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A Novel Attention Fully Convolutional Network
Method for Synthetic Aperture Radar Image

Segmentation
Zhenyu Yue , Fei Gao , Qingxu Xiong , Member, IEEE, Jun Wang, Amir Hussain, and Huiyu Zhou

Abstract—As an important step of synthetic aperture radar
image interpretation, synthetic aperture radar image segmentation
aims at segmenting an image into different regions in terms of
homogeneity. Because of the deficiency of the labeled samples and
the existence of speckling noise, synthetic aperture radar image
segmentation is a challenging task. We present a new method for
synthetic aperture radar image segmentation in this article. Due
to the large size of the original synthetic aperture radar image,
we first divide the input image into small slices. Then the image
slices are input to the attention-based fully convolutional network
for obtaining the segmentation results. Finally, the fully connected
conditional random field is adopted for improving the segmentation
performance of the network. The innovations of our method are
as follows: 1) The attention-based fully convolutional network is
embedded with the multiscale attention network which is capable
of enhancing the extraction of the image features through three
strategies, namely, multiscale feature extraction, channel attention
extraction, and spatial attention extraction. 2) We design a new loss
function for the attention fully convolutional network by combining
Lovasz-Softmax and cross-entropy losses. The new loss allows us
to simultaneously optimize the intersection over union and the
pixel classification accuracy of the segmentation results. The ex-
periments are performed on two airborne synthetic aperture radar
image databases. It has been proved that our method is superior to
other state-of- the-art image segmentation approaches.

Index Terms—Attention mechanism, conditional random field
(CRF), fully convolutional network (FCN), image segmentation,
synthetic aperture radar (SAR).
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I. INTRODUCTION

B ECAUSE of the penetrating capability of synthetic aper-
ture radar (SAR), we can acquire high-resolution SAR

images regardless of weather conditions [1], [2]. SAR image
interpretation includes image segmentation, target detection,
target recognition, and so on [3]–[5]. Image segmentation is a
key step of SAR image interpretation. Its purpose is to categorize
the SAR images into different regions [6]. Commonly used
methods for SAR image segmentation include Markov random
field (MRF), edge detection, and optimal thresholding-based
methods [7], [8]. However, these methods heavily rely on hand-
crafted features. Because of speckle noise in SAR images, it is
difficult to extract the desired hand-crafted features [9].

Recently, convolutional neural network (CNN) has attracted
wide attention because of its powerful feature extraction ability
[10]. In contrast to the conventional methods [11], [12], CNN
utilizes a multilayer structure for automatically extracting image
features, which improves the efficiency of feature extraction.
To employ CNN in the pixel-wise image segmentation tasks
where pixels are predicted with labels, a fully convolutional
network (FCN) is proposed in [13]. The FCN contains two
processes, namely, downsampling and upsampling. In the down-
sampling process, the FCN extracts abstract image features using
convolution layers. By contrast, the deconvolution layers are
used in the upsampling process for improving the resolution of
feature maps. Based on the FCN, the U-Net designed in [14]
combines high-resolution features and the upsampling output
for improving the segmentation accuracy. Badrinarayanan et al.
propose the SegNet model which follows an encoder–decoder
structure [15]. The SegNet first uses the encoder network for
feature extraction, then the resolution of feature maps is im-
proved by the decoder network. Zhao et al. present the pyramid
scene parsing network (PSPNet) where the FCN is embed-
ded with a pyramid pooling model [16]. Since the pyramid
pooling features provide additional contextual information, the
segmentation performance of PSPNet is superior to that of the
traditional FCN. To simultaneously utilize the information at the
full image resolution and robust features of the input images,
the full-resolution residual network (FRRNet) is proposed in
[17]. The FRRNet consists of the pooling and residual streams,
wherein the pooling stream uses the pooling operation to obtain
robust features while the residual stream carries the information
of the full image resolution. Fariba et al. apply the FCN to SAR
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image segmentation tasks. Comparative experiments against
traditional SAR image segmentation methods show that FCN
improves the segmentation accuracy of SAR images [18]. Based
on FCN and transfer learning, Wu et al. propose a new SAR
image segmentation algorithm where a pretrained network is
adopted for improving the segmentation accuracy [19]. Corentin
et al. apply the spatial tolerance rules to FCN and present a
new loss function by modifying the mean square error (MSE)
loss. This method is capable of achieving promising results
despite of the imbalance of target categories in the SAR dataset
[20]. In [21], the residual dense U-Net (RDU-Net) is proposed
for pixel-wise sea-land segmentation. The RDU-Net includes
the downsampling and upsampling paths where the densely
connected residual network blocks are designed for aggregating
multiscale contextual information.

FCN have effectively improved the segmentation accuracy
of SAR images. To enhance the performance of FCN, many
research studies focus on increasing the depth of the network
[22]–[25]. Although deep structures can effectively enhance the
representation of image features, the number of the parameters
used in the network also increases. As a result, more labeled
samples are needed to train the deep FCN. However, the sample
annotation of SAR images is time consuming and the segmenta-
tion performance of the deep FCN decreases significantly if the
labeled samples are insufficient [26]. When processing visual
signals, the attention mechanism helps us to focus on important
information while ignoring the rest [27]–[29]. Inspired by the
attention mechanism, some researchers have designed attention
modules embedded in neural networks. The attention modules
calculate the attention values for assigning different weights to
the image features, so that the neural networks focus on impor-
tant features while ignoring the rest [30]. The residual attention
network designed in [31] generates attention-aware features
by the attention module. In [32], the squeeze-and-excitation
network (SENet) is designed for improving the representation
of image features. SENet calculates the channel attention of the
feature map and use it to highlight useful features but restrain
useless ones. The selective kernel network (SKNet) designed
in [33] also utilizes the channel attention. Compared with the
SENet, SKNet extracts image features with different scales
by adopting a dynamic selection mechanism. The spatial and
channel squeeze and excitation (SCSE) and CBAM modules
utilize a pooling operation to calculate the channel and spatial
attention maps, then the input feature map is multiplied with
the two attention maps for feature optimization [34], [35]. The
experiments have proved the capability of SCSE and CBAM
modules for improving the accuracy of image classification.
Besides, the numbers of the parameters used in SENet, SKNet,
SCSE, and CBAM are much less than that in the deep FCN,
which enables these attention modules to improve the perfor-
mance of neural networks despite the deficiency of the labeled
samples.

Because of the large size of the original SAR images, the
segmentation methods first divide the images into small slices,
then the segmentation results of the slices are combined for
obtaining the final results [36], [37]. However, these methods
neglect the spatial correlation of the image slices, which limits

the segmentation accuracy [38], [39]. Recently, the fully con-
nected conditional random field (CRF) is widely utilized for
image segmentation [40], [41]. As a graph-based method, the
fully connected CRF utilizes the spatial information by capturing
the correlation of the image pixels. In [42], the DeepLab method
first uses the CNN to obtain the segmentation results, then the
fully connected CRF is adopted for improving the segmentation
accuracy. Ma et al. present the hierarchically adversarial CRF
(HACRF) method where the CRF is combined with the gener-
ative adversarial network [43]. The experiments prove that the
CRF can effectively improve the segmentation accuracy of SAR
images.

We present the attention fully convolutional network (AFCN)
for SAR image segmentation. In our method, we first separate the
input SAR images into small slices. Afterwards, the image slices
are fed into the AFCN for obtaining the segmentation results of
the input images. Finally, we utilize the fully connected CRF
to improve the performance of AFCN. The innovations of our
method are as follows.

1) We design the multiscale attention network (MANet)
which is embedded within the AFCN model. The MANet,
which is proposed to enhance the extraction of the SAR
image features, contains three parts: Multiscale feature,
channel attention, and spatial attention extraction. The
multiscale feature extraction module extracts image fea-
tures of different scales by convolution kernels of different
sizes, which effectively enhances the feature representa-
tion. The channel and spatial attention extraction modules
utilize attention values to reassign weights to the image
features, thus the AFCN is capable of learning to focus on
the important features.

2) The loss function of our AFCN consists of Lovasz-
Softmax and cross-entropy losses, wherein the former
component optimizes the Intersection over Union (IoU)
of the segmentation results while the latter one optimizes
the pixel classification accuracy. The segmentation per-
formance of AFCN is further improved by utilizing the
merits of the two loss functions.

The rest of this article is structured as follows. Section II de-
scribes our method in detail. Then the experiments are reported
in the Section III. Finally, Section IV concludes the article.

II. PROPOSED METHOD

We propose a novel SAR image segmentation method in this
article. As shown in Fig. 1, our method contains three parts:
Image preprocessing, segmentation results acquisition, and CRF
postprocessing. Due to the large size of the original SAR images,
we first divide the input image into small slices in the image pre-
processing. In the acquisition stage, the image slices are input to
the AFCN to acquire the segmentation results. The AFCN model
is embedded with the MANet which is proposed to enhance
the extraction of the image features. Besides, the loss function
for AFCN consists of Lovasz-Softmax and cross-entropy losses.
This new loss function can simultaneously optimize the IoU and
the pixel classification accuracy of the segmentation results. In
the CRF stage, we adopt the fully connected CRF to improve
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Fig. 1. Flowchart of our method.

Fig. 2. Structure of MANet.

the segmentation performance of AFCN. The fully connected
CRF captures the correlation of the image pixels, thus the spatial
information contained in the SAR images is effectively utilized.
Next, the AFCN, the loss function, and the fully connected CRF
of our method are described, respectively.

A. AFCN Structure

In the proposed method, we design the AFCN for SAR image
segmentation. As Fig. 1 shows, AFCN contains convolution
modules, MANets, and deconvolution modules, wherein the
skip connection method is utilized for fusing image features
of different resolutions. Given the input image, the convolution
modules extract image features using convolution and pooling
layers. Each convolution module is followed by a MANet which
is capable of enhancing the extraction of image features. The
MANet first extracts the multiscale features, then the channel
and spatial attention are calculated to reassign weights for the
features. Hence, the AFCN is capable of learning to focus on
the important features while ignoring the less important ones.
The deconvolution modules utilize deconvolution layers for

improving the resolution of image features, thereby obtaining
the segmentation results.

In the structure of AFCN, we design the MANet to enhance
the extraction of the SAR image features. As shown in Fig. 2, the
MANet consists of three parts: Multiscale feature, channel atten-
tion, and spatial attention extraction. In the human visual system,
the neurons in the same area adopt different receptive field
sizes, so that the neurons are capable of collecting multiscale
spatial information [33]. Inspired by this mechanism, recent
CNNs have adopted convolutional kernels of different sizes
to aggregate multiscale information [23]–[25]. Therefore, we
utilize two convolution kernels of different sizes for extracting
image features in the multiscale feature extraction part, thereby
enhancing the representation of image features. Afterward, the
attention maps are calculated in the channel and spatial attention
extraction modules to further improve the feature representation.
The detailed process of MANet is as follows.

Given the input feature map U ∈ RC×H×W , where C, H ,
and Wdenote the number of channels, height, and width of the
feature map, respectively. We first extract the multiscale feature
using two convolution modules of different kernel sizes. Then
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the output feature maps U1 and U2 are combined to generate
the multiscale feature map F ∈ RC×H×W :

F = U1 ⊕U2 (1)

where ⊕ denotes the element-wise addition.
Afterwards, we calculate the channel attention of the image

features. Since the pooling operation is often used to obtain
attention values, we adopt it in the channel attention extraction
section. The brightness of different objects in SAR images varies
greatly because of the imaging nature. Therefore, we utilize the
averaging pooling operation for preserving the features of low
brightness regions. Suppose FC

avg ∈ RC represents the average
pooling features in the channel dimension. FC

avg(n) ∈ FC
avg is

calculated by

FC
avg(n) =

1

H ×W

H∑
i=1

W∑
j=1

F (n, i, j) (2)

where F (n, i, j) ∈ F . Then FC
avg is sent to a linear module and

the channel attention FC ∈ RC is obtained. To optimize F , we
reassign weights for the features in F by multiplying it with FC

in the C dimension, as shown in (3)

F ′ = F ⊗ FC (3)

where F ′ ∈ RC×H×W denotes the feature map optimized by
channel attention. ⊗ denotes the multiplication operation.

Finally, the MANet uses spatial attention to optimize F ′,
wherein the averaging pooling operation is also employed. Sup-
pose F S

avg ∈ RH×W denotes the average pooling features in the
spatial dimension. FS

avg(i, j) ∈ F S
avg is calculated by

FS
avg(i, j) =

1

C

C∑
n=1

F ′(n, i, j) (4)

whereF ′(n, i, j) ∈ F ′. ThenF S
avg is forwarded to a convolution

module for obtaining the spatial attention F S ∈ RH×W . To
optimize F ′, we reassign weights to the features in F ′ by
multiplying it with F S , as shown in (5)

F ′′ = F ′ ⊗ F S (5)

where F ′′ represents the final optimized feature map.

B. Loss Function

Suppose y∗ ∈ RN , y ∈ RN , and y ∈ RN×Kdenote the
ground-truth labels, the predicted labels and the label assign-
ment probability of the image pixels, respectively. N repre-
sents the number of the image pixels. K is the number of the
target categories. y∗ ∈ RN×K denotes the one-hot encoding
of y∗. Most FCN-based image segmentation methods employ
the cross-entropy loss which is designed for optimizing the
pixel classification accuracy of segmentation results. The cross-
entropy loss is expressed in (6)

lossce = − 1

N

N−1∑
i=0

K−1∑
k=0

y∗i,k log yi,k (6)

where y∗i,k ∈ y∗, yi,k ∈ y.

However, IoU is also an important evaluation method of image
segmentation. Suppose I denotes the set of the image pixels. The
IoU of category k can be calculated by

IoUk =
|P k ∩Gk|
|P k ∪Gk| (7)

where P k ∈ I denotes the set of the image pixels whose pre-
dicted labels belong to category k, andGk ∈ I denotes the set of
the image pixels whose ground-truth labels belong to category
k. ∩ and ∪, respectively represent the intersection and union
operations of two sets. During the training process, optimizing
the IoU is an effective measure to promote the segmentation
performance of our AFCN. The Lovasz-Softmax loss is designed
to optimize IoU [44], and its derivation is as follows.

Based on (7), a corresponding loss function is expressed in
(8)

ΔIoUk
= 1− IoUk. (8)

Then the set of the mispredicted pixels for category k is
defined

Mk = (Gk ∩ (I − P k)) ∪ (P k ∩ (I −Gk)). (9)

We rewrite the loss function shown in (8) using Mk

ΔIoUk
(Mk) =

|Mk|
|Gk ∪Mk| . (10)

To optimize (10) in a continuous setting, we utilize the Lovasz
extension of Mk, and the loss function is rewritten as

ΔIoUk
(mk) =

N−1∑
i=0

mk(i)gi(mk) (11)

where mk ∈ RN represents the vector of the pixel errors.
mk(i) ∈ mk is calculated as follows:

mk(i) =

{
1− fk(i) if k = y∗i
fk(i) otherwise

(12)

where fk(i) ∈ [0, 1]denotes the class probability that the ith
pixel belongs to category k, y∗i ∈ y∗. gi(mk) is calculated by
(13)

gi(mk) = ΔIoUk
({π1, · · · , πi})−ΔIoUk

({π1, · · · , πi−1}) .
(13)

{π1, · · · , πi} denotes the permutation ordering the components
of mk in a decreasing order. Considering the mean IoU of all
the categories, the Lovasz-Softmax loss is expressed as follows:

lossls =
1

K

K−1∑
k=0

ΔIoUk
(mk). (14)

To simultaneously optimize the pixel classification accuracy
and the IoU, a new loss function is designed for our AFCN by
incorporating the Lovasz-Softmax and cross-entropy losses

loss = lossce + αlossls (15)

where α denotes the weight coefficient.
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Fig. 3. SAR images and corresponding ground truth in the Fangchenggang dataset.

C. Fully Connected CRF

In the testing process of our method, we adopt the fully
connected CRF to improve the segmentation performance of
AFCN. We define the pixels as nodes. The energy function of
the fully connected CRF is as follows:

E(y) =
∑
i

ψu(yi) +
∑
i,j

ψp(yi, yj). (16)

ψu(yi) is the unary potential which is calculated by

ψu(yi) = − logP (yi). (17)

P (yi) denotes the label assignment probability of the ith
pixel. ψp(yi, yj) denotes the pairwise potential which captures
the correlation of the image pixels. The expression of ψp(yi, yj)
consists of two weighted-Gaussian kernels functions

ψp(yi, yj) = μ(yi, yj)

⎛
⎝ω1e

(− |pi−pj |2
2θ2α

− |gi−gj |2
2θ2

β

)

+ω2e
(− |pi−pj |2

2θ2γ
)

)
(18)

whereω1 andω2 are the weight coefficients. pi and pj denote the
pixel positions. gi and gj represent the grey values of the pixels.
θα, θβ , and θγ are the hyper parameters which control the scale
of Gaussian kernels. μ(yi, yj) denotes the penalty function

μ(yi, yj) =

{
1 if yi 	= yj
0 if yi = yj

. (19)

III. EXPERIMENTS

In this section, the dataset, evaluation measures, and imple-
mentation details are first introduced. Then the performance
of our method is compared with that of other segmentation

methods. After that, we demonstrate the effectiveness of the
MANet, the loss function, and the fully connected CRF. Finally,
we discuss the computational efficiency of our method.

A. Preliminary

1) Dataset Description: We perform the experiments on
the Fangchenggang and Pucheng datasets. The Fangcheng-
gang dataset consists of the airborne SAR images obtained in
Fangchenggang, China. The resolution of the SAR images is
2 m and the imaging area is about 30 × 30 km. There are 36
images in this dataset, and the image size is 875 × 883 pixels. In
Fig. 3, we show some SAR images and the ground truth of this
dataset. Different colors represent different categories of areas,
where blue, black, yellow, and red represent background, river,
farmland, and urban areas, respectively.

The Pucheng dataset contains 40 airborne SAR images col-
lected from Pucheng, China. The image size is 850× 850 pixels,
and the resolution is 1 m. We show some SAR images and ground
truth of the Pucheng dataset in Fig. 4. As can be seen, this dataset
includes two categories of areas: Urban and farmland.

2) Evaluation Metrics: We utilize the mean intersection over
union (MIoU), frequency weighted intersection over union
(FWIoU), pixel accuracy (PA), and mean pixel accuracy (MPA)
to estimate the performance of different methods. Suppose K
and N represent the number of the target categories and the
number of the image pixels, respectively. MIoU denotes the
average IoU of all the categories

MIoU =
1

K

K−1∑
i=0

pii∑K−1
j=0 pij +

∑K−1
j=0 pji − pii

(20)

where pii represents the element at coordinate (i, i) of the
confusion matrix.

∑K−1
j=0 pij and

∑K−1
j=0 pji denote the element

sums in the ith row and ith column in the confusion matrix, re-
spectively. Compared with MIoU, FWIoU considers the weight
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Fig. 4. SAR images and corresponding ground truth in the Pucheng dataset.

for each category in terms of the number of the pixels

FWIoU =
1

N

K−1∑
i=0

(∑K−1
j=0 pij

)
pii∑K−1

j=0 pij +
∑K−1

j=0 pji − pii
. (21)

PA denotes the proportion of the correctly classified pixels to
the total number of the pixels, and it is calculated by (22)

PA =
1

N

K−1∑
i=0

pii. (22)

MPA represents the average PA of all the categories

MPA =
1

K

K−1∑
i=0

pii∑K−1
j=0 pij

. (23)

3) Implementation Details: During the image preprocessing,
the input images are separated into small slices with a size
of 224 × 224 and a step of 200. The network structure of
AFCN includes five convolution modules, five MANets, and
four deconvolution modules. The convolution modules consist
of convolution, pooling, and batch normalization layers. The
size of the convolution kernels is 3 × 3, and the pooling size
adopted in pooling layers is 2 × 2. The numbers of the kernels
contained in the five modules are 32, 64, 128, 256, and 512. The
deconvolution module consists of a deconvolution layer which
contains K kernels, and the kernel sizes of the 4 modules are
4 × 4, 4 × 4, 4 × 4, and 8 × 8, respectively.

In the multiscale feature extraction of MANet, the convolution
modules consist of convolution and batch normalization layers.
The kernel sizes of the two modules are 3 × 3 and 5 × 5,
respectively. The number of the kernels in the two modules
is C. The linear module in the channel attention extraction is
composed of two linear layers. The number of the neurons in

TABLE I
NUMBERS OF PIXELS IN DIFFERENT CATEGORIES

M denotes the abbreviation of million.

the two layers are C/r and C, where r denotes the reduction
ratio which is set to 8. The convolution module in the spatial
attention extraction section consists of convolution and batch
normalization layers. The convolution layer contains one kernel,
and the kernel size is 7 × 7.

B. Segmentation Performance Comparison

1) Experiments on the Fangchenggang Dataset: In this sec-
tion, the experiments are performed on the Fangchenggang
dataset. During the training process, we choose six images
from this dataset as training set and the others are utilized as
testing set. The numbers of the pixels contained in different
categories are shown in Table I , where M is the abbreviation of
million. As can be seen, the numbers of the pixels in different
categories vary largely. For example, the background areas in the
training set contain 2.23-M pixels, whereas the farmland areas
contain 0.63-M pixels. This imbalance presents a challenge for
the segmentation methods.

We compare our method with U-Net [14], SegNet [15], PSP-
Net [16], FRRNet [17], and DeepLab model [42]. The U-Net
combines high-resolution features and upsampling output for
improving the segmentation accuracy. The SegNet follows an
encoder–decoder network where the encoder extracts image
features whereas the decoder improves the resolution of the
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Fig. 5. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.

TABLE II
PERFORMANCE OF DIFFERENT IMAGE SEGMENTATION METHODS

The fully connected CRF is adopted for improving the segmentation performance of
different methods.

feature maps. By embedding the pyramid pooling module in
FCN, the PSPNet extracts the global context information for
improving the segmentation accuracy. The FRRNet is capable
of simultaneously utilizing the information at full image res-
olutions and the robust features of the input images. DeepLab
model first obtains the coarse segmentation results using the deep
CNN, then the fully connected CRF is adopted for refinement.
As a postprocessing algorithm, CRF can be embedded after all
the algorithms. Thus we also perform CRF processing on the
segmentation results of U-Net, SegNet, PSPNet, and FRRNet.

It is obvious that the MIoU, FWIoU, PA, and MPA of our
method outperform the other methods. The MIoU of our method
is 5.72% higher than the SegNet and 3.82% higher than the
U-Net. This is because the SegNet and U-Net do not opti-
mize image features in the feature extraction. In contrast, our
AFCN is embedded with the MANet which optimizes the SAR

image features through three strategies: Multiscale feature,
channel attention, and spatial attention extraction. DeepLab
model, PSPNet, and FRRNet are based on deep network struc-
tures. Although deep networks can improve the feature repre-
sentation, the labeled samples in the SAR dataset is insufficient,
which leads to the overfitting problem. By contrast, our method
adopts a shallow structure which can effectively reduce the risk
of overfitting.

Next, we choose four images in the testing set and draw
the segmentation results in Figs. 5 to 8. As can be seen, the
segmentation results of our method match well with the ground
truth. Compared with SegNet and U-Net, our method effectively
reduces the number of the misclassified pixels. This is because
MANet embedded in our AFCN is capable of enhancing the
extraction of the SAR image features. Due to the overfitting
problem, the numbers of the misclassified pixels of the DeepLab
model, PSPNet, and FRRNet are larger than that of our method,
which is particularly obvious at the region boundaries in the
segmentation results.

2) Experiments on the Pucheng Dataset: In this section, we
validate the effectiveness of our method using the Pucheng
dataset. Four images are chosen as training set and the others are
used as testing set. The numbers of the pixels contained in the
urban and farmland areas are shown in Table III. It is obvious
that the number of the pixels in the farmland area is much larger
than that in the urban area.

We compare the performance of our method with that of U-
Net [14], SegNet [15], PSPNet [16], FRRNet [17], and DeepLab
model [42]. The CRF processing is used to optimize the results
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Fig. 6. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.

Fig. 7. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.
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Fig. 8. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.

TABLE III
NUMBERS OF PIXELS IN DIFFERENT CATEGORIES

M denotes the abbreviation of million.

TABLE IV
PERFORMANCE OF DIFFERENT IMAGE SEGMENTATION METHODS

CRF processing is used to optimize the results of different methods.

of the different methods. As shown in Table IV, our method
achieves the highest MIoU, FWIoU, PA, and MPA. The MIoU
of our method (85.81%) is higher than that of U-Net (84.74%)
and SegNet (82.20%), which demonstrates the effectiveness of
feature optimization with MANet. Compared with the DeepLab
model, PSPNet, and FRRNet, our method achieves the best seg-
mentation performance despite the insufficiency of the labeled
samples. These results prove that our method can obtain superior
segmentation results on different SAR datasets.

We draw the segmentation results of the two testing images
from the Pucheng dataset. In Figs. 9 and 10, our method can
accurately distinguish the urban and farmland areas. In contrast,
there are many misclassified pixels in the segmentation results
of U-Net, SegNet, PSPNet, FRRNet, and the DeepLab model.
Especially in Fig. 10 (c)–(g), a large number of pixels in the
urban area are misclassified to the farmland.

C. Evaluation of the MANet

In our method, we design the attention module MANet and
embed it in the AFCN for enhancing the extraction of the SAR
image features. To demonstrate the effectiveness of MANet,
we compare the segmentation performance of AFCN when it
is embedded with different attention modules. The SENet [32],
SKNet [33], and CBAM [35] are chosen as comparison attention
modules. SENet and SKNet utilize the channel attention of the
feature map to highlight useful features but restrain the others.
Different from SENet, SKNet adopts the dynamic selection
mechanism for extracting image features of different scales.
CBAM utilizes the channel and spatial attention to optimize
image features. Since the SENet, SKNet, and CBAM can be
easily added to convolutional networks, we respectively em-
bed them in the AFCN model to replace MANet. We adopt
the cross-entropy loss and the experiments are performed on
the Fangchenggang dataset. The segmentation performance of
AFCN when it is embedded with different attention modules is
shown in Table V.

As can be seen, the MIoU of MANet is 5.6% higher than
that of CBAM. The CBAM uses average pooling and maximum
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Fig. 9. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.

Fig. 10. Segmentation results of different methods. The fully connected CRF is utilized for optimizing the segmentation results of different methods (a) Test
image. (b) Ground-truth. (c) U-Net. (d) DeepLab. (e) SegNet. (f) PSPNet. (g) FRRNet. (h) Our method.
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TABLE V
SEGMENTATION PERFORMANCE OF AFCN WHEN IT IS EMBEDDED WITH

DIFFERENT ATTENTION MODULES

TABLE VI
SEGMENTATION PERFORMANCE OF DIFFERENT FEATURE OPTIMIZATION

STRATEGIES

“Baseline” denotes the AFCN model without feature optimization strategy. “Multiscale,”
“Channel,” and “Spatial” denote three different feature optimization strategies.

TABLE VII
SEGMENTATION PERFORMANCE OF AFCN UNDER DIFFERENT LOSS

FUNCTIONS

pooling operations to obtain attention values. However, the
brightness of different regions in SAR images varies greatly.
Thus maximum pooling operation will remove the features
of low-brightness regions, thereby degrading the segmenta-
tion performance of CBAM. In contrast, MANet only utilizes
average pooling operation to derive attention values. Hence
the features of the low-brightness regions are well preserved,
which improves the segmentation performance. Moreover, the
performance of MANet is better than that of SENet. This is
because MANet uses two convolution kernels of different sizes
for extracting multiscale features, which effectively improves
the representation of image features. Although SKNet adopts a
dynamic selection mechanism to extract multiscale features, its
performance is inferior to MANet. The reason is that SKNet
only uses channel attention whereas MANet calculates both
the spatial and channel attention for enhancing the feature
extraction.

MANet is composed of three feature optimization strategies:
Multiscale feature, spatial attention, and channel attention ex-
traction. Next, we verify the effectiveness of the three strategies.
In Table VI , the “Baseline” refers to the AFCN model without a
feature optimization strategy. As can be seen, the three strategies
outperform the “Baseline” in MIoU, FWIoU, PA, and MPA.

In addition, we obtain a further performance improvement by
combining the three strategies.

D. Evaluation of the Loss Function

In this article, a new loss function is designed for AFCN. We
compare the new loss with cross-entropy loss, Lovasz-Softmax
loss [44], focal loss [45], and dice loss [46]. The cross-entropy
loss is used to optimize the pixel classification accuracy in the
training process. The focal loss is capable of alleviating the
category imbalance problem. Dice and Lovasz-Softmax losses
are used for optimizing the IoU of the segmentation results. The
difference between the two loss functions is that the former is a
discrete loss whereas the latter is a continuous loss. We perform
the experiments on the Fangchenggang dataset, and the weight
coefficient α in our loss function is set as 7. The segmenta-
tion performance of AFCN under different loss functions is as
follows.

It is obvious that the segmentation performance of our loss
function outperforms that of the other loss functions. The MIoU
of our loss function is 0.88% higher than the cross-entropy
loss and 0.68% higher than the focal loss. The reason is that
our loss function contains the Lovasz-softmax component that
can effectively optimize the IoU of the segmentation results.
Although dice loss is designed for optimizing IoU, it is a discrete
loss which makes the training process unstable. In contrast, our
loss function can optimize the IoU in a continuous manner,
thereby improving the performance of the AFCN model. In
addition, our loss function contains the cross-entropy component
which can optimize the pixel classification accuracy. As a result,
the segmentation results of our loss function outperform those
of the Lovasz-Softmax loss.

In this article, the new loss function consists of Lovasz-
Softmax and cross-entropy losses, wherein the former compo-
nent is multiplied by the weight coefficientα. Next, the influence
ofα on the performance of AFCN is discussed. We, respectively,
set α to 1, 3, 5, 7, 9, 11, and 13. Then we calculate MIoU and PA
of AFCN with different α, as shown in Fig. 11. As α increases,
the performance of AFCN improves, and we obtain the best
MIoU (71.49%) and PA (88.36%) when α is set to 7. As α
continues to increase, MIoU and PA of AFCN become worse.
It is obvious that setting an appropriate α for the proposed loss
function can further improve the performance of AFCN. Thus,
the weight coefficient α is set to 7 in the experiments.

E. Evaluation of the Fully Connected CRF

In our method, the fully connected CRF is adopted for im-
proving the segmentation performance of AFCN. Next, we
compare the segmentation results before and after the CRF
processing. In this section, the experiments are performed on the
Fangchenggang dataset. As shown in Table VIII, MIoU, FWIoU,
PA, and MPA of AFCN are improved after the CRF processing.
This is because the fully connected CRF utilizes the spatial
information in the input images by capturing the correlation of
pixels, which improves the segmentation accuracy. We choose
two images in the Fangchenggang testing set and draw the
segmentation results before and after the CRF processing. As
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Fig. 11. MIoU and PA of AFCN with different weight coefficient in the proposed loss function (a) MIoU. (b) PA.

Fig. 12. Segmentation results of our method before and after CRF processing (a) Test image. (b) Ground-truth. (c) Before CRF. (d) After CRF. (e) Test image.
(f) Ground-truth. (g) Before CRF. (h) After CRF.

TABLE VIII
SEGMENTATION PERFORMANCE OF OUR METHOD BEFORE AND AFTER CRF

PROCESSING

Fig. 12 shows, the number of the misclassified pixels after CRF
processing is less than that before the CRF processing. Besides,
as can be seen in Fig. 12(d) and (h), the segmentation results
at the slice boundaries become visually smoother after the CRF
processing.

F. Computational Efficiency

To compare the computational efficiency of our method with
that of the other methods, we calculate the running time required
for different methods to segment all the images in the Pucheng
testing set. The experiments are implemented with the Pytorch
framework and the GPU of our computer is GeForce GTX
1070 with 8GB memory. The running time of different methods
before and after the CRF processing is shown in TABLE IX. As
can be seen, our method has the shortest running time among
the six methods (about 8.9 s before CRF processing). Because
of the deep structures, PSPNet, DeepLab model, and FRRNet
require more running time. Besides, the running time required
for CRF processing for different methods is almost the same
(around 92 s).
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TABLE IX
RUNNING TIME OF DIFFERENT METHODS TO SEGMENT ALL THE IMAGES IN

THE PUCHENG TESTING SET

IV. CONCLUSION

We proposed the AFCN model for SAR image segmentation.
In the structure of AFCN, each convolution module is followed
by a MANet which is utilized for enhancing the extraction
of the SAR image features. MANet consists of three feature
optimization strategies: Multiscale feature, channel attention,
and spatial attention extraction. Besides, a new loss function
was designed for AFCN by integrating Lovasz-Softmax and
cross-entropy losses. This new loss can simultaneously optimize
IoU and the pixel classification accuracy. To further improve
the segmentation performance of AFCN, we adopted the fully
connected CRF to capture the spatial information in the SAR
images. The experiments which were performed on two airborne
SAR image datasets prove that our method effectively improved
the segmentation accuracy of the SAR images. For example, PA
of our method achieves 95.79% in the Pucheng dataset, which
is superior to that of the other methods such as SegNet, PSPNet,
and FRRNet.
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