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ABSTRACT 

A new transportation mode that can simultaneously operate on land and in the air, namely the 

flying cars, is anticipated to penetrate the automobile fleet between 2020 and 2025.  Due to their 

flexible mobility patterns and automated operational characteristics, flying taxi and shared flying 

car services are expected to expand the existing shared mobility services (such as Uber, Lyft, and 

similar services) of the urban transportation network.  Despite their forthcoming introduction in 

the shared mobility market, public perceptions and expectations about these services have not been 

investigated in travel demand literature.  This study aims to provide an exploratory analysis of 

public willingness to hire and pay for flying taxis and shared flying car services, and to identify 

the determinants of the willingness to hire and pay for such services.  Using data collected from 

an online survey, individuals’ willingness to hire and to pay for flying taxi and shared flying car 

services are statistically modeled within a correlated grouped random parameters bivariate probit 

framework.  The analysis shows that various socio-demographic characteristics and individuals’ 

opinions towards the perceived benefits and challenges of flying cars affect public willingness to 

hire and pay for flying taxi and shared flying car services.  Even though the awareness about the 

operation of flying taxis and shared flying car services is possibly limited in the public sphere, the 

findings of this study can provide insights into the challenges that policymakers, manufacturing 

companies, and shared mobility providers will face with the introduction of such flying car services 

in the transportation networks. 

 

Keywords: Flying cars; Flying Taxis, Shared flying cars; Willingness to hire; Willingness to pay; 

Correlated grouped random parameters; Bivariate probit model 
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1. INTRODUCTION 

Over the last decades, the worldwide demand for automobiles has risen steadily, either for 

passenger or goods transportation. Despite their growing capacities, the transportation 

infrastructure systems remain in constant need for expansion in order to accommodate increasing 

traffic volumes as well as to address passengers’ demand for low and reliable travel times, 

enhanced safety and security and straightforward access to different transportation modes.  To that 

end, recent technological advancements have paved the way for the introduction of innovative 

transportation technologies and systems such as electric vehicles, carpooling systems and 

autonomous or intelligent transportation systems. Earlier research has attempted to identify the 

consumers’ perception patterns towards the acceptance of electric vehicles and possible benefits 

and infrastructure requirements (Egbue and Long, 2012; Tamor et al., 2013; Dong et al., 2014; 

Shin et al., 2015; Rezvani et al., 2018). Carsharing schemes provide flexible and accessible 

mobility patterns and have significant potential in alleviating urban traffic congestion (Shaheen et 

al., 2006; Habib et al., 2012; Budd, 2016).  In the last decade, automotive industry has been leaning 

towards the introduction of autonomous vehicles, which, in turn, led to an abundance of studies 

exploring public perceptions, opinions and possible transformations of travel behavior (Rödel et 

al., 2014; Choi and Ji, 2015; Kyriakidis et al., 2015; Bansal et al., 2016; Ellis et al., 2016; Nordhoff 

et al., 2016; Fu and Kim, 2016; Becker and Axhausen, 2017; Xu et al., 2018).  Special 

consideration has been also given to the joint implementation of carsharing schemes and 

autonomous technologies through the operation of shared autonomous vehicles (SAVs).  Previous 

studies (Zhang et al., 2015; Krueger et al., 2016) have investigated individuals’ expectations 

regarding the travel time, waiting time, travel cost characteristics of the shared autonomous 

vehicles.   
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As a result of the recent technological advancements, a newly emerging transportation mode, 

namely the flying cars, are expected to join the traffic fleet.  Based on recent developments and 

announcements, availability of flying cars in the automotive market is expected to take place 

between 2020 and 2025 (Becker, 2017; Oppitz and Tomsu, 2018). Several start-up companies, 

which have developed flying car prototypes, currently focus on accelerating the introduction of 

flying cars into the traffic fleet (to name a few, Terrafugia, AeroMobil, Kitty Hawk and Opener).  

Opener, one of the latest contenders in flying car development, has recently demonstrated their 

prototype, which combines near-vertical take-off and landing capabilities. In a collaborative effort, 

Audi and Airbus have developed and presented a modular flying taxi concept named “Pop.Up 

Next”, which consists of a flight module, a passenger capsule and an autonomous ground module 

(Audi, 2018). NASA is collaborating with Uber to establish a new ridership framework (referred 

to as “urban air mobility”) for densely populated metropolitan areas, assess possible impacts of 

small aircrafts on such areas as well as identify challenges and appropriate countermeasures related 

to air traffic control system (NASA, 2018a, NASA, 2018b). Several other companies have 

announced their willingness to invest in designing and manufacturing flying cars, such as, Airbus, 

Volocopter and EHang (Shamiyeh et al., 2017).  Despite the growing interest in this emerging 

technology, the adoption of flying cars by the commuting population, in terms of the anticipated 

level of ownership or use, remains uncertain.  Even though the expected acquaintance cost of flying 

cars may constitute a possible adoption barrier, their flexible operation as well as their multiple-

passenger capacity (they can accommodate two to four passengers) pave the way for flying taxis 

or new shared mobility services based on flying cars. 

The aim of this study is to identify the key factors that may affect individuals’ willingness to 

hire and willingness to pay for flying taxis and shared flying car services.  In line with previous 
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studies focusing on travelers’ perceptions (Greghi et al., 2013; Molin et al., 2017; Zimmerman et 

al., 2018) a survey is designed and distributed in order to extract opinions and preferences 

pertaining to flying cars and flying taxis along with the socio-demographic and behavioral 

background of the respondents.  Survey data are used for the joint statistical analysis of individuals’ 

willingness to hire and willingness to pay for flying taxi and shared services.  To account for 

significant modeling issues arising from possible systematic unobserved variations among the 

survey responses (specifically, unobserved heterogeneity, unbalanced panel effects, cross-equation 

error term correlation and correlation among the unobserved effects), the correlated grouped 

random parameters bivariate probit modeling framework is employed.  The results of the analysis 

show that individuals’ willingness to hire and willingness to pay for flying taxi services are affected 

by various socio-demographic and behavioral characteristics as well as individuals’ perceptions 

regarding the perceived concerns and benefits of flying cars.   

 

2. DATA DESCRIPTION 

An online survey was designed to collect socio-demographic and behavioral information as 

well as opinions regarding flying cars and taxis with the aid of SurveyMonkey (an online based 

survey conducting platform). The survey was distributed by 35 students and employees from the 

University at Buffalo during March 2017. The collected data included responses from 692 

individuals.  The country of residence of the survey respondents was identified through tracing the 

Internet Protocol (IP) addresses from the online survey.  Out of 692 respondents, 584 were found 
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to be from the United States, 50 from India, and the remaining 58 were from seventeen other 

countries around the world1.  

The survey consisted of three sections. The first section was aimed at introducing the 

respondents to the concept of flying car as a transportation mode.  Specifically, it included a 

detailed written description of the generalized operational characteristics and features of a typical 

flying car model (i.e., take-off and landing requirements, range, cruising speed, safety features, 

and useful load). In addition, multiple high resolution images, and a video illustrating the operation 

of a flying car were included. Followed by the introductory session, the first set of questions were 

asked, which involved the respondents’ level of familiarity with advanced vehicle safety features 

(e.g., emergency automatic braking, lane keeping assist, adaptive cruise control, left turn assist, 

adaptive headlights and blind spot monitoring).  The respondents were also asked whether they 

have ever owned a vehicle with any of these safety features.  The purpose of including these 

questions in the survey was to identify a measure of the respondents’ level of exposure to modern 

vehicle technologies, as such exposure may affect their perceptions towards flying cars and flying 

taxi services.  The responses to the questions involving level of familiarity with advanced vehicle 

safety features were recorded in a four point Likert scale, with the option to choose from one of 

the following available choices: “very unfamiliar”, “somewhat unfamiliar”, “somewhat familiar”, 

and “very familiar”.  

The second section focused on capturing the respondents’ perceptions towards flying cars in 

general. In this section, the first set of questions aimed at determining whether the respondents 

were willing to hire a flying taxi (as an Uber/Lyft ride) if it is human operated, and if it is 

autonomous. The subsequent set of questions were intended to evaluate the respondents’ 

 
1 These seventeen countries were Australia, Canada, Dominican Republic, Greece, Iran, Nepal, New Zealand, Nigeria, Oman, 

Qatar, Saudi Arabia, Sri Lanka, Switzerland, Thailand, Turkey, United Arab Emirates, and United Kingdom. 
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willingness to pay for an Uber/Lyft ride in flying car on a “per mile” basis, compared to the current 

average cost of a conventional ground Uber/Lyft ride (approximately $1.5 per mile). The 

comparative scale was developed to determine the amount per mile, up to which the respondents 

were willing to pay for a flying taxi ride opposed to the base rate of $1.5/mile. The amounts were 

subdivided into eight categories in an ascending order: do not wish to pay more, would pay $1 

more, between $1 to $2 more, between $2 to $3 more, between $3 to $5 more, between $5 to $10 

more, between $10 to $20 more, and over $20 more. The responses to the aforementioned survey 

questions were also recorded in a similar four point Likert scale, with the available options being 

“very unlikely”, “somewhat unlikely”, “somewhat likely”, and “very likely”. The distribution of 

the responses is presented in Table 1. 

The next set of questions was intended to evaluate the respondents’ perceptions towards a 

number of trip-, safety-, environment-, and cost-specific benefits that may occur from the use of 

flying cars. Another set of questions was aimed to assess if the respondents were concerned about 

a number of safety-, operational-, and security-specific issues that may arise from the operation of 

flying cars.  The last set of questions in the second section was aimed at evaluating the respondents’ 

opinion towards a number of potential security measures, which would contribute to ensure safe 

and secure operation of flying cars. The measures that were included in the questions are as 

follows: use of existing FAA regulations for air traffic control, air-road police enforcement, 

profiling and background checking of flying car owners/operators, and establishing no-fly zones 

near sensitive locations.  The responses to the questions involving potential benefits, and potential 

security measures were recorded in a similar four point Likert scale as in the willingness to use 

and pay questions. In addition, the choices available to respond to the concern related questions 

were “not at all concerned”, “slightly concerned”, “moderately concerned”, and “very concerned”.    
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The last section of the survey was intended to collect the respondents’ socio-economic 

characteristics (e.g., age, gender, marital status, educational attainment, income, household 

characteristics), and driving history (e.g. average annual miles driven, number of non-severe and 

severe accident involvements, history of car maintenance expense). The responses from the third 

section were obtained through open-ended or multiple-choice questions.   

Focusing on the key sociodemographic attributes of the survey data, 59.6% of the sample 

consists of male respondents.  The average age of the respondents is 30.4 years. In terms of 

educational attainment, 72% of the respondents have a college degree or higher.  With regards to 

the household income level, 22.3% of the respondents have an annual household income of 

$30,000 or below, 13% of the respondents have an annual household income between $30,000 and 

$50,000, 64.7% of the respondents have an annual household income of $50,000 or above. Turning 

to the driving experience of the respondents, 29 out of the 692 respondents reported that they do 

not have a driver’s license. Respondents who have driver’s license were found to have 12 years of 

driving experience on average.   

Descriptive statistics of the key variables that were found to affect the willingness to hire and 

willingness to pay for Uber/Lyft ride in a flying car are summarized in Table 2.  For additional 

studies conducted based on the same survey data, see also Ahmed et al., (2019, 2020), and Eker et 

al. (2019, 2020a, 2020b). 
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TABLE 1 Distribution of respondents’ willingness to hire and willingness to pay for an 
Uber/Lyft ride in a flying car 
 
Dependent Variables Somewhat 

likely 
Very 

likely 
Overall 
Likely 

Somewhat 
unlikely 

Very 
unlikely 

Overall 
Unlikely 

Willingness to hire a Flying Taxi (as Uber/Lyft) if 
Operated by a human driver 38.64% 23.66% 62.30% 17.51% 20.19% 37.70% 
Operated as autonomous 30.02% 21.48% 51.50% 22.91% 25.59% 48.50% 
Willingness to pay for an Uber/Lyft ride in a flying car compared to current average rate of $1.5/mile : 
Do not wish to pay more 20.32% 36.32% 56.64% 16.16% 27.20% 43.36% 
Would pay up to $1 more  36.51% 31.75% 68.25% 8.89% 22.86% 31.75% 
Would pay between $1 and $2 per mile more  33.01% 22.12% 55.13% 17.47% 27.40% 44.87% 
Would pay between $2 and $3 per mile more  25.64% 13.54% 39.17% 20.86% 39.97% 60.83% 
Would pay between $3 and $5 per mile more  15.97% 8.79% 24.76% 24.28% 50.96% 75.24% 
Would pay between $5 and $10 per mile more  7.18% 6.06% 13.24% 19.78% 66.99% 86.76% 
Would pay between $10 and $20 per mile more  5.29% 2.40% 7.69% 12.98% 79.33% 92.31% 
Would pay over $20 per mile more  3.37% 1.77% 5.14% 9.47% 85.39% 94.86% 

 
TABLE 2 Descriptive statistics of key variables 
 

Variable Description Mean or 
Percentage 

Std. 
Dev. Min. Max. 

Socio-demographic Characteristics     
Gender indicator (1 if the respondent is female, 0 

otherwise) 39.7% - 0 1 

Age of the respondent 30.432 12.729 16 94 
Ethnicity indicator (1 if the respondent is Asian, 0 

otherwise) 22.5% - 0 1 

Ethnicity indicator (1 if the respondent is Caucasian, 0 
otherwise) 57.1% - 0 1 

Ethnicity indicator (1 if the respondent is not Asian or 
Caucasian, 0 otherwise) 20.4% - 0 1 

Current living area indicator (1 if the respondent is 
currently living in city center, 0 otherwise) 13.2% - 0 1 

Current living area indicator (1 if the respondent is 
currently living in rural area, 0 otherwise) 9.8% - 0 1 

Education level indicator (1 if the respondent has a post 
graduate degree, 0 otherwise) 23.2% - 0 1 

Education and income level indicator (1 if the respondent 
has a college degree and household income between 
40,000 and 100,000 dollars, 0 otherwise) 

19.4% - 0 1 

Education and income level indicator (1 if the respondent 
has a college degree and household income above 
100,000 dollars, 0 otherwise) 

16.7% - 0 1 

Income level indicator (1 if the respondent's annual 
household income is between 40,000 and 100,000 
dollars, 0 otherwise) 

37.1% - 0 1 
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Variable Description Mean or 
Percentage 

Std. 
Dev. Min. Max. 

Income level indicator (1 if the respondent's annual 
household income is $100,000 or above, 0 otherwise) 33.1% - 0 1 

Income level indicator (1 if the respondent's annual 
household income is between $20,000 and $40,000, 0 
otherwise) 

11.8% - 0 1 

Income level indicator (1 if the respondent's annual 
household income is between $50,000 and $150,000, 0 
otherwise) 

48.2% - 0 1 

Household population indicator (1 if the respondent is 
from single person household, 0 otherwise) 13.4% - 0 1 

Household worker indicator (1 if there are more than two 
working individuals in the household, 0 otherwise) 31.8% - 0 1 

Household worker indicator (1 if there is no working 
individual in the household, 0 otherwise) 10.4% - 0 1 

Household motor vehicle ownership indicator (1 if the 
household has one or no registered and operable motor 
vehicles, 0 otherwise) 

26.7% - 0 1 

Driving experience indicator (1 if the respondent's 
number of years having driving license is between 4 and 
6 years, 0 otherwise) 

31.0% - 0 1 

Driving experience indicator (1 if the respondent's 
number of years having driving license is between 20 
and 40 years, 0 otherwise) 

14.9% - 0 1 

Opinions and Preferences     
Familiarity with vehicle safety features indicator (1 if the 

respondent has ever owned a vehicle with lane keeping 
assist/lane centering feature, 0 otherwise) 

16.6% - 0 1 

Familiarity with vehicle safety features indicator (1 if the 
respondent has ever owned a vehicle with left turn assist 
and adaptive headlights, 0 otherwise) 

11.6% - 0 1 

Safety concern indicator (1 if the respondent is 
moderately to very concerned about the safety 
consequences of equipment/system failure, 0 otherwise) 

82.8% - 0 1 

Safety concern indicator (1 if the respondent is very 
concerned about the safety consequences of 
equipment/system failure, 0 otherwise) 

59.1% - 0 1 

Accident concern indicator (1 if the respondent is very 
concerned about accidents on the airway, 0 otherwise) 56.0% - 0 1 

Purchase cost concern indicator (1 if the respondent is 
very concerned about the purchase cost of flying cars, 
compared to a conventional vehicle; 0 otherwise) 

51.7% - 0 1 

Interaction concern indicator (1 if the respondent is 
moderately concerned about interaction with other 
flying cars on the airway, 0 otherwise) 

26.2% - 0 1 
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Variable Description Mean or 
Percentage 

Std. 
Dev. Min. Max. 

Interaction concern indicator (1 if the respondent is very 
concerned about interaction with other flying cars on the 
airway, 0 otherwise) 

54.0% - 0 1 

Take-off/landing facility concern indicator (1 if the 
respondent is moderately concerned about the ease of 
access to take-off/landing facility, 0 otherwise) 

28.6% - 0 1 

Privacy and legal concern indicator (1 if the respondent is 
moderately to very concerned about personal 
information privacy and legal liability for flying car 
owners/operators, 0 otherwise) 

59.9% - 0 1 

General concern indicator (1 if the respondent is very 
concerned about ease of access to take-off/landing 
facilities, performance in poor weather, noise from 
operation and take-off/landing, security against 
hackers/terrorists, legal liability for flying car 
ownership; 0 otherwise) 

20.5% - 0 1 

Safety benefit indicator (1 if the respondent thinks fewer 
crashes on the roadway are likely, 0 otherwise) 65.7% - 0 1 

Less severe crash benefit indicator (1 if the respondent 
thinks less severe crashes on the roadway are very 
likely, 0 otherwise) 

20.2% - 0 1 

Travel time benefit indicator (1 if the respondent thinks 
lower travel time to destination is very likely, 0 
otherwise) 

54.8% - 0 1 

Travel time reliability indicator (1 if the respondent thinks 
reliable travel time to destination is unlikely, 0 
otherwise) 

21.4% - 0 1 

Less traffic congestion benefit indicator (1 if the 
respondent thinks that less traffic congestion on the 
roadway is somewhat likely, 0 otherwise) 

36.9% - 0 1 

Lower vehicle maintenance benefit indicator (1 if the 
respondent thinks lower vehicle maintenance cost is 
unlikely, 0 otherwise) 

74.8% - 0 1 

Environmental benefit indicator (1 if the respondent 
thinks lower CO2 emission is very likely, 0 otherwise) 12.4% - 0 1 

In-vehicle activity indicator (1 if the respondent thinks in-
vehicle non-driving activities are very likely, 0 
otherwise) 

37.1% - 0 1 

Safety benefit and in-vehicle activity indicator (1 if the 
respondent thinks fewer crashes and more in-vehicle 
non-driving activities are likely, 0 otherwise) 

49.3% - 0 1 

Less severe crash and lower travel time benefit indicator 
(1 if the respondent thinks less severe crashes and lower 
travel time to destination are likely, 0 otherwise) 

53.3% - 0 1 
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Variable Description Mean or 
Percentage 

Std. 
Dev. Min. Max. 

Travel time and environmental benefit indicator (1 if the 
respondent thinks lower travel time to destination and 
lower CO2 emission are likely to occur, 0 otherwise) 

32.6% - 0 1 

Travel time and less congestion benefit indicator (1 if the 
respondent thinks more reliable travel time to 
destination and less traffic congestion are likely, 0 
otherwise) 

71.5% - 0 1 

Travel time reliability and in-vehicle activity indicator (1 
if the respondent thinks reliable travel time and more in-
vehicle non-driving activities are likely, 0 otherwise) 

58.8% - 0 1 

Potential security measure indicator (1 if the respondent 
thinks that establishing  no-fly zones near sensitive 
locations would likely improve security against 
hackers/terrorists, 0 otherwise) 

78.8% - 0 1 

Potential security measure indicator (1 if the respondent 
thinks that establishing air-road police enforcement and 
no-fly zones near sensitive locations would unlikely 
improve security against hackers/terrorists, 0 otherwise) 

17.2% - 0 1 

Non-severe accident indicator (1 if the respondent has 
experienced more than one non-severe accident in last 
five years, 0 otherwise) 

9.8% - 0 1 

Average annual miles driven indicator (1 if the respondent 
drives between 5,000 and 7,500 miles per year, 0 
otherwise) 

10.9% - 0 1 

Vehicle maintenance expense indicator (1 if the 
respondent has spent $2,500 or less in the last five 
years, 0 otherwise) 

73.3% - 0 1 
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3. METHODOLOGY 

To understand the decision-making mechanism of potential users of flying taxis and shared 

flying cars, individuals’ willingness to hire and willingness to pay are statistically modeled using 

the data collected from the aforementioned survey.   

The dependent variables for the statistical models were derived from the survey questions 

related to the respondents’ willingness to hire and pay for flying taxis and shared flying car 

services.  Per each variable, the distribution of the received responses is presented in Table 1.  Since 

the responses were recorded in a 4-point scale, it is likely that adjacent Likert-style responses 

reflecting similar viewpoints against the question (e.g., somewhat likely and very likely) are 

affected by systematic, respondent-specific unobserved characteristics.  To account for such 

unobserved characteristics, the responses were aggregated.  Specifically, the “somewhat likely” 

and “very likely” responses were aggregated to “overall likely”; and the “somewhat unlikely” and 

“very unlikely” responses were aggregated to “overall unlikely”.  Such aggregation led to the 

formation of binary dependent variables allowing thus the application of binary outcome modeling 

techniques for the statistical analysis. 

The probable presence of similar unobserved characteristics among the willingness to hire and 

willingness to pay responses may lead to error terms that are correlated across individually 

estimated models, thus, resulting in biased parameter estimates (Washington et al., 2010; Russo et 

al., 2014; Anastasopoulos, 2016; Anastasopoulos and Mannering, 2016; Sarwar et al., 2017a; 

Sarwar et al., 2017b; Fountas et al., 2018a; Fountas et al., 2018c; Fountas and Anastasopoulos, 

2018; Fountas et al., 2020). To account for the correlation of error terms, the bivariate probit 

modeling approach is employed, which allows to simultaneously model two dependent variables 
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interrelated to each other. The bivariate probit modeling framework is defined as (Milioti et al., 

2015; Greene, 2017; Sarwar et al., 2017a; Kuljanin et al., 2018),  

 
i,1 i,1 i,1 i,1 i,1 i,1 i,1

i,2 i,2 i,2 i,2 i,2 i,2 i,2

Y , y 1 if Y 0, and y 0 otherwise
Y , y 1 if Y 0, and y 0 otherwise

= + ε = > =

= + ε = > =

X
X

β

β
  (1) 

where the correlated cross-equation error terms are expressed as, 
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,2

0 1
~ ,

0 1
i

i
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ε ρ
ε ρ

      
      

      
   (2) 

where, X is a vector of explanatory variables that affect the willingness to hire and willingness to 

pay for flying taxi and shared flying car services for observation i, β is a vector of estimable 

parameters corresponding to X, y corresponds to integer binary outcome (zero or one for both 

dependent variables), ε represents a normally distributed error term (having mean equal to zero 

and variance equal to one) and ρ is the cross-equation correlation coefficient of the error terms.  

The cumulative density function and log-likelihood function for the bivariate probit model are then 

respectively defined as (Greene, 2017), 
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As the survey was distributed by 35 individuals from different socio-demographic 

backgrounds, common unobserved characteristics may be present within the distributor-specific 

survey responses2. It should be noted that the number of responses collected by the survey 

distributors varies between 7 and 41.  Due to this variation in number of responses collected by 

each survey distributor, unbalanced panel effects may be present across the survey responses 

(Choo and Oum, 2013; Chow, 2014; Yokomi et al., 2017; Sarwar et al., 2017a; Sarwar et al., 2017b; 

Asahi and Murakami, 2017; Fountas et al., 2018b; Fountas et al., 2018c; Fountas et al., 2018d; 

Fountas et al., 2019).  Besides, the effect of the explanatory variables may vary across observations 

due to the presence of unobserved heterogeneity, i.e., the effect of unobserved characteristics on 

the respondents’ opinions (Hainen et al., 2013; Chu, 2014; Anastasopoulos, 2016; Anastasopoulos 

et al., 2017; Fountas and Anastasopoulos, 2017; Mathew et al., 2017; Brueckner and Abreu, 2017; 

Song et al., 2018).  To account for these two misspecification issues, grouped random parameters 

are introduced in the bivariate probit modeling framework, which allows the parameter estimates 

to vary across the groups of observations.  Introduction of grouped random parameters allows for 

possibility of correlation among the unobserved effects captured by the random parameters 

(Greene, 2017; Fountas et al., 2018a; Fountas et al., 2018c; Pantangi et al., 2020).  To identify the 

effect of such possible correlations, grouped random parameters are introduced as (Greene, 2017; 

Fountas et al., 2018c; Pantangi et al., 2019), 

 
i iδ= +β β Γ   (5) 

 
2 The survey distributors collected responses from their social network (including family members, friends and acquaintances).  

Such a sample naturally poses several challenges, in terms of model estimation, robustness and unbiasedness of the estimated 
parameters, and explanatory model capacity.  However, these challenges are accounted for with the bivariate probit framework 
and in combination with the correlated grouped random parameters approach.  The methodological advantages of implementing 
random parameters in an econometric modeling framework to account for unobserved heterogeneity, sample size bias, 
convenience sampling, and several other issues have been demonstrated by previous research (Anastasopoulos and Mannering, 
2009; Washington et al., 2011; Mannering and Bhat, 2014; Mannering et al., 2016; Greene, 2017; Fountas et al., 2018c; Fountas 
et al., 2019). 
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where, β denotes the mean value of the random parameters vector, Γ is a symmetric matrix (also 

defined as Cholesky matrix) used to compute the standard deviations of the random parameters, δ 

represents a randomly distributed term having mean equal to zero and variance equal to one. To 

account for the possible correlation among the effects captured by the random parameters, the Γ 

matrix is unrestrictive in nature and allows the off-diagonal elements to be non-zero. The 

computation of the standard deviations of the correlated grouped random parameters is based on 

the diagonal and non-zero off-diagonal elements of the Γ matrix.  The standard deviation of each 

correlated random parameter is computed as: 

 
2 2 2 2

, , 1 , 2 ,1...j k k k k k k kσ σ σ σ σ− −= + + + +
   (6) 

where, σj denotes the standard deviation of the random parameter, σk, k is the respective diagonal 

element of the Γ matrix and σk, k-1, σk, k-2 … σk,1 denotes the below diagonal non-zero elements of 

the estimated Γ matrix.  The standard error and t-statistic computation for the standard deviation 

of each random parameter are conducted by utilizing the following procedure (Fountas et al., 

2018c): 
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where, 𝑆𝑆𝑆𝑆𝜎𝜎𝑗𝑗 is the standard error of the standard deviation (averaged across the observations), 

𝑆𝑆𝜎𝜎𝑗𝑗𝑗𝑗 is the standard deviation of the observation specific 𝜎𝜎𝑗𝑗𝑗𝑗 and N is the number of observation, 

which is the number of panels in this specific case. Then, the t-statistic is computed as, 
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To estimate the bivariate probit models, a simulated maximum likelihood approach was 

undertaken.  Halton draws were used for the optimization of numerical simulations.  In contrary 

to earlier research that has suggested 200 Halton draws for robust model estimation (Halton, 1960), 

1,200 Halton draws were used in this study to obtain stable parameter estimates. 

Finally, to interpret the effect of each independent variable on the dependent variables, pseudo-

elasticities (averaged over all observations) are computed as (Washington et al., 2010) , 

 
,1 ,11 0j j j j

i i

X X
E X X

β β
σ σ

   
= Φ = −Φ =   

   
 (9) 

where, Φ(.) is the cumulative distribution function of the standard normal distribution.  

 
4. RESULTS AND DISCUSSION 

The estimation results and pseudo-elasticities of the correlated grouped random parameter 

bivariate probit models for willingness to hire flying taxi and shared flying car services are 

presented in Table 3 and Table 4, respectively. Model estimation results and pseudo-elasticities of 

willingness to pay for flying taxis and shared flying car services are presented in Table 5, Table 7, 

Table 9, Table 11; and Table 6, Table 8, Table 10, Table 12; respectively.  

All possible variables and variable combinations were examined to estimate the models, and 

the variables, which were found to be statistically significant at 0.90 level of confidence or greater, 

were utilized in the model specifications. For the random parameters, many distributions were 

examined (normal, triangular, Weibull, lognormal, etc.), and the normal distribution was found to 

provide the best statistical fit in all cases. The cross-equation error term correlations of all models 

are statistically significant at a level of confidence greater than 0.90.  In case of the first willingness 

to pay model, the two dependent variables are “do not wish to pay more” and “would pay up to $1 
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per mile more”, as compared to the current average rate of $1.5/mile.  Since the first variable 

involves the respondents’ unwillingness to pay more, and the second variable involves 

respondents’ willingness to pay up to 1$ per mile more, there is visible contrast in the information 

represented by the variables.  However, it should be noted that both variables express respondents’ 

opinion towards flying taxis/shared flying car services.  It is, therefore, likely that the responses to 

these questions are affected by common unobserved characteristics. This assumption is validated 

by the statistically significant cross-equation error correlation term for the bivariate probit model, 

which verifies the existence of commonly shared unobserved characteristics affecting both 

dependent variables.  

 
4.1. Factors Related to Socio-Demographic Characteristics 

The model estimation results show that a number of socio-demographic characteristics affect 

individuals’ willingness to hire and willingness to pay for flying taxi and shared flying car services.  

Female respondents are found to be more likely (as compared to male respondents) to hire human 

operated flying taxis (the pseudo-elasticity is 0.138, as indicated in Table 4).  It was also found 

that older respondents are not willing to pay more than the currently prevailing rate for Uber/Lyft 

services (as indicated by the negative coefficients in the willingness to pay models presented in 

Tables 5, 7, 9 and 11).  

Respondents from different ethnic groups were found to show different attitudes towards 

willingness to hire and pay for flying taxi services.  For instance, Asians are more likely (as 

compared to non-Asians) to hire autonomously operated flying taxi services (the pseudo-elasticity 

is 0.107, as indicated in Table 4).  Caucasians are not willing to pay more than the currently 

prevailing rate (the pseudo-elasticity is 0.091, as indicated in Table 6). The unwillingness of 

Caucasians to pay for flying taxi services is further demonstrated by the findings from subsequent 
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willingness to pay models (as indicated by the negative coefficients in the willingness to pay 

models presented in Tables 9 and 10).  Individuals from ethnic background other than Asian and 

Caucasian exhibit mixed willingness to pay patterns, since the corresponding indicator variable 

resulted in a random parameter, with 74.30% of these respondents being willing to pay between 

$2 and $3 per mile more than the current rate. The opposite is observed for the remaining 25.70% 

of the respondents.  

The area where the respondents are currently living was found to play a role in their willingness 

to hire and pay for flying taxi services3. Respondents currently living in rural areas are not willing 

to hire autonomous flying taxi services (the pseudo-elasticity is -0.244, as indicated in Table 4).  

Since rural areas are less prone to traffic congestion and parking restrictions, the benefits of flying 

taxis may not be so appealing for residents of rural areas.  However, respondents currently living 

in city centers are more likely (by 0.031, as indicated by the pseudo-elasticity in Table 12) to pay 

over $20 per mile more than the currently prevailing rate, as compared to respondents not living 

in city centers.  This finding may be reflecting the respondents’ expectations for lower and reliable 

travel times in congestion-prone urban areas, from the use of shared flying car services.   

The respondents’ educational attainment and household income level were also found to affect 

their willingness to hire and pay for flying taxi services.  Post graduate degree holders are not 

willing to pay between $10 and $20 per mile more than the current rate (the pseudo-elasticity is -

0.047, as indicated in Table 12). Respondents from households with annual income between 

$40,000 and $100,000 are not willing to hire autonomous flying taxis (the pseudo-elasticity is -

0.102, as indicated in Table 4).  However, respondents from households with annual income above 

 
3 Note that to capture cross-cultural characteristics, country and region indicator variables were introduced in the models.  However, 

none of them turned out to be statistically significant.  This might be due to specific characteristics of the dataset used in this 
study. In this context, further analysis would be an interesting area for future research. 
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$100,000 are willing to pay between $3 and $5 per mile more than the current Uber/Lyft rate (the 

pseudo-elasticity is 0.077, as indicated in Table 10). These findings indicate that individuals from 

mid-income households are not generally willing to hire flying taxis.  On the other hand, 

individuals from high-income households are more welcoming towards the idea of hiring flying 

taxis, and are likely willing to spend more than the current ridesharing services to avail the 

potential travel benefits likely to be offered by flying cars.  However, if the cost of a ride in a flying 

taxi exceeds by a large margin (greater than $10 per mile) the current rate, respondents from low, 

and medium-high income households (the annual income in these households is between $20,000 

and $40,000, and between $50,000 and $150,000, respectively) show unwillingness to pay for such 

service (as indicated by the negative coefficients in Table 11).  Interestingly, respondents with 

college degree and from medium-income households (the annual income is between $40,000 and 

$100,000), are not willing to hire human operated flying taxis (the pseudo-elasticity is -0.144, as 

indicated in Table 4). Similarly, respondents with college degree and from high-income households 

(where the annual income is greater than $100,000) are not willing to pay more than the current 

Uber/Lyft rate (the pseudo-elasticity is 0.139, as indicated in Table 6).  

The model estimation results also revealed that the respondents’ willingness to hire and pay 

for flying taxi service is influenced by their household’s population, number of working 

individuals, and status of car ownership.  Respondents from single-person household are willing 

to hire autonomous flying taxis (the pseudo-elasticity is 0.178, as indicated in Table 4).  On the 

other hand, respondents from households with more than two working individuals are not willing 

to pay more than the current Uber/Lyft rate (the pseudo-elasticity is 0.096, as indicated in Table 

6).  In addition, respondents from households with no working members are not willing to pay up 

to $1 per mile more than the current rate (the pseudo-elasticity is -0.164, as indicated in Table 6).  
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Turning to the household vehicle ownership status, it was found that 77.84% of the respondents 

from households with one or no licensed and operable motor vehicles are willing to pay between 

$3 and $5 per mile more than the current rate (as indicated by the distributional split of the 

corresponding random parameter in Table 9).  The opposite is observed for the remaining 22.16% 

of the respondents.   

Driving experience of the respondents was also found to affect their willingness to pay for 

flying taxis and shared flying car services.  Respondents having between 20 and 40 years of driving 

experience (as compared to respondents having less than 20 or greater than 40 years of driving 

experience) are not willing to pay more than the current Uber/Lyft rate for flying taxi services.  On 

the other hand, respondents having between 4 and 6 years of driving experience are willing to pay 

over $20 per mile more than the current rate (as compared to respondents having less than 4 or 

greater than 6 years of driving experience).  

 
4.2. Factors Related to Opinions and Preferences 

A number of behavioral and perceptional attributes of the respondents are found to affect their 

willingness to hire and willingness to pay for flying taxis and shared flying car services.  

Respondents who are familiar with advanced vehicle safety features are willing to hire human 

operated flying taxis (the pseudo-elasticity is 0.183, as indicated in Table 4).  Similarly, 83.26% of 

the respondents who are familiar with another vehicle safety feature, i.e., lane keeping assist, are 

also willing to pay between $1 and $2 per mile more than the current rate for Uber/Lyft rides (as 

indicated by the distributional split of the corresponding random parameter in Table 7).  The same 

group of respondents are also willing to pay between $2 and $3 per mile more than the current rate 

(the pseudo-elasticity is  0.185, as indicated in Table 8).  
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A number of potential concerns arising from the future operation of flying cars are also found 

the affect the respondents’ willingness to hire and willingness to pay for flying taxi and shared 

flying car services.  Respondents who are very concerned about safety consequences of 

equipment/system failure of flying cars are not willing to hire autonomous flying cars (the pseudo-

elasticity is -0.117, as indicated in Table 4).  Similarly, respondents who are moderately to very 

concerned about the same issue are not willing to pay more than the current Uber/Lyft rate (the 

pseudo-elasticity is 0.162, as indicated in Table 6).  However, the same group of respondents also 

expressed their willingness to pay up to $1 per mile more than the current rate (as indicated by the 

distributional split of the corresponding random parameter in Table 5).  The same group of 

respondents are also willing to pay between $1 and $2 per mile more than the current rate (the 

pseudo-elasticity is 0.201, as indicated in Table 8).  These findings illustrate the mixed effect that 

safety concerns have on the willingness to hire and willingness to pay for shared flying services.  

It is likely that they may be capturing individuals’ skepticism regarding not only the hybrid on-

ground and in-air operation of flying cars, but also any emerging technologies that are not 

exclusive to flying cars. 

Respondents who are concerned about ease of access to the take-off/landing facilities for flying 

cars are willing to hire human operated flying taxis (the pseudo-elasticity is 0.119, as indicated in 

Table 4).  Similarly, respondents who are concerned about possible interactions among flying cars 

on the airway are willing to pay up to $1 per mile more than current Uber/Lyft rate (the pseudo-

elasticity is 0.119, as indicated in Table 6).  These findings indicate that despite being concerned, 

the respondents are still willing to hire and pay for flying taxi services.  It is likely that the 

anticipated mobility benefits of flying cars are encouraging the respondents to use this new 

technology.  However, respondents who are very concerned about the interactions among flying 
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cars on the airway are not willing to pay over $20 per mile more than the current rate (the pseudo-

elasticity is -0.034, as indicated in Table 12).  This finding shows that the interaction concern, 

coupled with associated high expenses, can cause a decline in interest towards willingness to hire 

and pay for flying taxi services.  

Respondents who are very concerned about accidents on the airway are not willing to pay up 

to $1 per mile more than current Uber/Lyft rate for flying taxi services (the pseudo-elasticity is -

0.237, as indicated in Table 6).  Similarly, respondents who are concerned about personal 

information privacy and legal issues stemming from the future use of flying cars are not willing to 

pay more than the current rate for flying taxi services (the pseudo-elasticity is 0.136, as indicated 

in Table 6).  It was also found that the respondents who are very concerned about multiple issues 

arising from the use of flying cars (ease of access to the take-off/landing facilities, performance in 

poor weather, noise from operation and take-off/landing, security against hackers/terrorists, and 

legal issues) are not willing to pay between $1 and $2 per mile, or between $2 and $3 per mile 

more than the current rate (the pseudo-elasticities are -0.204 and -0.196, respectively, as indicated 

in Table 8).  

With regard to the perceived benefits of flying cars, respondents who expect lower travel times 

and more in-vehicle non-driving activities with the introduction of flying cars, are willing to hire 

human operated flying taxis (the pseudo-elasticities are 0.102 and 0.080, respectively, as indicated 

in Table 4). Respondents who expect fewer crashes on the roadway and less CO2 emissions after 

the introduction of flying cars, are similarly willing to hire autonomous flying taxis (the pseudo-

elasticities are 0.149 and 0.244, respectively, as indicated in Table 4).  Mixed patterns are observed 

for respondents who do not expect more reliable travel times with the introduction of flying cars.  

Specifically, 70.61% of these respondents are not willing to hire autonomous flying taxis (as 
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indicated by the distributional split of the corresponding random parameter in Table 3).  This result 

possibly reflects experienced drivers who appreciate the mobility benefits of the passenger car use.  

As for the effect of perceived benefits of flying cars on the respondents’ willingness to pay, the 

findings are intuitive.  Respondents who expect lower travel time are willing to pay up to $1 per 

mile more than the current Uber/Lyft rate (the pseudo-elasticity is 0.101, as indicated in Table 6).  

Similarly, respondents who expect more reliable travel time and more in-vehicle non-driving 

activities (as compared to current and traditional ground transportation options) are also willing to 

pay up to $1 per mile more than the current rate (the pseudo-elasticity is 0.185, as indicated in 

Table 6).  In line with these findings, respondents who expect fewer crashes and more in-vehicle 

non-driving activities (as compared to current and traditional ground transportation options) are 

willing to pay between $1 and $2 per mile more than the current rate (the pseudo-elasticity is 

0.148, as indicated in Table 8).  In addition, respondents who expect more reliable travel time and 

less traffic congestion (as compared to current and traditional ground transportation options) are 

willing to pay between $1 and $2 per mile more than the current rate (the pseudo-elasticity is 

0.140, as indicated in Table 8).  Moreover, respondents who are expecting lower travel time and 

less CO2 emissions (as compared to current and traditional ground transportation options) are 

willing to pay between $2 and $3 per mile more than the current rate (the pseudo-elasticity is 

0.153, as indicated in Table 8).  A similar trend is observed for the next pricing scenario as well.  

Respondents who expect less severe crashes and lower travel times (as compared to current and 

traditional ground transportation options) are willing to pay between $3 and $5 per mile more, or 

between $5 and $10 per mile more than the current Uber/Lyft rate.  The corresponding pseudo-

elasticities are 0.126 and 0.074, respectively (as shown in Table 10).  However, in cases where the 

respondents think that less traffic congestion is somewhat likely (as compared to current and 
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traditional ground transportation options), they are found to be less willing to pay between $10 

and $20 per mile more, or over $20 per mile more than the current rate for flying taxi services (the 

pseudo-elasticities are -0.070 and -0.042, respectively, as indicated in Table 12).  The increased 

cost may outweigh the perceived benefits, which possibly reflects the primary role of travel cost 

in individuals’ decision-making mechanism. 

Perceptions regarding security issues of flying cars’ operation also affect the respondents’ 

willingness to hire and willingness to pay for flying taxis and shared flying car services.  

Respondents who are skeptical about the effectiveness of establishing air-road police and 

establishing no-fly zones near sensitive areas are not willing to hire human-operated flying taxis 

(the pseudo-elasticity is -0.160, as indicated in Table 4).  In contrast, respondents with positive 

opinion towards establishing no-fly zones near sensitive locations are willing to pay up to $1 per 

mile more than the currently prevailing rate (the pseudo-elasticity is 0.120, as indicated in Table 

6).  These findings show that perceptions towards the efficiency of security measures may play an 

influential role in the decision-making mechanism of individuals.  The latter is specifically 

important for the legislative and policy making authorities, who may address the security concerns 

of potential passengers of flying taxis, by implementing a meticulous policy framework that could 

include measures of similar nature.  

Turning to the accident history of the respondents, it is found that respondents who experienced 

at least two or more non-severe accidents in the last five years (as compared to respondents that 

experienced less than two non-severe accidents in the last five years, including respondents that 

did not experience non-severe accidents) are willing to pay between $1 and $2 more per mile, or 

between $2 and $3 per mile more than the current Uber/Lyft rate for flying taxi services (the 

pseudo-elasticities are 0.220 and 0.228, respectively, as indicated in Table 8).  It is likely that the 
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accidents experienced while utilizing ground transportation modes have elevated the respondents’ 

expectations regarding safety benefits from flying cars, leading to greater willingness to pay.  

Exposure to driving as well as vehicle maintenance expenses are found to negatively affect the 

willingness to pay for flying taxi services.  Respondents who drive between 5,000 and 7,500 miles 

annually are not willing to pay between $5 and $10 per mile more than the current Uber/Lyft rate 

(the pseudo-elasticity is -0.069, as indicated in Table 10).  In addition, respondents who spent 

$2,500 or less for vehicle maintenance in the last five years are not willing to pay between $1 and 

$2 per mile more, or between $2 and $3 per mile more than the current Uber/Lyft rate for flying 

taxi services (the pseudo-elasticities are -0.146 and -0.084, respectively, as indicated in Table 8).     
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Table 3 Estimation results of the correlated grouped random parameters bivariate probit 
model of public willingness to hire human operated or autonomous flying taxi/Uber/Lyft (t-
statistic in parentheses) 

Variables 

Willingness to Hire Flying 
taxi/Uber/Lyft 

Human 
operated Autonomous 

Socio-demographic characteristics   

Gender indicator (1 if the respondent is female, 0 otherwise) 0.394 
(3.39) ─ 

Standard deviation of parameter distribution 0.421 
(4.25) ─ 

Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) ─ 0.339 
(2.27) 

Current living area indicator (1 if the respondent is currently living in 
rural area, 0 otherwise) ─ -0.568 

(-2.30) 
Education and income level indicator (1 if the respondent has a college 

degree and household income between 40,000 and 100,000 dollars, 0 
otherwise) 

-0.339 
(-2.61) ─ 

Income level indicator (1 if the respondent's annual household income 
is between 40,000 and 100,000 dollars, 0 otherwise) ─ -0.307 

(-2.35) 
Household population indicator (1 if the respondent is from single 

person household, 0 otherwise) ─ 0.524 
(3.09) 

Opinions and preferences   
Familiarity with vehicle safety features indicator (1 if the respondent 

has ownership of a vehicle with left turn assist and adaptive 
headlights, 0 otherwise) 

0.381 
(2.32) ─ 

Safety concern indicator (1 if the respondent is very concerned about 
the safety consequences of equipment/system failure, 0 otherwise) ─ -0.239 

(-1.90) 
Take-off/landing facility concern indicator (1 if the respondent is 

moderately concerned about the ease of access to take-off/landing 
facility, 0 otherwise) 

0.331 
(2.46) ─ 

Safety benefit indicator (1 if the respondent thinks fewer crashes on 
the roadway are likely, 0 otherwise) ─ 0.302 

(2.55) 
Travel time benefit indicator (1 if the respondent thinks lower travel 

time to destination is very likely, 0 otherwise) 
0.282 
(2.53) ─ 

Travel time reliability indicator (1 if the respondent thinks reliable 
travel time to destination is unlikely, 0 otherwise) ─ -0.342 

(-2.43) 

Standard deviation of parameter distribution ─ 0.631 
(20.85)  

Environmental benefit indicator (1 if the respondent thinks lower CO2 
emission is very likely, 0 otherwise) ─ 0.588 

(3.05) 
In-vehicle activity indicator (1 if the respondent thinks in-vehicle non-

driving activities are very likely, 0 otherwise) 
0.164 
(1.65) ─ 

Potential security measure indicator (1 if the respondent thinks that 
establishing air-road police enforcement and no-fly zones near 
sensitive locations would unlikely improve security against 
hackers/terrorists, 0 otherwise) 

-0.320 
(-2.44) ─ 

Cross equation correlation 0.823 (17.45) 
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Variables 

Willingness to Hire Flying 
taxi/Uber/Lyft 

Human 
operated Autonomous 

Number of survey collectors 35 
Number of respondents 553 
Log-likelihood at convergence -590.797 
Log-likelihood at zero -748.046 
Akaike information criterion (AIC) 1219.6 
Aggregate distributional effect of random parameters across the respondents 
 Above zero Below zero 
Gender indicator (1 if the respondent is female, 0 otherwise) 82.53% 17.47% 
Travel time reliability indicator (1 if the respondent thinks reliable 
travel time to destination is unlikely, 0 otherwise) 29.39% 70.61% 

Elements of the Cholesky Matrix [t-statistics in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 Gender 
indicator 

Travel time 
reliability 
indicator 

Gender indicator  0.422 [4.22]  
(1.000) 

0.459 [-3.17] 
(-0.728) 

Travel time reliability indicator  -0.459 [-3.17] 
(-0.728) 

0.433 [2.91] 
(1.000) 

 
  



28 
 

Table 4  Elasticities and pseudo-elasticities of the explanatory variables included in the model 
of public willingness to hire human operated or autonomous flying taxi/Uber/Lyft 

Variables 

Willingness to Hire Flying 
taxi/Uber/Lyft 

Human 
operated Autonomous 

Socio-demographic characteristics   
Gender indicator (1 if the respondent is female, 0 otherwise)  0.138 ─ 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) ─  0.107 
Current living area indicator (1 if the respondent is currently living in 

rural area, 0 otherwise) ─  -0.244 

Education and income level indicator (1 if the respondent has a college 
degree and household income between 40,000 and 100,000 dollars, 0 
otherwise) 

 -0.144 ─ 

Income level indicator (1 if the respondent's annual household income 
is between 40,000 and 100,000 dollars, 0 otherwise) ─  -0.102 

Household population indicator (1 if the respondent is from single 
person household, 0 otherwise) ─  0.178 

Opinions and preferences   
Familiarity with vehicle safety features indicator (1 if the respondent 

has ownership of a vehicle with left turn assist and adaptive 
headlights, 0 otherwise) 

 0.183 ─ 

Safety concern indicator (1 if the respondent is very concerned about 
the safety consequences of equipment/system failure, 0 otherwise) ─  -0.117 

Take-off/landing facility concern indicator (1 if the respondent is 
moderately concerned about the ease of access to take-off/landing 
facility, 0 otherwise) 

 0.119 ─ 

Safety benefit indicator (1 if the respondent thinks fewer crashes on 
the roadway are likely, 0 otherwise) ─  0.149 

Travel time benefit indicator (1 if the respondent thinks lower travel 
time to destination is very likely, 0 otherwise)  0.102 ─ 

Travel time reliability indicator (1 if the respondent thinks reliable 
travel time to destination is unlikely, 0 otherwise) ─  -0.158 

Environmental benefit indicator (1 if the respondent thinks lower CO2 
emission is very likely, 0 otherwise) ─  0.244 

In-vehicle activity indicator (1 if the respondent thinks in-vehicle non-
driving activities are very likely, 0 otherwise)  0.080 ─ 

Potential security measure indicator (1 if the respondent thinks that 
establishing air-road police enforcement and no-fly zones near 
sensitive locations would unlikely improve security against 
hackers/terrorists, 0 otherwise) 

 -0.160 ─ 
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Table 5 Estimation results of the correlated grouped random parameters bivariate probit 
model of public willingness to pay for a flying taxi ride (do not wish to pay more, and up to 
$1 more) compared to current Uber/Lyft rate of $1.5/mile (t-statistic in parentheses) 

Variables 
Do not 
wish to 

pay more 

Up to $1 
per mile 

more 

Constant -0.722  
(-2.96) ─ 

Standard deviation of parameter distribution 0.134  
(2.20) ─ 

Socio-demographic characteristics   

Age of the respondent ─ -0.016 
(-3.89) 

Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) 0.257 
(1.79) ─ 

Education and income level indicator (1 if the respondent has a college degree 
and household income above 100,000 dollars, 0 otherwise) 

0.353 
(1.90) ─ 

Household worker indicator (1 if there are more than two working individuals 
in the household, 0 otherwise) 

0.268 
(1.86) ─ 

Household worker indicator (1 if there is no working individual in the 
household, 0 otherwise) ─ -0.525 

(-1.93) 
Opinions and preferences   
Safety concern indicator (1 if the respondent is moderately to very concerned 

about the safety consequences of equipment/system failure, 0 otherwise) 
0.411 
(1.65) 

0.807 
(3.15) 

Standard deviation of parameter distribution ─ 0.253 
(35.73)  

Accident concern indicator (1 if the respondent is very concerned about 
accidents on the airway, 0 otherwise) ─ -0.757 

(-4.09) 
Interaction concern indicator (1 if the respondent is moderately concerned 

about interaction with other flying cars on the airway, 0 otherwise) ─ 0.343 
(1.76) 

Privacy and legal concern indicator (1 if the respondent is moderately to very 
concerned about personal information privacy and legal liability for flying 
car owners/operators, 0 otherwise) 

0.345 
(2.01) ─ 

Less severe crash benefit indicator (1 if the respondent thinks less severe 
crashes on the roadway are very likely, 0 otherwise) 

0.409 
(2.02) ─ 

Travel time benefit indicator (1 if the respondent thinks lower travel time to 
destination is very likely, 0 otherwise) ─ 0.359 

(2.04) 
Travel time reliability and in-vehicle activity indicator (1 if the respondent 

thinks reliable travel time and more in-vehicle non-driving activities are 
likely, 0 otherwise) 

─ 0.531 
(2.91) 

Potential security measure indicator (1 if the respondent thinks that 
establishing  no-fly zones near sensitive locations would likely improve 
security against hackers/terrorists, 0 otherwise) 

─ 0.407 
(2.41) 

Non-severe accident indicator (1 if the respondent has experienced more than 
one non-severe accident in last five years, 0 otherwise) 

-0.396 
(-1.97) ─ 

Cross equation correlation 0.235 (2.25) 
Number of survey collectors 35 
Number of respondents 534 
Log-likelihood at convergence -609.339 
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Variables 
Do not 
wish to 

pay more 

Up to $1 
per mile 

more 
Log-likelihood at zero -690.717 
Akaike information criterion (AIC) 1258.7 
Aggregate distributional effect of random parameters across the respondents 

 Above 
zero 

Below 
zero 

Constant 0% 100% 
Safety concern indicator (1 if the respondent is moderately to very concerned 
about the safety consequences of equipment/system failure, 0 otherwise) 99.93% 0.07% 

Elements of the Cholesky Matrix [t-statistics in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 Constant Safety concern 
indicator 

Constant 0.134 [2.20]  
(1.000) 

-0.170 [-2.34] 
(-0.669) 

Safety concern indicator -0.170 [-2.34] 
(-0.669) 

0.188 [2.50] 
(1.000) 
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Table 6  Elasticities and pseudo-elasticities of the explanatory variables included in the model 
of public willingness to pay for a flying taxi ride (do not wish to pay more, and up to $1 per 
mile more) compared to current Uber/Lyft rate of $1.5/mile 

Variables 
Do not 
wish to 

pay more 

Up to $1 
per mile 

more 
Socio-demographic characteristics   
Age of the respondent ─  -0.005 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise)  0.091 ─ 
Education and income level indicator (1 if the respondent has a college degree 

and household income above 100,000 dollars, 0 otherwise)  0.139 ─ 

Household worker indicator (1 if there are more than two working individuals 
in the household, 0 otherwise)  0.096 ─ 

Household worker indicator (1 if there is no working individual in the 
household, 0 otherwise) ─  -0.164 

Opinions and preferences   
Safety concern indicator (1 if the respondent is moderately to very concerned 

about the safety consequences of equipment/system failure, 0 otherwise)  0.162  0.254 

Accident concern indicator (1 if the respondent is very concerned about 
accidents on the airway, 0 otherwise) ─  -0.237 

Interaction concern indicator (1 if the respondent is moderately concerned 
about interaction with other flying cars on the airway, 0 otherwise) ─  0.119 

Privacy and legal concern indicator (1 if the respondent is moderately to very 
concerned about personal information privacy and legal liability for flying 
car owners/operators, 0 otherwise) 

 0.136 ─ 

Less severe crash benefit indicator (1 if the respondent thinks less severe 
crashes on the roadway are very likely, 0 otherwise)  0.169 ─ 

Travel time benefit indicator (1 if the respondent thinks lower travel time to 
destination is very likely, 0 otherwise) ─  0.101 

Travel time reliability and in-vehicle activity indicator (1 if the respondent 
thinks reliable travel time and more in-vehicle non-driving activities are 
likely, 0 otherwise) 

─  0.185 

Potential security measure indicator (1 if the respondent thinks that 
establishing  no-fly zones near sensitive locations would likely improve 
security against hackers/terrorists, 0 otherwise) 

─  0.120 

Non-severe accident indicator (1 if the respondent has experienced more than 
one non-severe accident in last five years, 0 otherwise)  -0.130 ─ 
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Table 7 Estimation results of the correlated grouped random parameters bivariate probit 
model of public willingness to pay for a flying taxi ride (between $1 and $2 per mile more, 
between $2 and $3 per mile more) compared to current Uber/Lyft rate of $1.5/mile (t-statistic 
in parentheses) 

Variables 

Between 
$1 and $2 
per mile 

more 

Between 
$2 and $3 
per mile 

more 
Socio-demographic characteristics   

Age of the respondent -0.010 
(-2.32) 

-0.012 
(-3.05) 

Ethnicity indicator (1 if the respondent is not Asian or Caucasian, 0 
otherwise) ─ 0.308 

(2.10) 

Standard deviation of parameter distribution ─ 0.472 
(26.71)  

Opinions and preferences   
Familiarity with vehicle safety features indicator (1 if the respondent has 

ownership of a vehicle with lane keeping assist/lane centering feature, 0 
otherwise) 

0.514 
(2.82) 

0.490 
(2.34) 

Standard deviation of parameter distribution 0.533 
(3.39) ─ 

Safety concern indicator (1 if the respondent is moderately to very 
concerned about the safety consequences of equipment/system failure, 0 
otherwise) 

0.441 
(2.47) ─ 

General concern indicator (1 if the respondent is very concerned about 
ease of access to take-off/landing facilities, performance in poor weather, 
noise from operation and take-off/landing, security against 
hackers/terrorists, legal liability for flying car ownership; 0 otherwise) 

-0.568 
(-3.01) 

-0.458 
(-2.69) 

Safety benefit and in-vehicle activity indicator (1 if the respondent thinks 
fewer crashes and more in-vehicle non-driving activities are likely, 0 
otherwise) 

0.268 
(1.66) ─ 

Travel time and environmental benefit indicator (1 if the respondent thinks 
lower travel time to destination and lower CO2 emission are likely to 
occur, 0 otherwise) 

─ 0.359 
(3.37) 

Travel time and less congestion benefit indicator (1 if the respondent 
thinks more reliable travel time to destination and less traffic congestion 
are likely, 0 otherwise) 

0.277 
(2.11) ─ 

Non-severe accident indicator (1 if the respondent has experienced more 
than one non-severe accident in last five years, 0 otherwise) 

0.561 
(2.13) 

0.588 
(2.14) 

Vehicle maintenance expense indicator (1 if the respondent has spent 
$2,500 or less in the last five years, 0 otherwise) 

-0.323 
(-2.67) 

-0.220 
(-2.03) 

Cross equation correlation 0.918 (31.21) 
Number of survey collectors 35 
Number of respondents 526 
Log-likelihood at convergence -522.041 
Log-likelihood at zero -711.072 
Akaike information criterion (AIC) 1082.1 
Aggregate distributional effect of random parameters across the respondents 
 Above zero Below 
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Variables 

Between 
$1 and $2 
per mile 

more 

Between 
$2 and $3 
per mile 

more 
zero 

Ethnicity indicator (1 if the respondent is not Asian or Caucasian, 0 
otherwise) 74.30% 25.70% 

Familiarity with vehicle safety features indicator (1 if the respondent has 
ownership of a vehicle with lane keeping assist/lane centering feature, 0 
otherwise) 

83.26% 16.74% 

Elements of the Cholesky Matrix [t-statistics in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 
Familiarity with 

vehicle safety features 
indicator 

Ethnicity indicator 

Familiarity with vehicle safety features indicator 0.533 [3.39]  
(1.000) 

0.381 [2.47] 
(0.808) 

Ethnicity indicator 0.381 [2.47] 
(0.808) 

0.278 [2.19] 
(1.000) 
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Table 8  Elasticities and pseudo-elasticities of the explanatory variables included in the model 
of public willingness to pay for a flying taxi ride (between $1 and $2 per mile more, between 
$2 and $3 per mile more) compared to current Uber/Lyft rate of $1.5/mile 

Variables 

Between 
$1 and $2 
per mile 

more 

Between 
$2 and $3 
per mile 

more 
Socio-demographic characteristics   
Age of the respondent  -0.005  -0.005 
Ethnicity indicator (1 if the respondent is not Asian or Caucasian, 0 

otherwise) ─  0.113 

Opinions and preferences   
Familiarity with vehicle safety features indicator (1 if the respondent has 

ownership of a vehicle with lane keeping assist/lane centering feature, 0 
otherwise) 

 0.152  0.185 

Safety concern indicator (1 if the respondent is moderately to very 
concerned about the safety consequences of equipment/system failure, 0 
otherwise) 

 0.201 ─ 

General concern indicator (1 if the respondent is very concerned about ease 
of access to take-off/landing facilities, performance in poor weather, noise 
from operation and take-off/landing, security against hackers/terrorists, 
legal liability for flying car ownership; 0 otherwise) 

 -0.204  -0.196 

Safety benefit and in-vehicle activity indicator (1 if the respondent thinks 
fewer crashes and more in-vehicle non-driving activities are likely, 0 
otherwise) 

 0.148 ─ 

Travel time and environmental benefit indicator (1 if the respondent thinks 
lower travel time to destination and lower CO2 emission are likely to 
occur, 0 otherwise) 

─  0.153 

Travel time and less congestion benefit indicator (1 if the respondent thinks 
more reliable travel time to destination and less traffic congestion are 
likely, 0 otherwise) 

 0.140 ─ 

Non-severe accident indicator (1 if the respondent has experienced more 
than one non-severe accident in last five years, 0 otherwise)  0.220  0.228 

Vehicle maintenance expense indicator (1 if the respondent has spent $2,500 
or less in the last five years, 0 otherwise)  -0.146  -0.084 
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Table 9 Estimation results of the correlated grouped random parameters bivariate probit 
model of public willingness to pay for a flying taxi ride (between $3 and $5 per mile more, 
between $5 and $10 per mile more) compared to current Uber/Lyft rate of $1.5/mile (t-
statistic in parentheses) 

Variables 

Between 
$3 and $5 
per mile 

more 

Between 
$5 and $10 

per mile 
more 

Constant -0.769  
(-5.14) 

-1.159  
(-4.18) 

Socio-demographic characteristics   

Age of the respondent ─ 0.017 
(3.19) 

Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) -0.264 
(-1.98) ─ 

Income level indicator (1 if the respondent's annual household income is 
$100,000 or above, 0 otherwise) 

0.354 
(2.21) ─ 

Household motor vehicle ownership indicator (1 if the household has one or 
no registered and operable motor vehicles, 0 otherwise) 

0.398 
(2.67) ─ 

Standard deviation of parameter distribution 0.519 
(3.73) ─ 

Driving experience indicator (1 if the respondent's number of years having 
driving license is between 20 and 40 years, 0 otherwise) 

-0.505 
(-1.77) 

-1.465 
(-3.17) 

Opinions and preferences   
Purchase cost concern indicator (1 if the respondent is very concerned about 

the purchase cost of flying cars, compared to a conventional vehicle; 0 
otherwise) 

-0.439 
(-2.52) 

-0.769 
(-2.75) 

Lower vehicle maintenance benefit indicator (1 if the respondent thinks lower 
vehicle maintenance cost is unlikely, 0 otherwise) ─ -0.461 

(-3.61) 
Less severe crash and lower travel time benefit indicator (1 if the respondent 

thinks less severe crashes and lower travel time to destination are likely, 0 
otherwise) 

0.437 
(2.91) 

0.559 
(2.97) 

Standard deviation of parameter distribution 0.260 
(34.28) ─ 

Average annual miles driven indicator (1 if the respondent drives between 
5,000 and 7,500 miles per year, 0 otherwise) ─ -0.741 

(-2.77) 
Cross equation correlation 0.964 (40.46) 
Number of survey collectors 35 
Number of respondents 496 
Log-likelihood at convergence -331.861 
Log-likelihood at zero -464.022 
Akaike information criterion (AIC) 699.7 
Aggregate distributional effect of random parameters across the 
respondents  

 Above zero Below zero 
Household motor vehicle ownership indicator (1 if the household has one or 
no registered and operable motor vehicles, 0 otherwise) 77.84% 22.16% 

Less severe crash and lower travel time benefit indicator (1 if the respondent 
thinks less severe crashes and lower travel time to destination are likely, 0 95.36% 4.64% 
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Variables 

Between 
$3 and $5 
per mile 

more 

Between 
$5 and $10 

per mile 
more 

otherwise) 
Elements of the Cholesky Matrix [t-statistics in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 
Household motor 
vehicle ownership 

indicator 

Less severe crash and 
lower travel time benefit 

indicator 

Household motor vehicle ownership indicator 0.519 [3.73]  
(1.000) 

0.175 [2.34] 
(0.674) 

Less severe crash and lower travel time benefit 
indicator 

0.175 [2.34] 
(0.674) 

0.192 [2.56] 
(1.000) 
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Table 10  Elasticities and pseudo-elasticities of the explanatory variables included in the 
model of public willingness to pay for a flying taxi ride (between $3 and $5 per mile more, 
between $5 and $10 per mile more) compared to current Uber/Lyft rate of $1.5/mile 

Variables 

Between 
$3 and $5 
per mile 

more 

Between 
$5 and $10 

per mile 
more 

Socio-demographic characteristics   
Age of the respondent ─  0.001 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise)  -0.097 ─ 
Income level indicator (1 if the respondent's annual household income is 

$100,000 or above, 0 otherwise)  0.077 ─ 

Household motor vehicle ownership indicator (1 if the household has one or no 
registered and operable motor vehicles, 0 otherwise)  0.082 ─ 

Driving experience indicator (1 if the respondent's number of years having 
driving license is between 20 and 40 years, 0 otherwise)  -0.097  -0.137 

Opinions and preferences   
Purchase cost concern indicator (1 if the respondent is very concerned about the 

purchase cost of flying cars, compared to a conventional vehicle; 0 otherwise)  -0.107  -0.118 

Lower vehicle maintenance benefit indicator (1 if the respondent thinks lower 
vehicle maintenance cost is unlikely, 0 otherwise) ─  -0.094 

Less severe crash and lower travel time benefit indicator (1 if the respondent 
thinks less severe crashes and lower travel time to destination are likely, 0 
otherwise) 

 0.126  0.074 

Average annual miles driven indicator (1 if the respondent drives between 5,000 
and 7,500 miles per year, 0 otherwise) ─  -0.069 
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Table 11 Estimation results of the correlated grouped random parameters bivariate probit 
model of public willingness to pay for a flying taxi ride (between $10 and $20 per mile more, 
over $20 per mile more) compared to current Uber/Lyft rate of $1.5/mile (t-statistic in 
parentheses) 

Variables 

Between 
$10 and 
$20 per 

mile more 

Over $20 
per mile 

more 

Socio-demographic characteristics   

Age of the respondent -0.020 
(-4.42) 

-0.048 
(-6.95) 

Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) -0.443 
(-2.73) ─ 

Current living area indicator (1 if the respondent is currently living in city 
center, 0 otherwise) ─ 0.442 

(2.19) 
Education level indicator (1 if the respondent has a post graduate degree, 0 

otherwise) 
-0.948 
(-3.36) ─ 

Income level indicator (1 if the respondent's annual household income is 
between $20,000 and $40,000, 0 otherwise) 

-1.135 
(-2.17) ─ 

Income level indicator (1 if the respondent's annual household income is 
between $50,000 and $150,000, 0 otherwise) ─ -0.413 

(-1.94) 
Driving experience indicator (1 if the respondent's number of years having 

driving license is between 4 and 6 years, 0 otherwise) ─ 0.352 
(1.75) 

Opinions and preferences   
Purchase cost concern indicator (1 if the respondent is very concerned about 

the purchase cost of flying cars, compared to a conventional vehicle; 0 
otherwise) 

-0.600 
(-2.40) ─ 

Standard deviation of parameter distribution 0.380 
(2.17) ─ 

Interaction concern indicator (1 if the respondent is very concerned about 
interaction with other flying cars on the airway, 0 otherwise) ─ -0.840 

(-2.46) 

Standard deviation of parameter distribution ─ 0.635 
(36.17) 

Less traffic congestion benefit indicator (1 if the respondent thinks that less 
traffic congestion on the roadway is somewhat likely, 0 otherwise) 

-0.701 
(-2.54) 

-1.092 
(-2.89) 

Cross equation correlation 0.971 (14.34) 
Number of survey collectors 35 
Number of respondents 543 
Log-likelihood at convergence -172.68 
Log-likelihood at zero -246.147 
Akaike information criterion (AIC) 377.4 
Aggregate distributional effect of random parameters across the 
respondents  

 Above 
zero 

Below 
zero 

Purchase cost concern indicator (1 if the respondent is very concerned about 
the purchase cost of flying cars, compared to a conventional vehicle; 0 
otherwise) 

5.72% 94.28% 

Interaction concern indicator (1 if the respondent is very concerned about 9.29% 90.71% 
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Variables 

Between 
$10 and 
$20 per 

mile more 

Over $20 
per mile 

more 

interaction with other flying cars on the airway, 0 otherwise) 
Elements of the Cholesky Matrix [t-statistics in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 
Purchase cost 

concern indicator 
indicator 

Interaction concern 
indicator indicator 

Purchase cost concern indicator 0.380 [2.17]  
(1.000) 

0.486 [2.26] 
(0.765) 

Interaction concern indicator 0.486 [2.26] 
(0.765) 

0.409 [1.90] 
(1.000) 
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Table 12  Elasticities and pseudo-elasticities of the explanatory variables included in the 
model of public willingness to pay for a flying taxi ride (between $10 and $20 per mile more, 
over $20 per mile more) compared to current Uber/Lyft rate of $1.5/mile 

Variables 

Between 
$10 and 
$20 per 

mile more 

Over $20 
per mile 

more 

Socio-demographic characteristics   
Age of the respondent  -0.002  -0.002 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise)  -0.050 ─ 
Current living area indicator (1 if the respondent is currently living in city center, 0 

otherwise) ─  0.031 

Education level indicator (1 if the respondent has a post graduate degree, 0 
otherwise)  -0.047 ─ 

Income level indicator (1 if the respondent's annual household income is between 
$20,000 and $40,000, 0 otherwise)  -0.111 ─ 

Income level indicator (1 if the respondent's annual household income is between 
$50,000 and $150,000, 0 otherwise) ─  -0.024 

Driving experience indicator (1 if the respondent's number of years having driving 
license is between 4 and 6 years, 0 otherwise) ─  0.012 

Opinions and preferences   
Purchase cost concern indicator (1 if the respondent is very concerned about the 

purchase cost of flying cars, compared to a conventional vehicle; 0 otherwise)  -0.080 ─ 

Interaction concern indicator (1 if the respondent is very concerned about 
interaction with other flying cars on the airway, 0 otherwise) ─  -0.034 

Less traffic congestion benefit indicator (1 if the respondent thinks that less traffic 
congestion on the roadway is somewhat likely, 0 otherwise)  -0.070  -0.042 

 

 

4.3. Interpretation of Random Parameters Correlation 

The correlation coefficients of the random parameters refer to the correlation among the 

unobserved characteristics captured by the random parameters, which may include a wide range 

of possible influential factors, from socio-demographic characteristics to perceptual factors 

affecting the decision-making mechanism of individuals.  

The correlation between the two random parameters (gender indicator and travel time 

reliability indicator) in the willingness to hire model is negative (the coefficient is -0.728, as 

presented in Table 3), which essentially indicates that the interaction of the unobserved factors 
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captured by these random parameters has mixed effect on willingness to hire flying taxis. In this 

context, the respondent-specific variations (captured by the gender indicator) and the systematic 

perceptual variations (captured by the travel time reliability indicator) have counterbalancing 

effect on individuals’ willingness to hire. 

In the willingness-to-pay models, the correlation coefficient is negative only in the first model, 

and positive in the other three models.  The positive correlation coefficient implies the uniform 

effect of the interactions of unobserved characteristics (captured by the random parameters) on 

individuals’ willingness to pay.  Interestingly, one of the two random parameters in the first 

willingness-to-pay model is the constant term. The identified variations in the effect of constant 

term reflect the heterogeneous nature of the perceptual data, but also the significant presence of 

collector-specific variations. The latter is important, because the grouped random parameters 

models inherently account for panel effects. However, the significant effect of the collector-

specific variations also resulted in constant-specific variations across the groups of survey 

responses. Furthermore, as the survey data reflect opinions of individuals regarding an emerging 

technology that is not physically witnessed and tested by the respondents, the heterogeneous nature 

of the responses is highly expected.  

 
5. SUMMARY AND CONCLUSION 

Considering the rapid technological developments in the transportation sector, the commercial 

introduction of flying cars is anticipated over the next few years. This study provides a preliminary, 

exploratory investigation of the perceptions, expectations and opinions of travelers regarding the 

use of flying taxis and shared flying car services. To that end, two principal components, which 

would possibly determine the demand of flying taxis in near future, were explored: willingness to 

hire and willingness to pay under different pricing scenarios.  An online survey was conducted and 
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responses about flying taxis were collected from 692 individuals from different socio-demographic 

backgrounds. The correlated grouped random parameters bivariate probit modeling framework 

was employed for the joint modeling of willingness to hire and willingness to pay scenarios.  

The statistical analysis revealed that a number of socio-demographic characteristics (gender, 

age, ethnicity, education level, income level, household population), individual-specific factors 

(driving experience, accident history, vehicle maintenance expenses) as well as perceived concerns 

and benefits of flying cars affect individuals’ willingness to hire and willingness to pay for flying 

taxis.  A few factors, namely the age of respondents and cost-related concerns, have overall 

homogeneous negative effects on various willingness to pay scenarios.  In contrast, perceived 

benefits of flying cars (e.g. lower and more reliable travel time, fewer and less severe crashes, 

more in-vehicle non-driving activities, less CO2 emission) have overall positive effect on 

willingness to hire and willingness to pay for shared flying car services.  Furthermore, the 

heterogeneous nature of the responses is captured through the identification of random parameters 

related to various socio-demographic characteristics as well as perceived concerns and benefits of 

flying cars. 

The findings from this study, albeit preliminary in nature, indicate that the potential flying taxis 

and shared flying car service providers may focus on developing a pricing policy acceptable to 

various groups of potential travelers as well as on enhancing the safety elements of shared mobility 

services. On the other hand, policy makers and legislative authorities may concentrate on 

developing a policy framework that can ensure maximum accessibility to the travelers as well as 

taking care of all possible security issues. All in all, it is evident that the implementation of an 

attractive pricing and regulatory framework for flying taxis and shared flying car services has the 
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potential to significantly alter the currently dominant conventional ground transportation system 

as well as the mobility and daily travel patterns. 
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