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Abstract

Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics
of sink populations are not easily modelled using the standard framework of per capita rates of
immigration, because numbers of immigrants are determined by extrinsic sources (for example, source
populations, or population managers). Here we appeal to a systems and control framework to place
upper and lower bounds on both the transient and future dynamics of sink populations that are
subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety
of models found in the literature. We apply the results to case studies derived from published models
for Chinook Salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii).

Keywords: Population ecology, projection model, sink population, immigration, Input-to-state stability

1 Introduction

Many populations are in a state of predictable decline in the absence of immigration, or of deliber-
ate bolstering by conservation management strategies (Pulliam, 1988; Gonzalez and Holt, 2002; Holt
et al., 2003; Roy et al., 2005; Matthews and Gonzalez, 2007). In many cases, such immigration events
vary dramatically in magnitude or structure throughout the lifespan of the population. During natural
metapopulation processes, numbers of immigrants introduced into sink populations (that is, populations
which would decline in the absence of immigration) will vary according to annual variation in the size of
source populations (Pulliam, 1988), or even according to prevailing wind directions (for example, Tay-
lor and Reling (1986)), ocean currents (for example, Victor (1986)), or variation in the porosity of the
between–population habitat matrix (Eriksson, 1996; Diffendorfer et al., 1995). Similarly, the transloca-
tion or reintroduction strategies of conservation managers may be at the mercy of annual fluctuations
in the availability of stock from source populations or captive rearing programmes (Nelson et al., 2002).
Yet it is critical to the conservation of sink populations that we are able to forecast features of future
dynamics, and predict impacts of population management strategies. In this paper we provide a relevant
modelling framework, and analyse populations in this framework.
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Here we choose to model (possibly time–varying or noisy) immigration into otherwise stably declining
populations using matrix projection models with additive, positive inputs. Specifically, we append to
the standard matrix Population Projection Model (PPM) (Caswell, 2001), a time–varying input

x(t+ 1) = Ax(t) + d(t), x(0) = x0, t = 0, 1, 2, . . . , (1.1)

where the input d = d(·) is componentwise nonnegative and vector–valued. This is a complementary
formulation to that of Gonzalez and Holt (2002) and Holt et al. (2003), where typically the model is of
the form (1.1) but with A = A(t) time–varying and possibly nonlinear and d(·) = I a constant vector.
The framework (1.1) is appropriate when immigration is described in absolute values (for example, 1000
individuals per annum) as opposed to proportional to the present population, which would be the result
of modelling immigration as a perturbation to the projection matrix. The immigration rates d(·) may
of course correspond to per capita emigration rates from source populations, but without knowledge
of densities or even locations, and crucially, models for these populations such an approach would only
obscure matters. It is also the case that population ecologists lack detailed quantitative information about
d(·). Simply put, without knowledge of d(·) in (1.1), we cannot project the model to obtain predicted
future population abundance. Notwithstanding the above uncertainty, it is reasonable, however, to
assume that the immigration d(·) is bounded by some known (or estimated) quantities, that is

0 ≤ dm ≤ d(t) ≤ dM , t = 0, 1, 2, . . . , (1.2)

where the above inequalities are understood componentwise and dm and dM are two known, nonnegative
constant vectors. Since the behaviour of d(·) over time is unknown, we can only provide bounds for how
the population develops over time.

The framework proposed here allows us to study not just asymptotic properties of sink populations
subject to immigration, but also the transient propagation of immigration through time (Stott et al.,
2011). More generally, the assumed linearity of the underlying model lends itself to the translation of
analytical methods from systems and control theory. Such methods include: perturbation analysis, as
originally developed in this context by Hinrichsen and Pritchard (1986a,b) and describing the behaviour
of additive noise; and Input–to–State–Stability, developed by Sontag (2008) and collaborators.

Our goal is to provide analytic solutions to the upper and lower bounds of the envelope of future dynamics
of these populations, rather than viewing noisy immigration as a component of a stochastic difference
equation (as in Kesten (1973)) and then estimating means and variances in the density or growth rate of
the sink population, as is performed in, for example, Sykes (1969). Our approach amounts to providing
‘best–and–worst’ case scenarios. We derive conservative (that is, wide) bounds that apply to all possible
magnitudes of immigration, alongside tighter bounds that apply to a subset of immigration scenarios.
We use two case studies to illustrate when and how immigration, and its propagation as transient
dynamics, can promote persistence and growth of an otherwise declining population. The case studies
also demonstrate the flexibility of the control theory approach, by considering demographic structuring
in the immigration dynamics (for example, Robinson et al. (2008)). The case studies are chosen to
demonstrate the relevance of our modelling strategy to both the understanding of natural sink dynamics,
and to the design of conservation management strategies.

2 Methods and Results

2.1 Problem formulation

Our starting point is the matrix PPM with time–varying inputs (1.1). The quantity x(t) denotes the
population’s abundance at time–step t, and is a structured population, composed of N stages which
typically refer to different ages or sizes whose life–history traits vary accordingly. As usual, RN denotes
the set of real vectors with N components. The quantity x0 ∈ R

N denotes the initial population,
which may not be known in practice. The time increments usually coincide with the synchronisation of
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important life–history events or the occurrence of a population census at a given date during the assumed
time–step. The assumption of discrete time is common in population modelling, but analogous models
for continuous time also exist (for a survey of such models see, for instance, Cushing (1998)).

The matrix A describes how an undisturbed population x(t) in (1.1) changes over one time–step, using
life-history information such as survival, growth/stage movement and fecundities of a population. Natu-
rally the entries of A are constrained by biological limits. More precisely, we assume that A in (1.1) is an
N ×N matrix and is componentwise nonnegative and primitive. These assumptions are natural for such
ecological systems (Stott et al., 2010) and imply that the conclusions of the Perron–Frobenius Theorem
(Perron, 1907; Frobenius, 1912) hold. In particular, A has a dominant eigenvalue λ, which is real and
positive, and as is well–known describes the long–term growth or decline of the undisturbed, ambient
population (1.1). We say that A describes a sink (respectively neutral, source) population if λ < 1
(λ = 1, λ > 1). These three cases correspond to asymptotic decline, population stasis or asymptotic
growth respectively.

If undisturbed, the standard PPM is a mean–field model in the sense that two individuals in any given
population stage are identical and have identical futures. Furthermore, the model (1.1) without d(·)
omits any stochasticity present in the system, such as that caused by environmental fluctuations. In
our formulation, the input d(·) represents stochasticity through immigration, with each vector d(t) ∈
R

N . The input d(·) could represent managed immigration (and so is known and under our control).
Alternatively, d(·) might be unknown (and so not under our control). Such a modelling framework is
used in mathematical systems and control theory (see, for example, Sontag (1998)) but seems to have
received less attention in ecological applications.

For any two vectors a = [a1, a2, . . . , aN ]T ∈ R
N and b = [b1, b2, . . . , bN ]T ∈ R

N , where superscript T

denotes matrix transposition, we write a ≤ b when ai ≤ bi for all i = 1, 2, . . . , N . For a matrix B, we
write B ≥ 0 if every entry of B is nonnegative.

2.2 Results

In the presence of immigration d(·), the solution x(t) of (1.1) is given by

x(t) = Atx0 +

t−1∑

j=0

Ajd(t− j − 1), t = 1, 2, . . . . (2.1)

The first term on the right hand side of (2.1) is the contribution to x(t) from the initial population
x0. The second term contains the contribution to x(t) from the immigration term d(·). We comment
here that the immigration vectors d(·), and their extremal values dm and dM should be modelled to all
take the same units as the population x(t). So when x(t) denotes numbers of individuals in each stage
class, the immigration vector d(t) should denote the number of new arrivals. Alternatively, owing to the
linearity of the model (1.1), when x(t) denotes proportions of the population, relative say to the initial
population distribution ‖x0‖1, then so should d(t).

We restrict our attention throughout this work to sink populations where, in the absence of immigration,
the population is asymptotically declining at rate λt with λ < 1. We seek to quantify how immigration
affects these dynamics. When λ ≥ 1, the population grows asymptotically and nonnegative inputs only
make the population larger. Since A ≥ 0 and λ < 1 we have

0 ≤

t−1∑

j=0

Aj = I +A+ · · ·+At−1 = (I −A)−1(I −At) , t = 1, 2, . . . , (2.2)

and
∞∑

j=0

Aj = (I −A)−1 , (2.3)
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where I is the N×N identity matrix. If immigration is constant in time, say with value d∗, or converges to
d∗, then the first term on the right hand side of (2.1) converges to zero and the second term converges to
the constant vector x∗ = (I−A)−1d∗. In words, the population given by (2.1) converges to (I−A)−1d∗.
If d∗ = 0, then x∗ = 0, so that if immigration declines to zero in time then so does the population.
Conversely, if d∗ is positive, then so is x∗, and in this case the population does not die out (even though
A predicts decline to extinction without immigration).

However, as already stated, such quantitative information regarding d(·) is usually not available and
hence we only assume that d(·) is bounded as in (1.2). Using the nonnegativity of all the terms, we can
bound the solution x in (2.1) from above and below by

Atx0 +
t−1∑

j=0

Ajdm ≤ x(t) ≤ Atx0 +
t−1∑

j=0

AjdM . (2.4)

Using the fact that λ < 1 we can compute the sums in (2.4) explicitly to give

Atx0 + (I −A)−1(I −At)dm ≤ x(t) ≤ Atx0 + (I −A)−1(I −At)dM , (2.5)

where we have used (2.2). Both of the bounds in (2.5) are composed of a nonnegative time–varying
component from the initial state x0, and a nonnegative time–varying component from the immigration
term. Since λ < 1, the former terms are decreasing asymptotically whilst the latter are increasing. As
we proceed to demonstrate, these bounds can often be written as a single time–varying component and
a constant additive term. The upper bound in (2.5) is itself bounded from above by Atx0+(I−A)−1dM
so that

x(t) ≤ Atx0 + (I −A)−1dM . (2.6)

The expression (2.6) holds for any dM satisfying (1.2), but is more conservative (that is, worse) than
that in (2.5).

A less conservative upper bound than that in (2.6) can be reformulated from the expression in (2.5). If
dM and x0 are such that x0 := x0 − (I − A)−1dM is nonnegative, meaning that the long–term effect of
the largest level of immigration is not larger than the initial ambient population, then we can rewrite
the upper bound for x(t) in (2.5) as

x(t) ≤ Atx0 + (I −A)−1dM . (2.7)

The first term in the upper bound (2.7) is identical to that of (2.1), but with a perturbed nonnegative
initial population x0. The second term in (2.7) is simply an additive constant vector, which can be
computed.

A similar treatment applies to the lower bound in (2.5). Again, if dm and x0 are such that x0 :=
x0 − (I −A)−1dm is nonnegative then

x(t) ≥ Atx0 + (I −A)−1dm . (2.8)

Notice that as dM ≥ dm then x0 ≤ x0 meaning that if x0 ≥ 0 then x0 ≥ 0 as well.

The bounds (2.7) and (2.8) actually hold for any dM and dm (that satisfy (1.2) as assumed throughout)
but they become most useful when x0, x0 ≥ 0. Indeed, since the terms (I −A)−1dM and (I −A)−1dm in
(2.7) and (2.8) respectively are constant, we can understand the time–varying behaviour of the bounds,
particularly the transient behaviour, by simply considering Atx0 and Atx0. Techniques for describing,
quantifying and estimating transient behaviour of Atx for x ≥ 0 include the concepts of reactivity,
Neubert and Caswell (1997), population inertia, Koons et al. (2007), the Kreiss bound, Townley et al.
(2007); Townley and Hodgson (2008). The paper of Stott et al. (2011) provides a review of this material,
introduces new metrics, and proposes a framework for studying transient behaviour.

For example, using reactivity of At given by ρ(t) := ‖At‖1 (the largest column sum of At), we have that

‖x(t)‖1 ≤ ρ(t)‖x0‖1 + ‖(I −A)−1dM‖1 , t = 1, 2, . . . ,
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where the one–norm ‖y‖1 of a vector y is given by the sum of the absolute values of the components of
y.

Alternatively, the population inertia (Koons et al., 2007) of the matrix PPM x(t + 1) = Ax(t) is an
asymptotic ratio of the population density from initial population distrbution x0 compared to that from
the stable stage structure (that is, from x0 = w, with w a positive right eigenvector of A corresponding
to the dominant eigenvalue; the asymptotic growth rate). The population inertia depends on the initial
population distrbution and is known to be bounded over all x0 from below and above by the attenuated

inertia (denoted ρ
∞
) and amplified inertia (denoted ρ

∞
) given by

ρ
∞

=
vmin‖w‖1

vTw
and ρ

∞
=

vmax‖w‖1
vTw

, (2.9)

respectively. The terms v and w in (2.9) are positively scaled left and right eigenvectors of A corre-
sponding to the asymptotic growth rate of A and vmin and vmax are the smallest and largest entries
of v respectively. We refer the reader to Stott et al. (2011) for full details. The upshot is that when
x0, x0 ≥ 0, for large t the population density is bounded by

λtρ
∞
‖x0‖1 + ‖(I −A)−1dm‖1 ≤ ‖x(t)‖1 ≤ λtρ

∞
‖x0‖1 + ‖(I −A)−1dM‖1 . (2.10)

As an illustrative example, we have graphed sample upper and lower bounds in Figure 1(iii) below. In
Figures 1(i), 1(ii) we have highlighted the two decompositions of these bounds, as described by (2.5) and
(2.7) for the upper bound (respectively (2.5) and (2.8) for the lower bound).

• Figure 1(i) contains Atx0 plotted as a solid line and the time–varying components (I − A)−1(I −
At)dm and (I −A)−1(I − At)dM in squares and circles respectively. These are the components of
(2.5). Without immigration the population density Atx0 is converging to zero.

• Figure 1(ii) contains Atx0 and Atx0 plotted in solid–circles and solid–squared respectively and
constant terms (I −A)−1dM and (I −A)−1dm plotted in dashed lines. These are the components
of (2.7) and (2.8).

The sums of the lines in Figures 1(i), 1(ii) are equal and form the bounds in (2.5) which are plotted
in Figure 1(iii). The population density is bounded between the solid–circled and solid–squared lines.
Crucially, it is evident that for small times the bounds are dominated by the transient behaviour of Atx0

and Atx0 and, as λ < 1, for large t the terms (I − A)−1dM and (I − A)−1dm dominate. These latter
terms provide asymptotic bounds for the population.
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Figure 1: Sample population bounds and their decompositions. See the main text for a detailed descrip-
tion.

Remark 2.1. [(i)]
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1. Although the above bounds give estimates of how large or small components of the population can
be, we highlight that these bounds are achieved for constant immigration d(t) = dM or d(t) = dm
for all t. These are the most extreme inputs permitted in this framework.

2. When dm = 0 then the lower bounds for x(t) in (2.5) and (2.8) collapse to Atx(0), that is, we
learn nothing new. However, in general this by no means ensures that the population dies out.
Here one would need to use specific (for example, probabilistic) information about the immigration
terms {d(j)}tj=0 to derive the likelihood of the population x(t+ 1) dipping below arbitrarily small
population densities.

3. The upper bounds on the population are independent of the minimal immigration magnitude dm,
and similarly the lower bounds are independent of the maximal immigration magnitude dM . Such
an observation should be used in informing management decisions. For example, for a modelled
population where conservation is the goal, efforts should be directed to making dm as large as
possible. Conversely, when seeking to manage for an invasive species; limiting how large dM can
be is desirable. In general, the closer dm and dM are, the tighter the envelope of population
projections.

2.3 Structured immigration and outputs

Tighter bounds in (2.4)–(2.8) can be obtained when more information about immigration is available.
So far we have been considering unstructured immigration. Structured immigration is accommodated
by replacing d(t) in (1.1) by bδ(t), where δ(t) ∈ R is a (possibly unknown) scalar (denoting magnitude)
and b ∈ R

N is a known nonnegative vector (denoting direction). For example, immigration into the first
stage class of a matrix PPM with five stages is given by

b =
[
1 0 0 0 0

]T
.

The condition (1.2) is replaced by

δm ≤ δ(t) ≤ δM , t = 0, 1, 2, . . . , (2.11)

so that the fixed scalars δm and δM determine the interval of immigration magnitudes. To make the
modifications to the bounds presented so far the terms d(t), dm and dM are replaced by δ(t)b, δmb and
δM b respectively. For example, (2.7) and (2.8) become

Atx0 + δm(I −A)−1b ≤ x(t) ≤ Atx0 + δM (I −A)−1b , t = 0, 1, 2, . . . .

Taking the above suggestions into consideration, the model (1.1) can be extended to accommodate
structured immigration and an observation y(t):

x(t + 1) = Ax(t) + bδ(t), x(0) = x0

y(t) = Cx(t),

}

t = 0, 1, 2, . . . . (2.12)

The symbol C in (2.12) denotes a M by N matrix, which includes the special case when C = cT is a
row vector so that y(t) = cTx(t) is a scalar. In systems and control, the term y is called an output
or measurement of (2.12) and is a linear combination of the components of the population x(t). For
example, if measurements of the ith stage class of a population are taken then C = cT is given by

cT =
[
0 . . . 0 1 0 . . . 0

]

︸ ︷︷ ︸

ithentry equal to one

, so that y(t) = cTx(t) = xi(t) .

Similarly, if total population abundance, ‖x(t)‖1, is measured at each time–step t then C = [ 1 ... 1 ] so
that

y(t) =
[
1 . . . 1

]
x(t) =

N∑

i=1

xi(t) = ‖x(t)‖1 . (2.13)
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The inclusion of C allows us to see how different aspects of the population change in the presence of
immigration d(·). If C is nonnegative then it respects the inequalities derived thus far. So for structured
immigration, bounded as in (2.11), we have

CAtx0 + δm

t−1∑

j=0

CAjb ≤ y(t) ≤ CAtx0 + δM

t−1∑

j=0

CAjb , (2.14)

and as λ < 1 this gives

CAtx0 + δmC(I −A)−1(I −At)b ≤ y(t) ≤ CAtx0 + δMC(I −A)−1(I −At)b . (2.15)

Similarly, the bounds (2.7) and (2.8) become

CAtx0 + δmC(I −A)−1b ≤ y(t) ≤ CAtx0 + δMC(I −A)−1b . (2.16)

The estimates (2.14)–(2.16) are valid for all t = 0, 1, 2, . . . .

2.4 Incorporating uncertainty

Ecological models are inherently uncertain and are prone to both environmental and demographic
(through vital rates) stochasticity (Tuljapurkar, 1990). Furthermore, the matrices used in population
projection models are usually fitted statistically to data (see Caswell (2001, Chapter 6) and the refer-
ences therein) which leads to differences between ‘true’ and modelled vital rates. Such uncertainty is
overlooked in (1.1) by using a fixed matrix A.

So how can we incorporate into our framework for handling immigration parametric uncertainty in the
matrix specifying the projection model? One approach, identical in spirit to our earlier handling of
uncertain, but bounded, immigration is to assume that A is unknown, but to assume that we have
known, or estimated, bounds for A so that

0 ≤ Am ≤ A ≤ AM . (2.17)

The matrices Am and AM in (2.17) are assumed known. For example, survival rates might not be known
precisely but lower and upper bounds on survival might be available. More generally, the condition
(2.17) would allow us to capture lower and upper estimates of vital rates. Since λ(Am) ≤ λ(A) < 1 (by,
for example, Berman and Plemmons (1979, p.27)), the lower bounds presented thus far now hold with
A replaced by Am. For instance, the lower bound in (2.5) becomes

x(t) ≥ At
mx0 + (I −Am)−1(I −At

m)dm . (2.18)

If λ(AM ) < 1, then the upper bounds also hold with A replace by AM . For example:

x(t) ≤ At
Mx0 + (I −AM )−1(I −At

M )dM . (2.19)

Moreover, we can replace A in (1.1) by a time–dependent matrix A(t) and the bounds (2.18) and (2.19)
hold, provided that A(t) satisfies (2.17) for every t = 0, 1, 2, . . . ,.

Analogously to Remark 2.1, the ‘smaller’ the difference between Am and AM in (2.17), the tighter the
resulting population projection envelope, that is, the better the estimates become. Crucially, however,
the above bounds are tight in the sense that if A = Am or A = AM for all t then the inequalities in
(2.18) and (2.19) are in fact equalities.

2.5 Time– and spatial– averaged behaviour

So far we have been viewing additive immigration in (1.1) as a deterministic, but essentially unknown,
process and thus concentrated on establishing bounds for the resulting population which hold for any

immigration sequence (that is bounded in the sense of (1.2) or (2.11)).
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It is possible to take a more stochastic approach and view immigration as a random process so that d(·)
is a sequence of random variables and thus so is the population x(t), which itself satisfies a stochastic
difference equation (see, for example, Kesten (1973) or Shaikhet (1996)). Such an approach to matrix
projection modelling has been addressed in Sykes (1969). In this situation it is natural to ask what are the
statistical moments of such a population? Assuming that the sequence d(·) = bδ(·) is IID (independent
and identically distributed) with expected value δ∗, we write z(t) := E(x(t)), the expected value of x(t).
Using the linearity of expectation we compute that z(t) satisfies the deterministic difference equation

z(t+ 1) = E(x(t+ 1)) = E(Ax(t) + bδ(t)) = AE(x(t)) + bE(δ(t))

= Az(t) + bδ∗ , t = 0, 1, 2, . . . , (2.20)

with asymptotic limit
lim
t→∞

E(x(t)) = (I −A)−1bδ∗ . (2.21)

Notice that the dynamics (2.20) governing E(x(t)) (the expectation of the PPM with random immigra-
tion) are in fact the same as those governing the population subject to constant immigration taking its
expected value (the PPM subject to expected immigration). That is where we replace d(t) = bδ(t) in
(1.1) by its expected value for every t. As such the limit (2.21) is the same for both populations.

The expected values E(x(t)) considered so far are averages taken over space, that is the range of values
the random variable can take at each time–step. An alternative is to compute the time–average of a
single realisation of the population over t steps, which is defined by

x(t) =
1

t

t−1∑

j=0

x(j) ,

and is itself a random variable. The sequence of time–averages of the population satisfy a difference
relation, which we do not give here but it is straightforward to demonstrate, invoking the Strong Law of
Large Numbers, that the time and spatial averages coincide asymptotically (almost surely), so that

lim
t→∞

x(t) = (I −A)−1bδ∗ = lim
t→∞

E(x(t)) . (2.22)

The first equality in (2.22) can alternatively be seen as a strong Ergodic Theorem. These conclusions
do not mirror those of Gonzalez and Holt (2002), Holt et al. (2003), Roy et al. (2005), Matthews and
Gonzalez (2007), where persistence of declining and sink populations subject to immigration has also
been studied both theoretically and experimentally. There it is established that, broadly speaking,
time–varying vital rates and constant immigration give rise to populations that are in expectation larger
than the mean model would suggest. This so–called ‘inflationary effect’ is further exaggerated by positive
autocorrelation in the vital rates. We refer the reader to the above mentioned articles for more details. We
believe that the crucial difference between the differing conclusions is that the uncertainty in the models
considered here appears additively in the form of unknown immigration, as opposed to multiplicatively
in the form of time–varying vital rates.

We finish this section by commenting on the second moments of the population, when viewed as a
sequence of random variables. A more involved calculation gives that the covariance matrix of x(t)
converges to

C∞ − (δ)2(I −A)−1bbT (I −A)−T ,

as t → ∞, where C∞ is the unique positive definite solution of

C∞ = AC∞AT + (δ)2bT (I −A)−TAT + (δ)2A(I −A)−1bT + ((δ)2 − σ2)bbT ,

(see Ran and Reurings (2002)) and σ2 = var (d(t)). The matrix C∞ can be found as the limit of the
iterative scheme

C(t+ 1) = AC(t)AT + δbzT (t)AT + δAz(t)bT + ((δ)2 − σ2)bbT t = 0, 1, 2, . . . ,

where recall that z(t) = E(x(t)). In particular, the variance of x(t) converges to a finite and computable
quantity.

8



3 Examples

Example 3.1. The paper by Kareiva et al. (2000) considers the management of a declining population
of Chinook Salmon (Oncorhynchus tshawytscha) in the Columbia River Basin of North America. Part
of this species’ decline is attributed to damming of the river basin, and the resulting prevention of
migration. For example, the Hell’s Canyon Dam has completely blocked salmon passage and eliminated
much spawning habitat. While increasing the Chinook Salmon population may take many simultaneous
and interconnected intervention strategies, we consider how the population might change subject to a
conservation measure or ecological change leading to reintroduced immigration into the population. We
will use the model presented in Kareiva et al. (2000), which is a 5 × 5 matrix PPM for female salmon,
with each stage denoting age in years and is given by

A =









0 0 0.326 5.02 39.7
0.0131 0 0 0 0

0 0.8 0 0 0
0 0 0.790 0 0
0 0 0 0.673 0









, (3.1)

with dominant eigenvalue λ = 0.7602 < 1. We consider adding immigration into the largest stage class;
spawning females, so that

b =
[
0 0 0 0 1

]T
. (3.2)

Kareiva et al. (2000) does not provide estimates of a suitable initial population x0 and so for our
simulations we assume that the population is initially at the stable distribution

x0 =
[
93.3932 1.6064 1.6905 1.7559 1.5540

]T
, (3.3)

(the positive right eigenvector corresponding to the eigenvalue λ) when immigration is included. Again,
in absence of suitable data, we have normalised w so that its components sum to 100 (so that the
components of x(t) correspond to percentages of population density relative to the initial population
distribution). In this case

(I −A)−1b =
[
53.9849 0.7059 0.5647 0.4459 1.3000

]T
, (3.4)

and therefore x0 := x0 − (I − A)−1dM ≥ 0 if δM ≤ 1.20, that is, at most 1.2% of the initial population
density immigrates in each stage.

Figure 2 contains the bounds (2.5) for this example plotted with two sample projections x(t) subject to
uniformly distributed and periodic immigration with values bounded between δm = 1.6 and δM = 10.
The simulations are intended to be illustrative and the immigration bounds have been chosen with this
in mind. The aboved calculated threshold δM = 1.2 is not used as we deem it too small to effectively
illustrate the material presented. As noted in Remark 2.1 (i), the bounds of the envelope are attained for
sustained extremal (maximal or minimal) immigration, so the estimates are sharp. Note that although
qualitatively the bounded regions are very similar in appearance we draw attention to the hugely variable
scales on the y–axes. This is to be expected as the term (I−A)−1b in (3.4) that appears in the bounds in
(2.5) is biased towards the first stage class. Intuitively, since immigration acts on the most reproductive
stage class, even small additions will result in a substantially larger juvenile population in the next time–
step. Note also that the projected trajectories and the bounds coincide in Figure 2 (b)–(e) for the first
few time–steps. This is again because immigration is acting on the final stage–class, the Leslie matrix
(Leslie, 1945) structure of A ensures a delay before the effect of these immigrants is felt in the earlier
stage classes.

For the random immigration considered here large regions of the envelope are ‘visited’ by the resulting
population trajectories. We have also plotted the population projection subject to the spatial averaged
mean of immigration, in this instance δ(t) = δ∗ = δm+δM

2
, as immigration has been assumed uniformly

distributed. For such constant immigration it follows that (as in (2.21)) x(t) converges to

δ∗(I −A)−1b = 5.8
[
53.9849 0.7059 0.5647 0.4459 1.3000

]T

=
[
313.1123 4.0942 3.2753 2.5862 7.5400

]T
,
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with ‖δ∗(I −A)−1b‖1 = 330.6080, corresponding to over 200% increase in population density relative to
that of the original population.

The bounds as presented can be used to help inform management decisions. For example, what is the
minimum per time–step immigration level that maintains an asymptotic population density no smaller
than that of the original population? Recall that asymptotically x(t) is bounded from below by

(I −A)−1bδ̃m ,

where δ̃m is the to–be–determined lower bound for immigration. Insisting that asymptotic population
density is at least that of the original population amounts to ensuring that ‖(I − A)−1bδ̃m‖1 ≥ 100 so
that with 1T = [ 1 1 1 1 1 ]1T (I −A)−1bδ̃m ≥ 100 ⇐⇒ δ̃m ≥

1001T (I − A)−1b
= 1.7543 .

Alternatively, note that at stable distribution, the adult stage class (stage class five) comprises roughly
1.6% of the population structure. What is the minimum per time–step immigration level that asymp-
totically doubles this proportion? Such a requirement amounts to choosing δ̃m now so that

bT (I −A)−1bδ̃m ≥ 3.2 ⇐⇒ δ̃m ≥
3.2

bT (I −A)−1b
= 2.4615 .

Such a minimum level of immigration ensures that the asymptotic population structure is no smaller
than

(I − A)−1bδ̃m =
[
132.8840 1.7376 1.3900 1.0976 3.2000

]T
,

which note that has total density ‖(I−A)−1bδ̃m‖1 = 140.3090, that is roughly 40% larger than the initial
population density.
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Figure 2: Results of Example 3.1. (i) Uniformly distributed immigration. (ii) Periodic immigration.
In each subplot (a) contains two sample immigration trajectories and the lines y = δm = 1.6 and
y = δM = 10. The resulting projected stages 1–5 are plotted in (b)–(f) respectively. The dashed and
dotted lines are the bounds (2.5) and (2.6) respectively. The lines in (i) (b)–(f) with triangles are the
stages of the population subject to the mean immigration δ(t) = δm+δM

2
for all t = 0, 1, 2, . . . .



Example 3.2. Kottas (2012) considers the viability of endangered populations of blowout penstemon
(Penstemon haydenii), a perennial plant species that is endemic to the Sandhills of Nebraska and the
northeast Great Divide Basin in Wyoming. Blowout penstemon’s habitat is limited to eroded areas on
hillsides or depressions, called blowouts. The viability of penstemon is dependent on blowout suitability,
particularly the formation of vegetative cover, as above–ground penstemon cannot persist in an envi-
ronment consisting largely of grasses that have compact growth and an efficient root system. Until the
beginning of the 20th century traditional agriculture allowed penstemon to persist by eliminating this
vegetative cover and cultivating additional blowout formation.

As a grazing economy replaced traditional agriculture, vegetative cover began to increase and the en-
vironment for penstemon began to decrease. Additionally, factors such as reduced fire frequency lead
a reduction in bare, blowing sand, restricting penstemon to isolated patches with decreasing suitabil-
ity, with little opportunity for remaining viable seeds to migrate to a different habitat. Since blowout
penstemon populations are enhanced by transplanting seeds and seedlings into previously unoccupied
blowouts, which has increased the number of plants and the number of blowout populations overall, we
are especially concerned with variability in factors influencing blowout formation. This variability in
blowout formation is reflected in the immigration vector d(t) = δ(t)b, with b given by (3.5).

Since a dispersed population will be initially concentrated exclusively on seeds and seedlings we will
assume in this example that dispersed populations are exclusively leftover viable seeds from a previous
environment. Thus, the vector b will take the form

b =
[
1 0 0 0

]T
. (3.5)

The projection matrix for blowout penstemon in Kottas (2012) is given by

A =







0.003 0 0.167 0
0.008 0.451 1.348 0
0 0.146 0.471 0.195
0 0 0.210 0.334






, (3.6)

with λ = 0.94 < 1. We consider the scenario where a recently-formed and previously unoccupied
blowout is colonised by seeds from other dispersing penstemon populations after time t = 0, with the
number of colonising seeds varying from δm = 1.5 × 105 and δM = 1.5 × 107 (the reason for these
values will become apparent in a subsequent paragraph). Thus, the initial population vector x0 in this
case study is equal to the zero vector. In Figure 3 we plot the population in each demographic stage
(seeds, seedlings, flowering adults and vegetative adults) for two different immigration trajectories and
immigration sequences coming from two different processes. The first process models IID uniform random
immigration with mean δm+δM

2
. The second process models deterministic periodic immigration with the

same mean. Note that, in both cases, the variability in the last three demographic stages (Figure 3
(c)–(e)) is rather small, mimicking that of the PPM with constant (averaged) immigration, while the
variability in the seed bank (Figure 3 (b)), is large. As in Example 3.1, this is to be expected, as the
term

(I −A)−1b =
[
1.0063 0.0629 0.0020 0.0062

]T
,

is dominated by the seed and seedling stages of the population. Similarly with Example 3.1, the pop-
ulation envelope can be largely filled, depending on the immigration that is assumed to occur. Notice,
however, that fluctuations in population density are dissipating as one moves from looking at the seed
bank to the seedling, flowering adult and vegetative adult stages, respectively. This result provides a
noticeable contrast with the result in Example 3.1. There the effects of a particular immigration regime
is qualitatively apparent throughout the stage space. This is because immigration enters into the popu-
lation at a reproductive stage, while in the examples illustrated in Figure 3, immigration enters into the
population at a non–reproductive stage, and thus the impact of immigration on other stages is slower
and less pronounced.

In the same vein as in Example 3.1, the bounds derived in this manuscript can be used to help establish
some benchmarks needed for population restoration and/or conservation. Kottas (2012, pp.18 –20)
outlines an approved set of specific criteria that must be met for penstemon to be reclassified from

12



endangered to threatened. These criteria included having a collection of populations “each with a
minimum of 300 plants at low points of population fluctuations, that are documented to be naturally–
reproducing and self–sustaining”. In our framework, satisfying this criterion would amount finding δm
so that

cT (I −A)−1bδm ≥ 300,

where cT =
[
0 0 1 0

]
. Since cT (I − A)−1b = 0.0020 the minimum immigration level δm needs to

exceed 1.5 × 105 seeds in order to ensure a population consisting of at least 300 naturally-reproducing
and self-sustaining plants.
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Figure 3: Results of Example 3.2. (i) Uniformly distributed immigration. (ii) Periodic immigration. In
each subplot (a) contains two sample immigration trajectories and the lines y = δm = 1.5 × 105 and
y = δM = 1.5 × 107. The resulting projected seed bank, seedling, flowering adult and vegetative adult
population stages are plotted in (b)–(e) respectively. The dashed and dotted lines are the bounds (2.5)
and (2.6) respectively. The lines in (i) (b)–(e) with triangles are the stages of the population subject to
the mean immigration δ(t) = δm+δM

2
for all t = 0, 1, 2, . . . .
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4 Discussion

The dynamics of stage–structured populations can display diverse and complicated behaviour over time,
owing to the influence of transient amplification and attenuation (Stott et al., 2011); phenomena that
is further exaggerated by immigration. When immigration is stage structured and time–varying, but
crucially bounded, one approach to describe the resulting population envelope is to simulate repeatedly
over a range of parameter values and derive statistical moments (means, variances) of growth rates and
future densities (Engen et al., 1998; Tenhumberg et al., 2008). Such an approach is computationally
intensive – in a five stage model the range of unstructured immigration is the five dimensional hypercube
[δm, δM ]5. To project just 1000 simulations along each of the “edges” of the hypercube requires 10005 =
1015 simulations, and even this will still not fully describe the possible range of population trajectories.
The alternative approach we have taken is to describe, analytically, the upper and lower bounds of the
resulting population projection envelope. We have appealed to the philosophy of systems and control
theory and used the assumed linearity (that is, assumed density independence) and componentwise
nonnegativity of the model to determine bounds for future population densities and future densities of
specific demographic stages.

How might the bounds derived be useful? The first important observation is that immigration in the
present has impacts for the future of a population. As noted in Example 1, immigration into the adult
stage class provides a substantial boost to future generations via the offspring of this reproductive stage.
The results presented provide tools for describing long term effects of sustained immigration. Second,
the formulae provide estimates for “best” and “worst” case scenarios that can be used as guides for
management strategies. In emergency situations, conservation biologists often rely on captive rearing,
translocations and species reintroductions, to bolster or recover populations of declining or locally–
extinct species (Sarrazin and Barbault, 1996). Such conservation programmes are expensive, laborious
and risk the welfare of endangered species. Hence we consider it important to forecast the future dynam-
ics resulting from conservation interventions, and optimise reintroduction campaigns to maximise the
probability of long–term population persistence. Conservation strategists might consider time–varying
reintroductions, or focus on specific lifestages of the endangered organism, to exploit transient dynamics
and best achieve their goals. Trade–offs between the magnitude, structure and timing of reintroductions
might help to design management programmes, or adjust them adaptively, to help deal with financial or
logistical constraints (Mart́ınez-Abráın et al., 2011).

The envelope of trajectories of disturbed sink populations can also be useful for the design of biological
control strategies. Biocontrol agents are introduced to crops, greenhouses or natural environments to
control pest, weed or invasive populations. It has been argued that when such a strategy works, the
biocontrol agents themselves are destined to decline to local extinction (Shea and Possingham, 2000).
It is conceivable, however, that as biocontrol agent numbers reach low levels their efficacy is sufficently
reduced to allow the pest to persist or for new outbreaks of the pest occur. The bounds derived could
help inform release programmes by predicting the required additional biocontrol agent to avoid their
local extinction over a given time period. As with conservation management strategies, exploration of
structured introductions could help to maximise the persistence of the biocontrol agents alongside the
minimisation of the costs of introduction or satisfaction of logistical constraints.

We have additionally extended the treatment of immigration on sink populations to the case when
there is uncertainty or density or time dependence in the underlying demographic parameters. In reality,
environmental fluctuations will influence not just the magnitude of immigration but also the demographic
parameters of the ambient population (Tuljapurkar and Haridas, 2006) and thus machinery to handle
such stochasticity is required. As demonstrated, the material presented here extends to such a situation
when an estimate on the size of the perturbations is known. As with all robustness type tools, the price
we have to pay for greater model uncertainty is more conservative (that is, wider) estimates of population
trajectories.

Defining and refining these bounds is important for our understanding of population ecology and life–
history evolution. The bounds on sink populations with additive immigration can be used to measure
or forecast the contribution of subpopulations to the global dynamics of metapopulations (Kawecki and
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Holt, 2002). This can aid the analysis of patterns in the evolution of dispersal strategies. Dispersive
species, for example, might benefit from focussing their dispersal into lifestages that contribute most to
transient amplification, yielding short term population growth even when long–term decline is inevitable
(Tenhumberg et al., 2009). Such evolution to exploit transient dynamics might be called “making the
best of a bad job”, whereby dispersing lifestages take a gamble that environmental conditions will im-
prove to allow long–term population increase before the sink population goes extinct. According to our
bounds, repeated additive immigration can reverse the decline of sink populations. This phenomenon was
also seen in Gonzalez and Holt (2002); Holt et al. (2003); Roy et al. (2005) and Matthews and Gonzalez
(2007) for models with uncertain (and often autocorrelated) life-history traits and constant immigra-
tion. Our results additionally show that the demographic structure of these ingress events can make
a large difference to the resulting envelope of population densities. Microparasites could also evolve to
exploit positive growth via additive immigration: even though within–host dynamics, or between–host
transmission, are predicted to decline in the long–term, microparasites could persist sufficiently long,
thanks to a combination of transient amplification and immigration, to allow adaptation to the “sink”
host population and subsequent disease emergence (Holt and Gomulkiewicz, 1997; Antia et al., 2003;
Benmayor et al., 2009).
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