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Abstract: Social media has become very popular and important in people’s lives, as personal
ideas, beliefs and opinions are expressed and shared through them. Unfortunately, social networks,
and specifically Twitter, suffer from massive existence and perpetual creation of fake users. Their goal
is to deceive other users employing various methods, or even create a stream of fake news and
opinions in order to influence an idea upon a specific subject, thus impairing the platform’s integrity.
As such, machine learning techniques have been widely used in social networks to address this type
of threat by automatically identifying fake accounts. Nonetheless, threat actors update their arsenal
and launch a range of sophisticated attacks to undermine this detection procedure, either during
the training or test phase, rendering machine learning algorithms vulnerable to adversarial attacks.
Our work examines the propagation of adversarial attacks in machine learning based detection for
fake Twitter accounts, which is based on AdaBoost. Moreover, we propose and evaluate the use of
k-NN as a countermeasure to remedy the effects of the adversarial attacks that we have implemented.

Keywords: adversarial attacks; poisoning; social media; machine learning; Twitter

1. Introduction

Social media occupies a part in everyday peoples’ life, allowing their users to express and share
their views regarding life and timelines. They have also become a key medium that people use on a daily
basis to indite their opinion in public matters or to access information. As a result, multiple online
social networks are constructed comprising of users with common interests. Unfortunately, in the
current threat landscape malicious social media users exist who wish to take advantage of those
social networks and use them as a tool to achieve their objectives. One notable example is the USA
presidential election in 2016, where Russian users used fake identities to populate Twitter in order
to affect the users’ opinion regarding the appropriate candidate. A year later, fake news was spread
about the French presidential candidate in the elections of Europe, creating a cyber attack framework
of dividing, destabilizing and deceiving users and public opinion [1].

Nowadays online social media suffers from the proliferation of fake accounts, which are either
manually or automatically created. Fake accounts are used as the vector to interact with a population
in a social network, aiming to deceive or mislead them by posting either malicious or misleading
content. This content includes (i) using shortened URLs that contain malware and tricking innocent
users to click them, (ii) identity theft, (iii) data leakage, and (iv) generic social engineering techniques.
Additionally, malicious social media users even form and spread rumors, which may affect businesses
and society in a large scale. To ensure that fraudulent accounts stay for a longer period on the
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social network, fake users constantly pursue a diligent strategy based on legitimate profiles, i.e., by
mimicking real users. As a result, this impairs the capability of social media to identify and stop the
distribution of malicious content from those accounts.

Undoubtedly, identifying and eliminating fake accounts preserves the integrity of social media and
can lead to the reduction of malicious behavior. As such, a variety of techniques have been proposed in
the literature to detect fake accounts on Twitter [2,3]. Amongst them, machine learning has been used
in order to optimize and strengthen the detection processes of fake accounts. Considering that the data
volume generated by social media constantly grows, there is a need for efficient and robust detection
of malicious behavior on these platforms, which will allow them to be more secure and reliable for
users. Nonetheless, threat actors have updated their tactics and they have started to target machine
learning algorithms themselves with adversarial attacks [4]. Adversarial attacks, which could facilitate
poisoning, evasion or mixed mode attacks, weaken the reliability and robustness of the fake profile
detection. Thereat, there is a perpetual need for an in-depth understanding of the effect of adversarial
attacks to this machine learning based detection.

To this end, this work studies the feasibility of adversarial attacks on fake Twitter account detection
systems that are based on supervised machine learning. We propose and implement two adversarial
attacks that aim to poison a classifier that is used to detect fake accounts on Twitter. We evaluate our
attacks with two different scenarios where the attacks are used against a classifier, which provides
fake account detection and has been trained with a real dataset. We also propose and evaluate
a countermeasure that mitigates the adversarial attacks that we propose herein.

The contributions of our work can be summarised as follows:

• We mount adversarial attacks against a supervised machine learning classifier that detects fake
accounts on Twitter, which has been trained with a real dataset. We explore two types of attacks
in which existing entries in the training dataset are poisoned as well as new malicious entries are
appended in the dataset.

• We study the effect of the aforementioned adversarial attacks in the classification accuracy
of the detection system with two scenarios, i.e., static adversarial attacks and dynamic
adversarial attacks.

• We propose and evaluate the use of a countermeasure to protect from the aforementioned attacks,
by detecting potential poisoning that has taken place in the training dataset. We demonstrate that
our countermeasure is able to mitigate the type of adversarial attacks that we have focused in
this work.

The rest of the paper is organized as follows: Section 2 includes related work. Section 3 describes
our methodology and Section 4 provides our experimental results. Section 5 concludes the paper and
provides pointers for future work.

2. Related Work

Profiling a Twitter user is possible by analyzing the tweets and feeds that the user is subscribed
to, however this process is not trivial [5]. Past literature has focused on profiling users based on their
social traffic, comparing their profile description, or their demographic data with the topic, or even
following frequent patterns along with term frequency [6], a process that needs to be completed in
a timely manner [7]. Other studies focused on detecting malicious Twitter content arisen from the
malicious URLs used by non-legitimate users. As Twitter had a limitation of 140 characters per tweet
message (the current limit is 280 characters), according to [8] malicious users shortened URLs that
in turn mask the URL, thus facilitating phishing links using a popular hashtag or responding with
interesting lexical content.

Machine learning has been used in the past to detect fake accounts on social media. On Twitter,
detecting fake accounts consists of building models based on a user profile and behavior as well
as language processing. Fake accounts can be spotted in various ways, such as finding posts
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with malicious content, having an unbalanced set of more followers than users following them,
observing their social behavior in posting new information or reproducing posted content, and their
social network interactions. These data can be used as features in machine learning to train and test
models that identify fake accounts on Twitter.

In this regard, the majority of past literature analyzes user activities referring to attributes based
on the user profile, such as friends and followers, region and language features. Related work
also follows an elaborated investigation of posts’ content, the users’ creation time and the users’
responsiveness, aiming to register a timeline of users that will endeavor and fortify the detection
process. Stringhini et al. [9] analyzed how spammers operate on social media platforms, reporting more
than 15,000 suspicious accounts. Yang et al. [10] proposed taxonomy criteria for detecting
Twitter spammers, providing experiments on how designed measures have higher detection rates.
Liu et al. [11] developed a hybrid model for detecting spammers in Weibo, a Chinese online platform
resembling Twitter, by combining behavioral features, network features, and content-based features.

Moreover, different algorithms have been proposed to identify malicious Twitter accounts as
quickly as possible. As Ensemble Learning [12] enables predictions based on different models it became
popular. One of the most popular choices is Random Forest [13] despite the fact that it is sensitive to
noise [14]. One other popular option is Adaboost, which uses an iterative approach [15] to learn from
the mistakes of weak classifiers, and strengthen them [16]. Miller et al. [17] used anomaly detection
techniques in spam detection on Twitter, by using clustering on tweet text and a real-time tweet stream.
Similarly, Song et al. [18] applied clustering [19] by grouping accounts sharing similar name-based
features, identifying malicious accounts when users were created within a short period of time. Finally,
the goal of Jane Im et al. [20] was to automatically create a machine learning model for the detection of
fake Twitter accounts, presuming upon features of users’ profiles, such as language and region, pieced
together with accounts’ relationship on following and followers, in addition to the tweet or retweet
feature of Twitter.

Detection of fake accounts with machine learning algorithms is nonetheless prone to adversarial
attacks, where carefully crafted input data, either at training or at test time, can subvert the predictions
of the models [21]. There are various types of attacks against machine learning, with evasion attacks
being more popular, where the attacker uses malicious samples during the test time in order to
evade detection, and poisoning attacks where the attacker injects carefully crafted data in the training
dataset and reduces its performance with false negatives [4]. The selected attack type depends on the
knowledge of the system and its data. Nonetheless, poisoning attacks often become more efficient
as injecting misleading samples directly into the training data can cause the system to produce more
classification errors. In addition, poisoning attacks target training data and due to the need of periodic
retraining of a machine learning model this allows poisoning attacks to be used more often and in
multiple steps [21].

Prior work on data poisoning has mostly focused on attacking spam filters, malware detection,
collaborative filtering, and sentiment analysis. Shafahi et al. [22] proposed an attack during training
time to manipulate test-time behavior by crafting poison images colliding with a target image,
stating the power of these attacks in transfer learning scenarios. Wang et al. [23] performed a systematic
investigation of data poisoning attacks on online learning, claiming that Incremental and Interval
attacks have higher performance than Label Flip attacks. Brendel et al. [24] introduced the Boundary
Attack, which does not require hyperparameter tuning and does not rely on substitute models towards
decision-based attacks, suggesting that these types of attacks are highly relevant for many real-world
deployed machine learning systems. Furthermore, Zhang et al. [25] proposed a poisoning attack
against the federated learning system, showing that it can be launched by any internal participant
mimicking other participant’s training samples.

Chen et al. [26] explored an automated approach for the construction of malware samples with
three different threat models, significantly reducing machine learning classifiers’ detection accuracy.
With regards to social media, Yu et al. [27] conducted adversarial poisoning attacks in the training data
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using two methods, namely: (i) a relabeling technique of existing data and (ii) with the use of crafted
data as additional entries. The crafted data can resemble a legitimate user having a decent number of
followers and friends; concerning the tweet that can mimic a legitimate tweet by avoiding the inclusion
of any sensitive words or hashtags. Moreover, the crafted data can be marked as available for future
retraining use for the machine learning model, enforcing the poisoning procedure of the dataset.

A starting point defending against adversarial attacks is to hide important information about the
system from the adversary. Although determining the features used by the classifier is not difficult,
manipulating all those features may be impossible. Another defending strategy is randomizing the
system’s feedback, as it makes it harder for the adversary to gain information, especially on Twitter
where the adversary and the benign users use the same channel [21]. Another strategy is to create an
adversary classifier and train it with adversary attack patterns. In that case, as with the use of any
classifier, there is a constant need for retraining to avoid poisoning attacks as well as adjust to new
adversarial attack patterns.

Laishram et al. [28] examined poisoning attacks against Support Vector Machine algorithms,
proposing a method to protect the classifier from such attacks. Their method, i.e., Curie, works as
a filter before the buffered data are used to retrain the classifier removing most of the malicious data
points from the training data. Nevertheless an attacker might bypass this detection system using
a combination of poison and evasion attack methods. Biggio et al. [29] experimentally proved that
bagging is a general and effective technique to address the problem of poisoning attacks on specific
applications, such as spam filtering and web-based intrusion detection systems. They noted that using
a good kernel density estimator requires more effort from the adversary, who potentially needs to
handle a much larger percentage of training data to enhance his attack. Paudice et al. [30] proposed
an outlier detection based scheme capable of detecting the attack points against linear classifiers.
However, in less aggressive attacks, like label flipping, detection can become infeasible since the attack
points are on average closer to the genuine points.

3. Methodology

In this section we present our approach to impair the performance of machine learning based
detection of fake accounts on Twitter. In doing so we present different scenarios, with the use of
dynamic and static thresholds, where adversarial machine learning attacks are mounted against
a classifier that is trained on a real dataset in order to be used for the fake account detection.

This work assumes that the attacker has the ability to poison the training set of the machine
learning classifier, which a defender uses in order to identify and block fake accounts from Twitter.
The goal of the defender is to achieve the highest accuracy in detecting fake accounts on Twitter with
the use of machine learning. The goal of the attacker is to: (i) introduce confusion to the classifier,
thus decreasing its performance (i.e., increasing false positives and false negatives) and (ii) introduce
the minimum possible modifications in the training set.

We assume that the attacker poisons the training dataset by: (i) randomly relabeling data,
i.e., altering the label of an entry from the fake account class to otherwise, or (ii) adding new crafted
entries following the format of the tweets in the dataset. We also assume that the attacker has to meet
a threshold of records, which refers to the percentage of randomly poisoned records. The attacker’s
goal is to adhere to this poisoning threshold in order to remain undetected and at the same time reduce
the classifier accuracy as much as possible. Finally, we assume that the detection mechanism is capable
of detecting if the training dataset has been poisoned more than a specific threshold.

3.1. Adversarial Attacks

The first type of adversarial attack that we examine in this work is a relabeling attack based on the
attacker’s pursuit to relabel entries that belong to fake identities in the training set [31]. The outcome
of the attack is a training set poisoned such that it impairs the classification accuracy of the classifier.
As per Algorithm 1, the poisoning function aims to lower the classifier’s accuracy to less than 60% in
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every data frame, whilst the threshold is initialized with the value of 1. Then, the threshold is adjusted
until the poisoning target is reached. Specifically, the threshold is increased by three if the classifier
accuracy is a lot higher than 60% and by one if the threshold accuracy is higher but close to 60% and
the threshold has a value higher than six. In both scenarios our work considers this to be a white box
attack, therefore the attacker has knowledge on the targeted system and its data.

Algorithm 1: Poisoning Relabeling Algorithm.

1 Parameters: threshold, cleanLabels, i=1;
2 Input: training set T = xi,yi , 1 <= i <= m;
3 do
4 if Ti =̄ fake_identity then
5 random_clean_label = rand(cleanLabels)
6 Ti <- random_clean_label
7 accuracy<-classify(T)
8 if accuracy > 60% AND threshold>=6 then
9 i++

10 else if accuracy > 60% AND threshold<6 then
11 i<- i+3
12 end
13 while i<= threshold;
14 Output: Ti;

The second adversarial attack that is proposed herein is the addition of the new entries attack.
In this attack, we assume that the attacker adds new entries in the dataset without disrupting its
pre-existing structure, with the aim to decrease the classifier’s performance. To this end, the attacker
copies a subset of the entire dataset based on the poisoning threshold and modifies the author,
account type, region, updates, and retweet status accordingly. Then, the subset of those newly crafted
data entries is appended to the original dataset, before the classifier’s training.

More specifically, the poisoning is semi-random and follows the approach that is described in
Algorithm 2. A random row pointer is selected in which the name of the account is replaced with
a random author derived from another row. The region is set to Unknown, the account type is replaced
with a legitimate one, the updates field is set to the value of the randomly selected row and the retweet
field is set to zero.

Algorithm 2: Poisoning New Entries Algorithm.

1 Parameters: threshold, cleanAccountsType, i=1, newEntries[];
2 Input: Dataset D = xi,yi , 1 <= i <= m;
3 for ( i = 1; i <= threshold; i = i + 1 ) {
4 newEntries[i].append(Di)
5 random_author=rand(authors)
6 random_clean_account_type = rand(cleanAccountsType)
7 newEntries[i].author = random_author
8 newEntries[i].account_type = random_clean_account_type
9 newEntries[i].region = ‘Unknown’

10 newEntries[i].updates = random_row
11 newEntries[i].retweet = 0;
12 }
13 Output: newEntries;
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Finally, in this work we study adversarial attacks that are mounted with the use of static and
dynamic thresholds. In the static scenarios, the training dataset is available as a whole and therefore
the training and poisoning takes place with a static threshold. In contrast, in the dynamic scenario
we assume that the data appear in chunks and as a result the classifier is periodically, independently
trained, and as a result the threshold used is dynamic. This could happen when the defender cannot
process all the available Twitter data as they appear therefore the detection engine is trained with the
latest chunks of data. This would allow the defender to periodically adjust the detection engine to
match the trends of the Tweets from the malicious and benign users.

3.2. Defensive Mechanisms

In this work we use AdaBoost for the detection of fake Twitter accounts. AdaBoost is a decision
tree algorithm combining multiple weak classifiers, forming shorter decision trees and thus increasing
the accuracy of classifiers. Predictions are made from individual classifiers by incrementing the weights
of the incorrectly classified observations in the training dataset. AdaBoost was used in this work as it
is, in general, not prone to overfitting and noise [16,32], which is present in our dataset.

To train the classifier we used the Twitter dataset from [33]. We used an 80–20 split (i.e., using
80% of data for training and 20% for testing), which is a commonly used split in machine learning.
Upon normalization, the classifier uses the following features, which correspond to metadata of the
Twitter accounts that are contained in the dataset, namely: (i) region, (ii) language, (iii) number of
accounts following, (iv) number of followers, (v) updates, (vi) type (tweet or retweet), and (vii) account
type (i.e., malicious or benign). In our experiments we used the default parameters for AdaBoost
from Scikit-learn, namely DecisionTreeClassifier with max_depth = 1; maximum number of estimators
n_estimators = 50; linear loss function; and learning_rate = 1.

Even without any tuning and feature engineering activities and by solely using the account
metadata that have been mentioned beforehand, AdaBoost achieves an accuracy of over 80% in
detecting fake Twitter accounts. It worth noting that optimizing the classification performance in
identifying fake accounts is not the scope of this work.

Moreover, in this work we propose a defensive algorithm that mitigates the adversarial attacks
that are studied in this work. We assume that during the above-mentioned adversarial attacks the
defender facilitates Algorithm 3 as a detection mechanism, which scans and reports if the classifier’s
training set is poisoned, alongside a poisoning threshold.

Algorithm 3: Defence Algorithm.

1 Parameters: k=5, malicious_samples = 0;
2 Input: training set T = xi,yi , 1 <= i <= m;
3 for ( i = 1; i <= m; i = i + 1 ) {
4 Di = k-NN (Ti ,T)
5 vote = label_voting (Di)
6 confidence = vote_confidence (Di,vote)
7 if confidence > 0.60 and vote != Ti then
8 malicious_samples++
9 end

10 }
11 Output: malicious_samples;

The algorithm uses k-NN to find the closest neighbors of each sample in the training dataset,
with the aim of spotting outliers that might be malicious, and computing the poisoning percentage.
For each sample in a potentially poisoned training dataset, the closest neighbors are found using the
Euclidean distance, which are then used for majority voting. If the confidence of voting is over 60%
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and the label differs from the training set’s label, the instance is marked as poisoned. Then, a mitigation
percentage of those records is calculated informing the mitigation function for the amount of relabeling
that needs to be set, as per Algorithm 3. Afterward, the output of the defense algorithm is passed to the
mitigation function for implementing relabeling consequently. It is worth noting that for k-NN we are
using the default parameters from Scikit-learn library (namely: n = 5; algorithm = auto; leaf_size = 30;
p = 2, euclidean distance; and metric = minkowski), without optimizing the classification performance
of the classifier, which we consider out of the scope of this work.

4. Implementation of Adversarial Attack Strategies

In this section we describe four scenarios where we mount static and dynamic adversarial attacks
against a classifier that detects fake accounts on Twitter.

4.1. Test Environment

With regards to our test environment, we used a 64-bit Windows 10 Operating System,
with an i5-5200 CPU @ 2.20 GHz Processor and 8GB memory (RAM). For our experiments we used
python and the scikit-learn machine learning library.

This work uses the Twitter dataset from [33]. It consists of approximately three million tweets
from the 2016 United States Elections, which includes: (i) the account name, (ii) language, (iii) region,
(iv) number of followers and following, (v) information about the tweet whether it is original or
a retweet, and (vi) the content of the tweet. From the aforementioned data our analysis focuses on all
the data apart from the content of the tweet. It is worth noting that manually identifying fake accounts
is not a trivial task. To this end, an exploration of the dataset with the use of statistics allowed us to
understand the data and contributed to a solid strategy creating a more accurate algorithm.

In this regard, we started with an analysis of the relationship between the number of friends and
followers for each user to identify popular and unpopular accounts (Figure 1). Figure 1 illustrates
that the majority of users have a linear relationship with followers and friends, with the exception of
outliers found in the top left corner and in the middle right. Inspecting the accounts, 28% has at least
2-fold more followers than following, whilst a fair amount (over 27%) of the popular and unpopular
accounts are Russian language accounts.

Figure 1. Number of Followers and Following.
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It is worth noting that one would anticipate tweets from a popular account to have a high
influence on the network, as they will be viewed by many followers, opposed to a tweet from
an unpopular account, which has a lower influence on the network. Nonetheless, as depicted in
Figure 2a, our exploratory analysis suggests that unpopular accounts were more active in the dataset
than popular ones, having a high percentage of influence amongst the network. Further inspection of
the unpopular tweets and retweets activity in Figure 2b, suggests a retweeting pattern between the
fake profiles network, setting a structure on retweeting techniques to increase the chances of those
tweets getting seen by multiple users out of their network. This was a valid strategy for adding more
legitimate users to their social network thus blending fake and non-fake profiles.
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Figure 2. Users and Tweets statistics.

This indicates that a strategic plan has been followed by users trying to alter the results of the
2016 election by influencing the perceptions of real users. This tweet amplification was achieved
through a social network of fake profiles following a precise activity, taking time to gather followers by
making a equal number of friends posing like real profiles [31]. After gathering followers, they could
then spread their content and opinions amongst a huge network consisting of fake and real users,
thus influencing real users.

Moreover, one would consider that expressing an opinion during a specific country’s election
event when the users are not part of this country might need to be investigated. Even though in some
cases, as in the one in this dataset, the country’s election can be a worldwide concern, the analyst needs
to consider the political context. In the current dataset, however, it is evident that a social network
with fake identities is constructed to participate in the social media battle regarding the subject of
the elections.

4.2. Adversarial Attacks

In the following subsections we refer to the static and dynamic adversarial attack scenarios that
we have studied in this work. The adversarial attacks aim to impair the classification performance of
AdaBoost, which has been trained with a clean dataset. The model achieves 81% accuracy, having more
than 200,000 records successfully identified as malicious actions; although approximately 40,000 entries
were marked as fake despite being authentic. Prior to the poisoning, the AdaBoost model classified
all the malicious records successfully, but an error rate of 13% regarding False Positives is noticed,
as original samples were marked wrongly as fake.
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4.2.1. Static Relabeling Attack

In the static relabeling scenario, the attacker aims to increase the false negative rate of the
classifier to hinder the detection of fake accounts. Our results suggest that by using a random
relabeling procedure in the training dataset a classifier can be confused thus decreasing its performance.
Specifically, performing the static adversarial attack scenario results in reducing the classifier’s accuracy
to 48% from 81%, by poisoning only 7% of records. It is worth noting that the accuracy of the classifier
can be further impaired at a desirable percentage, by adjusting the poisoning threshold accordingly.

As depicted in Figure 3, the mitigation plan managed to restore the classifier accuracy on
detecting fake identities, having the same false positive error, i.e., 12.9%. The low poisoning threshold
indicates the effectiveness of the adversarial attack in this scenario in confusing the classifier. In other
words, our results indicated that recovering from the adversarial attack is more expensive than
poisoning the dataset, as reflected by the percentage of entries that need to be poisoned or recovered,
i.e., 7% (poisoning threshold) and 10% (mitigation threshold), respectively.

Finally, our results suggest a 6% false positive rate. It is worth noting that even though the
classifier’s goal is to detect fake identities, thus minimizing false negatives, false positives should also
be considered by the defender. This holds true as, while false positives might not lead to the realization
of a threat, they affect the accuracy of the classifier, as well as might irritate the benign Twitter users if
Twitter decides to adopt the suggested detection mechanism.
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Figure 3. Static Relabeling Results.

4.2.2. Dynamic Relabeling

Figure 4 and Table 1 depict the accuracy of the classifier during the dynamic relabeling attack
scenario for each of the 12 frames, summarizing the results of our experiments: (i) before poisoning
(i.e., clean classifier green line), (ii) after poisoning (poisoned classifier, red line), and (iii) upon the use of
the detection mechanism upon poisoning (mitigation, blue line). It also shows the variance of poisoning
and mitigation threshold during our dynamic relabeling attack scenario. Overall, the accuracy
of the clean, poisoned and mitigated classifier is 80%, 44% and 71%, respectively. This suggests
that this poisoning attack is quite successful, as it limits the performance of the classifier almost in
half, thus changing the assumption of the system about benign and malicious entities, with a low
poisoning threshold (i.e., 5% on average), which minimizes the computational effort and resources of
the adversary.

More specifically, in the first four frames, the accuracy of the classifier before poisoning
(hereto referred to as clean classifier) starts from 80% and slightly increases in the next three frames,
whereas the classifier upon the mitigation (hereto referred to as mitigated classifier) decreases to
51%. The poisoned classifier begins with a very low accuracy, slightly increasing and reaching
approximately 48% in the first two frames, but its accuracy decreases after the threshold’s value
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increases to 10%. In the next frames, as Figure 4 suggests, the clean and mitigated classifiers show
a sudden fluctuation in frame 5, as the former drops to 37% accuracy, which is the lowest accuracy in
this scenario, while the latter reaches 92% respectively. In the 6th frame the accuracy for both classifiers
is 82%. Nonetheless the accuracy of the mitigated classifier keeps showing sudden fluctuations in
the next two frames, reaching its lowest accuracy (i.e., 36%) in frame 7 and rising to 74% in frame 8.
Finally, the accuracy of the two classifiers becomes similar in the last frames.

As shown in Figure 4, the poisoned classifier’s accuracy remains between 37% and 54%,
hindering the identification of fake accounts and has the same accuracy in frame 7 with the clean
classifier, as discussed earlier. From frame 8, the poisoned classifier has its highest accuracy,
which ranges from 50% to 56%. Except from frame 5 where the difference between the accuracy
of the mitigated and clean classifier is 55%, the mitigation accuracy is always lower than that of the
clean classifier, but always higher or equal than poisoned classifier’s.

Regarding the effects of the poisoning and mitigation thresholds to the respective classifiers’
accuracy the results showed that in frames 3, 4 and 7 the greater the value of the poisoning threshold,
the lower the accuracy of the poisoned classifier. However, this behavior is not observed in frames 9
and 10, where the poisoning threshold is increased without decreasing the accuracy of the poisoned
classifier. On the other hand, the mitigation threshold is stable in the first 3 frames, nonetheless the
accuracy of the mitigated classifier decreases. In frames 4 to 6 a mitigation threshold increase leads to
an increase in the accuracy of the classifier. However, this is not the case in the following frames, as even
though the threshold remains high, the accuracy decreases. Moreover, in the last 4 frames the mitigated
classifier’s accuracy is high, with similar values to that of the clean classifier, having a threshold
between 8% and 10%. One should note an abnormality of the detection mechanism in the static and
dynamic relabeling procedure. While similar ranges of poisoning and mitigation thresholds were
expected in the two scenarios, nonetheless in frames 3 to 6 the thresholds are diametrically opposite.
Finally, these fluctuations in the accuracy of the classifier (clean, poisoned, mitigated), as summarized
in Figure 4, are due to the fact that: (i) the training data are not available as a whole but they appear
in chunks (e.g., they are being collected periodically, for instance every 2 h), (ii) the contents of every
frame, which although have the same data volume, consist of different distributions of benign and
malicious data.

Table 1. Results of Dynamic Relabeling Scenario.

Data Frame Original Accuracy Poisoning Accuracy Poisoning Threshold

1 0.78 0.19 1

2 0.87 0.49 1

3 0.88 0.43 10

4 0.98 0.36 10

5 0.37 0.37 1

6 0.84 0.44 1

7 0.81 0.36 9

8 0.85 0.54 1

9 0.98 0.51 10

10 0.96 0.56 10

11 0.72 0.56 1

12 0.98 0.51 5

Average 0.83 0.44 5.0
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4.2.3. Static Addition of New Entries

In the static scenario of the new entries adversarial attack, all malicious entries were detected
by both the clean and mitigated classifier. However, the clean classifier has 16% false positives,
i.e., original entries that are classified as fake new entries. The mitigated classifier has a much
lower false positive, i.e., 2%. The poisoned classifier had 50% false negatives and 2% false positives.
As Figure 5 suggests the remediation of this adversarial attack scenario demands a higher threshold
compared to the poisoning threshold, namely 5% and 10%. Nonetheless while the poisoning attack
achieves half the accuracy of the classifier (i.e., from 81% to 38%), the mitigation plan causes a higher
accuracy of the classifier, i.e., 88%. In this case the adversary, using once more minimal computational
resources (ranging from 5% and 10%) compared to the ones spent by the defensive mechanism,
manages to change the perception of the system about benign and malicious instances. At the same
time it significantly increased the resources needed for securing our system against the specific attack.
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Figure 5. Static New Entries Results.

4.2.4. Dynamic Addition of New Entries

Regarding the dynamic scenario of the new entries adversarial attack, the results considering the
accuracy within the 12 frames for the: (i) clean classifier (green line), (ii) poisoned classifier (red line),
and (iii) mitigated classifier (blue line) are provided in Figure 6 and Table 2. The average accuracy of
the classifier is 67% with a 10% poisoning threshold. This suggests that, assuming that the defender
uses this training dataset, this strategy should be the least preferable of the attacker as it achieves the
least reduction in the classifier’s accuracy.
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The results (see Figure 6) revealed steep fluctuations in the accuracy of the clean and mitigation
classifier. Initially, the accuracy of the clean and poisoned classifiers are increasing, contrary to the
mitigation classifier, which has notable fluctuations. The latter has its lowest accuracy in frame 2,
which is lower than the accuracy of the poisoned classifier. In the next two frames (i.e., 4 and 5) the
accuracy of both the clean and mitigated classifier drops again, being less than the accuracy of the
poisoned classifier. Nonetheless, in frames 6 and 7 their accuracy is increasing significantly, with the
accuracy of the mitigated classifier scoring 99%. At the same time, the poisoning attack manages
the highest drop in the classifier’s accuracy in these two frames, where the classifier has the lowest
accuracy in frame 7.

In the last frames, the mitigation classifier drops significantly, reaching 30% in frame 9, and then
achieves an increment of 66% in frame 10, where thereafter achieves an almost steady accuracy.
In contrast, the clean classifier achieves high accuracies in these frames, except for frame 11, while the
poisoned classifier increases its accuracy from 47% in frame 9 to 92% in frame 12.

As summarized in Figure 6, our results indicate a considerable difference in the values of
the two thresholds. In frame 2 the mitigation threshold value reaches 25%, but nonetheless the
mitigated classifier achieves only 45% accuracy. Moreover, when the poisoning procedure reaches
a limit of approximately 86% the threshold increases, successfully reducing the accuracy of the
classifier. Similarly, in the last four frames the accuracy of the poisoning classifier increases as the
threshold decreases.

The results in frames 2, 5, and 9 suggest that the mitigation strategy fails to mitigate the adversarial
attack of this scenario. This holds true as the accuracy of the mitigated classifier is not only lower
than the clean classifier, but also lower than the poisoned one. Although both thresholds’ values
show stability of the detection mechanism in frames 3 to 5 and 7 to 10, they do not correspond
to the mitigated classifier’s accuracy in frames 5 and 9. In addition, the curve of the poisoned
classifier has lower accuracy reducing the classifier’s overall accuracy in detecting fake samples.
Furthermore, the mitigation classifier is unstable compared to the clean classifier, as suggested by the
fluctuations in curve of their accuracy. This suggests that the contribution of the mitigation plan to
the classifier’s accuracy is not consistent throughout the dynamic new entries scenario. As a result,
a different approach or different tuning of the classifier used could be investigated for this particular
scenario with the use of imbalanced datasets, derived from this or other datasets. We leave this for our
future work.

Table 2. Results of Dynamic New Entries Scenario.

Data Frame Original Accuracy Poisoning Accuracy Poisoning Threshold

1 0.78 0.63 10

2 0.87 0.63 10

3 0.88 0.72 10

4 0.98 0.87 10

5 0.37 0.83 5

6 0.84 0.59 12

7 0.81 0.40 15

8 0.85 0.52 12

9 0.98 0.47 12

10 0.96 0.73 10

11 0.72 0.74 10

12 0.98 0.92 5

Average 0.83 0.67 10.08
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Figure 6. Dynamic New Entries Results.

4.3. Poisoning Detection

Figure 7 summarizes the accuracy of the poisoned and mitigated classifier as well as the mitigation
threshold during our experiments. The mitigation approach during the relabeling poisoning attack,
in both static and dynamic scenarios, performed well restoring the classifier’s accuracy close to its
initial values. An interesting fact here is that the mitigated classifier exceeds the accuracy of the clean
classifier in the new entries static scenario, upon the execution of the mitigation plan in the new
crafted entries. The mitigation performed well in the new entries dynamic scenario as well, even on
a smaller scale. Nonetheless, the overall poisoned accuracy was not low enough to show whether the
countermeasure is indeed appropriate against this dynamic poisoning attack.

In specific, as summarized in Table 3, in the static scenario the above-mentioned mitigation plan
restores the classifier’s accuracy back to 81%, after relabeling 10% of the total records. In the dynamic
scenario however, the classifier accuracy is restored to 71%, which is 9% below the initial (i.e., before
poisoning) accuracy of the classifier, having a mitigation threshold of 8.9%. Table 4 summarizes the
results of our experiments, providing details for every frame regarding the mitigation relabeling,
classifier’s accuracy and mitigation threshold.

The relabeling is propagated based on the non-fake labels changing them into fake with a threshold
of 10%. As shown in Table 5 in the new entries static scenario, the results suggest a 5% poisoning
threshold, a 10% mitigation threshold, resulting in an 88% classifier’s accuracy.

Moreover, in the dynamic new entries scenario the mitigation plan achieved a 10% increase of
classifier accuracy compared to the poisoned classifier, which is still less than the initial classifier’s
accuracy. As summarized in Table 6, in the majority of the frames the mitigation strategy achieves
restoring the classifier’s accuracy.

Our experiments show, with regards to the mitigation of the adversarial attacks that have been
described in this work, that our mitigation approach restores the classifier’s accuracy from 10% to 50%
showing a 32% average improvement. This comes with the cost of training the classifier, with this time
summarized in each scenario in Tables 7–9. It is not surprising that training with the whole dataset is
more expensive than training the classifier with smaller data frames.

Table 3. Adversarial Attacks and Mitigation Relabeling.

Scenario Classifier Ac. Poisoning Ac. Poisoning Threshold Mitigation Ac. Mitigation Threshold

Static 0.81 0.48 0.07 0.81 0.1

Dynamic 0.83 0.44 0.05 0.71 0.089
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Table 4. Dynamic Adversarial Attacks and Mitigation Relabeling.

Data Frame Original Ac. Poisoning Ac. Poisoning Threshold Mitigation Ac. Mitigation Threshold

1 0.78 0.19 1 0.78 8

2 0.87 0.49 1 0.73 8

3 0.88 0.43 10 0.56 8

4 0.98 0.36 10 0.51 8

5 0.37 0.37 1 0.92 10

6 0.84 0.44 1 0.92 10

7 0.81 0.36 9 0.36 10

8 0.85 0.54 1 0.74 10

9 0.98 0.51 10 0.52 10

10 0.96 0.56 10 0.73 8

11 0.72 0.56 1 0.71 8

12 0.98 0.51 5 0.94 10

Average 0.83 0.44 5.0 0.71 8.9
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Figure 7. Results.
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Table 5. Adversarial Attacks and Mitigation New Entries.

Scenario Classifier Ac. Poisoning Ac. Poisoning Threshold Mitigation Ac. Mitigation Threshold

Static 0.81 0.38 0.05 0.88 0.10

Dynamic 0.83 0.67 0.1008 0.77 0.1625

Table 6. Dynamic Adversarial Attacks and Mitigation New Entries.

Data Frame Original Ac. Poisoning Ac. Poisoning Threshold Mitigation Ac. Mitigation Threshold

1 0.78 0.63 10 0.92 15

2 0.87 0.63 10 0.44 25

3 0.88 0.72 10 0.99 20

4 0.98 0.87 10 0.82 20

5 0.37 0.83 5 0.31 15

6 0.84 0.59 12 0.99 10

7 0.81 0.40 15 0.98 20

8 0.85 0.52 12 0.58 10

9 0.98 0.47 12 0.30 15

10 0.96 0.73 10 0.96 10

11 0.72 0.74 10 0.97 15

12 0.98 0.92 5 0.96 20

Average 0.83 0.67 10.08 0.77 16.25

Table 7. Summary of Training Time (Seconds) for Proposed Static Adversarial Scenarios.

Scenario Training Time

Clean Classsifier 624.45

Static Relabeling Poisoned Classifier 515.37

Static Relabeling Mitigated Classifier 514.95

Static New Entries Poisoned Classifier 773.77

Static New Entries Mitigated Classifier 1009.57

Table 8. Classifiers’ Training Time (Seconds) for Dynamic New Entries Adversarial Scenario.

Frame Clean Classifier Poisoned Classifier Mitigated Classifier

1 44.64 32.87 43.21

2 47.27 36.66 45.16

3 51.83 37.42 47.13

4 43.09 26.80 38.61

5 37.53 25.69 40.47

6 60.79 34.66 47.17

7 32.77 22.58 26.08

8 25.67 17.63 25.36

9 27.71 24.71 22.84

10 41.50 26.92 34.71

11 49.93 23.92 39.57

12 41.63 27.20 36.70

Total 504.36 337.06 447.01
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Table 9. Classifiers’ Training Time (Seconds) for Dynamic Relabeling Adversarial Scenario.

Frame Clean Classifier Poisoned Classifier Mitigated Classifier

1 44.64 30.80 32.35

2 47.27 29.84 33.13

3 51.83 31.66 32.79

4 43.09 27.17 33.89

5 37.53 21.64 23.14

6 60.79 31.39 39.65

7 32.77 21.87 25.99

8 25.67 16.39 19.95

9 27.71 14.46 15.24

10 41.50 22.39 25.34

11 49.93 27.97 27.66

12 41.63 30.84 29.87

Total 504.36 306.42 339

5. Conclusions

During the past decade, social media has become a vital service for people commenting on news
and significant global events. Even politicians use them to campaign for elections, communicating
directly to voters, thus providing a sense to social media users of direct interaction with society’s
prominent personalities about current affairs. As social media interconnects users across the world,
this introduces threats to their security and privacy. This holds true as data for companies and
individuals can be found on online social networking platforms, alongside the fact that those platforms
are widely unable to distinguish fake and legitimate accounts. The popularity of social media, such
as Twitter, allows users to disseminate incorrect information through fake accounts, which results in
the spread of malicious or fake content as well as the realization of various methods of cyberattacks.
The fact that everyone can create an account and interact with others creates a thin line questioning
legitimate use. This has attracted the attention of cybercriminals, who use social media as a vector to
perform a variety of actions to serve their objectives, thus threatening users or even national security.

In this paper we have conducted adversarial attacks against a detection engine, which uses
machine learning in order to uncover fake accounts on Twitter. To this end, a label flipping poisoning
attack strategy was proposed and implemented, effectively impairing the accuracy of the detection
engine. Also, a new entries poisoning attack was also proposed and implemented, being almost
equally efficient in decreasing the classifier’s accuracy. To mitigate these attacks a defense mechanism
was recommended based on a k-NN algorithm and relabeling techniques aiming to defend against
our poisoning attacks. Our work empirically showed the significant degradation of the classification
accuracy as well as the effectiveness of the proposed countermeasure to successfully mitigate the effect
of such attacks. While these results are relevant to the classifiers that we have used to implement
the defensive mechanisms (i.e., AdaBoost and k-NN), we consider that they are applicable to other
boosting algorithms or their respective versions.

More specifically, considering the implication of the adversarial attacks to the detection system,
our results have shown that in every scenario (static or dynamic) that was explored herein the
poisoning decreases the classifier’s accuracy from 13% to 53%, having a 30% reduction on average.
Specifically, in the static relabeling attack scenario, the poisoning managed to decrease the accuracy of
the classifier under 50% with a low poisoning threshold. Moreover, in the new entries static scenario
the accuracy reached a value under 40%, with a lower poisoning threshold. This proved that the
attacker will be more successful in impairing the classification accuracy by adding new crafted data
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to the training dataset than relabeling the existing entries in the static scenario. On the other hand,
in the dynamic scenarios, poisoning the classifier with relabeling impairs the classifier’s accuracy more
(namely to 47% on average) compared to the new entries scenario, where the poisoning decreases its
accuracy only 13% on average with a double poisoning threshold.

Our plans for future work include the evaluation of the adversarial attacks and the mitigation
strategy to additional datasets, as they become available. In addition, we will investigate other
potential scenarios that could be used by the defender or the attacker (such as adding new entries with
fake profiles having features that resemble those of real users or with legitimate users having features
that normally appear in entries created by fake users). We also plan to explore the effectiveness of our
attacking and defending strategies in other social media datasets. Finally, we plan to investigate the
effects of our proposed adversarial attacks using other similar supervised machine learning algorithms.
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