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Abstract: Accurate forecast of hydrological data such as precipitation is critical in order to provide
useful information for water resources management, playing a key role in different sectors. Traditional
forecasting methods present many limitations due to the high-stochastic property of precipitation
and its strong variability in time and space: not identifying non-linear dynamics or not solving
the instability of local weather situations. In this work, several alternative models based on the
combination of wavelet analysis (multiscalar decomposition) with artificial neural networks have
been developed and evaluated at sixteen locations in Southern Spain (semiarid region of Andalusia),
representative of different climatic and geographical conditions. Based on the capability of wavelets to
describe non-linear signals, ten wavelet neural network models (WNN) have been applied to predict
monthly precipitation by using short-term thermo-pluviometric time series. Overall, the forecasting
results show differences between the ten models, although an effective performance (i.e., correlation
coefficients ranged from 0.76 to 0.90 and Root Mean Square Error values ranged from 6.79 to 29.82 mm)
was obtained at each of the locations assessed. The most appropriate input variables to obtain the
best forecasts are analyzed, according to the geo-climatic characteristics of the sixteen sites studied.

Keywords: precipitation; forecasting; wavelet; neural networks models

1. Introduction

Precipitation, besides being one of the most important variables in hydrological models (infiltration,
soil loss, droughts, overland flow production, floods, etc.), is crucial in sectors such as agriculture,
tourism or even in the energy sector [1], where the absence of water can lead to the closure of nuclear
plants, such as the recent case in July 2019 in France. Therefore, the improvement of precipitation
predictions is one of the greatest current challenges of the scientific community. Likewise, accurate
precipitation forecasting is a very difficult and relevant mechanism of the hydrologic cycle due to its
high spatial-temporal variability. Because of the large number of interconnected variables that are
involved in the physical modelling of precipitation, forecasting rainfall is exceptionally complicated [2].
Due to the nonlinear and dynamic characteristics of precipitation, methods like numerical weather
prediction (NWP) models or even statistical models still have difficulties to provide satisfactory
precipitation forecasts [3]. This is mainly due to the fact that they are subject to many uncertainties [4-9]
such as not solving the local weather situations or not identifying non-linear dynamics in time-series,
among others [10-12].
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In this sense, the mathematical models called Artificial Neural Networks (ANN), which are
inspired by how the human nervous system works, have many strengths. One of them, which is highly
important, is their ability to learn from experience. ANN models are based on a set of processing
elements called neurons and they can accumulate a large amount of behaviors, allowing users to
forecast previously nonexistent patterns. Another advantage is that neurons in ANNs work in a
parallel processing mechanism, being able to process—as singular or multi-layered information—big
data efficiently. Lastly, they can extract complex nonlinear relationships between variables, which can
be very useful for precipitation modeling. The concept of artificial neurons was introduced by the
authors in [13] but the ANN applications have increased since the back-propagation learning method
was developed [14]. Since then, the use of ANN in the field of research has turned into a multitude
of satisfactory solutions to problems that are not easily solved with traditional techniques, especially
when the quality is doubtful and the quantity is scarce [15]. One of the most used ANN architectures is
the so-called feed-forward multilayer perceptron (FFMLP), where all the information propagates in
one direction toward the output layer with no feedback. This architecture is explained in detail in
Section 2.2. In addition, their use is very advantageous, of great versatility and easy handling because
these models do not need to formulate the mathematical description of the complex mechanisms
involved in the process.

In hydrological modeling, the Artificial Neural Network techniques were applied for the
first time by [16]. Since then, numerous works successfully address improvements in models of
rainfall-runoff [17-19], stream-flow [20-22], water quality [15,23,24], ground water [25,26] and even
for data validation as a quality assurance procedure [27,28]. In 2000, the American Society of Civil
Engineering published two technical works related to Hydrology and ANNs [29,30] whose results have
been discussed in depth and compared to other modelling techniques. Recently, a work summarizing
a review of neural networks techniques applied to hydrological systems has been reported [31].

In relation to works that exclusively deal with the forecast of precipitation time series using ANN,
several studies can be found in the scientific literature. An ANN model for precipitation forecasting in
Thailand was developed by [32] using various meteorological parameters measured at surrounding
stations. In some regions of Greece, researchers [33] obtained precipitation predictions using ANNs
and 115-years datasets. Others works such as [34] and [35], used various climate indices (North
Atlantic Oscillation -NAO-, Southern Oscillation -SOI-, etc.) as input variables in Korea and Australia,
respectively. In China, several works based on ANNs have been developed using long-term historical
datasets [3,36,37]. Moreover, similar models have been applied in different Indian regions [38—41].
Some of the main problems of this kind of models are the non-availability of historical records at many
locations, the non-existence of neighboring stations and the impossibility of arranging the previously
mentioned climate indices (NAO, SOI, etc.) in near-real time in order to forecast one-step ahead.

1.1. Wavelet Multiscale Analysis

The multiscalar characterization of precipitation has been studied for several years in different
regions of the world using various approaches and for different purposes [42—-47]. Especially in the
current context of climate variability and change, all the techniques that are capable of deepening the
stochastic behavior of precipitation time series are of great interest for use in many applications [48].
One of the most effective is the wavelet analysis [49], because it can provide an exact location of any
changes in the dynamic patterns of the time series, being widely applied in hydrological topics such as
forecasting [50-52], rainfall trends [53] or water quality modelling [54], among others. Wavelets are a
class of functions that cut up data into different frequency components and they are used to localize a
given function in both position and scaling. A wavelet transformation is a powerful mathematical signal
processing tool, able to produce both time and frequency information and providing multiresolution
analysis. There are two main types of wavelet transforms: continuous and discrete, being the most
extensively used. The main advantage of wavelets versus Fourier analysis is its power to process
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non-stationarity signals, determining the temporal variation of the frequency content and allowing
users to track the evolution of processes at different timescales in data sequences.

Different wavelet families have been studied for different purposes depending on the time series to
be analyzed: Coiflets, Symlets, Daubechies, Feyer-Korovkin, BiorSplines, among others. In hydrologic
modelling, Daubechies wavelet [55] is one of the most employed due to its orthonormality properties
and its good trade-off between parsimony and information plenitude [56-58]. This kind of wavelet has
associated subclasses (db1l or haar, db2, db3, ... dbN) depending on the number of vanishing moments
and there is a scaling function generating an orthogonal multi-resolution analysis. This multiple-level
decomposition process estimates the discrete wavelet transform coefficients, breaking down the original
time-series into several lower-resolution components as a set of sub-signals: approximation (cAN) and
details (cDN). For example, for level of decomposition = 2 this iterative process will lead to cA2, cD1,
cD2 sub-series. The approximation coefficients were produced by low-pass filter and details coefficients
by high-pass filter, representing the low and high frequency components, respectively. Figure 1
shows the multiresolution analysis based on this wavelet decomposition. Thus, these meteorological
sub-series generated by wavelet transformation can be used as input variables in ANN approaches,
giving rise to a type of so-called hybrid models: Wavelet Neural Networks (WNN).

level=0 Original Signal
./ High Pass Filter | | | \ Low Pass Filter -

level=1 cAl cD1

£/ High Pass Filter ’ | \ Low Pass Filter
level=2 cA2 cD2

/ High Pass Filter | \ . \ Low Pass Filter
level=3 cA3 cD3
v \ 4

level=N cAN cDN e cD2 cD1

Figure 1. Wavelet multiresolution analysis of original time-series.

1.2. Availability of Short-Term Meteorological Series

Precipitation, and also temperature, are meteorological variables widely measured worldwide in
comparison to solar radiation, humidity or wind speed, among others [59-62]. Besides, their behavior
within the climate system is being studied all over the world [63], as both variables represent
the key controlling factors in the spatial variation of terrestrial ecosystem carbon exchange [64].
However, long-term series are not easily available and often contain many gaps and have undergone
homogenization or filling-gap processes usually due to changes in location, sensor replacement,
variations in the mechanisms of data collection and measurements, etc.
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In order to improve the weather monitoring systems among other aims, the installation of
automated weather stations networks able to collect at least temperature and precipitation data has
been increasing since the ending of past century practically worldwide [65] and more recently with
the combination of low-cost sensors and Internet of Things devices [66]. Therefore, there is currently
a large availability of thermo-precipitation records from numerous spatially distributed locations
with almost entirely no gaps and with more than a decade in length. Thus, and due to many recent
works reporting the improvement of ANN-based hydrological models combining them with wavelet
analysis [3,67-70], the main goal of this work is the development and assessment of different hybrid
WNN models to accurately forecast monthly precipitation in the semiarid and heterogeneous region of
Andalusia (Southern Spain) using only short-term thermo-precipitation validated datasets. Due to
the importance of precipitation forecast and since the availability of these data will increase in the
coming years, the present work may be extensible to many other climatic areas of the world where
these records are collected. Moreover, this work evaluates the use of new input thermal variables,
in addition to precipitation, to deepen the knowledge and analyze the effectiveness of these hybrid
models to forecast monthly precipitation in a geo-climatic variety of locations that have very different
precipitation patterns.

For these purposes, different stations in the semiarid region of Andalusia (Southern Spain) were
selected. Wavelet decompositions were applied to initial datasets in order to generate the input
variables of the neural network models. The performance of all the WNN approaches has been
evaluated using different statistics at each location.

2. Materials and Methods

2.1. Source of Data

Datasets used in this work were obtained from the Agroclimatic Information Network of
Andalusia and they are easily downloadable on a daily basis from http://www.juntadeandalucia.es/
agriculturaypesca/ifapa/ria/ (access on 2 August 2019), where there are some automated weather
stations recently installed and others not operational. Andalusia is a semiarid region located in the
South of the Iberian Peninsula (South-western Europe) covering almost 88,000 km? and is divided into
eight provinces: Almeria, Cadiz, Cérdoba, Granada, Huelva, Jaén, Malaga and Sevilla. According
to its relief it is a very heterogeneous region: from the extensive coastal plains of the Guadalquivir
River (at sea level) to the highest areas of the Iberian Peninsula (‘Sierra Nevada’ in the province of
Granada). In terms of dryness, high contrasts are found from the Tabernas desert (province of Almeria)
to the rainiest areas of Spain in the ‘Sierra de Grazalema’ Natural Park (province of Cadiz). Another
singularity is that it is surrounded by the Mediterranean Sea and the Atlantic Ocean at its Southeast
and Southwest sides, respectively. The geographical distribution of the stations used in this work
is shown in Figure 2 and Table 1 reports some of their characteristics, with latitudes ranging from
36.3372° to 38.0806° N, longitudes from 1.8831° to 7.2469° W and site elevations from 26 to 822 m
above mean sea level. In general, the aridity increases from East (Huelva province) to West (Almeria
province) across Andalusia region [71]. These sites were selected in order to represent this climatic
variability of the region, including coastal (‘Mdlaga” and ‘Conil de la Frontera’ stations) and inland
locations, and ensuring that the available time series are complete and gap-free.
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Figure 2. Geographical distribution of the automated weather stations used in this work (Andalusia
region—Southern Spain).

Time-periods of monthly precipitation, maximum and minimum temperature datasets from each
station are summarized in Table 1. All of them end in July 2019 and start in 2000/2001, ranging from
213 months at ‘IFAPA las Torres-Tomejil” station to 234 months at ‘Huércal-Overa’ station. In order
to assess model performances and following the method previously described [54], the first 85% of
datasets was used to calibrate the models and the remaining 15% of the records was used for validation
(at least two and a half years at all locations). Table 2 shows the statistical values of these datasets for
monthly precipitation, maximum and minimum temperature for each location.

In order to ensure reliability of datasets, a set of checking quality procedures has been applied to
precipitation and temperature daily data following the guidelines proposed by [72]. In addition, a
specific algorithm for detecting spurious precipitation signals [73] and the spatial regression test [74]
were also carried out. The application of these quality assurance techniques to hydro-meteorological
data have been successfully carried out under different climatic conditions worldwide as a pre-requisite
before their use [75-78].
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Table 1. Name of the station, province, coordinates, elevation and data time-period of the weather
stations used in this study (Southern Spain).

Station

Time Period (Calibration)

Name Province Latitude (°) Longitude (°) Elevation (m) Time Period (Validation)
Z:?if[%zs) Almeria 37.0925 N 23011 W 435 ;‘g;:&igg%ﬁ‘;‘g‘ﬁ; 22%11%
H“&f‘;/g;)era Almeria 37.4133N 1.8831 W 317 Fg’:;‘:;ﬁfg%;‘g_‘}i‘l‘;tﬁl;
COTO G N emew 2 N e
ST G, senwN  swww 5 < s
Iflcg‘gg;;’ Cérdoba 379150 N 45025 W 165 Deﬁiiiégf%ﬁgﬁ}i‘y‘b;&?6
fg‘gﬁ'gg Cérdoba 375236 N 48842 W 207 NO‘S;::r‘:biorogall\éf}’sf;‘g%ﬁOlé
( Glﬁ(/)i?)a) Granada 371706 N 41369 W 487 Odg'if;ggfgafg{’;ﬁ{;‘g%rléo16
( gliiig;) Granada  36.9242N 31825 W 950 Odgﬁf;égfgafzf’;ﬁf;‘g%rléo16
P “e:’é%%‘s%“é“ Huelva 37.5533 N 7.2469 W 288 Deﬁ&tisgfgﬁzﬁ’;bgém6
El(ggrgg;lo Huelva 37.6622 N 6.5981 W 406 Deﬁ&iigg?%ﬁgﬁﬁ’;bgém6
Ma&f]‘z"’(‘)geal Jaén 37.9175N 3.5050 W 436 OCthf;ggfggfgf;jf;‘g%rléo16
Si’ég;e) Jaén 38.0806 N 3232 W 822 OCtgif;ggfggfgf’;ﬁg‘g%rléo16
(iﬁlé%i) Malaga 36.7575 N 45364 W 68 Noge;gsr‘:bigozoa 1N63/§lryl;%r12016
Shme e wmN o aew s seome
(SEECVijg7) Sevilla 37.5942 N 5.0756 W 125 De;*(’)“vt’ezégfgﬁzfj}i@b;&ém6
T:iﬁi?oﬁijil Sevilla 37.4008 N 55875 W 75 November 2001-November 2016

(SEV101)

December 2016-July 2019
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Table 2. Statistics of monthly precipitation, maximum and minimum temperature (Std: Standard Deviation; Max: Maximum; Min: Minimum).

Precipitation (mm) Maximum Temperature (°) Minimum Temperature (°)
Sites Datasets
Mean  Std Max Min Mean @ Std Max Min Mean  Std Max  Min
All 1995 2556 14140 0.00 2985 659 4255 1553 @ 4.69 6.40 1718 -8.20
Tabernas

Validation 18.77 2725 14140 0.00 29.13 6.49 41.70  17.68 4.44 6.09 1510 -5.30
Calibration 20.17 2530 12840 0.00 29.98 6.62 4255 15.53 474 6.47 1718 -8.20

All 2249 3194 24780 0.00 29.89 6.02 43.58 17.03 4.54 6.46 1718 -8.85
Validation 19.57 3437 186.80 0.00 29.90 5.87 40.76  18.57 4.37 6.12 1519 -6.00

(ALMO04)

Huércal-Overa

(ALMO?) Calibration 23.02 3155 247.80 0.00 29.88 6.06 4358 17.03 4.58 6.53 1718 -8.85
Conil de la All 4271 5432 287.60 0.00 28.72 6.45 41.37 16.04 6.53 5.02 1580 -5.38
Frontera Validation 3795 55.09 208.60 0.00 28.00 6.80 40.30 18.96 5.91 4.72 1580 -1.03
(CADO5) Calibration 4358 5428 287.60 0.00 28.86 6.39 4137 16.04 6.65 5.07 1537 -5.38
Jimena de la All 61.05 75.03 441.00 0.00 30.18 6.74 46.57 18.64 5.99 5.26 16.02 -3.88
Frontera Validation 6322 86.12 37140 0.00 29.86 5.90 4228 19.62 5.73 5.05 1470 -1.51
(CADO7) Calibration 60.66 7311 441.00 0.00 30.23 6.89 46.57 18.64 6.04 5.31 16.02  -3.88
El Carpio .All' 4123 4884 31760 0.00 31.38 8.59 4710 1542 4.89 6.58 1793 -9.54
(CORO5) Validation 38.12 4855 260.20  0.00 31.54 8.56 47.10 19.61 4.32 6.50 1540 -6.15
Calibration 4178 4899 317.60  0.00 31.35 8.61 4694 1542 4.99 6.60 1793 -9.54

Santaella All 4427 50.85 310.80 0.00 30.64 8.15 45.69 17.36 6.08 6.05 1727  -8.25
(COR07) Validation 4247 5485 277.80 0.00 29.96 7.94 4491 18.69 6.21 5.64 16.10 -3.05

Calibration 4460 5025 310.80 0.00 30.76 8.20 4569 17.36 6.06 6.14 1727 -8.25
All 36.96 39.12 230.60 0.00 29.87 7.53 4594 1692 4.05 6.01 1537 -9.45
Loja (GRAO03) Validation 35.66 4421 22540 0.00 29.97 7.90 4594 16.92 4.08 5.94 1470  -5.80
Calibration 3720 3825 230.60 0.00 29.86 7.48 4285 17.08 4.05 6.04 1537 -9.45

All 4346 56.88 423.60 0.00 27.11 7.02 42.63 14.17 5.03 6.06 18.38 -13.30

Cadiar (GRAO07) Validation 4255 6155 317.00 0.00 26.26 7.03 4120 16.11 443 6.37 1590 -13.30
Calibration 4362 5618 423.60 0.00 27.26 7.03 42,63 1417 5.14 6.02 1838 -8.13
All 46.69 5329 296.80 0.00 29.21 7.84 43.63 1542 6.60 5.09 16.38  —4.02
Validation 4336 5038 197.80 0.00 29.24 7.62 4218 18.65 6.82 4.68 1550 -0.73
Calibration 4729 5390 296.80 0.00 29.21 7.89 4363 1542 6.56 517 1638 —4.02

Puebla Guzman
(HUE07)
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Table 2. Cont.

Precipitation (mm) Maximum Temperature (°) Minimum Temperature (°)
Sites Datasets
Mean  Std Max Min Mean  Std Max Min Mean  Std Max  Min
. All 60.51 69.67 389.80 0.00 2951 7.63  43.07 1541 6.95 4.81 16.39 -2.39
El Campillo

Validation 56.16  66.43 351.00 0.00 29.48 7.61 42.74 1892 6.78 4.58 1540 -1.37

(HUE08) Calibration 6128 70.38 389.80 0.00 29.51 7.65 43.07 1541 6.98 4.86 1639 -2.39
Mancha Real All 37.28 3843 24820 0.00 27.79 7.96 4191 1340 5.02 6.30 18.08 -10.24
(JAE04) Validation 3212 38.83 200.20 0.00 27.97 8.30 4191 1475 4.67 5.92 16.70  —6.62

Calibration 3822 3838 24820 0.00 27.76 792 41.62 13.40 5.09 6.38 18.08 -10.24
All 32.65 3343 192.00 0.00 30.36 8.20 4525 15.84 6.08 6.77 1996 -8.64

Sabiote (JAE07) Validation 2896 3693 192.00 0.00 30.18 8.51 4525 17.60 5.92 6.44 1820 -5.06

Calibration 33.32 3281 17420 0.00 30.39 8.16 4423 15.84 6.11 6.85 1996 -8.64
All 38.10 5099 27270  0.00 30.09 6.38 42.78  18.44 7.66 5.92 1910 —-4.27

(i/[/[i?}%i) Validation 38.18 5426 19940 0.00 29.60 5.88 39.60 21.14 7.28 5.35 1910 -0.85

Calibration 38.09 50.53 27270 0.00 30.17 6.47 4278 18.44 7.73 6.03 1875  —4.27
Cartama .All ' 39.77 5417 266.00 0.00 30.69 6.46 43.13 1892 7.08 5.66 17.73  -2.60
(MAG09) Validation 36.60 50.64 17740 0.00 30.31 6.38 4048  21.30 6.58 5.58 1720 -1.38

Calibration 4033 54.89 266.00 0.00 30.76 6.49 43.13 18.92 717 5.69 1773 -2.60
All 4040 48.05 29240 0.00 31.33 8.31 46.05 16.77 5.54 6.39 1820 -9.09
Ecija (SEV07) Validation 3842 4595 21720 0.00 31.06 8.29 46.05 19.61 5.28 6.11 1620 -3.78
Calibration 40.76 4852 29240 0.00 31.38 8.34 4596 16.77 5.59 6.45 1820 -9.09

IFAPA C. All 4146 4812 282.00 0.00 31.42 8.16 53.12  18.05 5.43 6.11 16.72  -9.82
Torres-T Validation 37.10 4622 20340 0.00 30.85 8.31 4485 18.88 5.16 5.83 1610 -3.99
(SEV101) Calibration 4225 4854 282.00 0.00 31.52 8.15 53.12  18.05 5.48 6.17 1672  -9.82
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2.2. Development of Wavelet Neural Network (WNN) Models

Several hybrid models (WNN) were developed based on the use of the sub-series resulting from
the wavelet decomposition of the original series, as input variables of a feed-forward multilayer
perceptron neural network (FFMLP). This architecture (Figure 3) is the most widely-used in water
resources modelling [79] and consists of an input layer, one or more hidden layers containing network
computation nodes (neurons), and the output layer that contains the target variable (predicted
precipitation). The number of input nodes is equal to the number of input variables (details and
approximations of sub-time series and month of year) and the number of hidden nodes is determined
by trial and error procedure. One of the main keys for the good behavior of these approaches is the
ability to learn from experience using the well-known backpropagation method in the training process
and optimized by applying the Levenberg—Marquardt algorithm. Eventually, logarithmic sigmoidal
and pure linear transfer activation functions were used for the hidden and output layers, respectively,
converting input signals into output signals. Thus, the process that takes place in the neurons is the
following. Firstly, the inputs are multiplied by their corresponding initial weights; these products with
a bias term are summed. Afterwards, this result passes as the input of an activation function which
determines whether the neuron is activated or not. Then, the result advances to the next neurons and
the process is repeated until the output is obtained (it is mathematically expressed as Equation (1)).
Finally, the backpropagation training method consists of modifying the weights of the nodes based on
the minimization of the bias errors (difference between target and output value) and all the process is

repeated from the beginning.
0=2() wi-0) Q)

where O = output value of the hidden/output node, I = input or hidden node value, @ = the transfer
function, W = weights connecting nodes and 6 = bias for each node.

Input Variables Hidden Layers Qutput

Month of the
year (MOY)
Input sub-

series 1

Input sub-
series 2 Forecasted
Precipitation

Input sub-
series N

Figure 3. Multilayer Perceptron Neural Network architecture used in this work.

The selection of the Daubechies wavelet of order 5 (db5) was performed after a trial and error
procedure checking Daubechies wavelet from order 1 to 10 [68,80,81], although similar results were
found with db9. The wavelet decomposition process was carried out according to the procedure in [82]
at level 3, based on the size of validation datasets for testing the model performances [69]. Finally, the
optimal number of neurons in the hidden layer [2,68,83] was set to eight, after testing from two to ten
in steps of one and checking the FFMLP performance.

Thus, each dataset was decomposed by wavelet transformation into sub-series containing
approximation coefficients (cA3) and details coefficients (cD1, cD2 and c¢D3). They were used as input
variables for the WNN models as well as the month of year (MOY: 1 = January, 2 = February
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12 = December), and monthly precipitation original series was used as the target output
values. An example of the sub-series of precipitation (details and approximations) after the wavelet
decomposition as well as the original signal is represented in Figure 4 for Malaga station.

Original Signal (Monthly Precipitation)
! I I I T

| 1
20 40 60 80 100 120 140 160 180 200 220
Timeperiod (months)

Level 3 Approximation coefficients
T T T T

1 L | =
20 40 60 80 100 120 140 160 180 200 220
Timeperiod (months)

Level 1 Details coefficients
T

D1

| 1 1 | | | 1
20 40 60 80 100 120 140 160 180 200 220
Timeperiod (months)

Level 2 Details coefficients
T T

D2

| 1 | | | L |
20 40 60 80 100 120 140 160 180 200 220
Timeperiod (months)

Level 3 Details coefficients
T T

D3
)
|

20 40 60 80 1(")0 1;0 11‘10 1(‘90 1BI0 2(;0 2;07
Timeperiod (months)

Figure 4. Original values and decomposed sub-series of monthly precipitation by wavelet

transformation at Malaga station (MAGO01) (2001-2019).

The input variables used in each model are summarized in Table 3. All the models used Month of
year (MOY) and precipitation signal decomposed by wavelets transformation. The proposed models
used different combination of variables. For instance, the input variables of the Model I were MOY and
monthly precipitation signal (decomposed into D1, D2, D3 and A3 coefficients). In contrast, the Model
IX used MOY, precipitation signal (decomposed into D1, D2, D3 and A3 coefficients) and monthly
minimum temperature signal (decomposed into D1, D2, D3 and A3 coefficients).

Table 3. Inputs and number of variables of each of the wavelet neural network models (WNN)
models evaluated in this work (m = month; MOY = month of year; P = precipitation; DTR,, = mean
diurnal temperature range; DTRy = maximum diurnal temperature range; DTR,, = minimum diurnal
temperature range; MTR=monthly temperature range; Ty=maximum temperature; T, = minimum

temperature).
Models  Output Input Variables N° Variables
I P(m+1) MOY, P{decomposed} (m) 5
I P(m+1) MOY, P{decomposed] (m), P{decomposed] (m-1) 9
I P(m+1) MOY, P {decomposed} (m), DTR, {decomposed} (m) 9
v P(m+1) MOY, P[decomposed] (m), DTRy {decomposed} (m) 9
\% P(m+1) MOY, P(decomposed] (m), DTR, {decomposed} (m) 9
VI P(m+1) MOY, P[decomposed) (m), DTR, {decomposed} (m), DTR,, {decomposed} (m) 13
VI P(m+1) MOy, P[decomposed] (m), MTR {decomposed)} (m) 9
VIII P (m + 1) MOY/ P{decomposed} (m)/ Tx{decomposed} (m) 9
IX P(m+1) MOY, P{decomposed) (m), Tn[decomposed} (m) 9
X P(m+1) MOY, P[decomposed] (m), Tx{decomposed]/ Tn{decomposed] (m) 13

2.3. Statistical Analysis and Performance Criteria

In order to evaluate the performance of different models developed in this work, forecasted and
measured precipitation values were compared by using simple error analysis. Thus, common statistical
indices widely used to assess hydro-meteorological prediction models [26,61,68] were estimated: RMSE
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(root mean square error), R (Correlation Coefficient), MAPE (mean absolute percentage error) and NSE
(Nash-Sutcliffe model efficiency coefficient, also known as coefficient of efficiency). These statistics are
summarized from Equations (2) to (5):

rN Py - P

RMSE = ~ )
N (P - W)(P{ —pf )
R = - 3)
2 —
\/[ {\Izl(PT_Pm) ]| ?]:1(13{_1)][) ]
N m f
100% | P} — Py
MAPE = — S (4)
t=1 t
N (P —pl)
NSE=1-—=20f "1 ()

il(P;n - I%)z

where the N is the number of months and P}, P{ , P and P/ are precipitation measured at month
t, precipitation forecasted at month t, the mean of measured monthly precipitation and the mean of
forecasted monthly precipitation, respectively.

In addition, two performance measures were also carried out: Akaike Information Criteria (AIC)
and Bayesian Information Criteria (BIC). These indices have the singularity of considering the number
of trained parameters and they are based on the parsimony. AIC and BIC were initially reported by [84]
and [85], respectively, and they have been frequently used for assessing hydrological models [86-88].
Both expressions are described in Equations (6) and (7):

AIC = NIn(RMSE) + 2p (6)

BIC = NIn(RMSE) + p In(N) @)

where p is the number of free parameters in each model (the total amount of weights and biases), being
the best model performance the one with lowest AIC and BIC values. These indices deal with the
trade-off between the prediction error (RMSE) and the complexity of the model, combining a term
reflecting how well the forecasts fit the data with a term penalizing the model in proportion to its
number of estimated parameters [89].

3. Results and Discussion

3.1. Pre-Processing Input Datasets

Validated daily records (precipitation, maximum and minimum temperature) obtained after the
application of quality control procedures were used to create different monthly datasets. Monthly
precipitation (P) values were used as an input in all the models assessed. Apart from max/min monthly
temperature records (Tx and Ty, respectively), various temperature-based monthly time series were
also created from daily values: mean daily temperature range (DTRy,), maximum daily temperature
range (DTRy), minimum daily temperature range (DTR,) and monthly temperature range (MTR).
Daily temperature range (DTR) is the difference between daily maximum temperature and daily
minimum temperature, with DTRy,, DTRy, DTR;, being the mean, maximum and minimum DTR
measured in a month, respectively. MTR is obtained as the difference between the maximum and
minimum temperature measured in a monthly basis.
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3.2. Performance of the Models

In general, regarding forecasted validation datasets and the common statistics, Model X was one
of the best performers in most of the locations studied, although Model I showed the best results, on
average, of BIC and AIC indices (Figure 5), followed by Models 11, IX, VIII, V, IV, 111, VII, X and VI.
The minimum values obtained for both indices by using Models I, II, IX and X were registered in the
driest location (Tabernas station), in Conil de la Frontera by using Model III and Model VII, in Mancha
Real by using Model IV, in IFAPA-Las Torres station by using Model VI and in Huércal-Overa station
by using Model V and Model VIII. As in the results reported by [87], both indices produced the same
model selection, with the exception of Model VII that showed the best AIC and BIC performances in
Sabiote and Conil de la Frontera stations, respectively. Overall, the results from BIC and AIC values
indicated a worse performance of the approaches that use more variables (Model VI and Model X) than
the rest, with Model I being the one with the lowest indices. Thus, the number of estimated parameters
(weights and biases) in each of the models played a determining role in these indices.

350- % > % é
295 500- +
§3oo- : é £t é%l 3450- S :
5275 '% EP% é 5400 %é%% %é%
=250 I m350-

N
N
w

2001 | 300'%
L 1L 1LV V VIEVIVIEIX X i
Models

IV VVEVIVIIX X
Models

Figure 5. Box-plot of the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC)

values obtained by using the ten models (validation datasets) for all the sites studied. On each box: the

red central mark=median; bottom and top edges of the box = 25th and 75th percentiles, respectively;

whiskers extend to the most extreme values are not considered outliers (‘+" symbol).

In terms of the statistics R, RMSE, MAPE and NSE, the mean, maximum and minimum values
obtained in the sixteen locations are summarized in Table 4 for each model and dataset studied.
Regarding validation forecasts, Model I obtained the best R (0.78) and NSE (0.62) values in Cartama
station, and the lowest RMSE and MAPE values in Tabernas (9.39 mm) and El Campillo (9.82%) stations,
respectively. On average, Model I had a generally better performance than other related models carried
out in Greece [33] or in Jordan [83], but with R and NSE values lower than those reported by [68] in
one station in India. However, Model II was the one that showed the worst results in almost all sites
and for all the statistics studied, although with some exceptions. These results indicated that for the
goal of this work, the information contained in the ‘two months before’ precipitation signal is not as
relevant as the one contained in the ‘one month before” signal. Model Il had, on average, a slightly
better performance, registering the lowest MAPE and RMSE values in Tabernas station (11.39% and
13.75 mm, respectively) and the best R (0.84) and NSE (0.73) values in El Carpio station. However,
Model IV obtained good statistical indices in Cddiar, Mancha Real and Almeria stations, while Model
V gave the lowest RMSE (10.20 mm) in Huércal-Overa station. In general, the mean results obtained by
using the variables DTRy, (Model III), DTR, (Model IV) and DTR;, (Model V) were similar and better
than those reported by [33] and [83], although in terms of MAPE, Model IV gave the best values in
the most arid sites (Tabernas and Huércal-Overa stations). The next model assessed (VI) had a good
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performance in the two coastal locations: Conil de la Frontera station (highest R = 0.89 and NSE =
0.82 values) and Malaga station (best MAPE value = 9.80%), which may indicate that the joint use
of DTRy and DTR,, variables in areas near the sea could be recommended. Model VII gave the best
MAPE values of all the models and sites in Cartama (0.40%) and IFAPA-Las Torres Tomejil (9.44%)
stations and the best R (0.90), RMSE (16.95 mm) and NSE (0.84) values in Sabiote station, indicating
that the new input variable MTR can be very useful in some locations. Finally, Model VIII (using Tx)
obtained the lowest RMSE value in Huércal-Overa (11.16 mm), the best MAPE value in Sabiote (4.96%)
and the highest R (0.88) and NSE (0.79) values in El Campillo station, where Model IX (using Ty)
also obtained the lowest MAPE value (3.45%). In addition, this model (IX) had a very good behavior
also in Sabiote (MAPE = 3.51%), Conil de la Frontera (R = 0.90 and NSE = 0.84), El Carpio (R = 0.85
and NSE = 0.75) and Tabernas (RMSE = 6.79 mm) stations. Regarding these last two models, no
clear improvement was observed to recommend Model VII or Model IX based on the geo-climatic
conditions. On average, the highest values of R (0.82) and NSE (0.69) were obtained by Model X (using
Tx and Ty) for validation dataset and for all the sites, ranging from R = 0.90 and NSE = 0.83 (Conil de
la Frontera station) to R = 0.64 and NSE = 0.44 (Huercal Overa station). In general, using Model II the
lowest average values of R (0.69) and NSE (0.50) were given, and also the minimum values obtained
for all the sites (R = 0.55 and NSE = 0.32 in Tabernas station). Regarding RMSE average values, they
ranged from 21.49 (Model X) to 31.55 mm (Model II), while the highest value (44.03 mm) was registered
in Jimena de la Frontera station by using also Model II, with this station being the one with the rainiest
month (371.40 mm). Attending to MAPE average values, Model X was able to forecast with the lowest
error (23.61%) followed by Model VII (28.02 %), ranging from 4.57% (Mancha Real station) to 40.04%
(Ecija station) and from 0.40% (Cartama station) to 47.94% (Santaella station), respectively. Instead,
Model II gave the highest MAPE average value (39.93%) as well as the greatest percentage registered
from all the stations (62.02%) in Cadiar (the highest location). As in other related works [3,32,34,68],
a better general performance in calibration datasets can be observed.

Table 4. Summary of correlation coefficient (R), root mean square error (RMSE), mean absolute
percentage error (MAPE) and Nash—Sutcliffe model efficiency coefficient (NSE) values for all the
models assessed.

R RMSE (mm) MAPE (%) NSE
Models Datasets
Max/Mean/Min Min/Mean/Max Min/Mean/Max Max/Mean/Min
I Validation 0.78/0.70/0.62 9.39/21.69/37.74  9.82/33.94/52.52 0.62/0.51/0.40
Calibration 0.83/0.74/0.65 11.75/20.67/29.60 9.86/16.07/22.57  0.81/0.72/0.63
n Validation 0.80/0.69/0.55 10.73/31.55/44.03  25.34/39.93/62.02  0.67/0.50/0.32
Calibration 0.98/0.92/0.79 11.89/16.18/29.21  1.86/7.84/22.99 0.96/0.85/0.63
I Validation 0.84/0.71/0.56 13.75/24.17/39.53  11.39/31.57/49.86  0.73/0.54/0.33
Calibration 0.95/0.92/0.87  11.33/17.59/26.97 4.92/8.63/15.91 0.91/0.84/0.75
v Validation 0.83/0.71/0.58 13.61/23.25/40.12  2.50/34.84/57.58 0.71/0.52/0.36
Calibration 0.92/0.85/0.74 11.12/16.84/24.50 4.11/8.21/17.00 0.91/0.85/0.73
v Validation 0.85/0.71/0.57  10.20/23.68/41.00 15.73/33.04/56.89  0.74/0.53/0.34
Calibration 0.97/0.93/0.85 11.54/15.66/24.80  1.58/6.50/16.68 0.94/0.87/0.73
VI Validation 0.89/0.73/0.59 12.64/22.48/38.51 9.80/31.19/48.17  0.82/0.55/0.37
Calibration 0.97/0.95/0.91 7.79/13.96/18.28  0.12/5.05/11.89 0.95/0.90/0.82
VII Validation 0.90/0.72/0.58 16.95/24.44/37.55 0.40/28.02/47.94 0.84/0.55/0.36
Calibration 0.97/0.95/0.92 8.48/14.65/23.19 1.67/4.46/9.58 0.95/0.90/0.85
VIII Validation 0.88/0.75/0.57  11.16/22.86/42.04 4.96/32.37/62.61 0.79/0.58/0.34
Calibration 0.98/0.94/0.91 7.67/15.34/25.52 0.02/4.23/9.05 0.96/0.89/0.83
X Validation 0.90/0.74/0.57  6.79/22.84/38.17  3.45/28.05/41.50 0.84/0.58/0.35
Calibration 0.97/0.94/0.88 8.02/15.03/21.22  1.67/5.09/11.15 0.94/0.89/0.77
X Validation 0.90/0.82/0.64 8.49/21.49/38.39  4.57/23.61/40.04 0.83/0.69/0.44
Calibration 0.98/0.94/0.90 9.61/14.61/20.88  2.45/5.71/11.40 0.96/0.89/0.81
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In order to evaluate the results obtained by using the ten models at each location, the statistical
indices R, NSE, RMSE and MAPE are shown in Figure 6 (a, b, c and d, respectively) for validation
datasets. In Figure 6a, it can be observed that in the most humid site (Puebla-Guzman station = HUE(7),
located in the western region of Andalusia, the highest R (0.88) and NSE (0.79) values were obtained
by Model VIII, followed by IX, X and VIL The other station situated in Huelva province (El Campillo
station = HUEOQS) registered very homogeneous values of R and NSE by using all the models, with
Model VI being the best one with values of 0.79 and 0.64, respectively. One of the best correlation
coefficients and NSE values were obtained in Conil de la Frontera (CADO05) by using Model VI (R = 0.89
and NSE = 0.82), Model IX (R = 0.90 and NSE = 0.84) and Model X (R = 0.90 and NSE = 0.83). In this
coastal location, Models IV and I gave the worst values. However, Model X was the best one for the
following stations: IFAPA-Las Torres (SEV101), Jimena de la Frontera (CADO7), Ecija (SEV(09), Santaella
(CORQ07), Cartama (MAGO09), Mélaga (MAGO1), El Carpio (COR05), Loja (GRA03), Mancha Real (JAE(07)
and Cadiar (GRAQ?) stations (from West to East). Finally, for the driest locations (ALM04 = Tabernas
and ALMO07 = Huércal-Overa), situated in the eastern part of Andalusia, the model that derived the
best R and NSE indices was the Model I1I, the one using DTRy, as input variable. Therefore, these
results indicate that the use of DTRy, signal could be recommended for precipitation forecasting in arid
stations. Considering Figure 6c, for the stations located in Huelva province (western part of Andalusia),
the lowest RMSE values were obtained by Model VIII in HUE07 (17.60 mm) and HUEOS (23.62 mm),
which could indicate the suitability of using this model in the less arid areas of Southern Spain. The
location with the highest RMSE value was the rainiest site: Jimena de la Frontera (CADO07), while the
lowest ones (6.79 and 10.20 mm) were obtained at the most arid stations by using Models IX (ALM04)
and V (ALMO07), respectively. Finally, MAPE values (Figure 6d) showed high variability between
stations and also for the different models evaluated. The highest range between the best and the worst
models was obtained in Mancha Real (JAE07), while the most homogeneous values occurred in Loja
(GRAQ3). On average, the worst MAPE values were obtained in the highest location (Cadiar = GRA07),
but no relationship was found between elevation and MAPE. For all the locations studied, several
models were able to obtain MAPE values lower than 25%, including excellent performances such as
those given by Model IX in Puebla Guzman (HUE(07), Model VII in Cartama (MAGO09) or Model IV in
Tabernas (ALMO04), with the exception of Model X in Loja station (GRA03) obtaining 27.61%.
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Figure 6. Results of the statistical performance obtained at each of the 16 locations studied: (a) R;
(b) NSE; (c) RMSE; (d) MAPE.
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Finally, measured and forecasted values of monthly precipitation at four stations (Conil de la
Frontera, Tabernas, Loja and Sabiote) during calibration and validation periods are represented in
Figure 7. When attending to the validation datasets, a very good performance of Model VI can be
observed in a coastal location such as Conil de la Frontera (CADO5), using MOY, precipitation, DTRy
and DTR,, as input variables and obtaining R = 0.89 and MAPE = 11.29%. In addition, this model
also gave the lowest percentages of error at Malaga (MAGO1) coastal station (MAPE = 9.80%). Thus,
the input variables used in this model were more efficient at coastal locations than other variable
combinations in terms of predictability performance. Slightly worse was the behavior of Model III
(MOY, precipitation and DTR, as input variables) in Tabernas (the driest station), with R=0.81, and
MAPE = 11.39%, but being able to properly forecast the peak of 141.40 mm. Likewise, the validation
period results obtained in Loja station (GRAO03) by applying Model X indicated, in general, a satisfactory
performance in terms of R (0.86), RMSE (17.81 mm) and NSE (0.72), although the peak of 225.40 mm
was not predicted so accurately. Finally, the modelled datasets using Model VII in Sabiote station
(JAEO4) are represented. Regarding the validation period, the values of NSE, R and RMSE obtained
with this model showed the best model performance in this site (0.84, 0.90 and 16.95 mm, respectively)
and also giving an acceptable MAPE of 11.18%. Furthermore, this model that used MOY, precipitation
and MTR as input variables, forecasted with lowest MAPE values in another two interior stations:
Cartama (MAGO09) and IFAPA-Las Torres Tomejil (SEV101), although its performance was not so good
in other inland locations.
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Figure 7. Plot of measured and forecasted monthly precipitation at four stations: Conil de la Frontera
(a), Tabernas (b), Loja (c) and Sabiote (d) using Models VI, III, X and VIII, respectively.

From these results, it has been verified that the introduction of easily estimated input variables
such as DTRy, DTR,,, DTRm, MTR or MOY into WNN models is very useful for improving precipitation
predictions one month ahead, especially when there is no availability of long-term datasets. In general,
the results obtained by applying the proposed models in all stations in Southern Spain provided better
RMSE values than the best of several WNN monthly precipitation models assessed by [68] at one
station located in the east of India and also better than those reported by [3] at 24 locations in China,
with both works needing the use of long-term historical series. Moreover, RMSE values were also
lower in this work than the reported by [2] in ten stations in Guilin (China) using evolutionary models.
In terms of efficiency, mean NSE values indicated a good degree of efficiency for all the models, being
much higher than the values reported by [90] in Iran using ANN to predict monthly precipitation using
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30-year series. RMSE values obtained with ANN models by [90] were worse than those given with the
ten approaches assessed in this work. In addition, the correlation coefficients obtained in this work in
all locations except at Huércal-Overa and Santaella sites were better than those reported by [33] in four
stations in Greece for cumulative four-month precipitation predictions using ANN models. Regarding
this statistic, the best result reported by [83] for the monthly precipitation in one of the three stations
studied in Jordan was similar to the best values obtained in Santaella and Huércal-Overa stations
but lower than those given in the rest of the locations. However, the correlation coefficient obtained
by [90] with ANN and singular spectrum analysis model was better than the average performance of
all the models, although models from V to X gave higher R values at least in one location of the sixteen
sites evaluated.

4. Conclusions

Different configurations of hybrid model combining wavelet analysis and artificial neural network
for time series forecasting of monthly precipitation have been developed and assessed at sixteen
locations in Southern Spain (semiarid region). The main novelty of this work is the use of thermal
variables, besides precipitation, never used before, such as the daily and monthly thermal range, as
well as the month of year, the use of short-term time series and the application to datasets from sixteen
sites having very different climatic and geographical conditions. Firstly, a set of sub-signals were
obtained from original validated datasets carrying out a multilevel decomposition process by wavelet
transformation. Then, these new time-series and months of year were used as input variables of the
ten models evaluated, with original monthly precipitation being the output variable. The models were
calibrated using the first 85% of datasets and the rest of the data were used for model validation (at
least two and a half years at all locations). The results indicated that nonlinear dynamics of the different
thermal variables used and also precipitation were properly characterized by wavelet decomposition
in order to satisfactorily forecast precipitation one month ahead, although the performance of the
models was not the same for the different locations evaluated. For each location, it was found that
there was at least one or more models with acceptable statistical performance (R > 0.76; NSE > 0.60;
RMSE < 29.82 mm and MAPE < 27.62%).

In general, the model that used precipitation, maximum and minimum temperature (X) had the
best statistical performance in most of the locations studied. However, the model using precipitation
and the mean diurnal temperature range (III) gave the best results at the most arid sites. Regarding
coastal locations, the lowest mean absolute percentage of errors were obtained by the model using
precipitation, maximum and minimum diurnal temperature range (VI). By contrast, the model using
only precipitation signal (I) obtained the best BIC at all locations and the lowest AIC values at twelve
sites due to the reduced number of input variables but did not get the best results in any other statistical
indices except in El Campillo station, the second rainiest site of this study. Although no relationship
between model performance and site elevation was found, the worst mean absolute percentage error
was obtained in the highest site studied (Cadiar station). Finally, the model using precipitation and
monthly temperature range (VII) gave satisfactory results in terms of predictability error in three
interior locations. Therefore, overall analysis of the general results obtained in this work indicates the
suitability of the type of input variables used in WNN models that accurately describe precipitation
processes according to geo-climatic characteristics.

Since most of the thermo-pluviometric sensors installed on automatic weather stations networks
worldwide do not have long-term time series and considering that precipitation is a meteorological
variable with high spatial variability, these types of models are of great interest to the monthly
precipitation forecast in locations where only short length records are available. Further works using
different artificial intelligence approaches such as support vector machine or extreme learning machine
may be carried out to compare the performance of these kind of models once they are joined to
wavelet analysis.



Water 2020, 12, 1909 17 of 20

Author Contributions: Formal analysis, J.E.; Funding acquisition, J.E. and A.P.G.-M.; Investigation, J.E,;
Methodology, ]J.A.B.-J.; Software, J.A.B.-J.; Supervision, X.L.; Validation, J.E., J.A.B.-J. and A.P.G.-M,;
Writing—original draft, J.E.; Writing—review & editing, J.A.B.-J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant
number AGL2017-87658-R

Acknowledgments: Javier Estévez acknowledges the collaboration and hosting of the School of Computing at
Edinburgh Napier University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Linnerud, K.; Mideksa, TK.; Eskeland, G.S. The impact of climate change on nuclear power supply. Energy J.
2011, 32, 149-168. [CrossRef]

2. Jiang, L.; Wu, J. Hybrid PSO and GA for neural network evolutionary in monthly rainfall forecasting. In Asian
Conference on Intelligent Information and Database Systems; Selamat, A., Nguyen, N.T., Haron, H., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7802, pp. 79-88.

3.  Liu, Q. Zou, Y, Liu, X,; Linge, N. A survey on rainfall forecasting using artificial neural network. Int. . Embed.
Syst. 2019, 11, 240-249. [CrossRef]

4.  Jabbari, A.; Bae, D.-H. Application of artificial neural networks for accuracy enhancements of real-time flood
forecasting in the Imjin Basin. Water 2018, 10, 1626. [CrossRef]

5. Alotaibi, K.; Ghumman, A.R.; Haider, H.; Ghazaw, Y.M.; Shafiquzzaman, M. Future predictions of rainfall
and temperature using GCM and ANN for arid regions: A case study for the Qassim Region, Saudi Arabia.
Water 2018, 10, 1260. [CrossRef]

6. Moghim, S.; Bras, R.L. Bias correction of climate modeled temperature and precipitation using artificial
neural networks. J. Hydrometeorol. 2017, 18, 1867-1884. [CrossRef]

7. Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M. Bias adjustment of satellite-based
precipitation estimation using Gauge Observations—A case study in Chile. ]. Geophys. Res. Atmos. 2016, 121,
3790-3806. [CrossRef]

8. Crochemore, L.; Ramos, M.H.; Pappenberger, F. Bias correcting precipitation forecasts to improve the skill of
seasonal streamflow forecasts. Hydrol. Earth Syst. Sci. 2016, 20, 3601-3618. [CrossRef]

9. Ramirez, M.C.V.; de Campos Velho, H.E; Ferreira, N.J. Artificial neural network technique for rainfall
forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301, 146-162. [CrossRef]

10. Darji, M.; Dabhi, V.; Prajapati, H. Rainfall forecasting using neural network: A survey. In Proceedings of the
2015 International Conference on Advances in Computer Engineering and Applications (IEEE), Ghaziabad,
India, 19-20 March 2015; pp. 706-707.

11. Nanda, SK.; Tripathy, D.P.; Nayak, S.K.; Mohapatra, S. Prediction of rainfall in India using Artificial Neural
Network (ANN) models. Int. J. Intell. Syst. Appl. 2013, 5, 1. [CrossRef]

12.  Geetha, G.; Selvaraj, R.S. Prediction of monthly rainfall in Chennai using back propagation neural network
model. Int. . Eng. Sci. Technol. 2011, 3, 211-213.

13.  McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115-133. [CrossRef]

14. Rumelhart, D.E.; Hinton, G.E.; Williams, R.]. Learning representations by back-propagating errors. Nature
1986, 323, 533-536. [CrossRef]

15.  Maier, H.R.; Dandy, G.C. The use of artificial neural networks for the prediction of water quality parameters.
Water Resour. Res. 1996, 32, 1013-1022. [CrossRef]

16. French, M.; Krajewski, W.; Cuykendall, R. Rainfall forecasting in space and time using a neural network.
J. Hydrol. 1992, 137, 1-31. [CrossRef]

17.  Kumar, A.S.; Sudheer, K;; Jain, S.; Agarwal, P. Rainfall-runoff modelling using artificial neural networks:
Comparison of network types. Hydrol. Process. 2005, 19, 1277-1291. [CrossRef]

18.  Fernando, D.AK,; Jayawardena, A.W. Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol.
Eng. 1998, 3, 203-209. [CrossRef]


http://dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol32-No1-6
http://dx.doi.org/10.1504/IJES.2019.098300
http://dx.doi.org/10.3390/w10111626
http://dx.doi.org/10.3390/w10091260
http://dx.doi.org/10.1175/JHM-D-16-0247.1
http://dx.doi.org/10.1002/2015JD024540
http://dx.doi.org/10.5194/hess-20-3601-2016
http://dx.doi.org/10.1016/j.jhydrol.2004.06.028
http://dx.doi.org/10.5815/ijisa.2013.12.01
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1029/96WR03529
http://dx.doi.org/10.1016/0022-1694(92)90046-X
http://dx.doi.org/10.1002/hyp.5581
http://dx.doi.org/10.1061/(ASCE)1084-0699(1998)3:3(203)

Water 2020, 12, 1909 18 of 20

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Dawson, C.; Wilby, R. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. ]. 1998,
43,47-66. [CrossRef]

Jeong, D.I; Kim, Y.-O. Rainfall-runoff models using artificial neural networks for ensemble streamflow
prediction. Hydrol. Process. 2005, 19, 3819-3835. [CrossRef]

Riad, S.; Mania, J.; Bouchaou, L.; Najjar, Y. Predicting catchment flow in a semi-arid region via an artificial
neural network technique. Hydrol. Process. 2004, 18, 2387-2393. [CrossRef]

Birikundavyi, S.; Labib, R.; Trung, H.T.; Rousselle, J. Performance of neural networks in daily streamflow
forecasting. . Hydrol. Eng. 2002, 7, 392-398. [CrossRef]

Kim, R.; Loucks, P.; Stedinger, ]. Artificial neural network models of watershed nutrient loading. Water Res.
Manag. 2012, 26, 2781-2797. [CrossRef]

Zaheer, I; Bai, C.-G. Application of artificial neural network for water quality management. Lowl. Technol.
Int. 2003, 5, 10-15.

Nourani, V.; Mousavi, S. Spatiotemporal groundwater level modeling using hybrid artificial
intelligence-meshless method. . Hydrol. 2016, 536, 10-25. [CrossRef]

Talei, A.; Chua, L.H.C.; Wong, T.S. Evaluation of rainfall and discharge inputs used by Adaptive
Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. ]. Hydrol. 2010, 391,
248-262. [CrossRef]

Lopez-Lineros, M.; Estévez, ].; Giraldez, J.V.; Maduefio, A. A new quality control procedure based on
non-linear autoregressive neural network for validating raw river stage data. J. Hidrol. 2014, 510, 103-109.
[CrossRef]

Sciuto, G.; Bonaccorso, B.; Cancelliere, A.; Rossi, G. Quality control of daily rainfall data with neural networks.
J. Hydrol. 2009, 364, 13-22. [CrossRef]

Govindaraju, R. Artificial Neural Networks in hydrology. II: Hydrologic applications. . Hydrol. Eng. 2000, 5,
124-137.

Govindaraju, R. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5,
115-123.

Oyebode, O.; Stretch, D. Neural network modeling of hydrological systems: A review of implementation
techniques. Nat. Resour. Model. 2019, 32, €12189. [CrossRef]

Hung, N.Q.; Babel, M.S.; Weesakul, S.; Tripathi, N. An artificial neural network model for rainfall forecasting
in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 2009, 13, 1413-1425. [CrossRef]

Moustris, K.P; Larissi, LK.; Nastos, P.T.; Paliatsos, A.G. Precipitation forecast using artificial neural networks
in specific regions of Greece. Water Res. Manag. 2011, 25, 1979-1993. [CrossRef]

Lee, J.; Kim, C.G,; Lee, ].E.; Kim, N.W,; Kim, H. Application of artificial neural networks to rainfall forecasting
in the Geum River basin, Korea. Water 2018, 10, 1448. [CrossRef]

Abbot, J.; Marohasy, ]. Forecasting of medium-term rainfall using Artificial Neural Networks: Case studies
from Eastern Australia. In Engineering and Mathematical Topics in Rainfall; IntechOpen: London, UK, 2018;
Volume 33.

Yang, Y.; Luo, Y. Using the back propagation neural network approach to bias correct TMPA data in the arid
region of Northwest China. J. Hydrometeorol. 2014, 15, 459—473. [CrossRef]

Wu, X.; Hongxing, C.; Flitman, A.; Fengying, W.; Guolin, F. Forecasting monsoon precipitation using artificial
neural networks. Adv. Atmos. Sci. 2001, 18, 950-958. [CrossRef]

Tyagi, N.; Kumar, A. Comparative analysis of backpropagation and RBF neural network on monthly rainfall
prediction. In Proceedings of the 2016 International Conference on Inventive Computation Technologies
(ICICT), Coimbatore, India, 26-27 August 2016; pp. 1-6.

Manek, A.; Singh, P. Comparative study of neural network architectures for rainfall prediction. In Proceedings
of the 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai,
India, 15-16 July 2016; pp. 171-174.

Goyal, M. Monthly rainfall prediction using wavelet regression and neural network: An analysis of 1901-2002
data, Assam, India. Theor. Appl. Climatol. 2014, 118, 25-34. [CrossRef]

Acharya, N.; Shrivastava, N.; Panigrahi, B.K.; Mohanty, U.C. Development of an artificial neural network
based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India:
An application of extreme learning machine. Clim. Dyn. 2014, 43, 1303-1310. [CrossRef]


http://dx.doi.org/10.1080/02626669809492102
http://dx.doi.org/10.1002/hyp.5983
http://dx.doi.org/10.1002/hyp.1469
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:5(392)
http://dx.doi.org/10.1007/s11269-012-0045-x
http://dx.doi.org/10.1016/j.jhydrol.2016.02.030
http://dx.doi.org/10.1016/j.jhydrol.2010.07.023
http://dx.doi.org/10.1016/j.jhydrol.2013.12.026
http://dx.doi.org/10.1016/j.jhydrol.2008.10.008
http://dx.doi.org/10.1111/nrm.12189
http://dx.doi.org/10.5194/hess-13-1413-2009
http://dx.doi.org/10.1007/s11269-011-9790-5
http://dx.doi.org/10.3390/w10101448
http://dx.doi.org/10.1175/JHM-D-13-041.1
http://dx.doi.org/10.1007/BF03403515
http://dx.doi.org/10.1007/s00704-013-1029-3
http://dx.doi.org/10.1007/s00382-013-1942-2

Water 2020, 12, 1909 19 of 20

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

Garcia-Marin, A.P.; Estévez, J.; Morbidelli, R.; Saltalippi, C.; Ayuso, ].; Flammini, A. Assessing inhomogeneities
in extreme annual rainfall data series by multifractal approach. Water 2020, 12, 1030. [CrossRef]

Bohlinger, P.; Sorteberg, A.; Liu, C.; Rasmussen, R.; Sodemann, H.; Ogawa, F. Multiscale characteristics of an
extreme precipitation event over Nepal. Q. J. R. Meteorol. Soc. 2019, 145, 179-196. [CrossRef]
Medina-Cobo, M.; Garcia-Marin, A.P; Estévez, ].; Jiménez-Hornero, F.; Ayuso, J. Obtaining homogeneous
regions by determining the generalized fractal dimensions of validated daily rainfall data sets. Water Res.
Manag. 2017, 31, 2333-2348. [CrossRef]

Medina-Cobo, M.T.; Garcia-Marin, A.P.; Estévez, J.; Ayuso-Muiioz, ].L. The identification of an appropriate
Minimum Inter-event Time (MIT) based on multifractal characterization of rainfall data series. Hydrol.
Process. 2016, 30, 3507-3517. [CrossRef]

Garcia-Marin, A.P.; Estévez, J.; Medina-Cobo, M.T.; Ayuso, J. Delimiting homogeneous regions using the
multifractal properties of validated rainfall data series. J. Hydrol. 2015, 529, 106-119. [CrossRef]

Samuel, ].M.; Sivapalan, M. A comparative modeling analysis of multiscale temporal variability of rainfall in
Australia. Water Resour. Res. 2008, 44, W07401. [CrossRef]

Estévez, J.; Garcia-Marin, A P.; Benitez, ].B.; Castillo, M.C.C.; Telesca, L. Introduction to the special issue
on “hydro-meteorological time series analysis and their relation to climate change”. Acta Geophys. 2018, 66,
317-318. [CrossRef]

Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant
shape. SIAM ]. Math. Anal. 1984, 15, 723-736. [CrossRef]

Sang, Y.-F. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res.
2013, 122, 8-15. [CrossRef]

Maheswaran, R.; Khosa, R. Comparative study of different wavelets for hydrologic forecasting. Comput.
Geosci. 2012, 46, 284-295. [CrossRef]

Adamowski, J.; Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting.
J. Hydrol. 2011, 407, 28-40. [CrossRef]

Baddoo, T.; Guan, Y.; Zhang, D.; Andam-Akorful, S. Rainfall variability in the Huangfuchuang Watershed
and its relationship with ENSO. Water 2015, 7, 3243-3262. [CrossRef]

Wang, Y.; Yuan, Y,; Pan, Y.; Fan, Z. Modeling daily and monthly water quality indicators in a canal using a
hybrid wavelet-based support vector regression structure. Water 2020, 12, 1476. [CrossRef]

Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992.

Guimaraes-Santos, C.A; Silva, G.B.L.D. Daily streamflow forecasting using a wavelet transform and artificial
neural network hybrid models. Hydrol. Sci. . 2014, 59, 312-324. [CrossRef]

Nalley, D.; Adamowski, ].; Khalil, B. Using discrete wavelet transforms to analyze trends in streamflow and
precipitation in Quebec and Ontario (1954-2008). J. Hydrol. 2012, 475, 204-228. [CrossRef]

Benaouda, D.; Murtagh, F; Starck, J.L.; Renaud, O. Wavelet-based nonlinear multiscale decomposition model
for electricity load forecasting. Neurocomputing 2006, 70, 139-154. [CrossRef]

WMO. Guide to Instruments and Methods of Observations; WMO: Geneva, Switzerland, 2018; Volume 8.
Paola, E; Giugni, M. Coupled spatial distribution of rainfall and temperature in USA. Procedia Environ. Sci.
2013, 19, 178-187. [CrossRef]

Estévez, ].; Padilla, FL.; Gavilan, P. Evaluation and regional calibration of solar radiation prediction models
in southern Spain. J. Irrig. Drain. Eng. 2012, 138, 868-879. [CrossRef]

Eccel, E. Estimating air humidity from temperature and precipitation measures for modelling applications.
Meteorol. Appl. 2012, 19, 118-128. [CrossRef]

Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report (AR5) Observed Climate Change
Impacts Database; Version 2.01; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY,
USA, 2017. [CrossRef]

Chen, Z; Yu, G;; Ge, J.; Sun, X,; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J.; et al.
Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the
Asian region. Agric. For. Meteorol. 2013, 182, 266-276. [CrossRef]

Lewis, E.; Fowler, H.; Alexander, L.; Dunn, R.; McClean, F.; Barbero, R.; Guerreiro, S.; Xiao-Feng, L.;
Blenkinsop, S. GSDR: A global sub-daily rainfall dataset. J. Clim. 2019, 32, 4715-4729. [CrossRef]

Strigaro, D.; Cannata, M.; Antonovic, M. Boosting a weather monitoring system in low income economies
using open and non-conventional systems: Data quality analysis. Sensors 2019, 19, 1185. [CrossRef]


http://dx.doi.org/10.3390/w12041030
http://dx.doi.org/10.1002/qj.3418
http://dx.doi.org/10.1007/s11269-017-1653-2
http://dx.doi.org/10.1002/hyp.10875
http://dx.doi.org/10.1016/j.jhydrol.2015.07.021
http://dx.doi.org/10.1029/2007WR006373
http://dx.doi.org/10.1007/s11600-018-0144-z
http://dx.doi.org/10.1137/0515056
http://dx.doi.org/10.1016/j.atmosres.2012.11.003
http://dx.doi.org/10.1016/j.cageo.2011.12.015
http://dx.doi.org/10.1016/j.jhydrol.2011.06.013
http://dx.doi.org/10.3390/w7073243
http://dx.doi.org/10.3390/w12051476
http://dx.doi.org/10.1080/02626667.2013.800944
http://dx.doi.org/10.1016/j.jhydrol.2012.09.049
http://dx.doi.org/10.1016/j.neucom.2006.04.005
http://dx.doi.org/10.1016/j.proenv.2013.06.020
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000493
http://dx.doi.org/10.1002/met.258
http://dx.doi.org/10.7927/H4FT8J0X
http://dx.doi.org/10.1016/j.agrformet.2013.04.026
http://dx.doi.org/10.1175/JCLI-D-18-0143.1
http://dx.doi.org/10.3390/s19051185

Water 2020, 12, 1909 20 of 20

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Wei, S.; Yang, H.; Song, J.; Abbaspour, K.; Xu, Z. A wavelet-neural network hybrid modelling approach for
estimating and predicting river monthly flows. Hydrol. Sci. ]. 2013, 58, 374-389. [CrossRef]

Ramana, R.V,; Krishna, B.; Kumar, S.R.; Pandey, N.G. Monthly rainfall prediction using wavelet neural
network analysis. Water Res. Manag. 2013, 27, 3697-3711. [CrossRef]

Wu, C,; Chau, K; Li, Y. Methods to improve neural network performance in daily flows prediction. J. Hydrol.
2009, 372, 80-93. [CrossRef]

Nourani, V.; Alami, M.T.; Aminfar, M.H. A combined neural-wavelet model for prediction of Ligvanchai
watershed precipitation. Eng. Appl. Artif. Intel. 2009, 22, 466-472. [CrossRef]

Goémez-Zotano, J.; Alcantara-Manzanares, J.; Olmedo-Cobo, ]J.A.; Martinez-Ibarra, E. La sistematizacion del
clima mediterraneo: Identificacion, clasificacion y caracterizacion climatica de Andalucia (Espaiia). Rev.
Geogr. Norte Gd. 2015, 61, 161-180. [CrossRef]

Estévez, ].; Gavilan, P.; Giraldez, J.V. Guidelines on validation procedures for meteorological data from
automatic weather stations. J. Hydrol. 2011, 402, 144-154. [CrossRef]

Estévez, J.; Gavilan, P.; Garcia-Marin, A.P; Zardi, D. Detection of spurious precipitation signals from
automatic weather stations in irrigated areas. Int. J. Climatol. 2015, 35, 1556-1568. [CrossRef]

Estévez, J.; Gavilan, P; Garcia-Marin, A.P. Spatial regression test for ensuring temperature data quality. Theor.
Appl. Climatol. 2018, 131, 309-318. [CrossRef]

Nourani, V.; Elkiran, G.; Abdullahi, ]J. Multi-station artificial intelligence based ensemble modeling of
reference evapotranspiration using pan evaporation measurements. J. Hydrol. 2019, 577, 123958. [CrossRef]
Islam, A.T.; Shen, S.; Yang, S.; Hu, Z.; Chu, R. Assessing recent impacts of climate change on design water
requirement of Boro rice season in Bangladesh. Theor. Appl. Climatol. 2019, 138, 97-113. [CrossRef]

Yi, Z.; Zhao, H,; Jiang, Y. Continuous daily evapotranspiration estimation at the field-scale over heterogeneous
agricultural areas by fusing aster and modis data. Remote Sens. 2018, 10, 1694. [CrossRef]

Estévez, ].; Garcia-Marin, A.P.; Morabito, ].A.; Cavagnaro, M. Quality assurance procedures for validating
meteorological input variables of reference evapotranspiration in mendoza province (Argentina). Agric.
Water Manag. 2016, 172, 96-109. [CrossRef]

Wang, W.; Van Gelder, PH.; Vrijling, J.; Ma, J. Forecasting daily streamflow using hybrid ANN models.
J. Hydrol. 2006, 324, 383-399. [CrossRef]

Pal, L.; Ojha, C.S.P; Chandniha, S.K.; Kumar, A. Regional scale analysis of trends in rainfall using
nonparametric methods and wavelet transforms over a semi-arid region in India. Int. . Climatol. 2019, 39,
2737-2764. [CrossRef]

Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network
models for rainfall-runoff modeling. J. Hydrol. 2014, 515, 47-58. [CrossRef]

Du, K.; Zhao, Y;; Lei, J. The incorrect usage of singular spectral analysis and discrete wavelet transform in
hybrid models to predict hydrological time series. J. Hydrol. 2017, 552, 44-51. [CrossRef]

Aksoy, H.; Dahamsheh, A. Artificial neural network models for forecasting monthly precipitation in Jordan.
Stoch. Environ. Res. Risk Assess. 2009, 23, 917-931. [CrossRef]

Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716-723. [CrossRef]
Rissanen, J. Modeling by shortest data description. Automatica 1978, 14, 465-471. [CrossRef]

Nourani, V.; Komasi, M. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff
process. J. Hydrol. 2013, 490, 41-55. [CrossRef]

Laio, F,; Di Baldassarre, G.; Montanari, A. Model selection techniques for the frequency analysis of hydrological
extremes. Water Resour. Res. 2009, 45, W07416. [CrossRef]

Dawson, C.; Wilby, R. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25,
80-108. [CrossRef]

Kriegeskorte, N. Crossvalidation, in Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, UK, 2015;
pp. 635-639.

Kalteh, A.M. Enhanced monthly precipitation forecasting using artificial neural network and singular
spectrum analysis conjunction models. INAE Lett. 2017, 2, 73-81. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1080/02626667.2012.754102
http://dx.doi.org/10.1007/s11269-013-0374-4
http://dx.doi.org/10.1016/j.jhydrol.2009.03.038
http://dx.doi.org/10.1016/j.engappai.2008.09.003
http://dx.doi.org/10.4067/S0718-34022015000200009
http://dx.doi.org/10.1016/j.jhydrol.2011.02.031
http://dx.doi.org/10.1002/joc.4076
http://dx.doi.org/10.1007/s00704-016-1982-8
http://dx.doi.org/10.1016/j.jhydrol.2019.123958
http://dx.doi.org/10.1007/s00704-019-02818-8
http://dx.doi.org/10.3390/rs10111694
http://dx.doi.org/10.1016/j.agwat.2016.04.019
http://dx.doi.org/10.1016/j.jhydrol.2005.09.032
http://dx.doi.org/10.1002/joc.5985
http://dx.doi.org/10.1016/j.jhydrol.2014.04.055
http://dx.doi.org/10.1016/j.jhydrol.2017.06.019
http://dx.doi.org/10.1007/s00477-008-0267-x
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1016/j.jhydrol.2013.03.024
http://dx.doi.org/10.1029/2007WR006666
http://dx.doi.org/10.1177/030913330102500104
http://dx.doi.org/10.1007/s41403-017-0025-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Wavelet Multiscale Analysis 
	Availability of Short-Term Meteorological Series 

	Materials and Methods 
	Source of Data 
	Development of Wavelet Neural Network (WNN) Models 
	Statistical Analysis and Performance Criteria 

	Results and Discussion 
	Pre-Processing Input Datasets 
	Performance of the Models 

	Conclusions 
	References

