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ABSTRACT This article explores a data-driven distributed bipartite consensus tracking (DBCT) problem
for discrete-time multi-agent systems (MASs) with coopetition networks under repeatable operations.
To solve this problem, a time-varying linearization model along the iteration axis is first established by
using the measurement input and output (I/O) data of agents. Then a data-driven distributed bipartite
consensus iterative learning control (DBCILC) algorithm is proposed considering both fixed and switching
topologies. Compared with existing bipartite consensus, the main characteristic is to construct the proposed
control protocol without requiring any explicit or implicit information of MASs’ mathematical model. The
difference from existing iterative learning control (ILC) approaches is that both the cooperative interactions
and antagonistic interactions, and time-varying switching topologies are considered. Furthermore, through
rigorous theoretical analysis, the proposed DBCILC approach can guarantee the bipartite consensus reducing
tracking errors in the limited iteration steps. Moreover, although not all agents can receive information from
the virtual leader directly, the proposed distributed scheme can maintain the performance and reduce the
costs of communication. The results of three examples further illustrate the correctness, effectiveness, and
applicability of the proposed algorithm.

INDEX TERMS Iterative control (ILC), bipartite consensus, data-driven control (DDC), multi-agent systems
(MASs), nonlinear discrete-time systems.

I. INTRODUCTION
Over the past few years, the cooperative control the-
ories of multiagent systems (MASs) have been wildly
researched. MASs have been already applied to many prac-
tical areas [1]–[3], such as vertical tank systems, automated
highway systems, autonomous cars, and satellite formation.
Moreover, the distributed algorithm [4], [5] which is one
of the significant algorithms in the cooperative control the-
ories can regulate agents to achieve consensus without a
central control unit. Low-cost capture devices can be used to
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construct a high-performance system. Ning et al. [4] apply
the edge-based fixed-time consensus approach and the Hes-
sian matrix to formulate a distributed protocol, which can
successfully guarantee the distributed optimization of MASs
under both fixed and switching communication topologies.
An effective control protocol of the second-order MASs is
proposed in [5] to perform the formation task and maintain
predictive performance.

As aforementioned, the relationship among agents is col-
laborative. However, cooperative and competitive relation-
ships are coexistent among agents in natural or engineering
scenarios. For instance, in economic systems, duopolistic
regimes occur when agents compete for limited resources.
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In some multi-robot systems, a robot needs to cooperate
with its teammates while competing with the antagonistic
robots. In biological systems, a pair of genes are viewed
as activators when they are in cooperative interaction, and
as inhibitors when in competitive interactions. Altafini first
considers bipartite consensus (BC), a class of consensus,
by introducing a signed graph to represent both cooperative
and competitive relationships among agents in [6]. In a signed
graph, if the edge between two nodes is positive, then it means
those agents are in the same alliance and have the same per-
formance, otherwise having opposite behaviors. Here, both
of the alliances could reach a consensus respectively. Hu et al
present some sufficient and necessary conditions of consen-
sus in [7].

The high-order MASs are investigated and a tow control
strategy is proposed in [8], which can guarantee reduc-
ing the BC errors even if unknown disturbances exist.
Time-varying cooperation-competition networks are con-
sidered for high-order MASs to realize bipartite contain-
ment control in [9]. Ren et al. propose an event-triggered
control scheme to reduce the communication burden of
bipartite leader-following consensus in [10]. Fixed-time and
finite-time BC are researched in [12]–[14]. To solve the input
saturation problem ofMASs, both distributed event-triggered
control and low-gain feedback technique are utilized in [15]
to guarantee BC and successfully exclude the Zeno behav-
ior for each agent. The measurement noises are investi-
gated in [16] by introducing a significant function, which
can reduce the influence of measurement noises to ensure
mean-square BC. Ai in [17] applies the signed graph the-
ory and proposes a distributed adaptive robust controller to
address the leader-follower BC problem ofMASs with uncer-
tain dynamics. A Two-DOF robotic manipulator is researched
in [18], where several distributed estimator-based control
algorithms are proposed, which can guarantee all controlled
robots to ultimately reach BC. Considering both competitive
and cooperative relationships among agents is more attractive
than only considering one of them, which is the first motiva-
tion of this article.

However, the researches above depend on explicit or
implicit mathematical models of MASs to design corre-
sponding control protocols to realize BC control, which is
also called the model-based control (MBC) theory. In fact,
the mathematical model of some practical systems, espe-
cially the accurate model of complicated MASs, is hard to
be obtained. In addition, even if an accurate model of the
controlled plant is established, it can lead to a very com-
plicated controller with huge computations. Hence, merely
utilizing the I/O data of each agent to explore BC con-
trol problems for unknown nonlinear non-affine MASs is
significant. Fortunately, several intelligent algorithms have
been developed to achieve consensus control or formation
control. For example, Lewis et al. [19] apply Reinforcement
Learning to cope with partially observable systems developed
in [20]. A Data-driven distributed output consensus control
is proposed for MASs, the Learning-based adaptive attitude

control is formulated for spacecraft formation to guarantee
prescribed performance in [21]. A depth control approach
is proposed to track the desired depth trajectories for an
autonomous underwater vehicle in [22]. It is noted that most
of the schemes mentioned above need to establish neural
networks to design controllers, which makes preparing the
external testing signals and training processes inescapable.
Recently, some useful results have been reported for unknown
multiagent systems, such as Model-Free Adaptive Control
(MFAC) [23], [24], Q-Learning [25]–[27], Iterative Feedback
Tuning (IFT) [28], [29], Simultaneous Perturbation Stochas-
tic Approximation (SPSA) [30], [31], Iterative Learning Con-
trol (ILC) [32]–[38], Virtual Reference Feedback Tuning
(VRFT) [39].

As aforementioned, the control approaches in [19]–[42] are
intelligent algorithms, which also are named as Data-Driven
control (DDC) or Leaning control. Those Learning control
approaches improve the control performance through under-
standing the additional control information from the previ-
ous time instants of the controlled systems and the external
environment attained by its learning ability. In other words,
using those methods to design the corresponding controller
only depends on the I/O data of the controlled plant, which
can sufficiently avoid difficulties with the precise mathemat-
ical model and identification process. Moreover, the learning
control has two different controlled aims according to the
controlled plants. One of the important systems is repetitively
operating systems, where machines perform repeatable or
periodic tasks in a limited time interval, such as the formation
keeping and tracking the desired trajectory of quadrotors
in [33]. In reality, many tasks of industrial production are
repeatable over a finite tracking interval, such as IC weld-
ing and wafer manufacturing, where a quantity of agents
are autonomously operating over and over again in a sim-
ilar fashion. With the huge requirements of manufacturing
production, to develop the control systems on a repeatable
operation environment has a great business value and strate-
gic significance, which forms the second motivation of this
article.

It is worth pointing out that the ILC approach is one of the
excellent schemes to control repetitively operating systems.
This article proposes a new ILC algorithm to implement the
distributed BC tracking scheme for MASs under a repeatable
operation environment. In [32], the ILC algorithm is first
applied to keep the desired formation for MASs, where the
nonlinear dynamics are partially available. In [33], Hock et al.
extend the results of [32] and design an additional consensus
feedback controller to compensate for non-repetitive distur-
bances. In addition, the so-called Q-filter and a Kalman filter
are applied to enhance the ability of disturbance estimation.
Meng et al. [35] propose a robust formation control approach,
where the global Lipschitz condition is not necessary, and
also the switching topologies are also discussed for nonlinear
MASs. A distributed Model-Free Adaptive Iterative Learn-
ing (MFAIL) approach is successfully utilized in [36] for
MASs to perform consensus tracking, where both flex and
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iteration-varying topologies are discussed. Wang et al. [37]
research the MFAILC scheme for consensus tracking, where
a general dynamic linearization mold is introduced to esti-
mate the dynamic of MASs with the disturbance input.
An interesting research presented in [38] adds a space dimen-
sion, where iterative variations are compensated which can
improve the tracking performance and the speed for MASs
formation control. Moreover, several other novel instances
are investigated in [40], [41].

From the above observations and analysis, there are still
some remaining issues to be addressed. For example, intro-
ducing competitive interaction among agents in [1]–[5] could
be more useful. Although the BC control approaches are
extensively researched in [6]–[18] which proposemany effec-
tive methods, most of them are dependent on accurate math-
ematical models that are hard to obtain or lead to a heavy
calculation burden.

The main contributions of this work are:
(1). Propose a new data-driven DBCILC scheme for MASs

to achieve BC with switching topologies and coopetition
networks under a repeatable operation environment.

(2). Study fixed topology, time-varying topologies, and
coopetition networks for general nonaffine nonlinear hetero-
geneous MASs to perform a time-vary tracking task, while
learning control approaches for MASs in [19]–[42] only con-
sider the cooperative interactions among agents and most of
them require the same initial state.

(3). Only employ online measurement I/O data of MASs to
construct the proposed algorithm, which can tactfully avoid
the difficulties of obtaining a precise mathematical model.
Meanwhile, the identical initial condition is not necessary for
the proposed algorithm, while this condition is a fundamental
assumption of existing ILC-based multiagent systems.

Generally, this article is inspected by [14], [23], and [34].
The heterogeneity of MASs is considered in [14] to realize
BC, however, the controller is complex. The ILC approach is
applied in [34] to achieve formation control of MASs, how-
ever, it requires that the system dynamics are affine systems
with an identical initial condition. Although the results in [34]
are further developed in [35], both of them only consider
the collaborative relationship among agents. The proposed
DBCILC scheme generally solves the bequeathal problems
faced by the above methods. This extension provides a new
method based on the result from the above literature to for-
mulate a DBCILC algorithm for multiagent systems by only
using I/O data. Especially, it presents a new problem for
repetitively operating systems.

The rest work of this article is structured as follows.
Several necessary preliminaries are presented in Section II.
Section III introduces the DBCILC algorithm for MASs with
fixed and switching topologies. Moreover, the corresponding
rigorous mathematical proofs are presented. The simulation
experiments are given in Section IV. Finally, conclusions and
future work are provided in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SIGNED GRAPH THEORY
In this article, R, RN , RN×N denote the set of real numbers.
‖2‖ is a Euclidean norm for a given vector 2 ∈ R. A diago-
nal matrix and an identity matrix are expressed by diag(•)
and I , respectively, and their dimension are dependent on
the context. Here, the coopetition communication network
considered consists of N agents and a signed graph (SG)
F = (V , ε,AF ), where V = {v1, · · · , vN } is the nonempty
finite vertex set, ε = {

(
vi, vj

)
|vi, vj ∈ V } ⊆ V × V denotes

the nonempty finite set of arcs, and AF =
[
aij
]
∈ RN×N is

a weighted adjacency matrix with −1, 0, 1 elements. ε (i, j)
denotes that node j can receive the information from node i,
where aij 6= 0 and it is equivalent to

(
vj, vi

)
⊆ V × V .

If aij = 1, the interactions relationship between vertexes i
and j is collaborative; aij = −1 indicates the interactions
between vertexes i and j is antagonistic; otherwise aij = 0.
Let N (i) = {j|j 6= i,

(
vj, vi

)
∈ ε} denote the neighbors set

of the node i. D = diag {d1, · · · , dN } is the degree matrix
of the SG AF and di =

∑
j∈N (i)

∣∣aij∣∣. Hence, we can use
L = −AF + D ∈ RN×N to calculate the Laplacian matrix
of F .

The interactions between N agents and the leader are
described by F =

(
Ṽ , ε̃,AF

)
, which is an augmented

graph, and wherein Ṽ = {v0,v1, · · · ,vn} and ε̃ ⊆ Ṽ ×
Ṽ . Furthermore, define a diagonal matrix B, where B =
diag {b1, · · · , bN } ∈ RN×N . If bi > 0, the leader can directly
transmit the information to agent i. The direction of informa-
tion transmission is directed such as

(
vi, vj

)
denotes the infor-

mation flow from node vi to node vj and also a directed path
could be obtained as

{
(vi, vk1) , (vk1, vk2) , · · · ,

(
vkm, vj

)}
.

If the coopetition network F̄ contains a spanning tree,
the information can flow from the root node to any other
nodes. Meanwhile, if all nodes in the network F̄ can
be divided into two disjoint subsets such as V1, V2, this
network F̄ is also called structurally balanced. Generally,
the structurally balanced networks satisfy the following three
conditions:

(1). V =V1 ∪ V2 and V1 ∩ V2 = ∅;
(2). If ∀i, j ∈ Vz (z ∈ {1, 2}), aij ≥ 0;
(3). If ∀i ∈ Vz, j ∈ Vq, z 6= q (z, q ∈ {1, 2}), aij ≤ 0.
In order to investigate time-varying switching topolo-

gies, let F̄ (k) denote a time-varying switching graph
with a virtual leader, which is dependent on k , and
AF (k) = [aij (k)] ∈ RN×N , di (k) =

∑
j∈N (i)

∣∣aij (k)∣∣,
L (k) = −AF (k) + D (k) ∈ RN×N are correspond-
ing adjacency matrix, degree matrix and Laplacian matrix,
respectively. Np (i) denotes the neighborhood of the ith
agent and B (k) = diag {b1 (k) , · · · , bN (k)} ∈ RN×N .
To describe the time-varying topology, the set of communi-
cation graph is expressed by F̄p =

{
F̄1, F̄2, · · · , F̄κ

}
, where

κ ∈ Z+ denotes the total number of possible interaction
graphs.
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B. PROBLEM FORMATION
In order to discuss the bipartite consensus problem of non-
affine nonlinear discrete-time MASs, the following mathe-
matical model is defined for each agent, where i denotes that
the dynamic belongs to the ith agent and the number of the
agents is N .

yi(l, k + 1) = fi(yi(l, k), · · · , yi(l, k − ny),

ui(l, k), · · · , ui(l, k − nu)) (1)

where l denotes the iteration number, k ∈ {0, 1, . . . ,T } is the
time interval, i = 1, 2, . . . ,N , ny, nu are unknown orders of
the output and the input. The control input is expressed by
ui (l, k) ∈ R1 and yi (l, k) ∈ R1 denotes the output, where
k donates the kth time instant. It is noted that the nonlinear
function f ( • ) is unknown, which will be established by
the dynamic linearization technique in Lemma 1. Moreover,
the communication topology among agents is expressed by
F = (V , ε,AF ).

In order to facilitate our analysis, it is assumed that agents’
dynamic satisfies the following conditions.
Assumption 1 [44]: The partial derivative of f ( • ) with

respect to the control input ui (l, k) is continuous.
Assumption 2 [45]: Equation (1) satisfies the general-

ized Lipschitz condition along the iteration axis, so that
|1yil, k + 1| ≤ c |1uil, k + 1| holds for all k ∈

{0, 1, . . . ,T } and l = 0, 1, 2, . . ., where c is a positive con-
stant, 1yi (l, k + 1) = yi (l, k + 1) − yi (l − 1, k + 1) and
1ui (l, k) = ui (l, k)− ui (l − 1, k) 6= 0
Assumption 3: In this article, all of the fixed (F̄) and

time-varying switching (F̄p, p = 1, 2, . . . , κ) communication
graphs are strongly connected and the trajectory information
of the virtual leader can be transmitted to one or more fol-
lower agents directly.
Remark 1: The above assumptions are there fundamental

assumptions of DBCILC approach and the reasonability of
them have been discussed in [8], [23] and [38].
Lemma 1 [36], [42]: If Equation (1) satisfies assumptions

1 and 2, Equation (1) can be described as the following
compact form dynamic linearization (CFDL) model.

1yi (l, k + 1) = 3i (l, k)1ui (l, k) ,

∀k ∈ {0, 1, . . . ,T }, l = 1, 2, . . . (2)

where 3i (l, k) is an iteration-dependent and time-varying
parameter called pseudo-partial-derivative (PPD) and
|3i (l, k)| < c̄, where c̄ is a small positive constant, for
anytime instant k and iteration l.
Remark 2: As it is pointed out in [42], the CFDL model

can transform the nonlinear system of each agent into a
time-varying linear systerm so that the PPD is a time-varying
parameter, which includes all of the possible nonlinear behav-
ior characteristics. Moreover, it is obvious that PPD can be
estimated by utilizing the I/O data of the controlled plant.
Therefore, if the I/O data is available, the PPD can be
estimated and the CFDL model can be established without

requiring any mathematical model information of the con-
trolled system.
Definition 1: The distributed bipartite consensus measure-

ment output of the ith agent at the lth iteration is defined by
ζi(l, k) as follows:

ζi(l, k) =
∑
j∈N (i)

|aij|(sign(aij)yj(l, k)− yi(l, k))

+ bi(siy0(l, k)− yi(l, k)) (3)

where bi denotes the connected situation between the virtual
leader and agent i in the communication topologies, and
sign(•) is a sign function. If the leader and agent i is connected
directly i.e., {0, j} ∈ ε̃, bi = 1, otherwise bi = 0. Moreover,
si = 1, for i ∈ V1 and si = −1, i ∈ V2.
In this article the bipartite tracking error is expressed by

ei(l, k) = siy0(l, k) − yi(l, k). The goal of this article is to
design a novel control protocol for MASs with fixed and
time-varying switching topologies to perform bipartite con-
sensus tracking taskswith accurately control. In order to solve
the above bipartite consensus tracking problem, a DBCILC
scheme is proposed as follows.

ui (l, k) = ui (l, k)+
ρ3̂i (l, k)

λ+

∣∣∣3̂i (l, k)
∣∣∣2 ζi(l − 1, k + 1) (4)

where 3̂i (l, k) is the estimated value of 3i (l, k) and λ >
0 denotes the weighting factor, which will affect stability of
the controlled plant. ρ denotes the controller parameter of the
control protocol (4) and it directly affects the convergence
properties. In the next section, we will discuss how to select
an appropriate value of ρ. Moreover, the value of 3̂i (l, k) is
calculated by the following estimation approach.

3̂i(l, k) = 3̂i(l − 1, k)−
η1ui(l − 1, k)

µ+ |1ui(l − 1, k)|2

×

(
3̂i(l − 1, k)1ui(l − 1, k)

−1yi(l − 1, k + 1)
)

(5)

3̂i (l, k) = 3̂i (1, k) , if
∣∣∣3̂i (l, k)

∣∣∣ ≤ σ or

|1ui (l − 1, k)| ≤ σ or

sign
(
3̂i (l, k)

)
6= sign

(
3̂i (1, k)

)
(6)

where u > 0 and 0 < η < 1 are the weighting factor and
the step factor, respectively. In the practical application, σ is
usually selected as 10−4 or 10−5, and a small σ leads to a
small1ui (l − 1, k). The reset value of 3̂i (l, k) is expressed
by 3̂i (1, k), which can improve the tracking performance of
the parameter updated law (5).
Remark 3: It is noted that the distributed measurement

output ζi(l − 1, k + 1) for agent i is employed to update
the control input ui (l, k) in the control protocol (4), so that
this approach is a distributed learning control scheme. On the
other hand, the control approaches (4)-(6) are data driven
schemes, since their updating only relies on the I/O data
of each agent. Hence, this is a data driven distributed ILC
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approach of combining (4)-(6). It is designed to solve the
bipartite consensus problem for nonlinear MASs, which is
named as DBCILC. To the best of our knowledge, the existing
results of ILC for MASs only consider the cooperative inter-
actions between agents, while both cooperative and antago-
nistic interactions among agents are discussed in the proposed
DBCILC approach.
Remark 4: Algorithm (6) is a reset method, which is uti-

lized to improve the robustness of the parameter updated
algorithm (5). It is noted that the learning rate of Equa-
tion (4) can be adaptively tuned by iteratively adjusting the
value of 3̂i (l, k). Nevertheless, it is difficult to realize in
the existing ILC for MASs, where its learning rate cannot be
updated automatically when the controlled system encounters
unknown disturbances so the laws (5) and (6) can improve the
robustness of the law (4).

III. MAIN RESULTS
A. MASs WITH FIXED TOPOLOGIES
In this section, the MASs with a fixed strongly con-
nected graph to perform time-varying tracking tasks is dis-
cussed. First of all, we provide the coming assumption and
lemma.
Assumption 4: For any k ∈ {0, 1, . . . ,T } and

l = 0, 1, 2, . . ., the PPD 3i (l, k) satisfies that 3i (l, k) >
σ̄ > 0 (3i (l, k) < −σ̄ < 0) for all i = 0, 1, 2, . . . ,N , where
σ̄ is an arbitrarily small positive constant. In this article, it is
assumed 3i (l, k) > σ̄ > 0 without loss of generality.
Lemma 2 [23]: An iteration varying irreducible sub-

stochastic matrix is expressed by 8(i), where its diagonal
element is positive. Moreover, a compact form of 8(i) is
described by 8, where the set of all possible of 8(i) is
included.

‖8(w)8 (w− 1) · · ·8(1)‖ ≤ δ

where 0 < δ < 1 and8(i), i = 0, 1, 2, . . . ,w are wmatrices
arbitrarily chosen from 8.
Remark 5: According to Assumption 4, we conclude that

the control direction of the DBCILC approach is determined
and the output of MASs doesn’t increase when the input
of MASs decreases. This assumption is also applied in the
model-based control theory in addressing some practical
systems, for instance, temperature control systems, pressure
control systems, etc.
Theorem 1: If the unknown nonlinear MASs (1) satisfies

Assumptions 1-4 and the parameter ρ of the DBCILC satis-
fies the condition of the following inequality.

ρ <
1

maxi=1,...,N
N∑
j=1

∣∣aij∣∣+ bi
there exists a λmin (λ > λmin > 0) such that
liml→∞ ei(l, k) = 0 for all i = 0, 1, 2, . . . ,N , which implies
that liml→∞ yi(l, k) = y0(l, k) for all k ∈ {0, 1, . . . ,T },
i = 0, 1, 2, . . . ,N .

Proof: The first step is to analyze the bound of the PPD
estimated value 3̂_i (l, k).

According to the reset method (6), when |1ui (l − 1, k)| ≤
σ , the bound of 3̂i (l, k) is obvious. On the other hand, when
|1ui (l − 1, k)| ≥ σ and let the PPD estimation error as
3̃i (l, k) = 3̂i (l, k) − 3i (l, k), the following equation can
be obtained.

3̃i (l, k) = 3̃i (l − 1, k)− (3i (l, k)−3i (l − 1, k))

+

(
1yi (l−1, k+1)−3̂i(l−1, k)1ui (l−1, k)

)
×

η1ui (l − 1, k)

µ+ |1ui (l − 1, k)|2
(7)

Letting 13i (l, k) = 3i (l, k) − 3i (l − 1, k) and using
Lemma 1, (7) becomes

3̃i (l, k) =

(
1−

η|1ui (l − 1, k)|2

µ+ |1ui (l − 1, k)|2

)
3̃i (l − 1, k)

−13i (l, k) . (8)

Since |1ui (l − 1, k)| 6= 0, by properly selecting η, µ,
for example 0 < η < 1 and u > 0, the func-
tion

(
η|1ui (l − 1, k)|2

/(
µ+ |1ui (l − 1, k)|2

))
is mono-

tonically increasing with respect to |1ui (l − 1, k)|2. Thus,
there exists a constant q such that

0 <

∣∣∣∣∣
(
1−

η|1ui (l − 1, k)|2

µ+ |1ui (l − 1, k)|2

)∣∣∣∣∣ ≤ q < 1 (9)

From Lemma 1 and Assumption 4, we can obtain 0 <

3i (l, k) < c̄. According to Assumption 4

|13i (l, k)| = |3i (l, k)−3i (l − 1, k)|

≤ |3i (l, k)| ≤ c̄ (10)

Hence, from (8), (9) and (10) the following inequality can be
obtained.∣∣∣3̃i (l − 1, k)

∣∣∣ ≤ q
∣∣∣3̃i (l − 1, k)

∣∣∣+ c̄
≤ q

∣∣∣q ∣∣∣3̃i (l − 2, k)
∣∣∣+ c̄∣∣∣+ c̄

≤ q2
∣∣∣3̃i (l − 2, k)

∣∣∣+ qc̄+ c̄
· · ·

≤ ql−1
∣∣∣3̃i (1, k)

∣∣∣+ ql−2c̄
+ ql−3c̄+ · · · + c̄

≤ ql−1
∣∣∣3̃i (1, k)

∣∣∣+ c̄
(
1− ql−1

)
1− q

(11)

so that 3̃i (l, k) is bounded, i.e. lim
l→∞

∣∣∣3̃i (l, k)
∣∣∣ ≤ c̄

1−q . Then,

for any k ∈ {0, 1, . . . ,T } and l = 0, 1, 2, . . ., the bound-
edness of 3̂i (l, k) is also guaranteed because 3i (l, k) is
bounded. Define the following collective stack vectors:

y (l, k) = [y1 (l, k) , y2 (l, k) , · · · , yN (l, k)]T

u (l, k) = [u1 (l, k) , u2 (l, k) , · · · , uN (l, k)]T

ζ (l, k) = [ζ1 (l, k) , ζ2 (l, k) , · · · , ζN (l, k)]T
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e (l, k) = [e1 (l, k) , e2 (l, k) , · · · , eN (l, k)]T

ȳ0 (l, k) = [y0 (l, k) , y0 (l, k) , · · · , y0 (l, k)]T

S (l, k) = [s1 (l, k) , s2 (l, k) , · · · , sN (l, k)]T

The convergence of bipartite tracking error of MASs can
be analyzed by employing the ζi(l, k) with tracking errors as
below:

ζi(l, k) =
∑
j∈N (i)

∣∣aij∣∣(sign(aij)yj(l, k)− yi(l, k))
+ bi(siy0(l, k)− yi(l, k))

=

∑
j∈N (i)

(
aijyj(l, k)−

∣∣aij∣∣ yi(l, k))+ biei(l, k)
=

∑
j∈N (i)

(
aijyj(l, k)−

∣∣aij∣∣ yi(l, k))+ biei(l, k)
+

∑
j∈N (i)

(∣∣aij∣∣ siy0(l, k)− ∣∣aij∣∣ siy0(l, k))
=

∑
j∈N (i)

(
aijyj(l, k)−

∣∣aij∣∣ siy0(l, k))
+

∑
j∈N (i)

(∣∣aij∣∣ ei(l, k))+ biei(l, k)
=

∑
j∈N (i)

(
aijyj(l, k)− aijsjy0(l, k)

)
+

∑
j∈N (i)

(∣∣aij∣∣ ei(l, k))+ biei(l, k)
=

∑
j∈N (i)

(∣∣aij∣∣ ej(l, k)− aijei(l, k))+ biei(l, k)
Then, a compact form of ζi(l − 1, k + 1) can be obtained

ζ (l − 1, k + 1) = (B+ L)e(l − 1, k + 1) (12)

where B = diag (b1, b2, · · ·, bN ) and L = −AF + D.
According to Equation (12) and the control protocol (4),

the following equation can be obtained.

1u(l, k) = ρh̄(l, k)ζ (l − 1, k + 1)

= ρh̄(l, k)(L + B)e(l − 1, k + 1) (13)

where 1u(l, k) = u(l, k) − u(l − 1, k), h̄(l, k) =
diag(θ1, θ2, · · · , θN ), and θi =

3̂i(l,k)
λ+|3̂i(l,k)|2

. According
Lemma 1, we obtain the following compact form of (2):

1y(l, k + 1) = �(l, k)1u(l, k) (14)

where1y(l, k+1) = y(l, k+1)−y(l−1, k+1) and�(l, k) =
diag (31 (l, k) , · · · ,3N (l, k)). According to the definitions
of yi(l, k) and ei(l, k), the following equation can be obtained.

1y(l, k + 1) = −1e(l, k + 1) (15)

where1e(l, k+1) = e(l, k+1)− e(l−1, k+1). According
to (13) and (14), (15) can be rewritten as following.

e (l, k + 1) = (I − ρλ– (l, k)) e (l − 1, k + 1) (16)

where

ψ(l, k) = �(l, k)h̄(l, k) = diag(01(l, k), · · · , 0N (l, k)),

0i(l, k) =
3i(l, k)3̂i(l, k)

λ+

∣∣∣3̂i(l, k)
∣∣∣2 , i = 1, 2, . . . ,N

and λ– (l, k) = ψ (l, k) (L + B). From (16), we can obtain
that if ‖I − ρλ– (l, k)‖ < 1 for all k ∈ {0, 1, . . . ,T },
l = 0, 1, 2, . . ., then lim

l→∞
||e (l, k + 1) || = 0.

In this step, the convergence condition of MASs will be
derived.

Since 3̂i (l, k) is bounded and 0 < 3i (l, k) < c̄ for all

i = 0, 1, 2, . . . ,N , also λ +
∣∣∣3̂i (l, k)

∣∣∣2 ≥ 2
√
λ

∣∣∣3̂i (l, k)
∣∣∣,

we can obtain a bounded constant λmin > 0 (λ > λmin) such
that the following inequality sequences holds:

0 < 0i (l, k) ≤
c̄3̂i (l, k)

2
√
λ

∣∣∣3̂i (l, k)
∣∣∣ ≤ c̄

2
√
λ
≤

c̄

2
√
λmin

< 1

First of all, it is noted that the communication graph satisfies
Assumption 3 so that I − ρλ– (l, k) is an irreducible matrix.
Moreover, 0 < 0i (l, k) < 1 for all i = 0, 1, 2, . . . ,N and ρ
satisfies following inequation.

ρ <
1

maxi=1,...,N
N∑
j=1

∣∣aij∣∣+ bi
This means that ρ is less than the reciprocal of the greatest
diagonal entry of L + B. Hence, the existing row sum of
I − ρλ– (l, k) is strictly less than one, which implies that
I−ρλ– (l, k) is an irreducible substochastic matrix. Moreover,
its diagonal entries are positive. According to (16), following
inquisition can be obtained.

‖e (l, k + 1)‖ ≤ ‖I − ρλ– (l, k)‖ ‖e (l − 1, k + 1)‖

≤ ‖I − ρλ– (l, k)‖ ‖I − ρλ– (l − 1, k)‖

×‖e (l − 2, k + 1)‖

· · ·

≤ ‖I − ρλ– (l, k)‖ ‖I − ρλ– (l − 1, k)‖

· · · ‖I − ρλ– (2, k)‖ ‖e (1, k + 1)‖ (17)

By utilizing Lemma 2, the product sequence of (17) can be
assigned to several set and for each set we have 8 matrices
so that we can obtain the following inequality.

‖e(l, k + 1)‖ ≤ δ

⌊
l−1
8

⌋
‖e(1, k + 1)‖

in which b•c demotes the floor function. b(l − 1) /8c
demotes that the value is the smaller but the nearest inte-
ger to the real number (l − 1) /8. Finally, limitation of
lim
l→∞
‖e(l, k + 1)‖ = 0 is obtained.

Hence, the trajectory error of each agent can be reduced
and the bipartite consensus tracking can be guaranteed.
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Remark 6: This part proposes a novel Data-driven
distributed bipartite consensus tracking scheme for hetero-
geneous MASs with fixed topology and the sufficient con-
ditions are studied. To the best of our knowledge, this is the
first time employing PPD technology to solve the bipartite
consensus problem for unknown dynamics MASs. Although
some results of PPD technology are researched, a few of them
focus on Multi-systems. The proposed scheme sufficiently
empowers Data-driven approaches to solve the more com-
plicated consensus tasks for MASs, which has an important
enlightening significance.

B. MASs WITH TIME-VARYING TOPOLOGIES
Time-varying topologies are considered in this part. Mean-
while, the stability and convergence of MASs to perform
time-varying trajectory tracking tasks are investigated.

The graph theory of this part is discussed in the end of
section II and Definition 1 becomes

ζi(l, k) =
∑
j∈N (i)

(
aij (k) yj(l, k)−

∣∣aij (k)∣∣ yi(l, k))
+ bi (k) (si (k) y0(l, k)− yi(l, k)) (18)

Theorem 2: When nonlinear MASs satisfies Assumptions
1-4 above, especially all of the communication graph satisfies
Assumption 3, the laws (4)-(6) of the DBCILC scheme can
be used, if the value of ρ is selected as

ρ <
1

maxi=1,...,N ,p=1,2,...,κ
∑ N

j=1

∣∣∣apij (k)∣∣∣+ bpi (k)
and a λmin > 0 with λ > λmin is available such that
lim
l→∞

ei(l, k) = 0 and lim
l→∞

yi(l, k) = y0(l, k), for all

k ∈ {0, 1, . . . ,T }, i = 0, 1, 2, . . . ,N .
Proof: According to (12)-(16) and (18), the bipartite

tracking error of the DBCILC scheme in (16) becomes.

e (l, k + 1) = (I − ρψ (l, k)G(k)) e (l − 1, k + 1) (19)

where G(k) = (L (k)+ B (k)) and all the reciprocals of
the diagonal entry in L (k) + B (k), p = 1, 2, . . . , κ are
larger than ρ. Hence, using the similar analytical approach
of fixed topology, we can obtain that I − ρψ (l, k)G(k) is
an irreducible substochastic matrix and its diagonal entries
are positive. We can use the similar methods in proving
Theorem 1 to prove this and can also select an appropriate
λmin > 0 and λ > λmin to guarantee the lim

l→∞
ei (l, k + 1) = 0

for all i = 0, 1, 2, . . . ,N .
Hence, performing the bipartite consensus tracking tasks

with time-varying switching topologies can reduce the tra-
jectory error of each agent.

This completes the proof.
Remark 7: In the existing bipartite consensus or forma-

tion algorithms for MASs, most the majority of them are
dependent on the assumption that an accurate mathematical
model information is available to analyze the convergence
and stability of controlled systems. However, it is that the
mathematical model is not a requirement in the DBCILC

scheme. Moreover, the existing data-driven ILC designs
don’t consider the coopetition communication interactions
among the agents and the time-varying switching topologies
problem.

IV. SIMULATION RESULTS
A. FIXED TOPOLOGIES
In this example, the performances of seven follower agents
with fixed topologies to perform a bipartite consensus
time-varying trajectory tracking task is discussed and the
nonlinear dynamics of each agent is given as

y1(l, k + 1) =
y21(l, k − 1)u1(l, k − 1)

1+ y1(l, k − 1)y1(l, k − 2)+ y21(l, k − 3)

+
(1+ (k/150)u1(l, k − 1))

1+ y1(l, k − 1)y1(l, k − 2)+ y21(l, k − 3)

y2(l, k + 1) =
y22(l, k − 2)u2(l, k − 2)

1+ y2(l, k − 1)y2(l, k − 2)+ y22(l, k − 3)

+
(1+ (k/150)u2(l, k − 1))

1+ y2(l, k − 1)y2(l, k − 2)+ y22(l, k − 3)

y3(l, k + 1) =
y33(l, k − 3)u3(l, k − 3)

1+ 2y23(l, k − 3)

+
(1+ (k/150)u3(l, k − 1))

1+ 2y23(l, k − 3)

y4(l, k + 1) =
y34(l, k − 2)u4(l, k − 2)

1+ y24(l, k − 1)+ y24(l, k − 2)

+
(1+ (k/150)u4(l, k − 1))

1+ y24(l, k − 1)+ y24(l, k − 2)

y5(l, k + 1) =
y45(l, k − 2)u5(l, k − 2)

1+ 2y5(l, k − 1)y5(l, k − 2)

+
(1+ (k/150)u5(l, k − 1))

1+ 2y5(l, k − 1)y5(l, k − 2)

y6(l, k + 1) =
y46(l, k − 1)u6(l, k − 2)

1+ y26(l, k − 1)+ y26(l, k − 2)

+
(1+ (k/150)u6(l, k − 1))

1+ y26(l, k − 1)+ y26(l, k − 2)

y7(l, k + 1) =
y37(l, k − 1)u7(l, k − 2)

1+ 2y7(l, k − 1)y7(l, k − 2)

+
(1+ (k/150)u7(l, k − 1))

1+ 2y7(l, k − 1)y7(l, k − 2)

It is noted that all of the seven agents have a different
dynamics systemmodel, so the consideredMASs is heteroge-
neous, which consists of different structures and time-varying
parameters. Furthermore, dynamics system models above are
only applied to produce the I/O data for the MASs, while the
DBCILC algorithm doesn’t utilize any model information.
During designing this algorithm process, the dynamics of
MASs are all unknown.

The communication topology of the considered MASs is
shown in Fig. 1. we can observe that the virtual leader is
denoted by using vertex 0 and the followers are distributed
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FIGURE 1. Communication topology among agents of example 1.

into two alliances (agents 1, 2, 3, 4 belong to the alliance V1,
agents 5, 6, 7 belong to the alliance V2). Moreover, the black
solid lines are used to express the cooperative relationships
among agents, and the competitive relationships are denoted
by the red one. In this case, only the agents 1, 3, 5 and 7 can
acquire commands from the leader directly. Even though
other agents don’t have a direct path to access the commands
from the leader, the communication graph satisfies Assump-
tion 3, so the leader can intervene in the two competitive
alliances. Furthermore, the information among agents only
transmits along with the arrows, and the direction is fixed.
Then, the L, B and S matrix of the graph are given as follows:

L =



2 0 1 1 0 0 0
1 2 0 1 0 0 0
0 0 1 0 0 −1 0
0 1 1 3 0 −1 0
0 0 0 0 1 1 0
0 0 0 −1 0 2 1
0 0 0 0 1 0 1


B = diag

(
1 0 1 0 1 0 1

)
S = diag

(
1 1 1 1 −1 −1 −1

)
As above matrixes show, the reciprocal of the greatest diag-
onal entry of L + B is about 0.33. In order to satisfy the
convergence condition for all i = 1, 2, 3, 4, 5, 6, 7 in The-
orem 1, we choose the controller parameters as ρ = 0.24.
The following desired trajectory is considered.

y0 (l, k) = 0.5 sin (kπ/30)+0.3 cos (kπ/10) 0 ≤ k ≤ 100

In this example, the initial conditions are chosen as
ui(0, k) = 0, 3̂i (1, k) = 2, yi (l, 0) = 0 and
yi(l, p) = rand(−0.05, 0.05), p = 1, 2, 3, 4. The values of
the DBCILC’s parameters are chosen as µ = 0.5, η = 1,
λ = 0.5, σ = 10−4. The simulation results of tracking per-
formances at 10th and the 245th iterations are plotted in Figs.
2-3, respectively. The max bipartite consensus tracking errors
of each agent are shown in Fig. 4.

From Figs. 2-4 we can see that the outputs between fol-
lowers and the virtual leader have an extreme variation at the
beginning iteration, but the bipartite tracking errors decrease
radically and the bipartite consensus tracking is well achieved
after the 246th iterations. Besides, Fig. 3 also shows that

FIGURE 2. Tracking performances of each agent at 10th (example 1).

FIGURE 3. Tracking performances of each agent at 246th (example 1).

FIGURE 4. Max tracking errors of each agent (example 1).

each agent keeps the same trajectory in the same alliance, but
different alliances have counter-performance.

B. TIME-VARYING SWITCHING TOPOLOGIES
In this part, the simulation of MASs with time-varying
switching topologies are discussed. Here, the dynamics of
each agent and directed trajectory are the same as the previous
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FIGURE 5. Time-varying communication topologies (examples 2 and 3).

case, and the three communication topologies are presented
in Fig. 5. In order to receive a clear result of switching
communication topologies simulation, a piecewise function
is given as follows:

F̄1, 0 ≤ k ≤ 30
F̄2, 30 < k ≤ 60
F̄3, 60 < k ≤ 100

where the topology of MASs is dependent on time iteration
number k . The parameters of the laws (4)-(6) are the same
values as the previous case.

FIGURE 6. Tracking performances of each agent at 10th (example 2).

From Figs. 6-7, we can observe that the communica-
tion topology is changed at k = 30 and k = 60. Especially,
the alliances of agents 1, 3 and 5 are changed at k = 30,
which can be clearly seen in Figs. 6-7. The max bipartite
consensus tracking errors of all agents are presented in Fig. 8,
which further illustrates the correctness and effectiveness of
proposed bipartite consensus tracking scheme.

C. REALISTIC DC LINEANR MOTORS
In this part, we will employ seven permanent magnet DC lin-
ear motors to verify the effectiveness and practicability of the
proposed DBCILC scheme. Furthermore, the mathematical
model of this DC is investigated in [23], [36] and [43], which

FIGURE 7. Tracking performances of each agent at 246th (example 2).

FIGURE 8. Tracking errors of each agent at 246th (example 2).

is identified as the following model.
ẋ (t) = v (t)

v (t) =
u (t)− ffriction (t)− fripple (t)

m
y (t) = v (t) .

(20)

where x (t), v (t) express the position (m) and the speed
(m/s), respectively. The m denotes the combined mass of the
translator and load and u (t) denotes the developed force (N).
ffriction (t) and fripple (t) are the friction force (N) and the ripple
force (N), respectively. Meanwhile, the model of the friction
and ripple forces are expressed by following equations.

ffriction (t) =

fc + (fs − fc) e−
(
ẋ/ẋδ

)δ
+ fvẋ

 sn (ẋ)

fripple (t) = b1 sin (w0x (t))

where sn( • ) is the sign function, fc denotes the minimum
level of the Coulomb friction, fs denotes the level of the
static friction, δ is an additional empirical parameter. ẋδ and
fv are lubricant and load parameters. In this example, these
parameters are selected as: m = 0.59kg, ẋδ = 0.1, δ = 1,
fc = 10N , fs = 20N , fv = 10N · s · m−1, b1 = 8.5N ,
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w0 = 314s−1. The desired velocity is given as

y (t) = 0.5 sin (tπ/30)+ 0.3 cos (tπ/10) , t ∈ [0, 100]

Using the Euler Formula to discretize the above model (20)
and selecting sampling time as h = 0.001, we have T =
100. For this example, we consider three different situations.
The first one is the output measurement without any noises.
In the second one, we consider the output measurement with
random noise, and the values of random noise belong to
[−0.03, 0.03]. In the third one, we consider the switching
topologies and random noise of the seven DC motors system.
Here, we use the same parameters and the communication
topology in section IV.A to conduct the first and the second
one. The parameters and communication topologies of the
third one are the same as IV.B.

FIGURE 9. Outputs of agents without noises (example 3).

Fig. 9 shows the tracking performance of seven DCmotors
without output measurement noises and Fig. 10 shows the
tracking performance of seven DCmotors with random noise.
Besides, the random noise and the switching topologies are
considered in Fig. 11. By comparing Figs. 9-11, it is noted
that the waveforms in Figs. 10-11 have some deviations
under fixed and switching topologies, respectively. Hence,
we aim to design a filter or compensator to obtain a better
performance in the future. Generally, the proposed bipartite
consensus control protocol can control the realistic DC lin-
ear motors to perform the bipartite consensus time-varying
trajectory tracking tasks under fixed or switching topologies.

It is noted that the proposed DBCILC approach doesn’t
consider the disturbance observer and compensator to deal
with the noises of the MASs but from Fig. 10-11 we observe
that the stochastic disturbance doesn’t destabilize the sys-
tems. It further demonstrates the robustness of the proposed
scheme. However, to improve the robustness of the proposed
algorithm, we will consider more complex environments of
MASs for instance unknown disturbance, output quantized,
and sensor saturation problems in the future.

As shown and analyzed above, the proposed DBCILC is
correctness and effectiveness.

FIGURE 10. Outputs of agents with noises (example 3).

FIGURE 11. Agents under noises and switching topologies (example 3).

Remark 8: It is noted that all of the mathematical models
of MASs are unknown in our simulation, where the mathe-
matical models are merely employed to produce the I/O data
for the corresponding controlled plant.

V. CONCLUSION
In this work, a data-driven distributed bipartite consensus
tracking scheme has been proposed for unknown nonaffine
nonlinear discrete-time MASs with fixed and switching
topologies. This algorithm is dependent on the I/O data of
each agent, which can ensure that bipartite tracking errors of
each agent can be dramatically reduced, and realize the good
bipartite consensus tracking. Comparedwith themodel-based
control algorithms, the significant feature in our design is that
the agents’ dynamics are no longer needed. Moreover, both
the cooperative and competitive relationships among multia-
gent systems are considered and the convergence and stability
of the algorithm are proved through rigorous mathematical
analysis. Meanwhile, the corresponding simulation studies
of the bipartite consensus tracking algorithm have demon-
strated the effectiveness of the designed DBCILC algorithm.
In our future efforts, we will further investigate the bipartite
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consensus problem for MASs with delay, disturbances,
or sensor faults.
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