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Abstract: This paper presents the results of a study on improving the performance parameters such as the impedance 

bandwidth, radiation gain and efficiency, as well as suppressing substrate loss of an innovative antenna for on-chip 

implementation for millimetre-wave and terahertz integrated-circuits. This was achieved by using the metamaterial and the 

substrate-integrated waveguide (SIW) technologies. The on-chip antenna structure comprises five alternating layers of 

metallization and silicon. An array of circular radiation patches with metamaterial-inspired crossed-shaped slots are etched 

on the top metallization layer below which is a silicon layer whose bottom surface is metalized to create a ground-plane. 

Implemented in the silicon layer below is a cavity above which is no ground-plane. Underneath this silicon layer is where an 

open-ended microstrip feedline is located which is used to excite the antenna. The feed mechanism is based on the coupling 

the electromagnetic energy from the bottom silicon layer to the top circular patches through the cavity. To suppress surface-

waves and reduce substrate loss SIW concept is applied at the top silicon layer by implementing the metallic via-holes at the 

periphery of the structure that connect the top layer to the ground-plane. The proposed on-chip antenna has an average 

measured radiation gain and efficiency of 6.9 dBi and 53%, respectively, over its operational frequency range from 0.285-

0.325 THz. The proposed on-chip antenna has dimensions of 1.35×1×0.06 mm3. The antenna is shown to be viable for 

applications in millimetre-waves and terahertz integrated-circuits. 

Keywords: On-chip antenna, terahertz (THz) integrated-circuits, metamaterial (MTM), substrate-integrated waveguide 

(SIW), silicon process, millimetre-waves (mm-waves), antenna feed mechanism. 

I. INTRODUCTION 

     This is an era of millimeter-wave (mm-wave) and 

terahertz (THz) wireless communications, which is 

necessary to deliver multi-Gbps data rates using standard, 

low-cost integrated circuit technology. THz regime of the 

electromagnetic spectrum is located between the 

microwave and optical frequencies and normally defined 

as the band from 0.1 to 10 THz [1–3]. Currently, industry 

is commercializing the unlicensed 60 GHz wireless band 

(e.g. IEEE 802.11ad/WiGig) for indoor short-range 

communication networks [1-5]. The atmospheric 

attenuation property of 60 GHz was one of the driving 

forces for regulatory agencies such as the U.S. FCC to 

unlicense the multi-GHz of bandwidth at 60 GHz [6]. 

Beyond 60 GHz more research is needed on how to 

design and develop THz on-chip antennas [7-12]. 

Active components functioning at mm-wave and THz 

circuits are highly integrated except for the antennas [13, 

14]. Antenna integration is of great importance [15, 16]. 

At these frequencies, the antennas need to be assembled 

using expensive high frequency ground-signal-ground 

(GSG) probes, bulky waveguides, and horn antennas, 

which is not conducive for mass production and future 

industry application. For high-efficiency and gain, the off-

chip antenna in the package design is usually fabricated 

on either the printed circuit board (PCB) [17], low-

temperature cofired ceramic (LTCC) [15], or low-loss 

materials [17]. At mm-wave and THz frequencies the 

interconnect loss of the packaging is significant (~2 dB at 

60 GHz) because of the incompatibility of the antennas 

and the silicon based active circuits [18-21].  

In this paper, an on-chip antenna design is presented 

for millimetre-wave and THz applications that is 

constructed from five alternating layers of metallization 

and silicon. The antenna’s performance in terms of 

impedance bandwidth, radiation gain and efficiency are 

enhanced by employing the metamaterial (MTM) inspired 

technology [22-24]. Surface-waves and loss in the silicon 

substrate are mitigated using substrate integrated 
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waveguide (SIW) technology [25, 26]. A simple method 

based on open-ended microstrip-line is employed to 

excite the antenna. The next section describes the on-chip 

antenna structure design along with the simulated and 

measured results, and the paper is finally concluded.    

II. HIGH PERFORMANCE ON-CHIP ANTENNA FOR 

APPLICATIONS IN MM-WAVE AND THz INTEGRATED-

CIRCUITS 

Configuration of the reference on-chip antenna in 

Fig.1 comprises five layers consisting of metallization-

silicon-metallization-silicon-metallization. The silicon 

layers have a dielectric constant of 11.7 and loss-tangent 

of 0.00025 [27]. Overall fabrication process used here is 

based on CMOS technology. Fabricated in the top silicon 

layer are four conventional circular radiation patches. 

Conductive material used for the radiation patches and the 

ground-plane is aluminium. A circular cavity is created in 

the bottom silicon layer under the four circular patches, 

and the ground-plane over this region is removed. The 

patches are excited by an open-ended microstrip-line in 

the form of a cross shaped line that is constructed on the 

back side of the bottom silicon layer. In this way, the four 

circular patches on the top layer are aligned with the 

feedline to maximise coupling. The feeding mechanism is 

based on coupling the electromagnetic energy from the 

bottom silicon layer to the top radiation patches through 

the cavity whose dominant resonance mode is 𝑇𝐸11𝛿
𝑧 . The 

proposed feed mechanism improves the antenna’s 

impedance matching and consequently its impedance 

bandwidth and radiation characteristics. The periphery of 

the top silicon layer is punctuated with metallic via-holes 

to actualize substrate-integrated waveguide (SIW) and 

thereby suppress surface-waves and minimize substrate 

loss. Analysis showed that the radius of the metallic via-

holes and their spacing from each other are very 

important to realise low substrates loss and suppress 

surface-waves. The radius of the via-holes and their 

separation were 9.0μm and 3.5μm, respectively. 

To increase the performance of the antenna its 

effective aperture area is enlarged without affecting its 

physical size by applying the metamaterial concept, as 

illustrated in Fig.2. In this approach, an optimized cross-

shaped slot is created inside each circular patch. The 

periodic array of subwavelength slots act like resonators 

or scatters that exhibits metamaterial left-handed 

properties (negative refractive index) when interacting 

with EM-fields. The resulting structure is referred to as a 

metasurface, which is a 2D form of a metamaterial [28-

30]. The effective permittivity (ε) and effective 

permeability (μ) of the metamaterials when analysed 

using retrieval extraction algorithm show the structure 

exhibits negative permittivity over the frequency range of 

interest, which is a unique characteristic of metamaterials. 

The physical parameters of the proposed on-chip antenna 

for optimum performances over 0.285 THz to 0.325 THz 

are tabulated in Table I. 

 

(a) Top-view 

 

(b) Back-view 

 

(c) View showing relative positions of the feeding line on the 

bottom layer, the radiation patches on the top layer, and the cavity in the 

bottom silicon substrate. The cross-shaped feedline is located under the 

radiation patches to maximise coupling. 

 

 

 

(d) Cross-section view showing the various layers of the on-chip antenna 

structure.  



          

(e) Fabricated prototype, top-view (left-side) and back-view (right-side) 

Fig.1. Configuration of the proposed reference on-chip antenna. 

TABLE I. Dimensions of Structural Parameters. 

On-chip antenna size 1350×1000×60 𝜇m3 

Thickness of top silicon 5 𝜇m 

Thickness of bottom silicon 50 𝜇m 

Thickness of GND 5 𝜇m 

Radius of cavity 400 𝜇m 

Radius of via holes 9 𝜇m 

Spacing between via holes 3.5 𝜇m 

Radius of circular patches 70 𝜇m 

Length of MTM slots 85 𝜇m 

Width of MTM slots 10 𝜇m 

Length of feeding line 1100 𝜇m 

Width of feeding line 100 𝜇m 

 

(a) Simulated layout (top-view)     

          

(b) Fabricated prototype, top-view (left-side) and back-view (right-side) 

Fig.2. Proposed on-chip antenna with metamaterial-inspired crossed-

shaped slot implemented on the radiation patches. 

The proposed structure was modelled and simulated 

using CST Microwave Studio, which is a 3-D 

electromagnetic solver based on finite integration 

technique. The antenna was then fabricated to validate its 

performance. The antenna’s feedline was excited using 

WR3 transition using in-line Fin-lines. By using antipodal 

Fin-lines, shown in Fig.3, a wide range of impedance 

values can be realized. The impedance match can be 

accomplished by tuning the Fin-line dimensions (L and S) 

and by tapering the two fins to form microstrip signal line 

and ground-plane, respectively. The tapered fins gradually 

allow a change from the rectangular waveguide 

impedance to the microstrip impedance. Hence, the length 

and shape of the taper determine reflection and operating 

bandwidth.  

 

(a) 

 

(b) 

Fig.3 Antipodal Fin-line transition(a) consists of three sections: Fin-

line tapers L, balanced microstrip S and microstrip line M. The 

Antipodal Fin-line transition is located at the centre line of the 

waveguide broad walls (b). 

A 3D plot of the E-field relative to the transition 

mechanism of antipodal Fin-line at 0.305 THz is shown in 

Fig.4 highlighting the E-field intensity pattern in the three 

cascaded sections. The waveguide TE10 mode, coupled to 

the structure as its input, splits at the Fin-line taper point 

and finally converts into the microstrip line mode. 

 
Fig.4 E-field distribution at 0.305 THz. The TE10 mode entering the 

transition from left is split, rotated and finally matched to the microstrip 
quasi-TEM mode. 



The simulated and measured reflection-coefficient 

response of the reference antenna with no MTM and the 

proposed antenna with MTM-inspired cross-shaped slots 

are shown in Fig.5. It is evident that with MTM the 

impedance match and impedance bandwidth are 

significantly improved. The proposed structure is shown 

to effectively operate over the frequency range from 

0.285 THz to 0.325 THz for S11<-15dB, which 

corresponds to a fractional bandwidth of 13.11%.  

 

 

Fig.5. Simulated (sim.) and experimental (exp.) reflection coefficient 

responses of the reference antenna with no MTM (WO) and proposed 
on-chip antennas with MTM (W). 

 

The simulated and measured radiation gain and 

efficiency performances of the reference antenna with no 

MTM and the proposed antenna with MTM are shown in 

Fig.6. It is evident that the proposed antenna structure 

with MTM properties exhibits improvement in the 

measured gain by 2.4 dBi and radiation efficiency by 

14%, which is achieved with no increase in antenna’s 

physical dimensions. The measured average radiation 

gain and efficiency of the proposed on-chip antenna 

operating between 0.285 THz to 0.325 THz are 6.9 dBi 

and 53%, respectively. Performance characteristics of the 

reference and proposed antenna are summarized in Table 

II. There is good coherence between the simulation and 

the measurement in results presented in Figs. 5 & 6, and 

the discrepancy can be attributed to several factors, 

namely, imprecise simulation models at terahertz, 

fabrication tolerances and unwanted signal reflections 

from surrounding objects during measurements. 

The simulated and measured E-plane and H-plane 

radiation patterns of the proposed metamaterial on-chip 

antenna at spot frequencies of 0.285, 0.305, and 0.325 

THz are shown in Fig.7. This figure shows that in the E-

plane the 3-dB beamwidth narrows at the mid-band 

frequency of 0.305 THz. It also shows the radiation in the 

E-plane rotates by 90o in the clockwise direction from 

0.285 THz to 0.305 THz, and again from 0.305 THz to 

0.325 THz. In the H-plane the beamwidth narrows 

significantly in the mid-band frequency of 0.325 THz. 

 

(a) Radiation gain 

 

(b) Radiation efficiency 

Fig.6. Simulated and measured radiation gain and efficiency over the 

operating frequency range of the proposed on-chip antenna with and 

without MTM properties.  

 

TABLE II. Measured Radiation Gain & Efficiency Performance of the 

On-Chip Antennas With and Without MTM-Inspired Technology 

Reference on-chip antenna without MTM properties 

Min. Gain & Efficiency @ 0.325 THz 3.65 dBi & 33.12% 

Max. Gain & Efficiency @ 0.305 THz 5.33 dBi & 46.43% 

Ave. Gain & Eff.(0.285 THz – 0.325 THz) 4.5 dBi & 39% 

Proposed on-chip antenna with MTM properties 

Min. Gain & Efficiency @ 0.285 THz 5.86 dBi & 44.10% 

Max. Gain & Efficiency @ 0.305 THz 8.05 dBi & 62.95% 

Ave. Gain & Eff. (0.285 THz–0.325 THz) 6.9 dBi & 53% 

Improvements after applying MTM properties 

Min. Gain & Efficiency 2.21 dBi & ~11% 

Max. Gain & Efficiency 2.72 dBi & 16.52% 

Ave. Gain & Efficiency 2.4 dBi & 14% 
 

 

(a) 0.285 THz 



 

 (b) 0.305 THz    

 

(c) 0.325 THz 

Fig.7. Simulated and measured E-plane and H-plane radiation patterns 

of the proposed metamaterial on-chip antenna at various spot 

frequencies in the antenna’s operating frequency range. Solid lines 

represent co-polarization, and dotted lines cross-polarization. 

Table III compares the characteristics of the proposed 

on-chip antenna with other techniques. With the proposed 

technique a better factional bandwidth can be achieved. 

The gain and efficiency of the proposed antenna is 

comparable to other techniques and in some cases better. 

In addition, compared to previously reported on-chip 

antenna designs the proposed design is of a simpler 

structure and easy to fabricate at low cost, which makes it 

viable for mass production. 

TABLE III. COMPARISON OF THE PROPOSED ON-CHIP ANTENNA WITH THE RECENT PUBLICATIONS

Ref. Antenna 

Type 

Operation 

Mode 

Freq. / BW 

(GHz / %) 

Gain 

(dBi) 

Eff. (%)  Fab.  

Process 

DR 

Material 

εr 

DR Type Size 

(mm2) 

Height 

 (mm) 

[7] Patch fed higher 

order mode DRA 

TEδ17 341 / 7 7.9 74 0.18-μm 

SiGe 

11.9 Rectangular 0.2 0.5 

[8] On-chip 3D (Yagi 

like concept) 

TE11δ 340 / 12 10 80 0.13-μm 

SiGe 

10 Rectangular 0.49 0.43 

[10] Slot loaded 

magnetic loop on 

SIW 

- 340 / 7 3.3 45 0.13-μm 

SMOS 

NA NA 0.49 - 

[31] Patch - 280 / 2.5 –1.6 21 0.13-μm 

CMOS 

NA NA 0.2 - 

[32] Ring antenna - 296 /- 4.2 - 65-nm 

CMOS 

NA NA 0.3 - 

[33] Slot ring antenna 

+ superstrate 

- 375 / 8 1.6 35 45-nm 

CMOS 

SOI 

NA NA 0.05 - 

[34] Ring antenna 

with silicon lens 

- 288 / NA 18.3 65 65-nm 

CMOS 

NA NA 12.56 2.55 

[35] - a Half-mode 

cavity fed DRA 

TEδ 11 135 / 13 3.7 62 0.18-μm 

CMOS 

10 Rectangular 0.63 0.25 

[35] - b Half-mode cavity 

fed higher order 

mode DRA 

TEδ13 / 

TEδ15 

135 / 7 6.2 / 7.5 46 / 42 0.18-μm 

CMOS 

10 Rectangular 0.72 1.3/2.2 

[36] Slot fed stacked 

DRA 

TEδ11 130 / 11 4.7 43 0.18-μm 

CMOS 

10 Rectangular 0.72 1.5 

[37] DRA TEδ11 135 / 11 2.7 43 0.18-μm 

CMOS 

10 Rectangular 0.72 0.6 

This 

Work 

MTM & SIW TE11δ 305 / 13.11 8.05 62.95 0.13-μm 

CMOS 

NA NA 2.35 0.06 

   Note: DR represents Dielectric Resonator, and NR is not applicable. 

III. CONCLUSION 

   The feasibility of the proposed metamaterial-inspired 

antenna is demonstrated for on-chip applications at the 

lower end of the THz region. The novelty introduced 

includes: (i) the feed mechanism for effective coupling of 

electromagnetic energy from bottom layer to the top 

radiation patches; (ii) combining metamaterial-inspired 

and SIW technologies to improve the antenna’s 

performance parameters while preserving its physical 

dimensions; and (iii) using stacked layers to create a 

highly compact on-chip antenna structure. The proposed 

silicon-based antenna structure provides low integration 

loss and is relatively simple to design and fabricate and 

therefore a promising candidate in the millimeter-wave 

and terahertz integration applications.  
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