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Abstract: Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is
vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers,
such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to
withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has
recently been employed as reinforcement in epoxy to enhance the fracture related properties of
the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical
properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical
features, morphology, weight fraction, dispersion state, and surface functionalization of graphene.
The factors in which contrasting results were reported in the literature are highlighted, such as the
influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the
challenges to achieving the desired performance of polymer nanocomposites are also suggested
throughout the article.

Keywords: mechanical properties; thermal properties; electrical properties; graphene;
epoxy; nanocomposites

1. Introduction

Polymer Matrix Composites (PMCs) have found extensive applications in aerospace, automotive,
and construction, owing to ease of processing and high strength-to-weight ratio, which is an important
property required for aerospace applications [1]. Among different polymers, epoxy is the most
commonly used thermosetting polymer matrix in PMCs [2]. The damage tolerance and fracture
toughness of epoxy can be enhanced with the incorporation of (nano-) reinforcement, such as metallic
oxides [3–5], clays [6–8], carbon nanotubes (CNTs) [9–11], and other carbonaceous materials [12–14].
After the groundbreaking experiments on the two-dimensional material graphene by Nobel Laureates
Sir Andre Geim and Konstantin Novoselov [15] from the University of Manchester, graphene came into
the limelight in the research community, mainly because of its excellent electrical [16], thermal [17], and
mechanical properties [18]. Graphene found widespread applications in electronics [19], bio-electric
sensors [20], energy technology [21], lithium batteries [22], aerospace [23], bio-engineering [24], and
various other fields of nanotechnology [25]. There is an exponential rise in the use of graphene in
different research areas, mainly because of the properties inherited in, and transferred by, graphene to
the processed graphene-based materials.

To summarize the research trends related to graphene-based nanocomposites, multiple review
articles were recently published in which various aspects of graphene-based nanocomposites were
discussed. There are numerous ways to produce and characterize graphene-based materials [26].
Graphene-based materials were studied for different properties, such as thermal properties [27],
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mechanical properties [28], electrical properties [29], rheological properties [30], microwave
adsorption [31,32], environmental and toxicological impacts [33], effect of preparation [34], and
gas barrier properties [35]. These materials have found biological applications, especially related
to toxicity [36], and in other applications like electrically-conductive adhesives [37] and selective
photoredox reactions [38]. Because of their hierarchical pore structures, these materials were found
suitable for gas sorption, storage, and separation [39]. Various factors influence the mechanical
properties of graphene-based materials—e.g., γ-ray irradiation was found to have a strong influence
on the structure–property relationship [40]. Various theoretical models were developed to predict
the mechanical properties of epoxy–graphene nanocompsites and correlated with interphases and
interfacial interactions [41]. It was presented that continuum mechanics can be used to predict the
minimum graphene sheet dimensions and optimum number of layers for good reinforcement [42].
Graphene was compared with other reinforcements, such as clays [43] and CNTs [44], and was shown
to have properties superior to the other nano-fillers. Various surface modifications were employed to
improve interfacial interactions, and their influence on the performance of polymer nanocomposites
was studied [45].

To date, eclectic reviews on graphene composites are covering a broad range of graphene-related
issues; it can, however, be observed that there is an obvious gap in the lack of a review article discussing
the mechanical, thermal, and electrical properties of epoxy–graphene nanocomposites. Therefore, this
review article discusses the correlation between graphene structure, morphology, weight fraction,
dispersion, surface modifications, and the corresponding mechanical, thermal, and electrical properties
of epoxy–graphene nanocomposites.

2. Epoxy as Matrix

There are various types of epoxy which have a wide range of applications because of their
superior attributes, such as improvement in composite mechanical properties, acceptable cost, and
processing flexibility [2]. Phenolic glycidyl ethers are formed by the condensation reaction between
epichlorohydrin and a phenol group. Within this class, the structure of the phenol-containing molecule
and the number of phenol groups per molecule distinguish different types of resins and the final
properties of monolithic epoxies and nanocomposites [2]. The epoxies have found some “high-end”
applications, including aerospace, marine, automotive, high-performance sports equipment (such
as tennis rackets), electronics, and industrial applications [46]. Due to the superior properties of
carbonaceous materials, such as high strength and stiffness, they are most widely used at present as
reinforcement in advanced Epoxy Matrix Composites (EMCs) [47–50].

Epoxy resins are of particular interest to structural engineers because these resins provide a unique
balance of chemical and mechanical properties combined with extreme processing versatility [51].
When a composite is produced from epoxy-carbon using hand lay-up process, a great flexibility
in aligning the fraction of fibers in a particular direction is available, which is dependent upon
the in-service load on the composite structural member. In-plane isotropy can also be achieved by
stacking the resin-impregnated fiber layers at equal numbers of 0˝, +45˝, ´45˝, and 90˝. There are
also other stacking sequences that can be used to achieve in-plane isotropy. The specific stiffness
of quasi-isotropic epoxy–graphite laminated composite is higher than many structural metals. The
highest specific strength achieved in epoxy–graphite is higher than common structural metals, with
the exception of ultrahigh-strength steels and some β-titanium alloys. For example, the epoxy-carbon
crutch is 50% lighter and still stronger than the aluminium crutch [2].

3. Graphene as Reinforcement

Graphene—a densely packed honey-comb crystal lattice made of carbon atoms having a thickness
equal to the atomic size of one carbon atom—has revolutionized the scientific parlance due to
its exceptional physical, electrical, and chemical properties. The graphene now found in various
applications was previously considered only a research material and a theoretical model to describe
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the properties of other carbonaceous materials such as fullerenes, graphite, Single-Walled Carbon
Nanotubes (SWNTs), and Multi-Walled Carbon Nanotubes (MWNTs). It was believed that the real
existence of stand-alone single layer graphene would not be possible because of thermal fluctuations,
as the stability of long-range crystalline order found in graphene was considered impossible at finite
(room) temperatures. This perception was turned into belief by experiments when the stability of
thin films was found to have direct relation with the film thickness; i.e., film stability decreases with
a decrease in film thickness [52]. However, graphene can currently be found on a silicon substrate
or suspended in a liquid and ready for processing. Although its industrial applications are not
ubiquitous, it is widely used for research purposes (e.g., as reinforcement in PMCs) and has shown
significant improvement in different (mechanical, thermal, electrical etc.) properties of produced
nanocomposites [52–56].

The ability of a material to resist the propagation of an advancing crack is vital to the prevention
of failure/fracture [57]. Graphene can significantly improve fracture toughness of epoxy at very low
volume fraction by deflecting the advancing crack in the matrix. The details of the influence of various
kinds of graphene/graphite nanoplatelets (GNPs) on the fracture toughness of epoxy nanocomposites
are listed in Table 1. In all the composite systems mentioned in Table 1, epoxy was used as matrix
and the nanocomposites were produced using solution casting technique, except [58] where the resin
infiltration method was employed. The incorporation of graphene in epoxy can increase its fracture
toughness by as much as 131% [59]. It can also be observed that graphene size, weight fraction, surface
modification, and dispersion mode have strong influence on the improvement in fracture toughness
values of the produced epoxy–graphene nanocomposites. Monolithic epoxy shows brittle fracture and
beeline crack propagates, which results in straight fracture surfaces. The advancing crack in epoxy
interacts with the graphene sheets. Initially, the crack propagates through the epoxy matrix as there
are no significant intrinsic mechanisms available in monolithic epoxy to restrict crack propagation.
However, no sooner than the crack faces strong graphene sheets ahead, it surrenders and subdues.
Nevertheless, the extent of matrix strengthening and crack bridging provided by graphene strongly
depends upon its dispersion state and interfacial interactions with the epoxy matrix [60,61].

4. Fracture Toughness

The successful employment of epoxy-based nanocomposites relies on the ability of the composite
system to meet design and service requirements. The epoxy-based nanocomposites have found
applications in aerospace, automotive, and construction due to ease of processing and high
strength-to-weight ratio. In many applications, the composite system undergoes external loadings.
The relationship between loads acting on a system and the response of the system towards the
applied loads is studied in terms of mechanical properties. Therefore, epoxy-based nanocomposites
are supposed to have superior mechanical properties. There are various tests to measure mechanical
properties, such as tensile testing, bend testing, creep testing, fatigue testing, and hardness testing,
to name a few. These tests usually take specimens of specific geometries and subject to loading at
certain rate. In general, the industrial scale samples contain porosity and notches which act as stress
concentrators and are deleterious to the mechanical properties of nanocomposites. Sometimes, it
becomes difficult to control the maximum flaw size. The shape of the flaw is another very important
parameter, as pointed notch (V-notch) is more detrimental than round notch (U-shaped) [62].
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Table 1. A brief record of epoxy-based nanocomposites studied for improvement in fracture toughness values.

Sr. Authors Year Reinforcement/(wt %) Dispersion
method

% Increase in
K1C (MPa¨m1/2) Remarks Ref.

1 Wan et al. 2014
GO (0.25 wt %)

Sn + BM
25.6 K1C drops after 0.25 wt %

of reinforcement
[63]

DGEBA-f-GO (0.25 wt %) 40.7

2 Sharmila et al. 2014 MERGO (0.25 wt %) MS + USn 63 K1C drops after 0.25 wt %
of reinforcement [64]

3 Zhang et al. 2014
GnPs (0.5 wt %)

Sn
27.6 Trend still increasing

[65]

fGnPs (0.3 wt %) 50.5 K1C drops after 0.3 wt % of
reinforcement

4 Moghadam et al. 2014

UG (0.5 wt %)

3RM

55
K1C drops after 0.5 wt % of
reinforcement

[66]GO (0.5 wt %) 57

G-NH2 (0.5 wt %) 86

G-Si (0.5 wt %) 86

5 Ma et al. 2014 m-GnP (1 wt %) MS + Sn 131 K1C drops after 1 wt % of
reinforcement of m-GnP [59]

6 Chandrasekaran et al. 2014
TRGO (0.5 wt %)

3RM
44.5 Trend still increasing

[67]GNP (1 wt %) 49 K1C drops after 1 wt %

MWCNTs (0.5 wt %) 12.7 Trend still increasing

7 Wan et al. 2014
GO (0.1 wt %)

Sn + BM
24 K1C improves with silane

functionalization
[68]

Silane-f-GO (0.1 wt %) 39

8 Zaman et al. 2014
m-clay (2.5 wt %)

MS
38 K1C drops after 2.5 wt %

m-clay [69]

m-GP (4 wt %) 103 Trend still increasing

9 Jiang et al. 2014 SATPGO (0.5 wt %) USn 92.8 K1C drops after 0.5 wt % of
reinforcement [70]

10 Shokrieh et al. 2014
GPLs (0.5 wt %)

Sn
39 K1C drops after 0.5 wt % of

reinforcement
[71]

GNSs (0.5 wt %) 16
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Table 1. Cont.

Sr. Authors Year Reinforcement/(wt %) Dispersion
method

% Increase in
K1C (MPa¨m1/2) Remarks Ref.

11 Jia et al. 2014 GF (0.1 wt %) (resin infiltration) None 70 K1C did not change much between 0.1 to 0.5 wt % [58]

12 Tang et al. 2013
Poorly dispersed RGO (0.2 wt %) Sn 24 Trend still increasing [72]
Highly dispersed RGO (0.2 wt %) Sn + BM 52

13 Wang et al. 2013 GO
10.79 µm (0.5wt %)

USn
12

K1C drops after 0.5 wt % of reinforcement [57]1.72 µm (0.5 wt %) 61

0.70 µm (0.1 wt %) 75

14 Chandrasekaran et al. 2013 GNPs* (0.5 wt %) 3RM 43 Dispersion and K1C improved
with three roll milling [73]

15 Li et al. 2013
APTS-GO (0.5 wt %)

USn
25 Trend still increasing

[74]
GPTS-GO (0.2 wt %) 43 K1C drops after 0.2 wt % of reinforcement

16 Shadlou et al. 2013
ND (0.5 wt %)

USn
No effect Fracture toughness improvement is higher by

CNF and GO (high aspect ratio) compared with
that by spherical ND

[75]CNF (0.5 wt %) 4.3

GO (0.5 wt %) 39.1

17 Jiang et al. 2013
GO (0.1 wt %)

Sn
31 Trend remains same after 1 wt % of reinforcement

[76]ATS (1 wt %) 58.6 K1C drops after 0.1 wt % of reinforcement

ATGO (1 wt %) 86.2 The maximum improvement is achieved with
functionalization

18 Liu et al. 2013
p-CNFs (0.4 wt %)

Sn
41 Trend still increasing [77]

m-CNFs (0.4 wt %) 80

19 Wang et al. 2013
ATP (1 wt %)

Sn
14 K1C drops after 0.1 wt %

[78]GO (0.2 wt %) 19 Trend still increasing after 0.2 wt %

ATP (1 wt %) + GO (0.2 wt %) 27 K1C drops with the further increase in ATP of
reinforcement

20 Alishahi et al. 2013

ND (0.5 wt %)

Sn

´26.9

Trend still increasing [79]CNF (0.5 wt %) 19

GO (0.5 wt %) 23

CNT (0.5 wt %) 23.8
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Table 1. Cont.

Sr. Authors Year Reinforcement/(wt %) Dispersion
method

% Increase in
K1C (MPa¨m1/2) Remarks Ref.

21 Ma et al. 2013
U-GnP (0.5 wt %) MgSr + USn 49 Trend still increasing [80]
m-GnP (0.5 wt %) 109

22 Feng et al. 2013 Graphene (0.5 wt %) Sn 76 K1C decreases after 0.5 wt % of reinforcement [81]

23 Chatterjee et al. 2012

GnPs (5 µm, 2 wt %)

3RM

60

Trend still increasing [82]GnPs (25 µm, 2 wt %) 80

CNTs (2 wt %) 80

CNT:GnP = (9:1) (2 wt %) 76

24 Chatterjee et al. 2012 EGNPs (0.1 wt %) HPH + 3RM 66 K1C drops after 0.1 wt % of reinforcement [83]

25 Zaman et al. 2011
GP (2.5 wt %)

Sn + MS
57 The surface modification significantly improved

the K1C
[84]

m-GP (4 wt %) 90

26 Rana et al. 2011 CNFs Sn + MS 40 K1C is dependent upon mixing time [85]

27 Bortz et al. 2011 GO (0.5 wt %) 3RM 60 K1C drops after 0.5 wt % of reinforcement [86]

28 Zhang et al. 2010
CNFs (0.5 wt %)

3RM
19.4

Trend still increasing [87]SCFs (15 wt %) 125.8

SCF (10 wt %)/CNF (0.75 wt %) 210

29 Fang et al. 2010 GNs MS + Sn 93.8 Better results with combination of MS and Sn [88]

30 Jana et al. 2009 GP with “puffed” structure (5 wt %) Sn 28 Trend still increasing [89]

31 Rafiee et al. 2009
SWNT (0.1 wt %)

Sn + MS
17 Graphene platelets have more influence on K1C

than CNTs
[90]

MWNT (0.1 wt %) 20

3RM: three roll milling; APTS-GO: amino-functionalized graphene oxide (GO); ATGO: 3-Aminopropyltriethoxysilane functionalized silica nanoparticles attached GO; ATP: attapulgite;
ATS: 3-amino functionalized silica nanoparticles; BM: ball milling; CNF: carbon nanofiber; CNT: carbon nanotube; DGEBA-f-GO: diglycidyl ether of bisphenol-A functionalized
GO; EGNP: amine functionalized expanded graphene nanoplatelets; fGnP: polybenzimidazole functionalized graphene platelets (GnPs); G-NH2: amino-functionalized GNPs;
G-Si: silane modified GNPs; GF: graphene foam; GN: amine functionalized graphene sheet; GnP: graphene platelet; GNP*: graphite nanoplatelet; GNS: graphene nanosheet; GO:
graphite; GP: graphite particles; GPL: graphene nanoplatelets; GPTS-GO: epoxy functionalized GO; HPH: high pressure homogenizer; m-clay: surface modified nano clay; m-CNF:
triazole functionalized carbon nanofiber; m-GnP: surface modified GnP; m-GnP*: surfactant modified graphene platelet; m-GP: surface modified graphene platelets; MERGO:
microwave exfoliated reduced graphene oxide; MgSr: magnetic stirring; MS: mechanical stirring; MWCNT: multi-walled carbon nanotube; MWNT: multi-walled carbon nanotubes;
ND: nanodiamond; pCNF: pristine carbon nanofibers; RGO: thermally reduced graphene oxide; SATPGO: 3-aminopropyltriethoxysilane modified silica nanoparticles attached GO;
SCF: short carbon fibers; Silane-f-GO: silane functionalized GO; Sn: Sonication; SWNT: single-walled carbon nanotubes; U-GnP: unmodified graphene platelets; UG: unmodified
graphene nanoplatelets; USn: ultrasonication.
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Due to the pronounced effect of defects on nanocomposite properties, it is important to understand
how a system will tolerate external loading in the presence of a flaw under operating conditions, and
how a system will resist the propagation of cracks from these flaws. Therefore, how the material will
behave in reality will only be determined when the test specimen contains possible flaws, such as a
notch. To deal with this issue in a pragmatic way, an intentional notch is produced in the specimen,
and resistance to fracture is measured and is termed fracture toughness. Different specimens are
used for fracture toughness, such as notched tension, three-point bending, and compact tension
specimen, as shown in Figure 1. The toughness is usually measured in three different modes namely
(1) Mode-I (tensile mode); (2) Mode-II (shearing mode); and (3) Mode-III (tearing mode), as shown in
Figure 2. Most of the literature on epoxy nanocomposites reported Mode-I fracture toughness. Mode-I
is preferred in contrast to Mode-II, because shear yielding is the dominant mechanism of failure that is
acting under Mode-II, delivering higher values than in Mode-I. Mode-III is never practiced.
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Some of the fracture toughness tests include double torsion, indentation, double cantilever tests,
and Chevron notch method. Chevron notch method is popular, as it uses a relatively small amount of
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material and no material constants are needed for the calculations. The technique is also suitable for
high-temperature testing, as flaw healing is not a concern. However, it requires a complex specimen
shape that incurs an extra machining cost. The most commonly used specimen is a single-edge notched
beam subjected to three or four-point bending. Unfortunately, it has been reported that the results of
this test are very sensitive to the notch width and depth. Therefore, a pre-notched or molded beam is
preferred. As polymers and polymer nanocomposites can be molded into a desired shape, a specific
kind of notch can be replicated in multiple specimens. Due to the reproducibility of notch dimensions,
the single-edge notched beam test can give reproducible values of fracture toughness in polymers and
polymer nanocomposites. These are the reasons that most of the literature published on polymers
and polymer nanocomposites used single-edge notch beams (subjected to three-point bend loading)
to determine fracture toughness values (K1C). Impact loading methods, such as Charpy and Izod
impact tests, are also used to determine impact fracture toughness. Fracture toughness values obtained
through different techniques cannot be directly compared [91].

Fracture can be defined as the mechanical separation of a solid owing to the application of stress.
Ductile and brittle are the two broad modes of fracture, and fracture toughness is related to the
amount of energy required to create fracture surfaces. In ideally-brittle materials (such as glass), the
energy required for fracture is simply the intrinsic surface energy of the materials, as demonstrated
by Griffith [92]. For structural alloys at room temperature, considerably more energy is required for
fracture, because plastic deformation accompanies the fracture process. In polymer nanocomposites,
the fracture path becomes more tortuous as cracks detour around strong reinforcement. This increase in
crack tortuosity provides additional work to fracture and, therefore, an increase in fracture toughness.
In polymers, the fracture process is usually dominated by crazing or the nucleation of small cracks and
their subsequent growth [93].

Toughness is defined as the ability of a material to absorb energy before fracture takes place. It
is usually characterized by the area under a stress–strain curve for a smooth (un-notched) tension
specimen loaded slowly to fracture. The term fracture toughness is usually associated with the fracture
mechanics methods that deal with the effect of defects on the load-bearing capacity of structural
components. The fracture toughness of materials is of great significance in engineering design because
of the high probability of flaws being present. Defined another way, it is the critical stress intensity at
which final fracture occurs. The plane strain fracture toughness (critical stress intensity factor, K1C)
can be calculated for a single-edge notched three-point bending specimen using Equation (1), where
Pmax is the maximum load of the load–displacement curve (N), f (a/w) is a constant related to the
geometry of the sample and is calculated using Equation (2), B is sample thickness (mm), W is sample
width (mm), and a is crack length (a should be kept between 0.45 W and 0.55 W, according to ASTM
D5045) [72]. The critical strain energy release rate (G1C) can be calculated using Equation (3), where
E is the Young’s modulus obtained from the tensile tests (MPa), and ν is the Poisson’s ratio of the
polymer. The geometric function f(a/W) strongly depends on the a/W ratio [94].

The fracture toughness is dependent on many factors, such as type of loading and environment
in which the system will be loaded [95]. However, the key defining factor is the microstructure as
summed up in Figure 3 [96]. The properties of nanocomposites are also significantly dependent on filler
shape and size [51]. The graphene size, shape, and topography can be controlled simultaneously [97].
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5. Structure and Fracture Toughness

Graphene has a honeycomb lattice having sp2 bonding, which is much stronger than the sp3

bonding found in diamond [98]. There is sp2 orbital hybridization between Px and Py that forms a
σ-bond [52]. The orbital Pz forms a π-bond with half-filled band that allows free motion of electrons.
When bombarded with pure carbon atoms, hydrocarbons, or other carbon-containing molecules, the
graphene directs the carbon atoms into vacant seats, thereby self-repairing the holes in the graphene
sheet. Through their crack deflection modeling, Faber and Evans showed that maximum improvement
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in fracture toughness, among all other nano-reinforcements, can be obtained using graphene—mainly
because of its better capability of deflecting the propagating cracks [99,100].

As graphene is a 2D structure, each carbon atom can undergo chemical reaction from the sides,
resulting in high chemical reactivity. The carbon atoms on the edge of graphene sheet have three
incomplete bonds (in single layer graphene) that impart especially high chemical reactivity to edge
carbon atoms. In addition, defects within a graphene sheet are high energy sites and preferable sites
for chemical reactants. All these factors make graphene a very highly chemical reactive entity. The
graphene oxide can be reduced by using Al particles and potassium hydroxide [101]. The graphene
structure can be studied using Transmission Electron Microscopy (TEM) and other high-resolution
tools. Wrinkles were observed in graphene flat sheet, which were due to the instability of the 2D lattice
structure [72,102].

Wrinkling is a large and out-of-plane deflection caused by compression (in-plane) or shear.
Wrinkling is usually found in thin and flexible materials, such as cloth fabric [103]. Graphene
nanosheets (GNSs) were also found to undergo a wrinkling phenomenon [104]. When wrinkling
takes place, strain energy is stored within GNSs which is not sufficient to allow the GNSs to regain
their shape. Wrinkling can be found on GNSs as well as on exfoliated graphite. The wrinkles in
GNSs are sundering apart at different locations while getting closer at other regions. As GNSs do not
store sufficient elastic strain energy, wrinkling is an irreversible phenomenon, but can be altered by
external agency [105]. The surface roughness varies depending on graphene sheets, owing to their
dissimilar topographical features, such as wrinkles’ size and shape. Therefore, the ability of sheets
to mechanically interlock with other sheets and polymer chains is dissimilar. Wang et al. showed
that a wrinkle’s wavelength and amplitude are directly proportional to sheet size (length, width, and
thickness), as is clear from Equations (4) and (5), where λ is wrinkle wavelength, ν is Poisson’s ratio, L
is graphene sheet size, t is thickness of graphene sheet, ε is edge contraction on a suspended graphene
sheet, and A is wrinkle amplitude [57].

Palmeri et al. showed that the graphene sheets have a coiled structure that helps them to store a
sufficient amount of energy [106]. The individual sheet and chunk of sheets together are subjected to
plastic deformation at the application of external load. The applied energy is utilized in undertaking
plastic work that enhances the material’s ability to absorb more energy. It is believed that large
graphene sheets have large size wrinkles [107]. These wrinkles twist, bend, and fold the graphene
sheets. The wrinkles and other induced defects remain intact while curing of polymer matrix. This
reduces the geometric continuity and regularity of graphene and lowers load transfer efficiency, and
can cause severe localized stress concentration.

λ4 «
4π2νL2t2

3
`

1´ ν2
˘

ε
(4)

A4 «
16νL2t2ε

3π2
`

1´ ν2
˘ (5)

6. Surface Area and Fracture Toughness

K1C strongly depends upon the surface area of the reinforcement, as it influences the
matrix–reinforcement interfacial interactions. When the reinforcement has a large surface area, the
interfacial area increases, which increases the number of routes for the transport of load from matrix to
reinforcement [87]. On the contrary, when agglomeration takes place, not only the agglomerates act as
stress raisers, but the net surface area is also decreased, which further drops the fracture toughness
and other mechanical properties of nanocomposites [108]. One reason that graphene supersedes other
reinforcements is its high surface area [109]. The surface area of graphene is even higher than that of
CNTs [110]. To make a comparison, the surface areas of short carbon fiber and graphene are calculated.
The surface area of carbon fiber is calculated using the formula for a solid cylinder, while the surface



Polymers 2016, 8, 281 11 of 37

area of graphene is calculated using the formula for a rectangular sheet. The thickness of graphene is
considered variable, so the same relation can be used for multiple layers of graphene sheets stacked
together in the form of graphene nanosheets. The length of short carbon fiber is taken to be 1 µm and
the diameter 0.1 µm. The dimensions of graphene are ` ˆ w ˆ t = 1 µm ˆ 0.1 µm ˆ 10 nm. The density
of both short carbon fiber and graphene is taken to be 2.26 to make comparison based on dimensions
only. The surface area of 1 g of carbon fibers is 19 m2 and that of graphene is 98 m2. It can be observed
that although the lengths of both reinforcements are the same and the width of graphene is equal to
the diameter of a short carbon fiber, there is a large difference in surface areas when the thickness
of graphene is kept 10 nm. This difference will further increase if graphene dimensions are reduced.
The specific surface area of graphene is as high as 2600 m2/g [111,112]. It shows that graphene,
having a much larger surface area, can significantly improve the fracture toughness of the epoxy
nanocomposites [113,114]. There is also improved thermal conduction among graphene–graphene
links that significantly improves the overall thermal conductivity of the nanocomposites [115,116].
The electrical conductivity also increases with graphene as graphene sheets form links and provide a
passageway for electrical conduction [117].

Zhao and Hoa used a theoretical computer simulation approach to study the improvement in
toughness when epoxy is reinforced with 2D nano-reinforcements of different particle size [118,119].
The simulation results showed that there is a direct relation between particle size and stress
concentration factor up to 1 µm, after which point the stress concentration factor was impervious to any
further size increase. However, Chatterjee et al. [82] showed that fracture toughness was improved by
increasing the graphene size, which is in negation with simulation results by Zhao and Hoa [120,121].

The relationship between graphene size and stress concentration factor can be correlated with the
facile analogy of substitutional solid solution. The extent of strain field produced by a foreign atom
depends upon the difference in atomic sizes of the foreign and parent atoms. When there is a large
difference between foreign and parent atoms, a large strain field around the atom is generated. On the
contrary, when the difference in atomic sizes of parent and foreign atoms is small, the strain field is
limited. As both atomic and GNPs sizes are in the nano-meter range, the analogy can arguably be
applied to an epoxy–graphene system where large sheet size will cause higher stress concentration
factor than that produced by small sheet size. Therefore, graphene with smaller sheet size can be more
efficient in improving the fracture toughness than the larger graphene sheets.

The increase in the fracture toughness of epoxy was found to be strongly dependent upon the
graphene sheet size [57]. For the nanocomposites, an inverse relation was found between sheet size
and fracture toughness in most cases. The increase in fracture toughness with a decrease in sheet size
can be explained on the basis of stress concentration factor, as discussed above. Although graphene
acts as reinforcement, however, it has associated stress and strain fields which arise from the distortion
of the structure of polymer matrix. When sheet size, weight fraction, or both are increased beyond a
certain value, the stress concentration factor dominates the reinforcing character. As a result, fracture
toughness and other mechanical properties—such as tensile and flexural strength and stiffness—start
decreasing, which is in accordance with Zhao and Hoa’s simulation results [118].

Wang et al. used Graphene Oxide (GO) of three different sizes, namely GO-1, GO-2, GO-3,
having average diameters 10.79, 1.72, and 0.70 µm, respectively, to produce nanocomposites using
an epoxy matrix [57]. They observed that fracture toughness was strongly dependent on GO sheet
size. The maximum increase in fracture toughness was achieved with the smallest GO sheet size.
The K1C values dropped when weight fraction was increased beyond 0.1 wt %. This decrease in K1C

with increasing weight fraction can be correlated with crack generation and dispersion state.

7. Weight Fraction and Fracture Toughness

The K1C first increases with GO and then starts decreasing in all three of the cases. The increase
in K1C is due to the reinforcing effect of GO, while the drop in K1C is due to crack generation and
agglomeration. The addition of a high GO weight fraction generates cracks that reduce the fracture
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toughness of the nanocomposite [57]. The other reason for such behavior is due to the high probability
of agglomeration at higher weight fractions due to Van der Waals forces [57].

The weight fractions of reinforcements at which maximum K1C was achieved for different
epoxy–graphene nanocomposites are shown in Figure 4. All the published research articles stated
that the maximum K1C values were achieved at or below 1 wt % of graphene, and K1C dropped when
the weight fraction of graphene was raised beyond 1 wt %. The decrease in K1C with a higher weight
fraction of graphene can be correlated with the dispersion state of graphene. As graphene weight
fraction increases beyond 1 wt %, the dispersion state becomes inferior. The maximum increase in K1C

was 131%, which is achieved at 1 wt % graphene [59]. However, the dispersion mode adopted is worth
discussing. The graphene was dispersed using a combination of sonication and mechanical stirring.
This combination provides an efficient means of dispersing the graphene into epoxy. In addition to
that, sonication causes exfoliation, delayering, and length shortening of graphene sheets. These aspects
help alleviate the stress concentration factor and cracks associated with large graphene sheets. These
factors result in K1C improvement up to 131%, which is the maximum among the improvements in
K1C values reported in epoxy–graphene nanocomposites.
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Figure 4. The weight fractions of reinforcements at which maximum K1C was achieved in different
epoxy/graphene nanocomposites and corresponding improvement (%) in K1C (See references
in Table 1).

It can be observed from Figure 4 that there is no fixed value of GNPs wt % at which a maximum
increase in K1C is achieved. In addition, the increase in K1C at fixed GNP wt % is not the same.
For example, at 0.5 wt %, the % increase in K1C is reported to be up to 45% by Chandrasekaran et al. [67],
and about 110% by Ma et al. [80]. Therefore, it can be concluded that the wt % of GNPs is not the
sole factor defining the influence of GNPs on the mechanical properties of nanocomposites. There are
other influential factors as well, such as dispersion method, use of dispersant, and functionalization.
In addition, the use of organic solvent is another important parameter in defining the improvement
in mechanical properties. It was observed that a lower improvement in K1C was observed when
dispersion was carried out with only sonication, and a higher improvement in K1C was observed when
sonication was assisted with a secondary dispersion method, especially mechanical stirring.
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8. Dispersion State and Fracture Toughness

The end product of most of the graphene synthesis methods is agglomerated graphene [33].
In addition, graphene tends to agglomerate due to weak intermolecular Van der Waals forces [113].
Therefore, dispersing graphene in epoxy matrix is always a challenge. The relationship between
dispersion state and the nature of crack advancement is shown schematically in Figure 5.
The advancing cracks can be best barricaded by uniformly dispersed graphene. Tang et al. produced
highly dispersed and poorly dispersed RGO-epoxy nanocomposites using solution casting technique.
The high dispersion of RGO in epoxy was achieved using a ball milling process [72]. The RGO
dispersed in epoxy using sonication process and not subjected to ball milling was termed poorly
dispersed. They studied the influence of graphene dispersion on the mechanical properties of the
produced nanocomposite. The highly dispersed RGO-epoxy showed a 52% improvement in K1C,
while the poorly dispersed RGO-epoxy showed only a 24% improvement in K1C. It shows that better
dispersion of graphene can significantly improve the fracture toughness of epoxy nanocomposites [72].
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Several dispersion modes to disperse reinforcement into epoxy matrix were successfully adopted
(see references in Table 1). The maximum % increase in K1C as a function of dispersion mode is shown
in Figure 6. In most of these articles, sonication is the main mode of dispersing reinforcement in epoxy
matrix. It can be observed that when sonication is assisted by a supplementary dispersion technique
(such as mechanical stirring and magnetic stirring), the K1C values were significantly increased.
The maximum improvement of 131% in K1C was achieved when a combination of sonication and
mechanical stirring was employed [59]. The second highest improvement in K1C was achieved with a
combination of sonication and magnetic stirring, an increase in K1C of 109% [80]. The minimum values
in K1C improvements are achieved when sonication is coupled with ball milling [60,64,100]. Since both
the sonication and ball milling processes reduce the sheet size and produce surface defects [120–134],
we believe that the surface defects significantly increased and sheet size was reduced below the
threshold value, and therefore a greater improvement in K1C was not achieved. Although three roll
milling (3RM, calendering process) is an efficient way of dispersing the reinforcement into the polymer
matrix due to high shear forces, the maximum improvement in K1C using three roll mill was reported
as 86% [77], which is far below that achieved with a combination of sonication and mechanical stirring
(131% [59]).
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Figure 6. The maximum improvement in K1C as a function of dispersion mode. (See references
in Table 1).

9. Functionalization and Fracture Toughness

Achieving maximum improvement in fracture toughness of polymers by using graphene
depends on the ability to optimize the dispersibility of graphene and the interfacial interactions
with the epoxy matrix. As described previously, graphene tends to agglomerate due to the weak
Van der Waals interactions, and its smoother surface texture inhibits strong interfacial interactions.
To tackle the limited dispersibility and interfacial bonding of graphene, surface modifications are
carried out [135–139]. In fact, the introduction of functional groups on the graphene surface can
induce novel properties [140–144]. Various methods to modify the graphene surface have been
employed, and can be categorized into two main groups, namely: (1) chemical functionalization; and
(2) physical functionalization.

In chemical functionalization, chemical entities are typically attached covalently. For example,
in defect functionalization, functional groups are attached at the defect sites of graphene, such as
–COOH (carboxylic acid) and –OH (hydroxyl) groups. Defects can be any departure from regularity,
including pentagons and heptagons in the hexagonal structure of graphene. Defects may also be
produced by reaction with strong acids such as HNO3, H2SO4, or their mixture, or strong oxidants
including KMnO4, ozone, and reactive plasma [145]. The functional groups attached at the defect
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sites of graphene can undergo further chemical reactions, including but not limited to silanation,
thiolation, and esterification [146]. Unlike chemical functionalization, physical functionalization has
non-covalent functionalization, where the supermolecular complexes of graphene are formed as a
result of the wrapping of graphene by surrounding polymers [33]. Surfactants lower the surface
tension of graphene, thereby diminishing the driving force for the formation of aggregates. The
graphene dispersion can be enhanced by non-ionic surfactants in case of water-soluble polymers [33].

The different functionalization methods adopted to study their influence on K1C values with
corresponding improvements (%) in K1C values are shown in Figure 7. The minimum improvement was
achieved for amino-functionalized graphene oxide (APTS-GO) [74], while the maximum improvement
was recorded for surfactant-modified graphene nanoplatelets [59]. This could be attributed to the
improvement in the dispersion state of graphene in the epoxy matrix when surfactants were used, in
addition to improving interactions without causing a reduction in graphene sheet size or imparting
surface defects on graphene sheets.
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Figure 7. The maximum improvement in K1C as a function of functionalization method. (See references
in Table 1).

10. Crosslink Density and Fracture Toughness

In thermosetting materials, such as epoxy, high crosslink density is desirable for the improvement
of mechanical properties. However, high crosslink density has a detrimental effect on fracture
toughness [57]. Therefore, a crosslink density threshold is required in order to achieve optimal
properties [147,148]. During the curing of thermoset polymers, while phase transformation takes place,
graphene sheets tend to agglomerate in order to reduce configurational entropy [57]. Additionally, the
viscosity initially reduces when the temperature is increased during curing, which makes the movement
of the graphene sheets relatively easy, supporting their agglomeration. Due to the wrinkle-like structure
and high specific surface area of graphene, strong interfacial interactions are possible with epoxy
chains. It may also affect the overall curing reaction by changing the maximum exothermic heat flow.
Molecular dynamics studies conducted by Smith et al. also showed that there was a change in polymer
chain mobility caused by geometric constraints at the surface of nano-reinforcement [149].

The graphene affects the crosslink density of epoxy [65]. When graphene is dispersed in epoxy,
the polymer chains are restricted, and crosslinking is decreased. The decrease in crosslinking lowers
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the heat release rate. It was reported that both graphene platelets (GnPs) and polybenzimidazole
functionalized GnPs (fGnPs) decreased the heat release rate of the curing reaction and increased
the curing temperature [65]. It can also be attributed to the dispersion state of the reinforcement.
Uniformly dispersed reinforcement will have a more pronounced effect on heat release rate and curing
temperature than poorly dispersed reinforcement. Therefore, fGnPs have a better dispersion state
than GnPs [65]. There are two opposite effects of filler in the matrix: (1) the fillers could restrict the
polymer chains, which should increase Tg; (2) the reactive fillers could lower the crosslinking density
of epoxy, which should decrease Tg. An increase in Tg shows that interfacial interactions dominate the
crosslinking density effect [65].

11. Fracture Patterns

Monolithic epoxy exhibits a bamboo-like brittle fracture pattern [105]. However, with the
incorporation of graphene, the cracks are deflected, resulting in parabolic and non-linear fracture
patterns [105]. The change in graphene structure and shape upon the application of external stress also
affects the overall fracture pattern of the nanocomposite, due to changes in mechanical interlocking and
interfacial interactions [105]. It was recorded that bending behavior of GNSs when wrapping around
a corner resulted in the sliding of layers over one another, and was termed “sliding mode” [105].
In sliding mode, angular change (γ) was observed. This γ was produced when layers slid over
one another. If the state of stress is relatively high, the inner layers undergo splitting and buckling
that further results in kinking, by which the bending stress is alleviated [105]. GNSs size and edge
morphology control the type of fracture mode. In the case of smaller GNSs (smaller refers to volume
of individual GNSs), where the sliding surface is smaller, the resistance to sliding is lower, and hence
sliding mode will be preferred. On the contrary, if GNSs are of larger size and the sides are longer,
the resistance to sliding would be higher, and hence buckling mode will be preferred over sliding
mode [105]. The tearing step subdivides into multiple steps. Consequently, the initial crack branches
into multiple small cracks [105]. However, the extent of subdivision of the advancing cracks depends
on the dispersion state of the filler and interfacial interactions.

12. Other Mechanical Properties

The literature shows an absence of consensus on the role of graphene in improving other
mechanical properties of nanocomposites. Some authors reported significant improvement in the
mechanical properties of nanocomposites reinforced with GNPs [150–154]. On the other hand, there
was no significant effect due to the incorporation of GNPs into epoxy matrix [155–158], and even
worse, the mechanical properties deteriorated by the addition of GNPs [159–163]. In general, a major
portion of the literature has shown that GNPs can significantly improve the mechanical properties
of epoxy nanocomposites. The percent improvements in tensile strength and tensile modulus are
shown in Figure 8. The maximum improvement in tensile strength is as high as 108% [164] and
in the tensile modulus up to 103% [165]. GNPs were also found to improve flexural properties of
nanocomposites. Naebe et al. produced covalent functionalized epoxy–graphene nanocomposites,
and reported 18% and 23% increase in flexural strength and modulus, respectively [166]. Qi et al.
produced graphene oxide–epoxy nanocomposites and reported an increase of up to 53% in flexural
strength [167]. The impact strength and hardness were also significantly improved by graphene in
epoxy nanocomposites. For example, Ren et al. applied a combination of bath sonication, mechanical
mixing, and shear mixing to disperse GO in cyanate ester–epoxy and produced nanocomposites using
in situ polymerization [168]. They reported an increase of 31% in impact strength. Qi et al. produced
graphene oxide–epoxy nanocomposites and reported an increase in impact strength of up to 96% [169],
whereas Lu et al. produced GO–epoxy nanocomposites and reported an increase in impact strength
of up to 100% [170]. Shen et al. produced GNS–epoxy nanocomposites and reported an increase in
impact strength of up to 11% [171], and Bao et al. reported an increase in hardness of up to 35% [172].
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The G1C also improved with the incorporation of graphene in epoxy nanocomposites. Meng et al.
produced epoxy–graphene nanocomposites and reported an increase in G1C of up to 597% [173].

13. Thermal Properties

Due to the superior thermal conductivity of graphene, graphene-based polymer nanocomposites
are promising candidates for high-performance thermal interface materials [174]. The dissipation of
heat from electronic devices may also be barricaded when the high thermal conductivity of graphene is
efficiently utilized. The graphene has shown higher efficiency in increasing the thermal conductivity of
polymers than CNTs [175]. It has been found experimentally that the Effective Thermal Conductivity
(Keff) of graphene-based polymer nanocomposites has a non-linear dependence on graphene weight
fraction [176–178]. Xie et al. proposed an analytical model to determine the Keff of graphene-based
nanocomposites [179]. Their model proposed very high thermal conductivity values, as the model
did not take into account the interfacial thermal resistance. Lin et al. developed a model based
on Maxwell–Garnett effective medium approximation theory to determine the effective thermal
conductivity of graphene-based nanocomposites [180,181]. They showed that the enhancement in
thermal conductivity is strongly influenced by the aspect ratio and orientation of graphene.
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Hu et al. used a molecular dynamics approach to show that the agglomeration of graphene is
of major concern in increasing the thermal conductivity of the system [192]. The variation in thermal
conductivity with various forms of graphene and graphite nanocomposites is summarized in Table 2,
and the influence of dispersion mode on the improvement of thermal conductivity is shown in Figure 9.
The maximum improvement in thermal conductivity was observed in the case of mechanical stirring.
In general, sonication caused a lower improvement in thermal conductivity. However, maximum
improvement in thermal conductivity (not shown in Figure 9) was observed in the case of sonication,
1.6 ˆ 104% [193].
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14. Electrical Properties

Tailoring the electrical properties of graphene can unlock its many potential electronic
applications [194,195]. For example, effective gauge fields are introduced when graphene lattice
deformation takes place. Like the effective magnetic field, the produced effective gauge fields influence
the Dirac fermions [196]. The Fermi level in undoped graphene lies at the Dirac point, where the
minimum conductivity values are achieved [197]. By adding free charge carriers (i.e., dopants), the
electrical properties of graphene can be improved, and conductivity increases linearly with carrier
density [198,199]. For example, boron as dopant can contribute ~0.5 carriers per dopant in a graphene
sheet [200]. Dopants can be introduced during the synthesis of graphene using chemical vapor
deposition (CVD) [201]. The variation in electrical conductivity with various forms of graphene and
graphite nanocomposites is summarized in Table 3, and the influence of dispersion mode on the
improvement of thermal conductivity is shown in Figure 10. The maximum improvement in electrical
conductivity was observed in the case of a combination of ball milling and mechanical stirring.
Therefore, both thermal and electrical conductivities improved in the case of mechanical stirring.
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Table 2. A brief record of epoxy-based nanocomposites studied for improvement in thermal conductivity values.

Sr. Authors Year Reinforcement (wt %) Dispersion
method

% Increase
in thermal
conductivity

Remarks Ref.

1 Kandre et al. 2015

GnP (1.9 wt %)

Sn

9 The simultaneous inclusion of GnPs and SnP/SnW at a combined loading of 1 vol % resulted in about 40%
enhancement in the through-thickness thermal conductivity, while the inclusion of GnP at the same loading
resulted in only 9% improvement. A higher increment with simultaneous addition of GnP and SnP/SnW can
be attributed to synergistic effects.

[202]
SnP/(0.09 wt %) 18

SnW/(0.09 wt %) 8

GnP (1.9 wt %), SnP (0.09 wt %) 38

GnP (1.9 wt %), SnW (0.09 wt %) 40

2 Tang et al. 2015
Three-dimensional graphene network (3DGNs) (30 wt %) None 1,900 (Composites produced using layer-by-layer dropping method.) The filler with large size is more effective in

increasing the thermal conductivity of epoxy because of continuous transmission of acoustic phonons and
minimum scattering at the interface due to reduced interfacial area. High intrinsic thermal conductivity of
graphene is the major reason for the obtained high thermal conductivity of nanocomposites.

[203]Chemically reduced graphene oxide (RGO) (30 wt %)
Sn + MS

1,650

Natural graphite powder (NG) (30 wt %) 1,400

3 Burger et al. 2015

Graphite flakes (12 wt %) (GRA-12)

Sn + MgSr

237.5 As the filler/matrix interfaces increase, the thermal resistance increases due to phonon scattering. In order to
improve the thermal conductivity of a composite, it is better to structure a sample with an adapted
morphology than trying to have the best dispersion. A 3D-network was first prepared with graphite foils
oriented through the thickness of the sample and then stabilized with DGEBA/DDS resin. The produced
composite sample was called as “Network”. In “fibers”, all the graphite flakes were aligned through the
thickness of sample. When a DGEBA interface layer was applied in “fiber”, the sample was called
“Fiber + 1 interface”. When two DGEBA interface layers was applied in “fiber” the sample was
called as “Fiber + 2 interfaces”.

[204]
Graphite flakes (15 wt %) (GRA-15) 325

Graphite flakes (14–15 wt %) (Network) 775

Graphite flakes (11–12 wt %) (Fibers) 666.7

Graphite flakes (11–12 wt %) (Fiber + 1 interface) 608.3

Graphite flakes (11–12 wt %) (Fiber + 2 interface) 237.5

4 Zeng et al. 2015 Liquid crystal perylene bisimides polyurethane (LCPU)
modified reduced graphene oxide (RGO) (1 wt %) Sn 44.4 Along with the increase in thermal conductivity, the impact and flexural strengths increased up to 68.8% and

48.5%, respectively, at 0.7 wt % LCPU/RGO. [205]

5 Wang et al. 2015
GnPs, 1 µm, (GnP-C750) Sn + MgSr + 3RM 9.1 The increase in thermal conductivity is higher in the case of larger particle size than smaller particle size. [206]
GnPs, 5 µm 115

6 Zhou et al. 2015 Multi-layer graphene oxide (MGO) (2 wt %) Sn 95.5 The thermal conductivity decreases after 2 wt % MGO. [207]

7 Zeng et al. 2015
Al2O3 nanoparticles (30 wt %)

Sn
50

The thermal conductivity can be improved by using hybrid fillers. [208]Aminopropyltriethoxy-silane modified Al2O3 nanoparticles
(Al2O3-APS) (30 wt %) 68.8

Liquid-crystal perylene-bisimide polyurethane (LCPBI)
functionalized reduced graphene oxide (RGO) and
Al2O3-APS (LCPBI/RGO/Al2O3-APS)

106.2

8 Tang et al. 2015
Al2O3 (18.4 wt %)

Sn + MS
59.1

The increase in thermal conductivity decreases with Al2O3 coating of graphite. [209]Graphite (18.4 wt %) 254.6

Al2O3-coated graphite (Al2O3-graphite) (18.4 wt %) 195.5

9 Pan et al. 2015
Perylene bisimide (PBI)-hyper-branched polyglycerol
(HPG) modified reduced graphene oxide (RGO),
(PBI-HPG/RGO) (1 wt %)

Sn 37.5 The filler was observed to be uniformly dispersed, resulting in strong interfacial thermal resistance. [210]

10 Wang et al. 2015
SiO2, 15 nm, (1 wt %)

Sn
14.3 SiO2 nanoparticles are more effective in increasing thermal conductivity than GO. The maximum

improvement in thermal conductivity was observed in the case of hybrid filler. [211]GO (1 wt %) 4.8

As-prepared nanosilica/graphene
oxide hybrid (m-SGO) (1 wt %) 28.6

11 Zha et al. 2015
GNPs (3.7 wt %), Al2O3 nanoparticles (ANPs), (65 wt %)

Sn + MS
550.4 Al2O3 nanofibers are more effective in improving thermal conductivity than Al2O3 nanoparticles. [212]

GNPs (3.7 wt %), Al2O3 fibers (Afs) (65 wt %) 756.7
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Table 2. Cont.

Sr. Authors Year Reinforcement (wt %) Dispersion
method

% Increase
in thermal
conductivity

Remarks Ref.

12 Zhou et al. 2015 Multi-layer graphene oxide (MGO) (2 wt %) Sn 104.8 The thermal conductivity decreases after 2 wt % MGO. [213]

13 Wang et al. 2015 GNPs (8 wt %) MS 627 The thermal conductivity increases with GNPs at the loss of Vickers microhardness after 1 wt % of GNP. [214]

14 Pu et al. 2014
RGO (1 wt %)

Sn + MgSr
21.8 The thermal conductivity decreases after 1 wt % RGO. The silica layer on S-graphene makes electrically

conducting graphene insulating, reduces the modulus mismatch between the filler and matrix, and improves
the interfacial interactions of the nanocomposites, which results in enhanced thermal conductivity.

[215]3-aminopropyl triethoxysilane (APTES) functionalized
graphene oxide (A-graphene) (8 wt %) 47.1

Silica-coated A-graphene (S-graphene) (8 wt %) 76.5

15 Fu et al. 2014
Graphite (44.30 wt %)

MS
888.2

The maximum improvement in thermal conductivity was observed in the case of graphene sheets with
thickness of 1.5 nm.

[216]Graphite nanoflakes (16.81 wt %) 982.3

Graphene sheets (10.10 wt %) 2258.8

16 Li et al. 2014 Aligned MLG (AG) (11.8 wt %) Sn 16670 The alignment of MLG causes an exceptional improvement in thermal conductivity and exceeds other
filler-based epoxy nanocomposites. [193]

17 Guo and Chen 2014
GNPs (25 wt %) Sn 780 Ball milling is more effective in improving the thermal conductivity of GNP/epoxy than sonication. The

thermal conductivity decreases when ball milling is carried out for more than 30 h. [126]
GNPs (25 wt %) BM 1420

18 Corcione and
Maffezzoli

2013
Natural graphite (NG) (1 wt %)

Sn
24.1 The thermal conductivity decreases with increasing wt % of NG after 1 wt %. The thermal conductivity

decreases after 2 wt % of GNPs. The maximum improvement in thermal conductivity was observed with
expanded graphite.

[217]GNPs (2 wt %) 89.8

Expanded graphite (EGS) (3 wt %) 232.1

19 Chandrasekaran et al. 2013 GNP (2 wt %) 3RM 14 The thermal conductivity increases with increasing temperature. [73]

20 Min et al. 2013 GNPs (5 wt %) Sn 240 High aspect ratio of GNPs and oxygen functional groups play a significant role in improving thermal
conductivity of nanocomposites. [218]

21 Hsiao et al. 2013

Silica (1 wt %)

Sn + ShM

19
The existence of the intermediate silica layer enhances the interfacial attractions between TRGO and epoxy
and improved dispersion state, which caused a significant increase in thermal conductivity. [219]Thermally reduced graphene oxide (TRGO) (1 wt %) 26.5

Silica nanosheets (Silica-NS) (1 wt %) 37.5

TRGO-silica-NS (1 wt %) 61.5

22 Zhou et al. 2013
Untreated GNPs (12 wt %)

Sn + MgSr
139.3

Silane functionalization can significantly improve thermal conductivity of GNP/epoxy. [220]Silane-treated COOH-MWCNTs (6 wt %) 192.9

Silane-treated GNPs (6 wt %) 525

23 Raza et al. 2012

GNPs, 5 µm, 30 wt %, in rubbery epoxy MS 818.6

The thermal conductivity increases with increasing particle size. The particle size distribution significantly
influences the thermal conductivity. GNPs with a broad particle size distribution gave higher thermal
conductivity than the particles with a narrow particle size distribution, due to the availability of smaller
particles that can bridge gaps between larger particles.

[221]

GNPs, 5 µm, 20 wt %, in rubbery epoxy ShM 332.6

GNPs, 15 µm, 25 wt %, in rubbery epoxy MS 1228.4

GNPs, 15 µm, 25 wt %, in rubbery epoxy ShM 1118.2

GNPs, 20 µm, 20 wt %, in rubbery epoxy ShM 684.6

GNPs, 20 µm, 12 wt %, in glassy epoxy ShM 567.6

GNPs, 15 µm, 20 wt %, in glassy epoxy MS 683

24 Kim et al. 2012
GO (3 wt %)

Sn
90.4 The increase in thermal conductivity decreases with Al(OH)3 coating on GO. [222]

Al(OH)3-coated graphene oxide (Al-GO) (3 wt %) 35.1
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Table 2. Cont.

Sr. Authors Year Reinforcement (wt %) Dispersion
method

% Increase
in thermal
conductivity

Remarks Ref.

25 Chatterjee et
al. 2012 Amine functionalized expanded graphene nanoplatelets

(EGNPs) (2 wt %) Sn + 3RM 36 The EGNPs form a conductive network in the epoxy matrix allowing for increased thermal conductivity. [83]

26 Im and Kim 2012
Thermally conductive graphene oxide (GO) (50 wt %)

Sn
111 The thermal conductivity decreases after 50 wt %, which can be attributed to residual epoxy that forms an

insulting layer on reinforcement. MWCNT helps the formation of 3D network structure. [223]
Thermally conductive graphene oxide (GO) (50 wt %),
MWCNTs (0.36 wt %) 203.4

27 Heo et al. 2012
Al2O3 (80 wt %), GO (5 wt %)

3RM
1,650 The increase in thermal conductivity decreases with Al(OH)3 coating of GO. [224]

Al(OH)3-coated GO (5 wt %) 1,450

28 Huang et al. 2012
MWNTs (65 wt %)

MS
1,100 GNPs are more effective in improving thermal conductivity than MWNTs. The maximum improvement in

thermal conductivity was observed in the case of hybrid fillers. [225]GNPs (65 wt %) 2,750

MWNTs (38 wt %), GNPs (38 wt %) 3,600

29 Teng et al. 2011
MWNT (4 wt %)

Sn
160 GNPs showed a significantly greater increase in thermal conductivity than MWNTs. The maximum

improvement in thermal conductivity is shown by non-covalent functionalized GNS, which can be attributed
to high surface area and uniform dispersion of GNS.

[114]GNPs(4 wt %) 700

Poly(glycidyl methacrylate containing localized pyrene
groups (Py-PGMA) functionalized GNPs (Py-PGMA-GNS) 860

30 Gallego et al. 2011

MWNTs (1 wt %) in nanofluids

ShM

66.7

The layered structure of MWNTs enables an efficient phonon transport through the inner layers, while SWNTs
present a higher resistance to heat flow at the interface, due to its higher surface area. The f-MWNTs have
functional groups on their surface, acting as scattering points for the phonon transport.

[226]

f-MWNTs (0.6 wt %) in nanofluids 20

SWNTs (0.6 wt %) in nanofluids 20

Functionalized graphene sheet (FGS) (1 wt %) in nanofluids 0

GO (1 wt %) in nanofluids 0

MWNTs(1 wt %) in nanocomposites 72.7

Functionalized graphene sheet (FGS) (1 wt %) in
nanocomposites 63.6

31 Tien et al. 2011 Graphene flakes (12 wt %) Sn 350 The thermal conductivity increases exponentially with increasing wt % of graphene flakes. [227]

32 Ganguli et al. 2008
Exfoliated graphite flakes (20 wt %)

SM
2,087.2 The thermal conductivity increases with chemical functionalization. [177]

Chemically functionalized graphite flakes (20 wt %) 2,907.2

33 Yu et al. 2008

Carbon black (CB) (10 wt %)

Sn + ShM

75
The hybrid filler demonstrates a strong synergistic effect and surpasses the performance of the individual
SWNT and GNP filler.

[228]SWNTs (10 wt %) 125

GNPs (10 wt %) 625

GNPs (7.5 wt %), SWNTs (2.5 wt %) 775
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Table 3. A brief record of epoxy-based nanocomposites studied for improvement in electrical conductivity values. HSM: high speed mixing.

Sr. Authors Year Reinforcement/wt % Dispersion
method

% Increase
in electrical
conductivity

Remarks Ref.

1 Wu et al. 2015
GNPs (1.5 wt %), transverse to alignment Sn + 3RM 1 ˆ 107

The maximum thermal conductivity was observed in the case of
aligned GNPs. [229]GNPs (3 wt %), randomly oriented 1 ˆ 108

GNPs (3 wt %), parallel to alignment 1 ˆ 1010

2 Liu et al. 2015 Graphene woven fabric (GWF) (0.62 wt %) None. 1 ˆ 1013 (Samples were produced using resin infiltration.) The average
number of graphene layers in GWFs varied between 4 and 12. [230]

3 Ming et al. 2015 Graphene foam (GF) (80 wt %) None. 8 ˆ 102

(Samples were produced using hot pressing.) The electrical
conductivity of pure graphene foam (GF) is 2.9 S-cm-1, which is
much lower than graphene, which can be because of the presence
of structural defects.

[231]

5 Ghaleb et al. 2014
GNPs (1.1 wt %)

Sn
1.39 ˆ 106 GNPs are more effective in improving the thermal conductivity of

epoxy than MWCNTs. [159]
MWCNTs (1.9 wt %) 1.62 ˆ 105

6 Tang et al. 2014
GO (5 wt %)

Sn + HSM
1.92 ˆ 109 The surface functionalization of GO can significantly improve the

electrical conductivity of GO–epoxy. [232]
Diamine polyetheramine functionalized
GO (GO-D230) (5 wt %) 1.92 ˆ 1012

7 Dou et al. 2014 Silver plated graphene (Ag-G) (25 wt %) Sn + MS 4.13 ˆ 102 Ag–graphene can be used in electronic applications due to its high
electrical conductivity. [233]

8 Tang et al. 2014
GO (3.6 wt %)

Sn
1 ˆ 1018 The surface functionalization significantly improves electrical

conductivity. [234]
Polyetheramine refluxed GO (GO-D2000)
(3.6 wt %) 1 ˆ 1017

9 Monti et al. 2013
GNPs (3 wt %)

Sn + MS
2.08 ˆ 105 The samples were produced using chloroform. [235]

GNPs (3 wt %) 1.16 ˆ 105 The samples were produced using tetrahydrofuran.

10 Wajid et al. 2013 GNPs (0.24 wt %) Sn + MS 2.22 ˆ 103 The samples were produced using dimethylformamide. [189]

11 Chandrakekaran et al. 2013
GNPs (1 wt %) Sn + ShM 1 ˆ 104 3RM is more effective in improving the electrical conductivity of

epoxy than sonication and high speed shear mixing. [73]
GNPs (2 wt %) 3RM 1 ˆ 108

12 Suherman et al. 2013

GNPs (80 wt %), CNTs (5 wt %),
through-plane

BM + MS

7.30 ˆ 1017

The electrical conductivity significantly increases with hybrid filler. [236]GNPs (80 wt %), CNTs (5 wt %), in-plane 1.80 ˆ 1018

GNPs (80 wt %), through-plane 4 ˆ 1017

GNPs (80 wt %) in-plane 5 ˆ 1017
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Table 3. Cont.

Sr. Authors Year Reinforcement/wt % Dispersion
method

% Increase
in electrical
conductivity

Remarks Ref.

13 Mancinelli et al. 2013

GO (0.5 wt %)
Sn

240 The conductivity was measured before post-curing.

[237]
GO (0.5 wt %) 730 The conductivity was measured after post-curing.

Octadecylamine (ODA)-treated partially
reduced and chemically modified GO (MGO)
(0.5 wt %)

550 The conductivity was reduced after functionalization.

GO (0.5 wt %) Two phase
extraction

240 The system was not fully cured during curing process.

GO (0.5 wt %) 7.80 ˆ 103 The conductivity significantly increased after post-curing.

14 Al-Ghamdi et al. 2013 Foliated graphite nanosheets (FGNs) (40 wt %) Centrifugal mixing 9.90 ˆ 103 Dielectric properties of epoxy–FGN composites decreased with an increase in frequency. [238]

15 Kim et al. 2012
Al(OH)3 functionalized GO (Al-GO) (3 wt %) MS + MgSr 75 The increase in electrical conductivity decreases with Al(OH)3 functionalization of GO. [239]
GO (3 wt %) 115

16 Heo et al. 2012
Al2O3 (80 wt %), Al(OH)3 functionalized GO
(Al-GO) (5 wt %) 3RM 2.90 ˆ 103 The increase in electrical conductivity with Al(OH)3 functionalization decreased. The electrically

insulating Al(OH)3 on the graphene oxide nanosheet can prevent electron tunneling and act as ion
traps which block ion mobility, resulting in a decrease in the electrical properties of nanocomposites.

[224]

Al2O3 (80 wt %), GO (5 wt %) 4.90 ˆ 103

17 Tien et al. 2011 Graphite flakes (14 wt %) Sn 4 ˆ 107 The percolation threshold was 8 wt %. [227]

18 Fan et al. 2009
GNPs (5 wt %)

Sn + MS
5.50 ˆ 1010

The maximum electrical conductivity was observed in the case of hybrid fillers. [240]
GNPs (4.5 wt %), carbon black (CB) (0.5 wt %) 5.50 ˆ 1012

19 Jovic et al. 2008 Expanded graphite (EG) (8 wt %) Sn 5.50 ˆ 1017 The electrical conductivity further increases with the application of electric field. [241]

20 Li et al. 2007 MWCNTs (1 wt %) Sn 4.63 ˆ 107 The samples were produced using acetone. [242]

21 Pecastaings et al. 2004 MWCNTs (20 wt %) Sn + MS 4.53 ˆ 103 The samples were produced using acetone. [243]
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15. Conclusions

The following are the key points related to epoxy/graphene nanocomposites:

1. Epoxy is an excellent matrix for graphene composites because of its efficient properties such as
enhancement in composite mechanical properties, processing flexibility, and acceptable cost [2].

2. Graphene can significantly enhance the fracture toughness of epoxy nanocomposites—i.e., up to
131% [59]. When epoxy is reinforced with graphene, the carbonaceous sheets shackle the crack
and restrict its advancement. This obstruction and deflection of the crack by the graphene at the
interface is the foremost mechanism of raising the fracture toughness of nanocomposites.

3. The graphene sheets with smaller length, width, and thickness are more efficient in improving
the fracture toughness than those with larger dimensions [57]. Large graphene sheets have a
high stress concentration factor, because of which crack generation becomes easy in the epoxy
matrix [118,119]. The cracks deteriorate the efficiency of graphene in enhancing the fracture
toughness of epoxy/graphene nanocomposites.

4. Uniformly dispersed graphene improves fracture toughness significantly as compared to the
poorly dispersed graphene [72]. It is evident from the published literature that the fracture
toughness dropped when graphene weight fraction was increased beyond 1 wt %. The decrease in
fracture toughness with higher weight fraction of graphene can be correlated with the dispersion
state of graphene. As graphene weight fraction increases beyond 1 wt %, the dispersion state
becomes inferior.

5. Three roll milling or calendering process is an efficient way of dispersing the reinforcement into a
polymer matrix, as it involves high shear forces [244–248]. However, the maximum enhancement
in fracture toughness was achieved with a combination of sonication and mechanical stirring [59].

6. In thermosetting materials such as epoxy, high crosslink density is desirable for improved
mechanical properties. However, fracture toughness is dropped with high crosslinking [57].

7. The literature has proved the absence of consensus of graphene’s role in improving the mechanical
properties of nanocomposites [150–154]. Generally, graphene acts as panacea and raises the
mechanical properties [116,155–158]. On the contrary, it acts as placebo and shows no effect on
mechanical properties. Even worse, it is inimical and razes the mechanical properties [160–164].
The main factors that dictate graphene’s influence on the mechanical properties of epoxy
nanocomposites include topographical features, morphology, weight fraction, dispersion state,
surface modifications, and interfacial interactions.
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3DGN Three dimensional graphene network
3RM Three roll milling
A Aramid fibers
APTS-GO Amino-functionalized graphene oxide (GO)
ATGO 3-Aminopropyltriethoxysilane functionalized silica nanoparticles attached GO
ATP Attapulgite
ATS 3-amino functionalized silica nanoparticles
BM Ball milling
CM Centrifugal mixing
CNF Carbon nanofiber
CNFs Vapor grown carbon nanofibers
CNTs Carbon nanotubes
DDS Diaminodiphenylsulfone
DGEBA-f-GO Diglycidyl ether of bisphenol-A functionalized GO
DRA Discontinuously reinforced aluminum
DRTi Discontinously reinforced titanium
EGNPs Amine functionalized expanded graphene nanoplatelets
EMCs Epoxy matrix composites
fGnPs Polybenzimidazole functionalized graphene platelets (GnPs)
GF Graphene foam
G-NH2 Amino-functionalized GNPs
GnPs Graphene platelets
GNPs* Graphite nanoplatelets
GNs Amine functionalized graphene sheets
GNSs Graphene nanosheets
GO Graphene oxide
GP Graphite particles
GPLs Graphene nanoplatelets
GPTS-GO Epoxy functionalized GO
G-Si Silane modified GNPs
HPH + 3RM High pressure homogenizer + three roll milling
HSM High speed mixing
m-clay Surface modified nano clay
m-CNFs Triazole functionalized carbon nanofibers
MERGO Microwave exfoliated reduced graphene oxide
m-GnP Surface modified GnP
m-GnP* Surfactant modified graphene platelets
m-GP Surface modified graphene platelets
MgSr Magnetic stirring
MLG Multi-layer graphene
MS Mechanical stirring
MS + USn Mechanical stirring + Ultrasonication
MWCNTs Multi-walled carbon nanotubes
MWNTs Multi-walled carbon nanotubes
ND Nanodiamond
P Polyacrylonitrile (PAN) fibers
p-CNFs Pristine carbon nanofibers
PEA Polyetheramine
phr Per hundred parts of resin
PMCs Polymer matrix composites
Q/I Quasi-isotropic
RGO Thermally reduced graphene oxide
SA Surface area
SATPGO 3-Aminopropyltriethoxysilane modified silica nanoparticles attached graphene oxide
SCFs Short carbon fibers
ShM Shear mixing
Silane-f-GO Silane functionalized GO
SM Speed mixing
Sn Sonication
Sn + BM Sonication + Ball milling
Sn + MgSr Sonication + Magnetic stirring
Sn + MS Sonication + Mechanical stirring
SnP Silver nanoparticles
SnW Silver nanowires
SWCNTs Single-walled carbon nanotubes
SWNTs Single-walled carbon nanotubes
TEM Transmission electron microscopy
TPE Two phase extraction
UG Unmodified graphene nanoplatelets
U-GnP Unmodified graphene platelets
USn Ultrasonication
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