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Abstract: Realistic humanoid robots (RHRs) with embodied artificial intelligence (EAI) have numerous
applications in society as the human face is the most natural interface for communication and the
human body the most effective form for traversing the manmade areas of the planet. Thus, developing
RHRs with high degrees of human-likeness provides a life-like vessel for humans to physically and
naturally interact with technology in a manner insurmountable to any other form of non-biological
human emulation. This study outlines a human–robot interaction (HRI) experiment employing
two automated RHRs with a contrasting appearance and personality. The selective sample group
employed in this study is composed of 20 individuals, categorised by age and gender for a diverse
statistical analysis. Galvanic skin response, facial expression analysis, and AI analytics permitted
cross-analysis of biometric and AI data with participant testimonies to reify the results. This study
concludes that younger test subjects preferred HRI with a younger-looking RHR and the more senior
age group with an older looking RHR. Moreover, the female test group preferred HRI with an RHR
with a younger appearance and male subjects with an older looking RHR. This research is useful for
modelling the appearance and personality of RHRs with EAI for specific jobs such as care for the
elderly and social companions for the young, isolated, and vulnerable.

Keywords: embodied artificial intelligence; realistic humanoid robots; human–robot interaction;
human–computer interaction

1. Introduction

Numerous scholars suggest that emotionally responsive artificial intelligence (EmoAI) in
human–robot interaction (HRI) reduces negative perceptual feedback as people feel an affinity towards
realistic humanoid robots (RHRs) that can simulate empathy [1–8]. The EmoAI approach is founded
on behaviours in human sociology as communication, personality, and comprehension help promote
understanding and empathy during human–human interaction [9–12]. Thus, people empathise more
with RHRs than non-anthropomorphic robots as humans feel an innate association with machines
that look human, owing to the psychological drive to socialise and form relationships with other
humans [13].

In support, RHR Sophia’s ability to discuss its visual and functional limitations with humans
helps people empathise with the RHR’s preternatural qualities [14,15]. This design consideration
is significant to the progression of RHRs as research in robotic AI has predominantly focused on
simulating human cognition and continually neglects the significance of EmoAI in promoting natural
HRI, which heightens the potentiality of adverse feedback owing to emotionless robotic AI [16].
Masahiro Mori’s [17] uncanny valley (UV) hypothesis accounts for the negative psychological stimulus
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propagated by RHRs upon observation, as the more human-like the RHRs appear, the higher the
potential for humans to feel repulsed by their appearance.

Quality aesthetics is a foundation for reducing the UV in RHR design [18,19]. However,
although the aesthetics approach is a viable first stage for increasing the authenticity of a RHR’s
appearance, it neglects the importance of naturalistic functionality and movement. Per the UV, poor
functionality supersedes good aesthetical design in the same way that quality aesthetics become
secondary to inadequate functionality [20,21]. This condition is significant as RHRs are developed
in different configurations. For example, waist up models such as the Robot ‘C’ series by Promo-bot
Russia, launched in 2020, are designed as front desk assistants and do not require lower body functions.
However, human likeness also applies to other facets of RHR design such as movement. For instance,
although Atlas of Boston dynamics bears little aesthetical human resemble, the robot has highly
humanlike dexterity and movement. Thus, the term ‘realistic’ is applicable to different factions of RHR
engineering outside of appearance, that is, realistic movement, speech, and AI.

Therefore, the consideration of both appearance and functionality is crucial in developing greater
human-like RHRs and reducing the UV [22]. However, cultural background influences the UV as
observed in many studies conducted by Eastern scholars, which often rate lower levels of the UV
than in Western cultures [23–28]. Furthermore, many scholars argue that children are less susceptible
to the UV as they are naturally more curious and accepting of RHRs than adults owing to a lack of
media influence and risk perception [29–33]. Thus, exposing children to RHRs at a young age is a
methodology for ethically reducing the UV as it builds a foundation of understanding before media
influence [34,35].

Following these findings, developing emotionally responsive RHRs with higher degrees of visual
and functional human-likeness has the potentiality to increase affinity and reduce the UV, which may
prove essential in enculturating RHRs into society and developing RHRs with higher degrees of
human likeness. Nevertheless, little practical research evaluating user preference and the influence
of personality and appearance in automated RHRs with embodied artificial intelligence (EAI) exists
in HRI. Therefore, this study explores a significant gap in current HRI, EAI, and RHR research and
critically investigates this area by outlining the processes utilised in developing EAI personalities for
RHRs, substantiated by the results of an HRI experiment measuring the influence of appearance and
personality type in HRI.

2. Embodied Artificial Intelligence and Emotional Artificial Intelligence

Until recently, the primary focus of AI research was on creating algorithms that can compute
data that humans are incapable of calculating [36]. However, a shift in AI research and development
towards emotionally responsive systems with human-like personalities has become a critical factor
in developing AI systems that interact naturally with humans [37–39]. Thus, EmoAI applications
are better suited for situations that involve human communication and sensitivity compared with
traditional forms of robotic AI [40–42]. For example, EmoAI systems such as ‘Cogito’ monitor emotional
cues in the user’s speech during telephone conversations to respond to users naturally and make
human–computer interaction (HCI) more engaging [43]. Comparatively, an EmoAI system named
‘Surrportiv’ implements natural language processing (NLP) to converse with users. It adjusts the
tonality and empathy of the speech synthesis output to help tackle situations such as user stress and
anxiety [44].

A similar EmoAI support system named ‘Butterfly’ utilised in business environments monitors
staff stress levels, collaboration, creativity, and confliction between co-workers. The system offers
help and guidance to negotiate stressful work situations by sending employees text messages [45].
However, restricting the interactive capabilities of an EAI in HCI to a single stimulus such as speech
or text neglects many fundamental communicative processes observed in natural human–human
interaction such as facial expressions (FEs), attention, gesturing, and eye contact [46]. Thus, embodying
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modes of EmoAI in RHRs has the potential to enhance HRI and promote greater naturalistic modes of
communication by emulating human emotions.

In support, the humanoid robot ‘Pepper’ recognises and responds to six basic human emotions;
joy, sadness, anger, surprise, disgust and fear, using an emotion detection camera system integrated into
its AI [47]. The worldwide success of the Pepper robot relies on the system’s ability to communicate
and respond to humans with empathy, making the robot feel more approachable and friendly during
HRI [48–50]. However, Pepper’s appearance is distinctly unnaturalistic, with a plastic shell for skin and
immobile eyes and mouth aperture, which reduces the robot’s ability to display human-like emotions,
natural skin aesthetics, and FEs [51–54]. Thus, replicating the naturalistic aesthetics and sensory
capabilities of the human skin is essential in HRI. This is outlined in a study testing an artificial skin
for tactile interfacing in HRI, which emulates surface changes to touch and temperature to propagate
synthetic goosebumps and hair raising [55].

Comparatively, a synthetic skin [56] developed for mobile phones can systematically respond
to physical manipulation such as pinching and pulling to determine the emotional state of the user.
Unlike the previous example, this prototype has a compatible mobile application that reports on
user stress [56]. However, the goal of the robotic skin is for use in HRI to explore the intersection
between man and machine with future adaptations to include skin conductance, embedded hair,
and temperature recognition features.

Although these prototypes do not currently function with AI, the possibility of configuring the
artificial skins with EAI to elicit responses such as changes in speech tonality, pupil dilation, behaviour,
temperature, and perspiration is of significant value to RHR design. This approach is essential as it
combines a wide range of physical and psychological human responses into one system, proximal to
the nervous system. This is highlighted in a report on an RHR named ‘H1’ with tactile skin sensors
for enhancing HRI by responding to touch with EmoAI responses [57]. Moreover, developing an EAI
personality depends highly on the functionality, sensory abilities, intellectual capacity, and application
of the system [58,59]. For instance, chatbot personalities for emergency and rescue situations should
be empathetic, but also intellectually efficient in providing quick, logical, and concise instructions to
the user [60].

In regard, Gardner’s theory of multiple intelligences suggests that humans have different kinds
of intelligence [61]. These include visual–spatial intelligence: people who are good at visualising
tasks and spatial judgement. Linguistic-verbal intelligence: people with active reading and writing
skills. Logical–mathematical intelligence: individuals who excel at reasoning, recognising patterns,
and analysing formulas. Bodily-kinaesthetic intelligence: people with advanced hand-eye coordination
and dexterity. Musical intelligence: individuals who think in patterns, rhythms, and sounds.
Interpersonal intelligence: people who are good at understanding, relating, and interacting with
other people. Intrapersonal intelligence: individuals who can control their emotional states. Finally,
naturalistic intelligence: people who are in tune with nature.

However, current modes of robotic AI primarily focus on logical, linguistical, and kinaesthetic
intelligence and neglect the implications of interpersonal, musical, naturalistic, and intrapersonal
intelligence [62]. This consideration is significant as interpersonal and intrapersonal intelligence are vital
in human–human communication as these drives consider how people communicate, control emotions,
understand, and empathise with others [63], as shown in Figure 1. The application of Gardener’s
multiple-intelligence approach in machine learning (ML), deep learning (DL), statistics, database
design, and EAI systems is vital in creating multi-tasking robots with human-like capabilities [64–67].

Thus, intelligence and personality are intrinsically interlinked, and personality type is a highly
influential factor in intellectual capacity [68]. Gardner’s multiple intelligence approach in EAI has
a significant impact on the intellectual authenticity of RHRs as human beings have a high level of
intuition when examining and testing the abilities of AI systems [69]. Furthermore, EmoAI developed
for RHRs is crucial in the effective and naturalistic integration of RHRs into human society [63,70].
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This proposition is essential for RHR development as market predictions indicate a substantial rise in
the manufacturing, sales, and development of RHRs with EAI over the next five years [71].

Figure 1. Gardner’s eight intelligence types’ combinations and application in embodied artificial
intelligence (EAI).

2.1. Practical Applications of Humanoid Robots with EAI

Emulating the human body and mind is the most challenging and rewarding endeavour in
science, engineering, and technology, as the human being is the highest functioning organism in
the known universe [72]. Although the future applications of RHRs with EAI are highly theoretical,
emotionally intelligent robots with human-like personalities are gradually emerging in fields such
as the following: Vyommitra, 2020: IND [73], space exploration personal assistant; Nadine, 2015:
SING [74], social robotics platform; Erica, 2018: JAP [75], HRI research platform, and robotic actress;
Robot C, 2020: RUS [76], helpdesk assistant; HAL, 2018: USA [77], for use in pediatric training; Jiang
Lilai, 2019: China [78] and Alex, 2019: RUS [79] and Junko Chihira, 2016: JAP [80] are 24 h robotic news
reporters; Sophia, 2016: USA [81], social researcher and conference speaker; AI-DA, 2019: UK [82],
a robotic artist; BINA 48, 2016: USA [83], a robotic lecturer; Telinoid, 2006: JAP [84], a healthcare
assistant for the elderly; CB2, 2006: JAP [85], a robotic child to train young parents for adulthood;
Diego San, 2010: USA [86], an RHR to study cognitive development in children; Atlas, 2013: USA [87],
search and rescue robot; Affecto, 2010: JAP [88], a child robot to study human sociology; Robocop, 2017:
DXB [89], security guard; and Furhat, 2018: SWD [90], personal assistant. However, unlike traditional
models of design and programming in robotics, the end goal of RHRs with EAI is to perform multiple
tasks in different environments and use common tools, in order to emulate the natural cognitive,
emotional, communicative, and physical capabilities of humans [91].

For example, industrial robots have the potential to generate feelings of anxiety in the workplace as
they cannot provide the emotional support or understanding of human co-workers [92–94]. Therefore,
a shift towards emotional industrial robots such as ‘Sawyer’ and ‘Baxter’ that emulate human FEs are
reducing the anxiety between workers and machines in factory environments [95]. These ethical factors
are crucial in the sociological integration of humans and RHRs as, according to various studies [96,97],
assimilation is a critical aspect in human–robot integration because, the fewer the distinctions between
humans and machines, the higher the potential for acceptance [98,99].
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2.2. AI and Natural Language Processing System Design

The RHRs developed in this study are named Baudi and Euclid, and discussed in press
releases [100–102]. The RHRs implement Amazon Lex Deep Learning (DL) AI and Amazon Polly
speech synthesis (SS) software to converse with people naturally. The personalities and interests of the
RHRs reflect their age (appearance and SS) to measure how participants respond to different personality
types during HRI. Thus, Baudi’s interests are music, food, and travel, and Euclid’s interests are in
art, poetry, and literature. The DL algorithm in amazon Lex permits operators to access Amazon’s
large cloud-based databank of information relating to these topics and add additional information to
the data sets, depicted in Figure 2. The conversational AI systems function using a series of intents,
which are actions the user wants to perform; sample utterances, which are examples of things people
may say to convey the intent; slots and containers, which are data banks of information relating to
specific words; and topics and fulfilments, providing an appropriate answer/s using the information
provided by the user.

Moreover, Amazon Lex is a commercial product designed for business, and the UI is mostly
inaccessible compared with other open-source AI applications. This configuration makes developing
conversational AI for general-purpose communication problematic as the slots defined by the program
are mainly for specific types of business such as restaurants, music shops, and book shops. Therefore,
mapping together these functions to create a personality depends on selecting and adapting slots and
instances, linking them together, and building an EAI personality type and interests around those
features. Furthermore, Amazon Lex limits the maximum amount of intents to one hundred questions
per chatbot. This limitation is also problematic as it reduces the scope of potential questioning and
has a high potential to produce incorrect or repetitive responses. However, this issue is negotiable by
increasing the number of slots, sample utterances, and fulfilments per inquiry.

Thus, configuring a separate chatbot for different elements of the robot’s personality, emotions,
and interests provides a broader range of interaction during HRI. This approach is crucial in designing
an EAI personality as Amazon Lex is restrictive owing to its closed-software status and UI design.
However, the quality and accuracy of the DL AI system are highly effective for developing conversational
AI for HRI. Furthermore, the Amazon Lex AI system integrates automatic speech recognition (ASR),
natural language understanding (NLU), dialogue manager (DM), natural language generation (NLG),
and SS into a unified system. These components are of significantly greater quality than many
open-source third-party applications and function seamlessly on a cloud-based system, which reduces
system delay and system load.

Finally, Amazon Lex is compatible with Amazon Rekognition, ML robotic vision software to
enhance the sensory capabilities of the EAI system for RHR design. However, Amazon Rekognition is
expensive and difficult to calibrate and is outside of the scope of resources for this study, but may provide
a useful enhancement for future studies. Therefore, although Amazon Lex has accessibility issues,
the system speed, extensive databases, intuitive DL, cloud-based operating system, highly human-like
SS models, and optional machine vision libraries supersede similar conversational AI frameworks
such as Googles Dialogflow and IBM Watson.



Informatics 2020, 7, 28 6 of 36

Figure 2. Euclid and Baudi interests and hobbies cloud data. DL, deep learning; AI, artificial intelligence.
Elastic Container Service (ECS), Network Address Translation (NAT).

3. Human–Robot Interaction Experiment

The objective of the HRI experiment is to measure how participants perceive the authenticity,
appearance, likeability, and personality of the RHRs. This research is significant to the field of HRI
as there is a lack of up-to-date practical study into user preference implementing automated RHRs.
The experiment starts with the participant seated in front of a raised table between two RHRs shown
in Figure 3 and two computer screens.

A galvanic skin response (GSR) electrode is attached to the middle and index finger of the right
hand of test subjects to measure skin conductance. The Affdexme facial expression analysis (FEA)
system in the eye of Baudi and a webcam in situ to Euclid can detect and track the test subject’s FEs and
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rate of attention. A second camera system positioned to record the test procedure from a wide-angle is
set to monitor the test environment for post-experiment analysis.

The RHRs activate, and the heads and eyes automatically turn towards the participants using
the face tracking system developed in Arduino, Microsoft Kinect, and Microsoft Studio. The Pololu
microcontrollers activate, and the RHRs start to blink, raise eyebrows, and make subtle cheek
movements. The participants press the start button on the handheld controllers and say ‘Hello’ to
initiate the AI system. The first stage of the practical HRI experiment divides into four 5-min procedures
founded on the evaluation time of the 1950 Turing test, shown in Table 1.

Figure 3. Realistic humanoid robots (RHRs) with EAI ‘Euclid’ and ‘Baudi’ implemented in the
human–robot interaction (HRI) experiment.

Table 1. First stage evaluation protocol. AI, artificial intelligence.

Experiment Section 1 Section 2 Section 3 Section 4

Robot Euclid Euclid Baudi Baudi

Task
Timed 5-min spoken

conversation with the robot
(appearances and hobbies)

The participant plays an animal
guessing game (time capped at

5 min)

Timed 5-min spoken
conversation with the robot
(appearances and hobbies)

The participant plays an
animal guessing game (time

capped at 5 min)

Evaluation
The correct, incorrect, and

repeat AI responses are
recorded using in Lex

The correct, incorrect, and
repeat AI responses are

recorded using Lex

The correct, incorrect, and
repeat AI responses are

recorded in Lex

The correct, incorrect, and
repeat AI responses are

recorded using Lex

The aim of Sections 1 and 3 of the first stage of the HRI experiment is to assess how the performance
of the EAI systems and how participants physiologically and psychologically respond to the RHRs
using the biometric sensors. The participants speak to the robots using their voice, and when finished,
they press a button on a hand-operated controller to notify the AI system that the conversation has
finished and there is a short pause to allow the AI program time to respond.
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The manual handheld control system provided greater cohesive data input than implementing
time/speech-controlled ASR as stammering, pauses, mumbling, and incomplete sentences had a notable
impact on generating incorrect and please repeat responses. This approach is vital in this study as
gaining utilisable and concise data are key for assessing and enhancing the EAI personalities.

Sections 2 and 4 are the gamification elements of the HRI experiment and require the participants
to engage with the robots on a much more interactive level. The game implemented in this study is
called the animal guessing game and participants are requested to ask the RHRs a series of questions
pertaining to the identity of the animal the RHRs are ‘thinking’ of; for example, if Euclid is thinking of
a giraffe, the participants may ask the robot questions such as, ‘does it have four legs’, ‘does it live in
the sea’, or ‘can it fly’, and the robot responds accordingly with yes or no answers until the participant
can correctly identify the animal. Throughout the first stages of the experiment, the correct, incorrect
responses, and ‘please repeat’ AI responses are recorded in Amazon Lex statistics; these data are then
used to improve the robots’ AI after each interaction.

The second stage of the experiment is a computerised questionnaire in which participants discuss
the HRI experience and personal preference and evaluate the appearance, movement, AI, and speech
of the robots. During the questionnaire stage, the robots continue to track the head movements of the
participant, perform FEs using the Pololu, and speak to participants if requested to aid in answering
the questionnaire. This novel interactive evaluation approach permits test subjects to engage with the
RHRs while filling in the survey, compared with detaching the participant survey evaluation from the
HRI test. Numerous studies across HRI implement mixed methodological approaches to help discern
trends in large data sets and support and question participant taxonomies [3,103–105].

In accordance, this study employs a mixed methodology approach to data analysis, using both
quantitative and qualitative methods. This study implements a GSR system and two camera-based
FEA applications to measure the participant’s emotional responsivity on a fluctuating scale during
the HRI examination, which exports into graphs and data fields (.CSV, .TXT, and .PDF). These data
are quantitative and reinforced using qualitative inquiries of the HRI survey to verify outcomes.
The results of quantitative dichotomous questions are statistically analysed by employing Cronbach’s
Alpha to examine internal consistency, where lower than 0.60 is unacceptable, between 0.60 and 0.70 is
undesirable, between 0.70 and 0.80 is respectable, and >0.90 is excellent [106]. Standard deviation and
the margin of error are also factored: 0.0 exact comparison, <1.20 acceptable, and >2.0 unacceptable [107],
shown in Supplementary Materials Tables S1–S5.

3.1. Population Sample, Recruitment, and Participant Restrictions

The population sample size for the primary survey is 20 test subjects; based on the 20 human
interrogators implemented in Ishiguro’s total Turing test (TTT) [108] for androids, Harnad’s TTT [109],
Harnad & Scherzera’s robot Turing test (RTT) [110], and Schweizer’s truly total Turing test (TTTT) [111]
for RHRs. The population sample sizes of THT and HTT are incompatible with this study as these
approaches do not evaluate appearance, movement, speech, or AI. Similarly, the sample size of the
most compatible and recent research [2] proved unsuitable for this study as the experiment neglects
AI, robotic vision, tracking, speech synthesis, and biometric data gathering. Although the population
sample for this study is relatively small, the 50-question questionnaire and biometric devices collect
large sums of data to yield confirmable results. Gay’s [112] estimative sampling formula indicates the
number of invitations required to recruit 20 participants, depicted in Equation (1):

20 rr ÷ 10% er = 200 a (1)

Equation (1): Gay’s estimative sampling method: rr—response range (replies needed),
er—percentile of estimated responses, a—audience (amount of invitations).

Participants were required to have 20/20 vision or corrected vision to evaluate the authenticity
of the RHRs and be aged over 18 years to satisfy the terms of the ethics agreement. Recruitment
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was open to all individuals of different backgrounds, gender, cultures, abilities, and nationalities.
However, the ability to speak fluent English is a condition of this examination for the NLP to function
accurately. Per the limitations of the Turing test, a selective recruitment and screening procedure
ensured participants had sufficient background knowledge of the field of robotics and AI for effective
analysis in mixed method data research [113]. Applications from students and professionals within
robotics and AI and engineering were given preference over applicants in lesser-related areas. A short
discussion over e-mail regarding the participants’ background, interests, and prior experience of
robotics and AI was conducted before acceptance.

3.2. Participants Profiles

Per the ethical requirements for approval, all test subjects were over 18 years of age. The total
number of experiments conducted was 21; this is owing to one participant not completing the HRI
test because of a strong regional accent, which was unreadable by the NLP system. The subject was
made aware of this issue and continued using type-written responses. However, this approach did not
generate speech synthesis responses from the RHRs, which is vital for the HRI experiment, as Baudi’s
speech synthesis accent is slow and low in tone and Euclid’s intonation is higher with a faster speech
rate. Thus, as the test subject was unable to evaluate the RHRs’ speech synthesis during HRI, the
results were withdrawn from the dataset.

The number of completed experiments is 20, equivalent to the sample of the TTT and TTTT;
this includes GSR, FEA, and a complete HRI questionnaire. Table 2 indicates the background of each
test subject, gender, age, and previous experience of those taking part in HRI research. As there are no
similar HRI studies that implement two automated RHRs with conversational AI, all data are extracted,
grouped, and analysed to a high degree for future research.

Table 2. Human–robot interaction (HRI) experiment test subject profiles.

Subject Number
Undergrad (UG)
Post-Grad (PG)

Professional (PRO)
Age, Ethnicity, and Gender Background Previous HRI Experience

1 PG 22, Male, British Computational AI No
2 UG 28, Male, British Robotics and AI No
3 UG 22, Female, British Computing and Design No
4 UG 20, Male, British Robotics and AI No
5 PRO 31, Male British Robotics and AI Yes
6 PRO 45, Male, British Engineering and Computer Aided Design No
7 UG 29, Female, British Multimedia No
8 PG 25, Female, British Game Design & Programming No
9 UG 18, Female, British Film and Media No
10 UG 20, Male, Asian Robotics and AI No
11 UG 21, Male, Asian Robotics and AI No
12 PRO 56, Male, British Engineering No
13 PG 24, Female, British Games Programming No
14 PRO 32, Female, British Film and Media No
15 PG 25, Female British Game Design & Programming No
16 PRO 55, Male, British Electronic Engineer No
17 PRO 43, Female, British Human Factors & Ergonomics No
18 PRO 38, Male, British Electronics No
19 PRO 32, Female, British Cognitive Science No
20 UG 25, Male, British Engineering No

The gender ratio for this study is 11 (55%) males and 9 (45%) females; as there is one more
male test subject than female, participant responses and results that are examined by gender group
require significant differences in outcomes to be considered viable. The age ranges group into two
equitable series of 18–27 (10: 50%) and 28–56 (10: 50%) to provide a comparative analysis between a
higher and lower age group. However, as there is a greater diverse age range in the 28–56-year-old
group, only outcomes with significant differences in results are considered viable. The analysis of the
population sample indicated a high percentage of test subjects of Western ethnicities with English as a
native language 18 (90%) compared with other ethnic backgrounds with English as a second language
(10%). Therefore, ethnic and cultural diversity is an issue in this data set. However, the study was open
to people of all cultures and backgrounds, and no preference was given to individuals from specific
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cultures or ethnicities. Ninety-five percent of participants indicated no previous experience in taking
part in HRI experiments.

This result is not surprising per the accessibility to RHRs and the narrow recruitment factors of HRI
studies. However, one participant (5%) indicated previous experience in HRI within higher education.
All participants underwent a background check, as outlined in the Turing test recruitment procedure.
During recruitment, potential participants were asked to disclose their current/previous level of study
and background/current experience to establish their expertise in robotics, AI, and relevant fields for
eligibility in the HRI experiment.

Thus, 6/20 (30%)—1:PRO (professional), 1:PG (post-grad), 4:UG (undergrad)—participants had
previous or current experience in the field of robotics and AI; this percentage is high owing to the
related nature of the study and the targeted online recruitment of AI and robotics students and staff

members from the university. Further, 5/20 (30%)—2:UG, 3:PG:—subjects had experience in areas
relating to computing and AI; this includes computer programming, application design, and AI games
programming. Further, 5/20 (25%)—4:PRO, 1:UG—participants had experience in engineering and
electronics with knowledge of robotic system design. Morover, 2/20 (10%)—1:PRO, 1:UG—individuals
work or study in film and media, with experience in animation and programming.

Two out of twenty (10%)—2:PRO—subjects are professionals in areas relating to human psychology
and physiology, to which both participants indicated an interest and personal study of AI. A further
8/20 (40%) of participants are current university students studying undergraduate degrees, 4/20 (20%)
of subjects are undertaking postgraduate degrees at either Master’s or Ph.D. Lastly, 8/20 (40%) of
candidates are professionals within their field with significant personal and industrial experience in
AI, robotics, and related areas, as shown in Table 2.

Questionnaire categories: The RHR and EAI user preference and design questionnaire consist
of 10 open-ended questions followed by 15 quantitative questions measured on five-point Likert
scales covering the following: likeability, human-likeness, and competence, shown in Table 3,
based on previous studies [105,114,115]. The qualitative and quantitative HRI questionnaire results are
comparatively analysed against the GSR, FEA, and AI analytic data for a comprehensive cross-analysis
of all data fields.

Table 3. Quantitative HRI survey questions based on previous HRI research [116].

Question 11 Like 1 2 3 4 5 Dislike
Question 12 Incompetent 1 2 3 4 5 Competent
Question 13 Human-like 1 2 3 4 5 Machine-Like
Question 14 Friendly 1 2 3 4 5 Unfriendly
Question 15 Fake 1 2 3 4 5 Natural
Question 16 Responsible 1 2 3 4 5 Irresponsible
Question 17 Unkind 1 2 3 4 5 Kind
Question 18 Aware 1 2 3 4 5 Unaware
Question 19 Moving Naturally 1 2 3 4 5 Moving Rigidly
Question 20 Pleasant 1 2 3 4 5 Unpleasant
Question 21 Unintelligent 1 2 3 4 5 Intelligent
Question 22 Unconscious 1 2 3 4 5 Conscious
Question 23 Awful 1 2 3 4 5 Nice
Question 24 Sensible 1 2 3 4 5 Foolish
Question 25 Artificial 1 2 3 4 5 Lifelike

4. HRI Questionnaire

Question 1. Which robot do you think looks most human-like, Baudi or Euclid?

A total of 18/20 (90%) cited Euclid as the more human-like RHR. Of this dataset, 14/18 mentioned
that Euclid’s skin appeared more human-like, 3/18 conferred Euclid’s mouth as the most human-like,
and 1/18 cited Euclid’s eyes as more aesthetically realistic than Baudi’s. Moreover, 1/20 (5%) of results
explained that Baudi’s hair implants made the RHR look human-like. One out of twenty (5%) of test
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subjects cited Baudi’s skin tone as more human-like than Euclid’s. A key theme in the results of Q1 is
the aesthetical quality of the silicone skins, which many test subjects testified as having a significant
impact on the RHRs’ visual authenticity. Both silicone skins were commissioned from the same artist
to minimise visible irregularities between the RHRs and aesthetical and material quality. Euclid’s skin
wrinkles were a recurring theme in participant responses.

RHRs are typically young in appearance and designed without skin imperfections or
blemishes [33,100], which is not an accurate representation of the natural tonal variance and ageing of
human skin. This aesthetical consideration is significant to RHR design as, although Baudi’s skin is
not flawless, the RHR has no skin wrinkles and fewer skin imperfections. Therefore, as Euclid is much
older in appearance with a greater range of facial defects, the RHRs’ appearance further blurs the line
between human beings and RHRs. More male (M) subjects cited Euclid as humanlike than females
(F): F8, M10 and Baudi: F1, M1. There was little difference between the higher and lower age groups,
H = ages (18–27) and L = ages (27–56), Euclid: L9, H9 and Baudi: L1, H1.

Question 2. Which robotic voice did you prefer/understand better, Baudi or Euclid?

In total, 13/20 (65%) of test subjects preferred the voice of Baudi. Of that dataset, 8/13 explained
that Baudi’s speech was slower and easier to understand than Euclid’s and 5/13 stipulated that Baudi’s
accent was easier to understand than Euclid’s. Moreover, 7/20 (35%) cited Euclid’s speech synthesis as
the most understandable. Of those results, 3/7 cited the pitch and tone of Euclid’s voice as the most
human-sounding. A key theme in the HRI results considered the American accents of the robots, as the
speech synthesis program implemented in this study only outputs American accents. This configuration
appeared to impact natural speech understanding of non-American listeners. A recurring theme in
the test results was the preference of the American accent as 2/20 stated the American accents were
off-putting, and 4/20 suggested that they liked the American accents.

However, 4/20 of test subjects explained that the American accents were difficult to understand at
times. A higher number of male test subjects preferred the speech synthesis of Baudi owing to the
speech rate, depth, and tone: M9, F4 compared with Euclid M2, F5. Age-related statistics indicated
that the lower age group preferred the speech synthesis accent of Baudi: L9, H4 compared with Euclid:
L1, H6.

Question 3. Did you feel empathy/emotion towards Euclid or Baudi?

Here, 8/20 (40%) explained that they did not feel empathy or emotions towards the RHRs because
the appearance, movement, and AI did not feel entirely human. However, out of that dataset,
3/6 advocated that, although they did not feel any emotion, they felt relaxed, happy, and calm during
HRI with the RHRs, counter to the UV. Moreover, 5/20 (25%) cited that they felt no emotion or empathy
because the robots were just heads without a body, which made them feel inhuman.

This outcome is justifiable with the current configurations of the RHRs as time limitations
prohibited the design, development, and production of a robotic body and implementing a still
manakin type body was difficult owing to spatial constraints. Further, 5/20 (25%) of test subjects
suggested that they felt empathy towards Baudi owing to his unnatural appearance, which resembled
human disability. A further 2/5 explained that Baudi’s eyes played a role in instigating an emotional
response. Moreover, 2/20 (10%) felt that Euclid’s realistic appearance made them feel awkward and
intimidated, which coincides with the UV. However, this sample is not sufficient in size to support the
existence of the uncanny valley.

A higher number of female subjects felt an emotional response towards the RHRs compared with
male subjects—F6, M1—and a greater number of males indicated no emotional responsivity—F3, M10.
Out of that dataset, F5 cited an emotional response when interacting with Baudi and F1, M1 cited an
emotional response during HRI with Euclid. Similarly, there was a notable difference in the age-related
statistical analysis. L8, H5 cited no emotional response and L2, H5 suggested an emotional interaction.
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Out of that dataset, L2, H3 mentioned feeling an emotional response when interacting with Baudi and
L0, H2 with Euclid.

Question 4. How did you feel when Baudi made eye contact with you?

Here, 8/20 (40%) of test subjects stated that they felt nothing resembling an emotional response
when Baudi made eye contact with them. Of this dataset, 5/8 indicated that they did not feel the same
way as when making eye contact with other humans. A further 3/8 suggested that the eye contact
interaction was not consistent to make it feel like the RHR was looking at them naturally.

Moreover, 12/20 (60%) stated that they felt an emotional response when making eye contact
with Baudi, and 7/12 suggested that it felt as if the robot was looking back at them. Of these results,
3/12 cited Baudi’s eye aesthetics as making the eyes appear creepy. Another 2/12 explained that the
pupil dilation function made the eyes look humanlike. Gender statistical analysis indicated a higher
percentage of female participants felt an emotional response to Baudi’s eyes than male test subjects—F7,
M1 compared with no emotional response F2, M10. However, the results of the age-related statistical
analysis indicated little correlation between an emotional response L3, H5 and no emotion L7, H5.

Question 5. How did you feel when Euclid made eye contact with you?

Here, 13/20 (65%) suggested that they did not feel anything when Euclid made eye contact with
them. A further 8/13 argued that making eye contact with Euclid was like looking into the glass eyes
of a doll or the eyes of a painting. Moreover, 3/20 suggested that Euclid’s eyes were not real enough
to instigate an emotional reaction. Another 2/13 gave no reasoning other than to state that they did
not feel anything relating to an emotional response. A further 7/20 (35%) suggested an emotional
response to making eye contact with Euclid. Another 4/7 cited that they felt like the robot was looking
back at them, or another human was looking at them through a camera. Another 2/7 advocated that
Euclid had dead eyes which made them feel unnerved. Finally, 1/7 explained that Euclid maintained
constant eye contact with them, which made them feel unsettled. Gender statistical analysis suggested
no correlation between male and female test subjects—no emotional response: F5, M8 and emotional
response: F4. M3. Similarly, the results of the age-related statistical analysis indicated no discernable
relationships between emotional responsivity L6, H7 and no emotion L4, H3.

Question 6. Which robot head do you think moved most naturally, Euclid or Baudi?

Here, 16/20 (80%) of candidates cited Euclid’s head as moving the most naturally. Of this dataset,
9/16 explained that they felt a greater natural interaction when communicating with Euclid compared
to Baudi. A further 4/16 stipulated that Euclid exhibited a more extensive range of FEs.

Moreover, 2/16 mentioned Euclid’s mouth as a decisive factor in the RHRs naturalistic movement,
and 1/16 of outcomes suggested that Euclid’s head moved more naturally. Another 4/20 (20%) explained
that they felt Baudi exhibited a more extensive range of natural movement. A further 3/4 of test
subjects advocated that Baudi exhibited a broader range of FEs. Finally, 1/4 suggested that Baudi made
consistent eye contact with them.

These outcomes suggest that Euclid functioned with a higher range of movement than Baudi.
However, both robots are of the same build and implement the same tracking and face detection
applications and operate using a single Kinect system paired between the two robots to minimise
interference. Therefore, there should be few distinctions between the functionality of the RHRs apart
from the eye and mouth components. Thus, it is probable that the appearance and skin movement
of the RHRs influenced how test subjects perceived the movement of the RHRs, as both robots
instigate eyebrow raises and cheek raises at random intervals using the Pololu microcontroller. Thus,
it is probable that, during individual sessions, one robot expressed a more extensive range of these
functions owing to the randomisation of the FEs. This configuration may account for the differences
in emotive HRI as the RHRs function differently with a wide range of variables during each session.
These outcomes support the findings of the literature review that suggest poor aesthetical quality
supersedes quality functionality, and vice versa [20,21]. Gender analysis indicated that more male
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test subjects cited Euclid’s movement (M10, F6) as more naturalistic than Baudi (F3, M1). However,
age-related statistics inferred little discernible difference between the naturalistic movement of Euclid
(L8, H8) and Baudi (L2, H2).

Question 7. Which robotic head expressed the greatest range of facial expressions?

Here, 11/20 (55%) advocated that Euclid performed the broadest range of FEs. Another 4/11
suggested that Euclid’s eyebrow raises and cheek lifts were prominent, 2/11 explained that Euclid
appeared to respond to questions with FEs, 2/11 argued that Euclid’s skin wrinkles and skin stretching
made FEs appear more realistic, and 3/11 stipulated that Euclid portrayed a wider range of emotive FEs
than Baudi. A further 8/20 (40%) suggested that Baudi displayed the broadest range of FEs. Another 5/8
argued that Baudi appeared to synchronise FEs with AI responses more coherently. Another 3/8
claimed that Baudi performed the widest range of FEs. Finally, 1/20 (5%) of test subjects advocated
that they could not distinguish which RHR displayed the broader range of FEs.

These outcomes suggest that natural skin aesthetics play a significant role in displaying FEs in
RHRs. This approach is vital in developing greater human-like RHRs as typical methods in RHR design
neglect skin blemishes and wrinkles, as these features do not fit in with the paradigm of cutting-edge
technologies. Gender statistical analysis suggested that a greater number of male participants thought
Euclid expressed the broadest range of FEs (F2, M9) and F6, M2 stated Baudi displayed the most FEs.
F1 unclassified. Age-related analysis indicated that more subjects in the higher age group thought
Euclid displayed the most FEs—EL: 3, EH: 8 and BL: 6, BH: 2. L1 unclassified.

These results correspond with existing literature in FE recognition in human psychology.
For example, a comprehensive study measuring facial FE recognition [117] discovered that older adults
focus on the mouth area for gauging emotive FEs and younger individuals concentrate on the eyes.
This consideration is significant as the robotic mouths are greater articulated and expressive than the
robotic eyes, per the results of the literature review (practical versus virtual HRI for evaluating the
UV). Thus, ‘own age advantage’ may account for test subjects in the higher age group recognising
more FEs during HRI, as their attention is on the mouths of the RHRs rather than the eyes.

Question 8. Which AI did you prefer communicating with during the conversation?

Here, 13/20 (65%) preferred to interact with Euclid’s AI. Of this dataset, 4/13 indicated that they
felt Euclid had more relatable interests and hobbies than Baudi. Another 7/13 cited that they felt
Euclid gave more accurate and fully formed responses than Baudi’s and 2/13 advocated that Euclid’s
personality was more engaging than Baudi’s. A further 7/20 (35%) preferred Baudi’s AI system, 3/7 of
that dataset cited that Baudi gave more accurate and full responses, and 2/7 stated that they had more
in common with the interests of Baudi. Moreover, 2/7 explained that they felt Baudi was the more
engaging RHR. During HRI, many individuals attempted to deceive the RHRs into giving incorrect
responses by asking questions outside the scope of the AI system. For example, one participant asked
Baudi, “How many hairs do you have on your head?”, which produced an incorrect response of “My
eyebrows are made of human hair”. Male test subjects: M8, F5 preferred to converse with Euclid, while M3,
F4 preferred Baudi, and the higher age group favoured Euclid’s AI and the lower age group preferred
Baudi’s AI: EL: 4, EH: 9 and BL: 6, BH:1.

Question 9. Which AI system did you prefer during the guessing game?

Here, 11/20 (55%) preferred Baudi’s conversational AI during the guessing game session.
Another 8/11 cited Baudi as the more competent RHR. A further 2/8 of candidates advocated that Baudi
had a broader knowledge base, and 1/8 stated that Baudi was more engaging. Moreover, 9/20 (45%)
cited that they preferred to interact with Euclid during the guessing game session. Finally, 5/9 argued
that Euclid produced more correct answers, 3/9 stated that Euclid had a wider knowledge base, and 1/9
explained that Euclid was more naturalistic during HRI.

As with the previous test, several subjects asked unusual or irrelevant questions to deceive the
AI system. Male subjects preferred to interact with Baudi (M8, F3) and females with Euclid (M3, F6).
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However, there was little notable difference in the age-related factors—Baudi: L5, H6 and Euclid:
L5, H4.

Question 10. Did you prefer communicating with an older or younger-looking robot?

Here, 12/20 (60%) preferred to communicate with Euclid. Of this dataset, 5/12 explained that
they felt more comfortable interacting with an older looking robot because they felt trust towards an
RHR with an aged appearance. Moreover, 2/13 suggested they prefer to interact with an older looking
RHR as it was less intimidating than a younger model. A further 3/13 suggested that Euclid reminded
them of older relatives, which made HRI less intimidating. Another 2/13 stated that as they felt Euclid
looked more humanlike than Baudi, Euclid’s highly realistic appearance made the communication
more naturalistic. Another 8/20 (40%) advocated that they prefer to communicate with Baudi, and 5/8
explained that Baudi appeared less threatening because his appearance was softer.

Moreover, 2/8 indicated that they felt Baudi was more engaging than Euclid and 1/8 suggested that,
as they interact more with younger people daily, they felt a greater connection with a young-looking
RHR. These results indicate that participant outcomes were closely divided between communication
with a younger-looking robot and an older looking RHR. This finding is intriguing as it correlates with
the age-related statistics, which infers that the higher age group favoured interaction with Euclid (H8,
L4) and the lower age group preferred HRI with Baudi (H2, L6). This outcome is vital to this study as
the results suggest that younger test subjects felt a greater connection with a younger-looking RHR,
and the older age group felt a greater connection with an older looking RHR. Moreover, although Baudi
is designed to look younger than Euclid, neither RHR is assigned a specific age, meaning participants
were left to decide how old the robots appeared to them. Interestingly, several subjects interpreted the
appearance of the RHRs as threatening or intimidating, depending on how old they looked. This result
may relate to how young people perceive older adults and older people see younger individuals in
society. Gender factors did not influence decision making; F5, M7 preferred to interact with a robot
with an elderly appearance and F4, M4 preferred HRI with a younger-looking robot.

4.1. Comparative Analysis of Qualitative and Quantitative Results (All Test Subjects)

Series 1A. Likeability: (Q11, Q14, Q17, Q20, and Q23). On average, Baudi rated 4/5 more likeable
than Euclid 1/5. Internal consistency was high in this subset, 0.8 α, indicating high levels of consistency
in participant responses. These results confirm the outcomes of Q3, Q6, and Q7 in which candidates
cited a more significant emotional response to Baudi during HRI. However, these results contrast with
the results of Q10, where test subjects preferred to interact with an older looking RHR (Euclid) over a
younger-looking RHR (Baudi). These outcomes collectively conclude that participants found Baudi
more likeable than Euclid.

Series 2A. Human-likeness: (Q13, Q15, Q18, Q21, and Q25). Test subjects rated Euclid 4/5 more
human-like than Baudi 1/5. Coefficient factors were high in the subset, 0.9 α, suggesting a high
level of accuracy in participant outcomes. However, 1/5 (Q15) of test subject outcomes were of an
equivalent rating on the five-point Likert scale (3). These results validate the findings of Q1 of the HRI
questionnaire, where test subjects cited Euclid as appearing, functioning, and moving more humanlike
than Baudi. Therefore, these outcomes collectively conclude that test subjects found Euclid more
humanlike than Baudi.

Series 3A. Competency: (Q12, Q16, Q19, Q22, and Q24). Test subjects rated Euclid 3/5 as more
competent than Baudi 2/5. However, out of these results, 2/3 (Q19 & Q24) rated equivalent (3) on
the five-point Likert scale. Internal consistency was acceptable, 0.7 α, suggesting some variance in
the outcomes of participants’ responses. These results collate with the findings of Q6–Q8, which cite
Euclid as moving and responding to participants more competently than Baudi. However, these results
contrast with the outcomes of Q2 and Q13, which suggested Baudi’s AI functioned with a higher
degree of competency during the guessing game session and clarity in speech synthesis during verbal
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HRI. These results collectively confirm that participants rated Euclid as the more competent RHR
during HRI.

4.2. Comparative Analysis of (Q1–14) and (Q21–35) Results (Male & Female)

Series 1B. Likeability: (Q11, Q14, Q17, Q20, and Q23). Male subjects liked Euclid 3/5 more than
female subjects 2/5, and 3/5 (Q14 and Q20) equivalent ratings of (3). Female subjects rated Baudi as
more likeable 3/5 than male subjects 1/5; coefficient factors were high in this subset, 0.8 α, suggesting
high consistency in the results of Series 1B. These results correspond with the results of Q3 as more
female test subjects cited feeling an emotional response to Baudi: F5/M0, and Q4–Q5 were female
participants stated feeling emotional during eye contact interfacing with Baudi: F7, M1. These results
collectively conclude that male subjects preferred Euclid and female test subjects favoured Baudi.

Series 2B. Humanlikeness: (Q13, Q15, Q18, Q21, and Q25). Group analysis of Series 2 indicates
that both gender groups rated Euclid as more humanlike (4/5) and females liked Baudi more than
male subjects M0/5, F1/5. Internal consistency was high, 0.9 α, in the collective results of Series 2.
These outcomes support and validate the findings of Q1, where both gender groups rated Euclid as
more humanlike: Euclid: F8, M10 and Baudi: F1, M1. In Q5, both gender groups preferred Euclid’s
eye aesthetics: Euclid: F6, M9 and Baudi: F2, M2. In Q6, both gender groups cited Euclid’s eyes as
moving the more human-like: Euclid: F5, M7.

Series 3B. Competency: (Q12, Q16, Q19, Q22, and Q24). Male test subjects rated Euclid as more
competent: (E: M2/5, F1/5) and (B: M1/5, F1/5); 2/5 of ratings were equivalent [3], Q16 and Q24.
Internal consistency was acceptable, 0.7 α, suggesting some level of variance in participant results.
These results correlate Q7 in which male test subjects cited Euclid as displaying a broader range of FEs
than Baudi: E: F2, M9 and B: F6, M2. Q8 as male test subjects achieved higher accuracy in Euclid’s
5-min topical conversation AI test, ME: 146 (51%), FE: 136 (49%) and MB: 88 (56%), FB: 65 (44%). In Q9,
male participants achieved higher accuracy scores in the 5-min guessing game AI test. However,
these results contrast with the results of Q2, where more males cited Baudi’s speech synthesis as more
understandable than Euclid, (B: M9, F4 and E: M2, F5). These outcomes are difficult to collectively
verify owing to the level of variance in results of the gender statistical analysis.

4.3. Comparative Analysis of (Q1–14) and (Q21–35) Results (Age Groups)

Series 1C. Likeability: (Q11, Q14, Q17, Q20, and Q23). The higher age group (18–27) liked Euclid:
EL: 1/5, EH: 3/5 and 1/5 (Q20) rating of (3) and the lower age group BL3/5, EH1/5, and 1/5 (Q23) rating
of (3). Coefficients were 0.8 α, indicating a high level of consistency in participant outcomes.

These findings correlate with the results of Q3: emotions during HRI (E: L2, H3 and B: L0, H2).
Q6–Q7 eye contact interaction, Euclid: L6, H7 and Baudi L3, H5. In Q14, the lower age group preferred
HRI with Baudi and the higher age group with Euclid: E: H8, L4 and B: H2, L6. Therefore, these results
collectively substantiate and validate the findings that the younger age group preferred HRI with
Baudi, and the more mature age group preferred HRI with Euclid.

Series 2C. Humanlikeness: (Q13, Q15, Q18, Q21, and Q25). Euclid rated L4/5 and H 3/5 and Baudi
L0/5 H1/5. Coefficient factors were high in the dataset, 0.9 α, suggesting a high level of consistency
in participant responses. These results correspond with the outcomes of Q1, where both age groups
cited Euclid as the more humanlike RHR: E: L9, H9 and B: L1, H1. In Q4, both age groups suggested
Euclid’s eye movement as the more aesthetically realistic: E: H8, L6 and B: H2, L2, L1 unclassified.

However, these results conflict with the results of Q5 as the higher age group preferred the eye
movement of Euclid, E: H8, L4 and B: H2, L6. These results collectively conclude that both age groups
rated Euclid as the most human-like RHR.

Series 3C. Competency: (Q12, Q16, Q19, Q22, and Q24). The lower age group rated Euclid as more
competent 3/5 than the higher age group 2/5, and (3) in Q13, Q16, and Q24 and Baudi rated 2/5 in the
higher age group and 1/5 in the lower age group. Internal consistency was acceptable, 0.7 α, suggesting
some variance in participant outcomes. These results correlate with Q6 and Q7, where both age
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groups rated Euclid as moving more naturally in head movement: E: L7, H8 and B: L3, H1 and mouth
movement L10, H1. However, these results conflict with Q2 speech synthesis, B: L8, H4 and E: L2, H6.
Q11 FEs, EL: 3, EH:7 and BL: 6, BH: 3. Q12 AI topical conversation session EL: 129 (46%), EH: 154
(54%) and BL: 95 (39%), BH: 145 (61%) and Q13 5-min AI guessing game: EH: 369 (54%), EL: 316 (46%).
The quantitative questionnaire results of Series 3C conflict with the findings of the qualitative results
(Q1–10), making the outcomes of this dataset difficult to cross-analyse and substantiate.

4.4. Analysis of FEA and GSR Biometric Data Feeds

The following section examines the FEA and GSR biometric data feed extracted from test subjects
during the HRI experiment. The FEA reads the following FEs from 0–100%.

1. Rest, 0–100%: this configuration is the default position of the FEA system.
2. Frown, 0–100%: the frown function measures negative Fes, which examine the position of the

lips, cheeks, and eyebrows.
3. Smile, 0–100%: similar to the frown function, the FEA system measures the correlation and

position of the lips, cheeks, and eyebrows to determine if and to what extent the test subject
expresses a positive facial expression.

4. Disengage, 0–100%: this mode engages when the system is unable to track the user.
5. Attention, 0–100%: the FEA system measures the frequency of the test subjects eye positions with

the camera position to monitor attention rates.

The GSR data combined with the FEA data provide an overview of the type and level of stress
experienced by the test subjects at any given state. This combinatory approach permits the verification
of positive and negative emotional states in the GSR and FEA data to eliminate interference from other
facial movements such as speech, gesturing, and facial tics that may register as a positive or negative
facial expression in the FEA application. This method acts as a low pass filtration system and permits
greater accurate measurements of frequency, duration, and range of emotive FEs for comparative
analysis between the AI results and the findings of the HRI questionnaire.

4.4.1. All Test Subjects: 5-Min Conversation. FEA and GSR Data Analysis

The results of the FEA biometric data analysis indicated that test subjects spent more time
in the rested state when interacting with Euclid (Avg 18%). Compared with Baudi (Avg 15%),
suggesting participants spent more time in the neutral facial position when interacting with Euclid.
Negative FEA data was higher in Euclid’s results (Avg intensity (INTST), 8%, Fq: 228, Avg: 11)
compared with Baudi (Avg INTST, 7%, Fq: 213, Av: 11), suggesting subjects experienced greater
negative stimulus during HRI with Euclid. Positive FEA results cite a greater positive FE HRI with
Baudi (Avg INTST, 10%, Fq: 200, Avg: 10) compared with Euclid (Avg INTST, 9%, Fq: 201, Avg: 10).
The attention level was marginally higher in Baudi’s FEA results, Avg: 73% compared with Euclid, Avg:
72%, as shown in Figure 4. However, subjects exhibited more disengaging behaviour with Baudi than
Euclid (B: 53. Avg 3, E: 41. Avg 2). The FEA results validate the results of the Series 1A (likeability),
Series 2A (Human-likeness), and Series 2A (competency). These outcomes collectively suggest greater
humanlike RHRs emit higher levels of the UV.

Interestingly, although the FEA results were marginal, the range of internal consistency was low
across the data set (0.04 α/0.5 α), suggesting very high levels of variance. Therefore, per the results
of the FE data analysis, although test subjects expressed a wide range of FEs during the 5-min AI
conversation experiment, these did not significantly change in frequency or intensity between the
RHRs. However, the GSR data analysis indicated higher levels of stress during HRI with Euclid:
total Avg, 17.8 µS. (Neg stimuli: Avg 5.6 µS/Pos stimuli: Avg 4.2 µS) compared with Baudi: Total Avg,
12.3 µS. (Neg stimuli: Avg 2.1 µS/Pos stimuli: Avg 4.2 µS), suggesting test subjects experienced a
greater negative HRI experience with Euclid as cited in the results of Series 1A.
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Figure 4. Five-min topical AI conversation experiment: all test subjects. Biometric data—Left: Euclid
facial expression analysis (FEA) results, Right: Baudi FEA results, Middle: Euclid and Baudi galvanic
skin response (GSR).

4.4.2. Euclid: Females and Males, 5-Min Conversation. Biometric Data Analysis

The FEA results indicate that male test subjects spent more time in the rested FE state when
interfacing with Euclid (M: 20%, F: 16%). Negative FEA data were higher in male subjects, M:
(Avg INTST, 9%, Fq: 118, Avg: 11), F: (Avg INTST, 7%, Fq:110, Avg: 12). Comparatively, male subjects
displayed greater positive FE than female participants, M: (Avg INTST, 11%, Fq: 125, Avg: 11), F:
(Avg INTST, 7%, Fq: 76, Avg: 8). These results suggest that male participants expressed the greatest
range and intensity of negative and positive FE. The average attention level was similar in the results
of male and female test subjects, M: Avg 73% and F: Avg 72%. However, male subjects exhibited more
disengaging behaviour than female subjects, (M: 26. Avg 2, F: 19. Avg 2), suggesting greater accuracy
in the results of female subjects, as shown in Figure 5.

Figure 5. Euclid: 5-Min topical AI conversation, male/female subjects. Biometric data—Left: male FEA
results, Right: female FEA results, Middle: male and female GSR.

Coefficient factors ranged between (0.03 α/0.7 α), indicating a high level of variance in the test
results. However, as in the previous set of results, male test subjects expressed similar FE intensities
to females, yet FE frequencies were significantly higher in male subjects (M: 429, F: 243), indicating
that males engaged with greater emotional FE and HRI with Euclid. Conversely, the GSR biometric
data analysis showed that female test subjects exhibited higher levels of stress during HRI with
Euclid compared with male participants, F: Total Avg, 19.3 µS. (Neg stimuli: Avg 4.9 µS/Pos stimuli:
Avg 4.4 µS) and M: Total Avg, 16.6 µS. (Neg stimuli: Avg 3.2 µS/Pos stimuli: Avg 2.8 µS). The GSR
results contradict the FE results; therefore, it is likely that, although female test subjects displayed less
FE than males, female subjects responded with higher electrodermal activity ‘stress’. The FEA test
results support the outcomes of Series 1B (likeability) and Series 3B (competency), and per the UV,
the GSR results support the findings of Series 2B (human-likeness) as both gender groups rated Euclid
as humanlike at a rate of (4/5).
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4.4.3. All Test Subjects, 5-Min Guessing Game, Biometric Data Analysis

The FEA results suggest that candidates spent more time in a neutral FE state when interacting
with Baudi during the 5-min guessing game session (B: 13%, E: 14%). Negative FEA indicates that test
subjects experienced higher levels of negative FE intensity when interacting with Euclid. However,
negative FE frequencies were more elevated in Baudi’s results, Euclid: (Avg INTST, 10%, Fq: 322, Avg:
16) and Baudi: (Avg INTST, 9%, Fq: 325, Avg: 16), suggesting that, although participants expressed a
higher rate of negative FE during HRI with Baudi, negative FE intensity was greater during HRI with
Euclid. Positive FEA results indicate higher levels of positive FE during HRI with Baudi, E: (Avg INTST,
7%, Fq: 205, Avg: 10), B: (Avg INTST, 8%, Fq: 197, Avg: 10), suggesting test subjects experienced greater
positive FE during HRI with Baudi. The average level of attention was higher during HRI with Baudi,
E Avg 71% and B: Avg 74%. However, disengaging behaviour in test subjects was significantly higher
in Baudi’s results, but similar on average (E: 20. Avg 2, B: 49. Avg 2), suggesting specific individuals
exhibited high levels of disengaging behavior, which was not representative of the whole dataset.

These results correlate with Series 1A (likeability), where subjects cited Baudi positive emotional
responses. Internal consistency was low across the dataset ranging between (−0.06 α/0.4 α), indicating a
high level of variance in FEA data. On average, GSR results suggest higher levels of positive
electrodermal activity during HRI with Baudi and greater negative GSR during HRI with Euclid,
which supports the FEA results and the results of Series 2A (human-likeness) and Series 3A (competency)
per the UV. Euclid: Total Avg, 10.10 µS. (Neg stimuli: Avg 4.3 µS/Pos stimuli: Avg 2.8 µS) and Baudi:
Total Avg, 12.10 µS. (Neg stimuli: Avg 3.1 µS/Pos stimuli: Avg 5.2 µS), depicted in Figure 6.

Figure 6. Five-min AI guessing game experiment: all test subjects. Biometric data comparison—Left:
Euclid FEA results, Right: Baudi FEA results, Middle: GSR results.

4.4.4. Baudi: Females and Males, 5-Min Conversation. FEA/GSR Data Analysis

The FEA results cite that female subjects spent more time in the rested FE state during HRI with
Baudi (F: 16%, M: 15%). Negative FEA was higher in male subjects, M: (Avg INTST, 7%, Fq: 125, Avg:
11), F: (Avg INTST, 6%, Fq:88, Avg:10), suggesting that, although FE intensity was similar in both
gender groups, the frequency of negative FE was significantly higher in male subjects. Comparatively,
positive FEA was higher in male participants, M: (Avg INTST, 11%, Fq: 114, Avg: 10), F: (Avg INTST,
8%, Fq: 86, Avg: 10), indicating similar levels of intensity in both gender groups. However, positive
and negative FE frequencies were considerably higher in male test subjects compared with female
participants. The FEA results suggest that male subjects experienced higher levels of emotive FE
during HRI with Baudi than female subjects. The average attention level was higher in the male test
group, M: Avg 74% and F: Avg 72% and similar in disengaging behaviour, (M: 29. Avg 3, F: 23. Avg 3),
suggesting marginally higher accuracy in the results of female participants. Internal consistency was
low in the dataset ranging from (0.02 α/0.7 α), indicating high variability in the FEA test results.

The FEA results correspond with the Series 1B (likeability) and Series 3B (competency), as male
subjects rated the RHRs higher than females. However, the FEA data conflict with the outcomes of
Series 2B (human-likeness), which cited both gender groups as experiencing similar emotions during
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HRI. GSR data analysis reinforces the results of the FEA data and questionnaire results, as male subjects
discharged higher levels of electrodermal activity than female participants, M: Total Avg, 15.3 µS. (Neg
stimuli: Avg 3.6 µS/Pos stimuli: Avg 4.2 µS) and F: Total Avg, 8.8 µS. (Neg stimuli: Avg 2.1 µS/Pos
stimuli: Avg 3.5 µS), suggesting that male subjects experienced significantly higher levels of positive
and negative emotional stimulus during HRI, depicted in Figure 7.

Figure 7. Baudi: 5-min topical AI conversation, male/female subjects. Biometric bata—Left: male FEA
results, Right: female FEA results, Middle: male and female GSR results.

4.4.5. Euclid: Age Groups, 5-Min Conversation. FEA/GSR Data Analysis

The FEA results indicate that the lower age group spent significantly more time in a neutral FE
state, L: 21%, H: 15%, during HRI with Euclid. Negative FEA was higher in the lower age group for
FE intensity and frequency, L: (Avg INTST, 9%, Fq:118, Avg: 12), H: (Avg INTST, 8%, Fq: 110, Avg:
11). Positive FEA results indicate that both age groups experienced similar positive FE intensities and
total frequencies. However, the average positive FE frequency was greater in the higher age group. L:
(Avg INTST, 9%, Fq: 94, Avg: 9), H: (Avg INTST, 9%, Fq: 107, Avg: 11).

The average level of attention was higher in the lower age group, L: Avg 73% and H: Avg 71%
and the lower age group exhibited higher levels of disengaging behaviour (L: 19. Avg 2, H: 22. Avg 2),
suggesting similar levels of accuracy in both gender groups. Coefficients were incredibly low across
the dataset, ranging between (−0.05 α/0.6 α), indicating a high level of variance in FEA test results.
These outcomes support the findings of Series 1C (likeability), where the higher age group rated a
greater positive HRI experience with Euclid. Furthermore, the FEA outcomes verify the results of
Series 2C (human-likeness), where the lower age group rated Euclid as more human-like, and Series
3C (Competency), where both age groups cited similar positive and negative emotions during HRI.

The results of the GSR data analysis indicated greater levels of electrodermal activity positive and
negative stimuli in the higher age group, L: Total Avg, 22.5 µS. (Neg stimuli: Avg 4.4 µS/Pos stimuli:
Avg 5.1 µS) and H: Total Avg, 13.2 µS. (Neg stimuli: Avg 6.2 µS/Pos stimuli: Avg 3.4 µS). The GSR
outcomes add validity to the findings of the FEA data analysis as they suggest that the lower age
group exhibited greater negative emotions during HRI with Euclid compared with the senior group,
as shown in Figure 8.

Figure 8. Euclid: 5-min topical AI conversation age groups. Biometric data—Left: (27–56) FEA results,
Right: (18–27) FEA results, Middle: (18–27)/(27–56) GSR.
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4.4.6. Baudi: Age Groups, 5-Min Conversation. FEA/GSR Analysis

The FEA results indicate that the lower age group spent more time in a rested FE state (L: 17%, H:
14%). Negative FEA intensity was proximal in both age groups; however, negative FEA frequency
was marginally greater in the higher age group, L: (Avg INTST, 7%, Fq: 101, Avg: 10), H: (Avg INTST,
7%, Fq: 112, Avg: 11). These results suggest that the higher age group experienced similar negative
emotions during HRI with Baudi. Conversely, positive FEA was significantly greater in the higher age
group, H: (Avg INTST, 9%, Fq: 103, Avg: 10), L: (Avg INTST, 8%, Fq: 97, Avg: 10), indicating that the
higher age group expressed greater positive emotional HRI with Baudi.

The average attention level was higher in the lower age group, L Avg 73% and H: Avg 71%,
and the higher age group exhibited significantly greater disengaging behaviours (H: 33. Avg 3, L: 19.
Avg 2). These results suggest greater concentration during HRI and higher accuracy in the results of
the lower age group. Coefficient factors were relatively low in the dataset, ranging between (0.2 α/0.6
α), suggesting a high level of variability in the FEA test results. GSR data analysis indicates that,
on average, the lower age group exhibited greater electrodermal activity than the higher age group,
L: Total Avg, 16.8 µS. (Neg stimuli: Avg 2.4 µS/Pos stimuli: Avg 4.1 µS) and H: Total Avg, 7.9 µS.
(Neg stimuli: Avg 3.1 µS/Pos stimuli: Avg 2.5 µS). However, both age groups discharged similar
levels of negative electrodermal activity, and the higher age group exhibited greater positive GSR
readings, which support the outcomes of the FEA data analysis, as shown in Figure 9. These results
collectively support the findings of Series 2C (human-likeness) and Series 3C (competency), as test
subjects cited similar ratings and positive and negative emotions during HRI with the RHRs. However,
more significantly, these results support the outcome of Series 1C (likeability), which suggests that the
lower age group preferred HRI with a younger-looking RHR.

Figure 9. Baudi: 5-Min topical AI conversation age groups. Biometric data—Left: (18–27) FEA results,
Right: (27–56) FEA results, Middle: (18–27, 27–56) GSR.

4.5. FEA/GSR Biometric Data Analysis: 5-Min Guessing Game HRI

4.5.1. Euclid: Females and Males 5-Min Guessing Game, FEA/GSR Analysis

The FEA results indicate that male subjects spent more time in a neutral FE position (M: 14%,
F: 13%). Negative FE results were higher in male test subjects, M: (Avg INTST, 11%, Fq: 179, Avg: 16),
F: (Avg INTST, 9%, Fq: 143, Avg: 16). Positive FEA was also higher in male candidates (Avg INTST,
8%, Fq: 118, Avg: 11) compared with female participants (Avg INTST, 7%, Fq: 87, Avg: 10), suggesting
male test subjects exhibited greater emotive FE during the 5-min guessing game HRI session. The FEA
data support the findings of Series 1B (likeability) and 3B (competency), where male subjects cited
comparable results. Coefficient factors were low across the dataset, ranging between (0.01 α/0.5 α),
indicating a high level of variance in FEA results.

However, male subjects exhibited significantly more disengaging behaviour than female subjects
(M: 32. Avg 3, F: 15. Avg 2), suggesting greater accuracy and attention in the results of female subjects.
The results of the average attention rate support these outcomes as female participants rated higher
levels of concentration than males, M: Avg 71% and F: Avg 72%. GSR data analysis indicated that
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female test subjects demonstrated higher levels of positive and negative electrodermal activity than
male candidates, Males: Total Avg, 9 µS. (Neg stimuli: Avg 3.6 µS/Pos stimuli: Avg 1.5 µS) and Females:
Total Avg, 14 µS. (Neg stimuli: Avg 3.1 µS/Pos stimuli: Avg 2.4 µS), as shown in Figure 10. The FEA
and GSR results add validity to the results of the 5-min topical conversation session with Euclid,
where male subjects expressed greater emotive FE, and female participants expressed greater emotional
GSR during HRI. These results support the findings of Series 2B (human-likeness), where both gender
groups rated comparable feelings and emotions during HRI.

Figure 10. Euclid: 5-min AI guessing game test: male/female subjects. Biometric data—Left: male FEA
results, Right: female FEA results, Middle: male and female GSR.

4.5.2. Baudi: Females and Males, 5-Min Guessing Game, FEA/GSR Analysis

The FEA results indicate that female test subjects registered greater neutral FE states during HRI
with Baudi, (M: 12%, F: 13%). The negative FEA outcomes suggested male subjects exhibited greater
intensity and frequency of negative FE, M: (Avg INTST, 10%, Fq: 187, Avg: 17). F: (Avg INTST, 8%,
Fq: 138, Avg: 15), and both gender groups expressed similar positive FE intensity M: (Avg INTST, 8%,
Fq: 109, Avg: 10), F: (Avg INTST, 8%, Fq: 88, Avg: 10). However, positive FE frequencies were higher
in the results of male test subjects. The FEA results support the outcomes of Series 1B (likeability) and
Series 2B (human-likeness), where male subjects rated Baudi as the less humanlike and competent
RHR compared with female candidates—M0/5, F1/5.

Attention levels were higher in female test subjects, M: Avg 72% and F: Avg 76%, and male
subjects exhibited greater disengaging behaviours (M: 29. Avg 3, F: 20. Avg 2), suggesting greater
immersion and accuracy in the results of female subjects. Internal consistency was low across the
dataset, ranging between (0.01 α/0.4 α), indicating high levels of variance in the FEA data. GSR results
suggest that female test subjects exhibited higher levels of electrodermal activity than male candidates,
M: Total Avg, 8 µS. (Neg stimuli: Avg 2.2 µS/Pos stimuli: Avg 1.9 µS) and F: Total Avg, 16 µS. (Neg
stimuli: Avg 4.2 µS/Pos stimuli: Avg 3.9 µS), as highlighted in Figure 11. Interestingly, these results
correlate with Baudi’s FEA and GSR results during the 5-min topical conversation session. Therefore,
it is highly likely that the male test subjects expressed greater positive and negative emotive FE,
and female participants dispersed higher levels of positive and negative electrodermal activity during
HRI with Baudi. These outcomes are significant as results cite notable differences between the gender
groups in FEA and GSR data, which adds greater validity to the results of Series 3B (competency).
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Figure 11. Baudi: 5-min AI guessing game test: male/female test subjects. Biometric data—Left: male
FEA results, Right: female FEA results, Middle: male and female GSR.

4.5.3. Euclid: Age Groups: 5-Min Guessing Game, FEA/GSR Analysis

The FEA results suggest that the lower age group spent more time in a rested FE state (L: 14%, H:
13%). Negative FEA was higher in the lower age group in intensity and frequency, L: (Avg INTST,
11%, Fq: 177, Avg: 18), H: (Avg INTST, 8%, Fq: 145, Avg: 15). Conversely, positive FEA intensity and
frequency were greater in the higher age group, L: (Avg INTST, 7%, Fq: 101, Avg: 10), H: (Avg INTST,
8%, Fq: 104, Avg: 10). The negative and positive FEA outcomes parallel with Euclid’s previous FEA
results in the 5-min topical conversation session. The FEA results correspond with the findings of Series
1C (likeability), where the higher age group cited having a positive HRI, and Series 2C (human-likeness)
and Series 3C (competency), where the higher age group rated Euclid as more humanlike (per the UV).

Internal consistency was low, ranging between (0.01 α/0.5 α), indicating high variability in the
FEA data. The average attention rate was greater in the higher age group, L: Avg 69% and H: Avg
73%. However, the higher age group exhibited more disengaging behaviours (L: 29. Avg 3, H: 20.
Avg 2). These results suggest higher attention levels in the lower age group and greater distraction
in the higher age group. The FEA results contrast with the 5-min topical conversation session AI
data. A probable cause for this shift is the parameters of the gamification session, which requires
concentration and strategy, compared with the 5-min topical conversation session, which is relaxed
and unstructured. GSR readings indicate that the lower age group exerted higher levels of positive
electrodermal activity than the higher age group, and negative GSR was higher in the lower age group,
H: Total Avg, 15 µS. (Neg stimuli: Avg 3.6 µS/Pos stimuli: Avg 2.3 µS), and L: Total Avg, 8 µS. (Neg
stimuli: Avg 2.9 µS/Pos stimuli: Avg 3.9 µS). The GSR results correlate and support the results of the
FEA data, as shown in Figure 12.

Figure 12. Euclid: 5-min AI guessing game, age groups (18–27)/(27–56). Biometric data—Left: (18–27)
FEA results, Right: (27–56) FEA results, Middle: (18–27)/(27–56) GSR.
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4.5.4. Baudi: Age Groups: 5-Min Guessing Game, FEA/GSR Analysis

The FEA results indicate higher levels of resting FE behaviour in the lower age group (L: 12%, H:
13%). Negative FEA intensity was greater in the higher age group, and negative FEA frequency was
higher in the lower age group, L: (Avg INTST, 9%, Fq: 164, Avg: 16), H: (Avg INTST, 10%, Fq: 161, Avg:
16). Conversely, positive FEA results indicate that the higher age group expressed greater intensive and
frequent FE, L: (Avg INTST, 8%, Fq: 95, Avg: 10), H: (Avg INTST, 9%, Fq: 102, Avg: 10), as illustrated
in Figure 13. Coefficient factors were low, ranging between (0.01 α/06. α), indicating high levels of
variance in the FEA data. Attention levels were greater in the higher age group, L: Avg 73% and H:
Avg 75%, and disengaging behaviour was lower in the higher age group (L: 26. Avg 3, H: 23. Avg 2).
The FEA results conflict with the previous FEA results registered during the 5-min topical conversation
session, as observed in Euclid’s results. The GSR results indicate that the lower age group exerted
significantly higher levels of positive and negative electrodermal activity, H: Total Avg, 18 µS. (Neg
stimuli: Avg 4.1 µS/Pos stimuli: Avg 3.3 µS) and L: Total Avg, 6 µS. (Neg stimuli: Avg 1.9 µS/Pos
stimuli: Avg 1.1 µS). These outcomes support the findings of Series 1C (likeability) and Series 2C
(human-likeness), and conflict with the results of Series 3C (competency), as the lower age group rated
Baudi as the more competent RHR.

Figure 13. Baudi: 5-min AI guessing game, age groups (18–27)/(27–56). Biometric data—Left: (18–27)
FEA results, Right: (27–56) FEA results, Middle: (18–27)/(27–56) GSR.

However, the lower age group exhibited higher GSR and FEA readings in the gamification session
than the topical conversation component. These results suggest the lower age group experienced a
greater immersive and visceral HRI during the guessing game session compared with the more mature
age group, which exerted higher biometric feedback during the verbal communication component.
These outcomes are explored and comparatively analysed against the Amazon Web Services (AWS) AI
data in the following section.

4.6. Topical Conversational and Guessing Game AI Data Analysis

The following section examines the results of the 5-min topical conversation and the guessing
game AI sessions recorded in AWS during HRI. The results are categorised and cross-analysed with
the HRI questionnaire results and FEA and GSR data to validate findings.

4.6.1. Euclid and Baudi: All Test Subjects, Topical Conversational AI Data

Euclid delivered 283/545 (52%) of questions correctly, Figure 14, and Baudi achieved a lower
rating of 241/497 (48%), Figure 15. Euclid produced incorrect responses at a rate of 158/545 (28%) and
Baudi 153/497 (31%), and Euclid executed the ‘please repeat’ command of 144/545 (20%) compared
with Baudi of 105/497 (21%). These results do not tally with the findings of Q8, as subjects cited Euclid
as providing more correct responses, E: 7/13, B: 3/7. However, the AI test results support the outcomes
of Series 3A, as subjects rated Euclid as the more competent RHR (incorrect and repeat responses),
and the FEA and GSR, as subjects rated higher levels of positive biofeedback during HRI with Baudi.
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Figure 14. Euclid: 5-min topical conversation, AI data (all test subjects).

Figure 15. Baudi: 5-min topical conversation, AI data (all test subjects).

4.6.2. Euclid and Baudi: Males and Females, Topical Conversation AI Data

Male test subjects achieved a greater number of correct AI responses than females during HRI
with Euclid, EM: 146 (47%) and EF: 136 (55%), depicted in Figure 16, and similarly with Baudi, BM:
133 (45%) and BF: 108 (54%), Figure 17. The AI test results support the outcomes of Q9 as more male
test subjects—M8, F5—preferred to converse with Euclid, and similarly in the results of Baudi (M3, F4),
as Euclid achieved greater accuracy (E: 283, B: 241). However, males scored a higher rate of incorrect
responses than females—EM: 96 (31%), EF: 62 (25%) and BM: 88 (30%), BF: 65 (32%)—and in instigating
the ‘please repeat’ response, EM: 66 (22%), EF: 48 (20%) and BM: 72 (25%), BF: 33 (16%), which suggests
male test subjects asked a higher number of questions outside the scope of the AI system. These results
support the findings of Series 3B (competency), as male candidates rated Euclid as the more competent
RHR, and correlate with the gender-based FEA and GSR biometric data results during the topical
conversation session.
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Figure 16. Euclid: 5-min topical conversation, AI data (males and females).

Figure 17. Baudi: 5-min topical conversation, AI data (males and females).

4.6.3. Euclid and Baudi: Age Groups Topical Conversational AI Data

The higher age group achieved a greater number of correct responses during HRI with Euclid,
EL: 129 (47%), EH: 154 (55%); similar results during HRI with Baudi, BL: 95 (39%), BH: 145 (61%);
in incorrect answers, EL: 87 (55%), EH: 71 (45%) and BL: 74 (41%), BH: 79 (30%); and in instigating
the ‘please repeat’ response, EL: 59 (21%), EH: 55 (20%) and BL: 61 (27%), BH: 44 (16%), suggesting a
greater competency in the higher age group, which corresponds with the outcomes of Q8: EL: 4, EH:
9 and BL: 6, BH: 1, shown in Figures 18 and 19. However, the AWS AI findings contradict the results of
Series 3C (competency), as the lower age group rated Euclid as the most competent RHR and the lower
age group cited Baudi as the more competent RHR. Nevertheless, these outcomes support the findings
of the biometric data analysis as the higher age group exhibited greater FEA, GSR, and attention during
the topical conversation session.
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Figure 18. Euclid: 5-min topical conversation, AI data (age groups).

Figure 19. Baudi: 5-min topical conversation, AI data (age groups).

4.6.4. Euclid and Baudi: All Test Subjects, Guessing Game AI Data

The objective of the AI guessing game was to engage subjects with a greater challenging mode of
HRI to examine how the DL AI functioned at a faster rate of processing. The AI results indicate that
Baudi achieved a marginally higher accuracy rating than Euclid: B: 705/1235, (57%) and E: 685/1223,
(56%). However, Baudi generated a higher sum of incorrect answers than Euclid, B: 257/1235, (21%)
and E: 245/1223, (20%), and ‘please repeat’ replies, E: 292 (24%) and B: 273 (22%), as shown in Figures 20
and 21. These results support the findings of Series 3A (competency), as test subjects rated the RHRs as
competent, E: 3/5 and B: 2/5 with (2/5 equivalent ratings of 3). Significantly, the results of Q9 (guessing
game) conflict with the findings of Series 3A, yet validate the AWS AI data. Thus, Euclid rated as more
competent in movement and Baudi in AI interaction during the guessing game session. Furthermore,
the biometric data analysis validates the AI results as Baudi rated higher in positive FEA/GSR than
Euclid during this session.
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Figure 20. Euclid: 5-min guessing game results, AI data (all participants).

Figure 21. Baudi: 5-min guessing game results, AI data (all participants).

4.6.5. Euclid and Baudi: Male and Female Subjects Guessing Game AI Data

The AWS AI results indicate a higher number of male subjects achieved correct responses than
females: EM: 394 (57%), EF: 291 (55%) and BM: 415 (59%) BF: 290 (54%). However, male candidates
incurred a higher sum of incorrect responses than females: EM: 128 (18%), EF: 117 (22%) and BM:
140 (20%), BF: 117 (22%), and similar in the ‘please repeat’ response, EM: 168 (25%), EF: 124 (23%) and
BM: 147 (21%), BF: 126 (24%), shown in Figures 22 and 23. These figures are significant as female test
subjects asked fewer questions than males FE: 532 (Avg 27), ME: 691 (Avg 35) and FB: 533 (Avg 27),
MB: 702 (Avg 35). These AI test scores support the outcomes of Q9, as M8, F3 preferred to interact with
Baudi and M3, F6 with Euclid, and validate the outcomes of Series 3B, as male subjects rated Euclid as
the more competent RHR. Furthermore, the results of Series 3B (competency) cited high variability
in participant responses that parallel with the frequencies of incorrect and ‘please repeat’ responses
indicated in AWS AI analytics.
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Figure 22. Euclid: 5-min guessing game, AI data (males and females).

Figure 23. Baudi: 5-min guessing game, AI data (males and females).

4.6.6. Euclid and Baudi: Age Groups Guessing Game AI Data

The higher age group achieved greater accurate responses during the guessing game session:
correct responses: EL: 316 (54%), HE: 369 (61%), BL: 338 (57%), BH: 367 (57%); incorrect responses:
EL: 119 (20%), EH: 126 (18%), BL: 126 (21%), BH: 131 (21%); and inciting the ‘please repeat’ response:
EL: 151 (26%), EH: 141 (21%), BL: 132 (22%), BH: 141 (22%), shown in Figures 24 and 25. However,
there was little statistical difference in the age-related results of Q9—Baudi: L5, H6 and Euclid: L5,
H4. These results conflict with the outcomes of Series 3C (competency) owing to the high variance
in participant outcomes. However, the biometric data analysis indicated higher levels of positive
feedback in the lower age group than in the more senior age group, which collates with the AI response
data. Significantly, the level of attention was greater in the higher age group during the guessing
game session, which validates the AWS AI data. Nevertheless, these outcomes are problematic to
substantiate owing to the high level of variance between the results of the HRI questionnaire, FEA,
GSR, and AWS AI data.
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Figure 24. Euclid: 5-min guessing game, AI data (age groups).

Figure 25. Baudi: 5-min guessing game, AI data (age groups).

5. Conclusions

The results of this study show that the younger age group preferred HRI with a younger looking
RHR and the more senior age group preferred HRI with an older looking RHR, reinforced by the
FEA/GSR data. These results provide a strong foundation for the appropriation of age in RHR design
in fields such as older looking RHRs in care for the elderly and younger looking RHRs as social
companions for the young, vulnerable, and isolated. Furthermore, test subjects stated that they felt
greater trust towards an older looking RHR compared with a more youthful RHR, as it reminded
them of the trust and care of older relatives. Similarly, the gender-based analysis indicated that male
test subjects preferred HRI with Euclid (older in appearance) and females with Baudi (younger in
appearance). Although there is little scientific evidence to substantiate the reasoning behind this
outcome, it is an interesting finding that requires further study.

Upon review of the AWS AI data, male subjects asked more questions outside the scope of the AI
system compared with female test subjects. This anomaly was observed during HRI and identified
in the outcomes of the questionnaire when test subjects purposefully attempted to deceive the AI
system into giving incorrect responses. Thus, more male subjects prompted the RHRs into giving
incorrect responses compared with female participants. This outcome coincides with the FEA data
analysis as male subjects expressed significantly greater disengaging behaviours and reduced attention
levels than female participants. Thus, it is plausible that, as the RHRs are modelled on the male form,
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male participants felt a need to test the capacity and abilities of the system more than female subjects.
This hypothesis may account for the irregularities between the HRI questionnaire and biometric
data results as, in the survey, many male subjects cited feeling no emotions during HRI. However,
these outcomes contradicted the FEA data that firmly showed male subjects exerted significantly
higher levels of positive and negative FE biometric feedback than females.

Finally, another possible method of evaluating RHRs is to compare two identical systems side by
side. This method would reduce influential factors such as different ages and gender and narrow the
scope of evaluation to specific variables such as static and dilating pupils. However, creating identical
RHRs is incredibly difficult owing to the variability in materiality, aesthetics, and application of
hand-made silicone skin onto the underlying exoskeleton. This visual irregularity is observable in
the RHR ‘Sophia’, as new generations of the RHR look distinctly different from the first owing to the
application and reapplication of the silicone skin.

Nevertheless, as in this study, comparing RHRs with different appearances, genders,
and personalities permits the investigation of gender and age in terms of user preference, which yielded
highly interesting and intriguing results for modelling user preference in EAI and appearance in future
RHR design.

5.1. Employing FEA and GSR to Support Questionnaire Results

The combinatory approach to biometric data gathering, camera feed analysis, and AI analytics
provided critical insights into the behaviours and emotions of test subjects not cited in the HRI
questionnaire. For example, male participants expressed significantly greater positive and negative
emotive FE than females during HRI. Yet, the majority of male subjects cited feeling no emotions in the
HRI questionnaire. Similarly, the lower age group expressed greater levels of negative FEA and GSR
during the 5-min topical conversation and guessing game AI sessions, which correlates with the results
of the AI test data, as the lower age group achieved a lower number of correct answers and a higher
number of incorrect and ‘please repeat’ responses during HRI. However, these results conflict with
the questionnaire outcomes as there were little discernable differences in participant results, as male
subjects stated feeling little to no emotions during HRI. Furthermore, the implementation of the GSR
and FEA systems did not restrict the participant’s freedom of movement and accessibility to the RHRs.

This outcome is significant for future HRI studies as these non-invasive methods of biometric
data gathering permitted test subjects to interact and communicate with the RHRs naturally without
any obstruction or interference from the biometric sensors. Employing a mixed-method biometric
data gathering approach permitted a more precise analysis of the data feeds, as high and low levels
of FEA were confirmable by the GSR data, and a drop/loss of GSR signal was verifiable with the
FEA data and camera feed. This method provided consistent and valid biometric data for analysis,
as anomalies in the data feed could be attributed to either incredibly higher or low levels of emotional
stimulus or as a result of issues with the connectivity of the biometric systems. Finally, an issue
with the GSR and FEA mixed-method approach was the delay in the data processing as the GSR
lagged the FEA, which resulted in a time offset of approximately ±5 s between the feeds. However,
this issue was negatable by examining the Hz frequencies of the devices to determine the processing
rate and electrode sensitivity of the systems to help synchronise the data fields. Moreover, the Esense
GSR application provides the precise offset of the stimulus to the biometric readings, in seconds and
milliseconds, which also helped precisely align the two datasets for comparative analysis.

5.2. Ethical and Broader Issues in RHR Design and Application in Society

The outcomes of this study provided critical data regarding how the test subjects perceive the
future of RHRs in society. One key area that test subjects highlighted as a suitable application for
RHRs with EAI was the care and support industry, as the RHRs provided useful and entertaining
content in a manner proximal to human–human communication. In support, 45% of participants
stated that, as the RHRs cannot make personal judgements or become offended, HRI was more relaxed,
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honest, and free-flowing than human–human communication. This outcome correlates with previous
studies [118–120] and the results of the HRI age-related statistical analysis, which suggested younger
test subjects preferred HRI with a younger-looking RHR and the more mature age group with an older
looking RHR. This study covered two key areas of RHR and EAI ethics relating to robot rights and the
fallibility of human perception in RHR design. Firstly, 75% of candidates stated that RHRs should
be treated as machines, regardless of human-likeness and intelligence. However, this approach is
susceptible to a fundamental flaw in human perception, because, if an RHR can authentically emulate
a human in a manner proximal to the human condition in real-world conditions, then there is no
definitive way of determining if the RHR is human or robot without an internal examination.

Finally, 45% of participants stated that EmoAI would be useful in human society. Interestingly,
more male subjects cited applications of emotional AI, which correlates with the outcomes of the FEA
data, as male subjects exhibited more emotional stress than females. Thus, it is likely that male subjects
felt that they could express emotions freely during HRI compared with recounting them in the HRI
questionnaire. Similarly, more subjects in the higher age group cited the use of EmoAI in society.
These results interlink with the biometric, AWS AI data analytics, and HRI questionnaire results, as the
higher age group exhibited greater levels of positive and negative emotional stimulus during HRI.
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(Test Subjects Ages 27–55).
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