 6120 5440 6040.2 6110 6120 - - - -
pet5 12400 12090 12363.1 12400 12400 - - - -
pet6 10618 10107 10592.1 10604 10618 - - - -
pet7 16537 15683 16504.48 16537 16537 - - - -
sento1 7772 7491 7706.92 7749.5 7772 7772 7635.72 7772 7769.48
sento2 8722 8614 8691.02 8704 8722 8722 8668.47 8722 8722
weing1 141278 135673 140619.36 141278 141278 141278 141226.8 141278 141278
weing2 130883 118035 128542.94 130712 130883 130883 130759.8 130883 130883
weing3 95677 77897 93099.5 94908 95677 95677 95503.93 95677 95676.39
weing4 119337 100734 117811.56 119337 119337 119337 119294.2 119337 119337
weing5 98796 78155 95912 98475.5 98796 98796 98710.4 98796 98796
weing6 130623 117715 129452.56 130233 130623 130623 130531.3 130623 130623
weing7 1095382 1088277 1093583.14 1093595 1095445 1095382 1084172 1095382 1094349
weing8 624319 525663 606175.12 613070 624319 624319 597190.6 624319 622079.9
weish01 4554 4298 4494.34 4530 4554 4554 4548.55 4554 4554
weish02 4536 4164 4485.12 4536 4536 4536 4531.88 4536 4536
weish03 4115 3707 3963.08 3985 4115 4115 4105.79 4115 4115
weish04 4561 3921 4385.5 4455 4561 4561 4552.41 4561 4561
weish05 4514 3754 4265.56 4479.5 4514 4514 4505.89 4514 4514
weish06 5557 5238 5503.16 5538 5557 5557 5533.79 5557 5553.75
weish07 5567 5230 5496.56 5542 5567 5567 5547.83 5567 5567
weish08 5605 5276 5534.82 5597.5 5605 5605 5596.16 5605 5605
weish09 5246 4626 5062.24 5128 5246 5246 5232.99 5246 5246
weish10 6339 5986 6244.82 6314 6339 6339 6271.84 6339 6339
weish11 5643 5192 5522.18 5631.5 5643 5643 5532.15 5643 5643
weish12 6339 5951 6217.14 6322.5 6339 6339 6231.5 6339 6339
weish13 6159 5780 6032.28 6056 6159 6159 6120.38 6159 6159
weish14 6954 6581 6827.9 6852 6954 6954 6837.77 6954 6954
weish15 7486 7113 7391 7445.5 7486 7486 7324.55 7486 7486
weish16 7289 6902 7154.82 7159.5 7289 7289 7288.7 7289 7288.7
weish17 8633 8506 8609 8633 8633 8633 8547.71 8633 8633
weish18 9580 9310 9527 9560.5 9580 9580 9480.86 9580 9578.46
weish19 7698 7272 7505.3 7527 7698 7698 7528.55 7698 7698
weish20 9450 9117 9381.32 9430 9450 9450 9332.11 9450 9450
weish21 9074 8655 8972.9 9025 9074 9074 8948.22 9074 9074
weish22 8947 8466 8814.7 8871 8947 8947 8774.2 8947 8936.92
weish23 8344 7809 8202.06 8217.5 8344 8344 8165 8344 8344
weish24 10220 9923 10154.54 10185.5 10220 10220 10106.28 10220 10219.7
weish25 9939 9667 9872.48 9909.5 9939 9939 9826.57 9939 9939
weish26 9584 9175 9434.92 9473 9584 9584 9313.87 9584 9584
weish27 9819 9244 9652.3 9671 9819 9819 9607.54 9819 9819
weish28 9492 8970 9328.52 9347.5 9492 9492 9123.26 9492 9492
weish29 9410 8794 9217.28 9279 9410 9410 9025.5 9410 9410
weish30 11191 10960 11135.64 11161 11191 11191 10987.21 11191 11190.12

Table A.8: Generated heuristics vs specialised meta-heuristics from [33]. Highlighted values for
HHGE indicate where it outperforms CBPSO. SACRO-BPSO performs best in all instances
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