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Deterministic dynamic models for coupled resident and invader populations are considered with the purpose

of finding quantities that are effective at predicting when the invasive population will become established

asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations

are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic

transient behaviour—phenomena not encountered in scalar models. Analysis using a linear Lyapunov function

demonstrates that for the class of population models considered, a large so-called population inertia is

indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore,

for the class of models considered, we find that the so-called invasion exponent, an existing index used in

models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these

findings through numerical examples and a biological interpretation of why this might be the case is discussed.
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. Introduction

Invasion is a key biological process that plays a crucial role in struc-

uring ecological systems. However, invasive species also threaten na-

ive biodiversity worldwide [1]. Biological invasions are influenced by

nvironmental stresses, exploitation, habitat fragmentation, human

ravel, transportation, pollution and, increasingly, climate change [2].

riting in [3], Lodge comments “The difficulty of testing for patterns

rom real case studies has led to a potentially fruitful increase in mathe-

atical . . . models of invasion”. Why invaders invade, and what char-

cterises a successful invader, are hugely important questions that

ave been the focus of much research by biologists, ecologists and

athematicians for at least the last 60 years, arguably since the mono-

raph of Elton [4]. Needless to say, the study of biological invasion and

ts prediction is mature and the resulting academic literature is vast,

lthough biological invasion is not even a universally agreed term [5].
∗ Corresponding author.
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or further background.

From a mathematical modelling perspective, the potential for

symptotic (that is, long term) biological invasion may be inferred

y computing the invasion exponent, introduced in [13]. We recall

hat the invasion exponent is the linearised exponential growth rate

f the invader from zero with the resident at a nonzero equilibrium,

ay at carrying capacity. If the invasion exponent is negative, then

nvasion is predicted to fail asymptotically. More precisely, linear sta-

ility theory guarantees that any invasion attempt fails when the

nitial abundance of invader is small enough and the resident does

ot deviate too far away from its starting equilibrium. However, to

se these tools to predict invasion relies on overcoming the caveats

oncerning “small enough” and “not too far away”. To properly un-

erstand the asymptotic outcome of an invasion attempt requires a

eeper understanding of the underlying dynamics. The pivotal object

s the basin of attraction [14, Section 8.2] (also known as the stability

egion [15]) of the resident-only equilibrium which is the set of ini-

ial states, that is, initial resident–invader distributions, from which

he combined populations converge to the resident-only equilibrium.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 Available on request from Stuart Townley.
Determining analytically the basin of attraction of a given equilibrium

of a non-linear model is non-trivial, often intractable, and instead sub-

sets of basins of attractions are estimated using Lyapunov functions

[14, Chapter 2].

We consider deterministic, discrete-time (difference equation) dy-

namic models for two interacting populations—termed a resident and

an invader. The models seek to capture an in situ initial point of inva-

sion, and the focus is therefore on establishment of the invader (see,

for example, [16]), rather than spatial spread. As such the models do

not contain an explicit spatial component. The resident and invader

are modelled in density-dependent competition with one another

through, for example, competition for the same resources. Our ratio-

nale is that the resident and invader are phenologically similar and

thus have similar life-histories but, at some abundances, the invader

is fitter (in a sense we make precise later) than the resident. Such a sit-

uation admits the possibility of successful invasion which, presently,

we take to mean that from its initially “small” abundance the invader

persists asymptotically. The enhanced fitness of the invader is a conse-

quence of a density-dependent vital rate, denoted α, that is assumed

to appear only in the invader dynamics. To (deliberately) complicate

matters, we assume that α acts as an Allee effect [17] as well, so that

invader fitness is penalised at lower abundance. The inclusion of the

Allee effect results in a negative invasion exponent which indicates

that invasion should fail when the initial abundance of invader is low.

We refer the reader to [18] for more background on the use and role of

Allee effects in modelling biological invasions. Given the above setup

we seek indicators of when an invasion attempt is likely to be suc-

cessful. In other words, we seek proxies for the “size” of the basin of

attraction of the resident-only equilibrium.

A crucial phenomenon of stage-structured (that is, vector valued)

dynamical systems is transient behaviour or transients—short term

behaviour, particularly dynamics that deviate away from equilibrium.

Engineers and numerical analysts have recognised for many years the

importance of transient dynamics. Dahlquist and Lozinskii indepen-

dently introduced the logarithmic norm in [19] and [20], respectively,

to capture transients in numerical schemes. The logarithmic norm has

more recently been termed the initial growth rate by some authors;

see, for example, [21, p. 653]. Ecologists are increasingly recognising

transients as a source of important, yet less predictable, dynamics

[22–26]. Transient dynamics of even seemingly simple linear models

(specified by (2.1)) can be exotic and depend on both the projection

matrix and the initial state. Furthermore, no one scalar index entirely

captures transient behaviour. This is in marked contrast to asymptotic

dynamics which, for linear systems with nonzero initial state, is often

wholly determined by a single scalar quantity—the spectral radius

of the projection matrix. We comment that neither linear stability

theory, which is based on eigenvalues, or knowledge of the basin of

attraction, describe transient behaviour.

Appealing to a linear Lyapunov functional demonstrates that the

quantity known as population inertia [27] in the context of matrix

population modelling of the linearised invader dynamics is indicative

of the outcome of an invasion attempt. Inertia is the ratio of asymp-

totic population size of linearised matrix projection models relative

to linearised projections from steady-state. It is a function of both

the life-history parameters of a population and its initial distribu-

tion. Our main result, Theorem 1, contains a sufficient condition for

an invasion attempt to fail. It states in words that population iner-

tia acts as a proxy for the “size” of the basin of attraction in that, all

else equal, the basin shrinks with increasing inertia. Then for a given

invader abundance, the model with lower inertia will have a larger

basin of attraction and therefore a lesser risk of being invaded. As

a Lyapunov-type argument, the theorem is conservative in its esti-

mates and does not state that large population inertia implies that

an invasion attempt will succeed. However, numerical examples sug-

gest that this converse statement is also true: the larger the inertia,

the higher the risk of an invasion succeeding. An informal explana-
ion of this phenomenon is that inertia is also indicative of transient

rowth of the invader—itself a requirement for invasion. That iner-

ia depends on the initial population distribution helps to capture its

ole in invasion. Furthermore, the linear Lyapunov analysis highlights

relationship between initial invader abundance, population inertia

nd the Allee effect/boost to fitness function α in determining the

utcome of an invasion. Consequently, the estimates obtained in de-

iving Theorem 1 yield an inverse relationship between the boost to

nvader fitness from α required for a successful invasion and popula-

ion inertia. The numerical examples also demonstrate that the same

nverse relationship is not observed between the boost to invader fit-

ess from α required for a successful invasion and invasion exponent.

n other words, a more negative invasion exponent does not always

mply that a larger boost to invader fitness is required for a successful

nvasion. Our observations suggest a rule of thumb: large population

nertia of an invasion attempt indicates that the invasion attempt is

ikely to be successful, even when the invasion exponent is negative.

n addition, when population inertia is large then the exact functional

orm or contribution from density-dependences and Allee effects is

ess important. This foreknowledge is useful owing to the difficulty of

ccurately modelling the “correct” density-dependences noted in, for

xample, [28].

The present work draws on the PhD thesis [29, Chapter 6] of the

econd author and the masters thesis1 of the third, and is organised

s follows. Section 2 describes structured population models and cul-

inates in presenting the class of coupled resident–invader models

e consider. Section 3 revisits population inertia and contains our

ain result. Section 4 contains numerical examples and Section 5 is

he discussion. Mathematical proofs of our assertions are recorded in

he appendices.

Notation: In order to appeal to as broad an audience as possible,

e have tried to limit the use of technical mathematical notation.

ere we introduce some notation. The symbol N0 denotes the set of

onnegative integers. For positive integer n, R
n denotes usual real

-dimensional Euclidean space and R
n+ denotes the nonnegative or-

hant. A vector z in R
n belongs to R

n+, denoted z ∈ R
n+ if zk � 0 for

very k, where zk denotes the kth component of z. We call vectors

∈ R
n+ nonnegative and say that z ∈ R

n+ is positive if zk > 0 for every

. As usual, we let R = R
1 and R+ = R

1+. For vector z ∈ R
n, the term

z‖1 denotes the vector one-norm of z

z‖1 :=
n∑

k=1

|zk| =
n∑

k=1

zk , if z nonnegative.

hroughout the manuscript the superscript T denotes matrix or vector

ransposition, so that if z ∈ R
n then zT is a row vector. Finally, recall

hat a square nonnegative matrix A is primitive if there exists an

nteger k such that every component of Ak is positive.

. Coupled resident–invader population models

.1. Matrix population projection models for single populations

Matrix population projection models (PPMs) are simple, yet pop-

lar, tools for modelling the change of abundance or density of a

opulation over time. The monograph [30] by Caswell is dedicated

o their study, and we refer the reader as well to the textbook [31]

s an alternative reference. PPMs are structured population models,

eaning that the modelled population is partitioned into discrete

ge-, size- or stage- (such as larval, pupal, adult, etc.) classes. A linear,

ime-invariant matrix PPM is given by

(t + 1) = Ay(t), y(0) = y0, t = 0, 1, 2, . . . , (2.1)
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here y(t) ∈ R
n+ denotes the structured population, in integer n stage-

lasses, with initial population distribution y0 and A is an n × n com-

onentwise nonnegative matrix. The time-steps t in (2.1) are assumed

xed: a week, month, or breeding cycle, for instance.

The matrix A in (2.1) is often called the projection matrix, and

ontains life-history parameters of the population, such as recruit-

ent, survival and transitions between stage-classes. When A is prim-

tive (a reasonable assumption for meaningful ecological models [32])

nd y0 � 0 then the asymptotic behaviour of the model (2.1) is de-

ermined entirely by the spectral radius of A, denoted r(A). We recall

hat the spectral radius of a square matrix M is defined as

(M) := max {|λ| : λ ∈ σ(M)} , (2.2)

hereσ (M) denotes the spectrum of M, that is, its set of eigenvalues. If

is nonnegative and primitive then the celebrated Perron–Frobenius

heorem [33,34] (for a more recent treatment see [35, pp. 26–27]) im-

lies that r(M) is an eigenvalue of M and that every other eigenvalue

f M has modulus strictly less than r(M). Consequently, the spectral

adius in this case is sometimes called the dominant eigenvalue or

symptotic growth rate. When r(A) < 1 or r(A) = 1 then the popula-

ion y(t) modelled by (2.1) is predicted to decline to zero or reach a

onzero, constant population distribution over time, respectively.

A downside with matrix PPMs (2.1) is that when r(A) > 1 they

redict asymptotically unbounded, exponential growth—a situation

hat is impossible physically. A refinement of the model (2.1) is to

nclude density-dependence, so that the population at the next time-

tep is not linearly proportional to the current population. Models of

he form

(t + 1) = (
AR + eφ(‖x(t)‖1)f

T
)
x(t), x(0) = x0, t = 0, 1, 2, . . . ,

(2.3)

ave been used to model both fish species in [36, pp. 316–323] or

onocarpic plants, such as Platte Thistle, in [37]. The model (2.3) is

till a structured population model, with n stages, say, and contains

oth density-independent and -dependent components. Here the n

n matrix AR models vital rates that are assumed to be density-

ndependent. We assume that

(AR) < 1 , (2.4a)

hich is certainly always the case if AR only contains survival and

rowth rates (to subsequent stage-classes). The term eφ(‖x(t)‖1)fT

n (2.3) models recruitment into the population which are the vital

ates that are assumed to be density-dependent. The nonnegative

ector e describes the distribution of new population members and
T is a nonnegative vector weighting the recruitment contribution of

ach stage-class. The function φ models density-dependence, owing

o competition for resources in the population at higher abundances

nd is assumed to satisfy

φ : R+ → R+ is a nonzero, differentiable and strictly

decreasing function. (2.4b)

he dynamics of models of the form (2.3) have been studied by many

uthors across numerous scientific and engineering contexts, such

s in [38] for population modelling. Depending on the interplay be-

ween the components AR, e, f and φ and under certain mathematical

onditions it is known, for example, that (2.3) may exhibit asymp-

otic extinction, blowup or global asymptotic stability of a unique

quilibrium. As φ is assumed strictly decreasing, in Appendix A we

emonstrate that the scaling condition

= φ(1)f T(I − AR)
−1e , (2.4c)

nd assumption

R + ef T is primitive, (2.4d)

ogether imply that

∗ := γ (I − AR)
−1e , (2.5)
s a unique nonzero equilibrium of (2.3) satisfying

∗ = (AR + φ(‖x∗‖1)ef T)x∗, (2.6)

here γ > 0 is a normalisation constant ensuring that ‖x∗‖1 = 1. The

rimitivity assumption (2.4d) in fact implies that AR + efTp is primitive

or every p > 0 and, as already mentioned, is a reasonable assumption

or ecological models.

We have not yet imposed assumptions that determine the dy-

amic behaviour of (2.3) away from the equilibrium x∗. Since we are

rimarily interested in behaviour near x∗ and want to include as large

range of models as possible, we only prescribe the local assumption

hat

(AR + φ(1)ef T + φ ′(1)ef T x∗1T) < 1 , (2.4e)

here φ′ denotes the derivative of φ and 1 ∈ Rn+ is given by

T := [
1 1 . . . 1

]
.

ssumption (2.4e) implies that the equilibrium x∗ of (2.3) is asymp-

otically stable, as explained in more detail in Section 2.3.

emark 2.1. Deterministic models typically admit rescaling of their

tate-variables and parameters to give dimensionless quantities. The

hoice that x∗ has ‖x∗‖1 = 1 is an essentially arbitrary scaling choice

made for ease of comparison) and may be replaced by ‖x∗‖1 = κ
or any κ > 0 by replacing φ(1) by φ(κ) in (2.4c) and throughout the

anuscript. In the present context of modelling biological invasion

he quantity ‖x∗‖1 = 1 is assumed to be “large” in absolute terms.

.2. Coupled resident–invader population models

To model potential biological invasion into a resident population,

enoted x, an invasive population is included and denoted z. The res-

dent and invader are in competition, implying that their dynamics

re coupled. The invader is assumed to be phenologically similar to

he resident, and so its dynamics are also prescribed by a model of the

orm (2.3) with several terms in common. However, in order to pos-

ess some fitness advantage over the resident, the invader is assumed

o have a density-dependent vital rate that differs from that of the

esident. An invasion attempt means that the invader is introduced

nto the resident–invader model in a small proportion to the resident

hich is initially at its unique positive equilibrium x∗, given by (2.5).

herefore, the initial population distribution posits the resident at x∗

nd the invader at a “small” initial abundance. The stage-classes that

re invaded into are not yet fixed. The source of an invasion attempt

ould include immigration, random mutation, planned reintroduction

r unintentional transportation by humans [39].

The above considerations motivate a coupled resident–invader

odel of the form

x(t + 1)=(AR+φ(‖x(t)‖1+‖z(t)‖1)ef T
)
x(t), x(0) = x∗,

z(t + 1)=(AI +φ(‖x(t)‖1+‖z(t)‖1)ef T

+α(‖z(t)‖1)bcT
)
z(t), z(0) = z0,

⎫⎪⎬
⎪⎭ t=0, 1, 2, . . .

(2.4f)

here AR, AI are n × n nonnegative matrices, b, c, e and f are nonneg-

tive, nonzero vectors with n components and α,φ : R+ → R+ are

onnegative valued, continuous functions. The interpretation of the

omponents in (2.4f) is similar to that of (2.3). Here the vectors b and

determine the entry (or entries) where the density-dependence α
cts, which note appears only in the invader dynamics. The initial

nvader population distribution z0 is assumed to be “small”, repre-

enting a group of invaders at the point of invasion. Analogously to

R, we impose two structural assumptions on AI, namely,

(AI) < 1 , and (2.4g)

I + bcT + ef T is primitive, (2.4h)
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the latter implying that AI + bcTq + efTp is primitive for all p, q > 0.

One aspect to describing the fate of an invasion attempt is an

understanding of the potential equilibria of (2.4f). We let the pair

(x̄, z̄) with x̄, z̄ ∈ R
n+ denote an equilibrium of (2.4f), meaning that x̄

and z̄ together satisfy

x̄ = (
AR + φ(‖x̄‖1 + ‖z̄‖1)ef T

)
x̄ ,

z̄ = (
AI + φ(‖x̄‖1 + ‖z̄‖1)ef T + α(‖z̄‖1)bcT

)
z̄ .

More details are given in Appendix A but, in summary, (0, 0) and

(x∗, 0) are equilibria of (2.4f) by construction, independently of α. As

mentioned in the Introduction, a premise of the current contribution

is to test the reliability of the invasion exponent (described in detail

in Section 2.3) in predicting the outcome of an invasion attempt,

which we achieve through the inclusion of α. To ensure that the

invasion exponent is negative we assume that α acts as an Allee

effect: penalising invader fitness at low abundances of invader, which

we capture as

AI + α(0)bcT < AR . (2.4i)

The matrix inequality (2.4i) is understood componentwise, and means

that every entry of AI + α(0)bcT is no bigger than that of AR, and at

least one entry is smaller. If the stronger condition

AI + α(q)bcT < AR , ∀ q ≥ 0 , (2.7)

holds for α, then the only stable equilibrium2 of (2.4)–(2.4i) is

(x∗, 0). Intuitively, the condition (2.7) implies that when the resi-

dent is initially present (that is, ‖x(0)‖1 > 0) the invader is too unfit

to reach a nonzero equilibrium. Note that (2.7) does not rule out a

perhaps significant transient presence of invader or other dynamic

behaviour, such as a transition to periodic trajectories. In light of the

Allee effect condition (2.4i), to permit the possibility of asymptotic es-

tablishment of the invader, the function α must boost invader fitness

at some abundances. The assumption

there exists q with 0 < q < 1 such that

φ(1)f T(I − (AI + bcTα(q)))−1e = 1, (2.4j)

ensures the existence of (at least one, nonzero) co-existent equilib-

rium (x̂, ẑ) of (2.4f). Certainly, for (2.4j) to hold, the condition (2.7)

must fail, which means that there exists a q∗ between zero and one

such that a component of AI + α(q∗)bcT is bigger than or equal to

the corresponding component of AR. At these abundances the func-

tion α is increasing invader fitness. In the terminology of [18], the

conjunction of (2.4i) and (2.4j) implies that α is a strong or critical

Allee effect. Under assumption (2.4j) then there exist equilibria with

nonzero invader part, depending on α. A sufficient condition for (2.4j)

is that

there exists q with 0 < q < 1 such that AI + α(q)bcT = AR .

We let (2.4) denote the resident–invader model and associated as-

sumptions (2.4)–(2.4j) and seek to describe the resulting dynamic be-

haviour of (2.4). What constitutes a successful invasion is, of course, a

matter of definition, that may largely depend on the specific context.

Arguably, an invasion attempt fails if the solution x, z of (2.4) returns

to the resident-only equilibrium (x∗, 0) over time. For the purposes of

the present contribution, we shall say that an invasion attempt suc-

ceeds if the invader abundance grows and persists asymptotically. For

given model data AR, AI, b, c, e, f, φ and α, determining the outcome

of an invasion attempt described by (2.4) amounts to whether (x∗,

z0) belongs to the basin of attraction of the resident-only equilibrium

(x∗, 0) or not. In the next section we recall the invasion exponent

[13] of the model (2.4) and describe its role in estimating the basin of

attraction.
2 Indeed, under assumption (2.7) there may be other equilibria of (2.4f), but they are

all unattractive as ‖x(0)‖1 = ‖x∗‖1 = 1 > 0.

T

v

p

f

.3. Linearisations and the invasion exponent

Let B denote the basin of attraction of the equilibrium (x∗, 0) of

2.4), which recall is defined as

:= {(x0, z0) ∈ R
n × R

n : the solution x, z of (2.4) with x(0)

= x0 and z(0) = z0 satisfies x(t) → x∗ and z(t) → 0 as t → ∞}.
y definition of being an equilibrium, the set B always contains (x∗,

), and so B is never empty. A biological interpretation is that the

arger B is, the “harder” it is for an invasion attempt to succeed.

Linear stability theory guarantees certain qualitative properties of

are described by the invasion exponent, which we discuss next.

inearising the resident–invader model (2.4) around (x∗, 0) yields the

pproximation:[
x̃(t + 1)− x∗

z̃(t + 1)

]

=
[

AR + φ(1)ef T + φ ′(1)ef T x∗1T φ ′(1)ef T x∗1T

0 AI + α(0)bcT + φ(1)ef T

]
︸ ︷︷ ︸

=:A

×
[

x̃(t)− x∗

z̃(t)

]
, t = 0, 1, 2, . . ., (2.8)

here A is the Jacobian at (x∗, 0) of (2.4f) and x̃ and z̃ denote the ap-

roximate resident and invader populations, respectively. The eigen-

alues of A determine the asymptotic stability of the equilibrium

x∗, 0) of (2.4f). Specifically, the equilibrium (x∗, 0) is asymptotically

table if r(A) < 1 which implies that B contains (at least) an open ball

entred at (x∗, 0), that is, there exists some η > 0 such that

:= {(x0, z0) ∈ R
n × R

n : ‖(x0, z0)− (x∗, 0)‖ < η} ⊆ B ,

here ‖ · ‖ denotes a norm on the product space R
n × R

n. Of course,

may be much larger than N : the condition r(A) < 1 itself does

ot say. In any case, if r(A) < 1 then invasion attempts by sufficiently

ow initial abundances of invaders should fail. Owing to the upper-

riangular block structure of A, it follows that

(A) = max {r(AR + φ(1)ef T + φ ′(1)ef T x∗1T), r(Ainv)} , (2.9)

here Ainv := AI + α(0)bcT + φ(1)ef T and

:= ln(r(Ainv)), (2.10)

s the invasion exponent. Since the resident equilibrium x∗ is assumed

o be asymptotically stable (2.4e), in light of (2.9), r(A) < 1 occurs pre-

isely when r(Ainv) < 1; equivalently when θ < 0, that is, when the

nvasion exponent is negative. However, the conjunction of the scal-

ng condition (2.4c), the Allee effect condition (2.4i) and the primitiv-

ty assumption (2.4h) implies that the model (2.4) always possesses

(Ainv) < 1 and so θ < 0.

. Population inertia and linear Lyapunov functions

The matrix PPM (2.1) with state variable y, the density-dependent

ingle population model (2.3) with state variable x and the coupled

esident–invader model (2.4) with state variables x (for resident) and

(for invader) are examples of positive dynamical systems because,

aturally, their state-variables are componentwise nonnegative. Pos-

tive dynamical systems, and related monotone dynamical systems,

re well-studied. We refer the reader to, for example, [40–42] for

ore background. As well as enabling the modelling of physically or

iologically motivated systems, the positivity imparts rich additional

athematical structure (such as the already used Perron–Frobenius

heorem) which we shall exploit in seeking to predict biological in-

asion. We shall make use of the fact that the left eigenvector of a

rimitive matrix corresponding to the spectral radius induces a linear

unctional which, novelly in this context, acts as a Lyapunov function
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or the invader dynamics of the resident–invader model (2.4). Con-

equently, we derive a sufficient condition for an invasion attempt

o fail. As we explain, the functional also arises in matrix projection

odelling where it is called population inertia [27].

By way of motivation, consider first the matrix PPM (2.1), and

ssume from hereon in that A in (2.1) is primitive. Associated with A

s the spectral radius r(A) (see (2.2)), its stable stage-structure w and

eproductive vector vT which are the unique (up to scaling) positive

ight and left eigenvectors of A corresponding to r(A), respectively.

nder these assumptions, the solution y of (2.1) satisfies

lim
→∞

r(A)−ty(t) = vT y0

vT w
w . (3.1)

he vector w is called the stable-stage structure because, by construc-

ion, Aw = r(A)w. Therefore, populations distributed according to w

o not change their proportional distribution over time (though their

bundance changes via multiplication by the spectral radius r(A)). The

ector vT is called the reproductive vector as it contains the reproduc-

ive values (as in [43]) of each stage-class [44]. The product vTy0 that

ppears in the numerator of (3.1) contains the contributions to the

symptotic population from the initial population distribution y0. The

onnegative constant

vT y0

vT w
, (3.2)

s defined as the population inertia of A from y0 and note is the scalar

ultiplier on the right-hand side of (3.1). Noting that the population

nertia from y0 = w is one; the population inertia of A from arbitrary
0 is a long term multiplicative ratio of the size of the population pro-

ected from y0 compared to that projected from stable stage-structure

. Since inertia obviously increases with increasing ‖y0‖1, to com-

are the inertia of y0
1 and y0

2, say, both are scaled so that, for instance,

y0
1‖1 = ‖y0

2‖1 = 1. Although inertia describes an asymptotic quan-

ity of a matrix PPM, it has a link to transient behaviour as well. To

ee this define the functional

n
+ � y �→ V(y) := vT y

vT w
, (3.3)

hich induces a norm on R
n+, equivalent to the one-norm, as vT a

ositive vector implies that

min
≤j≤n

vj

vT w
‖y‖1 ≤ V(y) ≤ max

1≤j≤n

vj

vT w
‖y‖1, ∀ y ∈ R

n
+ .

ince vT is the left eigenvector of A corresponding to the eigenvalue

(A) it follows that V is a Lyapunov function for (2.1) because

(y(t + 1)) = vT y(t + 1)

vT w
= vT Ay(t)

vT w

= r(A)
vT y(t)

vT w
= r(A)V(y(t)), t = 0, 1, 2, . . .. (3.4)

he scalar difference equation (3.4) has solution

(y(t)) = r(A)tV(y0), t = 0, 1, 2, . . . . (3.5)

n particular, if r(A) < 1 then V(y(t)) → 0 as t → � and as vT is positive

t follows that

(t) → 0 as t → ∞. (3.6)

owever, by inspection of the right-hand side of (3.5) the short term

rowth (or decline) of V(y(t)), and thus that of y(t), is proportional to

(0)—the population inertia of A from y0. Of course, when r(A) < 1

hen (3.6) is straightforward to see without using V as the solution y

f the linear PPM (2.1) may be written down explicitly. We proceed

o demonstrate that V defined analogously to (3.3) but in terms of

he linearised invader dynamics, induces a Lyapunov function for the

onlinear invader specified in (2.4). We formulate our main mathe-

atical result as the following theorem, a proof of which is given in

ppendix B.
heorem 1. Given the coupled resident–invader model (2.4), let ξ T and

denote the positive left and right eigenvectors of Ainv = AI + α(0)bcT +
(1)ef T corresponding to r(Ainv) =: r < 1, respectively, and define V :
n+ → R+ by

n
+ � y �→ V(y) := ξ T y

ξ Tζ
.

riting z0 = δz̄ where δ > 0 and z̄ ∈ R
n+ has ‖z̄‖1 = 1, let x and z denote

he solution of (2.4) and additionally assume that there exists a > 0 such

hat

α(y)− α(0)| ≤ a|y| , ∀ y ≥ 0 . (3.7)

here exists δ0 > 0 such that if 0 < δ < δ0, then

:= (vT e)max
i

(
fi

ξi

)
max
t∈N0

|φ(‖x(t)‖1 + ‖z(t)‖1)− φ(1)| <
1 − r

2
.

(3.8)

f δ � (0, δ0) satisfies

δ�V(z̄) < 1 − (r + ε) < 1 , (3.9)

here

:= (ξ T b)(ξ Tζ )max
j

(
1

ξj

)
max

i

(
ci

ξi

)
, (3.10)

hen

(t) → 0, as t → ∞.

Theorem 1 provides a sufficient condition, namely the estimate

3.9), for an invasion attempt to fail. The next section, Section 4, con-

ains numerical examples highlighting the conclusions of Theorem 1.

efore that we provide some remarks.

emark 3.1. The estimate (3.9) relates the roles of the Allee ef-

ect/boost to fitness function α, captured through a, the population

nertia of the linearised invader dynamics V(z̄) and the initial invader

bundance or density δ. Particularly we see that their product must

e small to ensure that invasion fails, which suggests that when one

s fixed, there is an inverse relationship between the other two. The

uantity � in (3.9) is a constant, that depends on the model in ques-

ion. Note that � is independent of the scaling of ξ chosen, and the

roduct �V(z̄) is independent of the scaling of ζ chosen.

. Examples

For our numerical examples we consider an age-structured

esident–invader model (2.4) with three age-classes, so that n = 3.

e choose

R =

⎡
⎢⎣ 0 0 0

g1 0 0

0 g2 0

⎤
⎥⎦, AI =

⎡
⎣ 0 0 0

0 0 0
0 g2 0

⎤
⎦,

e =
⎡
⎣ 1

0
0

⎤
⎦, b =

⎡
⎣ 0

g1

0

⎤
⎦,

f T = [
f1 f2 f3

]
,

cT = [
1 0 0

]
,

(4.1)

or 0 < g1, g2 < 1 and f1, f2, f3 > 0. The gi denote transition rates

rom stage-class i to i + 1 and, as survival rates, are no greater than

ne. Each fi denotes the recruitment rate (fecundity combined with

urvival) of stage-class i. We separately consider invasion into each

tage class, yielding z0 = δz̄ with δ > 0 and

¯ ∈
⎧⎨
⎩
⎡
⎣ 1

0
0

⎤
⎦ ,

⎡
⎣ 0

1
0

⎤
⎦ ,

⎡
⎣ 0

0
1

⎤
⎦
⎫⎬
⎭ .

he parameter δ > 0 denotes the initial abundance of invader. We

ssume that the density-dependence φ is given by

+ � q �→ φ(q) := exp
(
− q

10

)
, (4.2)
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Fig. 1. Graphs of the function α in (4.3) for three values of strength parameter, s.
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which satisfies (2.4b). The vital rates g1, g2, f1, f2 and f3 are still to-

be-determined, but recall are chosen to satisfy the scaling condition

(2.4c)

1 = φ(1)f T(I − AR)
−1e = φ(1)[f1 + f2g1 + f3g1g2] .

To parameterise a family of Allee effects α, we choose

R+ � q �→ α(q) := 4

5

(
1 + s

10q

1 + 50q2

)
, s > 0 , (4.3)

where s > 0 is a strength parameter. As s increases the function α(q)

takes larger values for positive q, denoting increasing invader fitness,

but α(0) = 0.8 < 1 is independent of s. Consequently, for every positive

s, α satisfies (2.7). Fig. 1 contains the graphs of α for several values

of s: regions where α(y) > 1 denote invader abundances at which the

invader is fitter than the resident. In Appendix C we demonstrate that

the condition (2.4j) holds for the data specified by (4.1)–(4.3) (when

the parameter s > 0 is larger than a critical value denoted sm).

By way of explanation of (4.1), we note that for g1, g2, f1, f2, f3 >

0 the density-independent resident matrix AR + efT equals the Leslie

matrix [45]:⎡
⎢⎣ f1 f2 f3

g1 0 0

0 g2 0

⎤
⎥⎦. (4.4)

The inclusion of φ in (2.4f) ensures that the recruitment component

efT (the top row of the matrix in (4.4)) is density-dependent. Similarly,

the density-independent invader matrix is AI + efT + bcT and equals

that in (4.4). In the full model (2.4f), α multiplies the growth rate g1

of the invader projection matrix which, at low invader abundances,

is smaller than that of the resident. Here α is acting as an Allee effect;

penalising invader survival. However, at larger abundances, α takes

values greater than one, boosting invader survival compared to that

of the resident.

To explore the roles of s and population inertia in determining the

outcome of an invasion attempt we perform the following numerical

study. We fix

g1 = g2 = 0.1 , (4.5)

in (4.1) and generate models (2.4) by varying the initial abundance δ,

the age-class which is invaded into, the recruitment terms f1, f2, f3 and

the strength parameter s in α. First, four δ values are used, varying

between

6.25 × 10−4 ≤ δ ≤ 4 × 10−3 , (4.6)

corresponding to 0.0625%–0.4% of initial resident abundance, de-

pendent on which age-class is invaded into. As we explained in

Remark 2.1, the dimensionless scaling assumption ‖x∗‖1 = 1 denotes
“large” resident abundance. Therefore, although δ in (4.6) is a small

roportion of ‖x∗‖1 = 1, we assume that it is still reasonably large in

bsolute terms.

With φ and g1, g2 chosen in (4.2) and (4.5), respectively, the equa-

ion (2.4c) determines a plane in the remaining three unknowns f1, f2

nd f3. The section of this plane in the positive orthant, that is,

1, f2, f3 > 0.01 such that exp

(
− 1

10

)[
f1 + f2

10
+ f3

100

]
= 1 ,

(4.7)

s partitioned into 400 points (equally spaced in the (f1, f2)–plane),

enerating 400 models (2.4). The Leslie matrix AR + efT in (4.4) is not

rimitive if f2 = f3 = 0 and so the lower bound for the fi in (4.7) simply

revents that possibility. For each choice ofδ and fT satisfying (4.6) and

4.7), respectively, the strength parameter s in (4.3) is increased from

2/4 to 16 in increments of 0.01 and the minimum s recorded that

esulted in successful invasion. An invasion is considered successful

f for 10 successive time steps ti

x(ti)‖1 < 1 −
√

2

10
≈ 0.8586 or ‖x(400)‖1 < 1 −

√
2

10
, (4.8)

nd unsuccessful otherwise. The minimum s required for a successful

nvasion when invasion occurred, or s = 0 when no invasion occurred,

s plotted against the population inertia and the invasion exponent

f the linearised invader in Figs. 2–4. The specific choices for the

uccessful invasion threshold in (4.8) and strength parameter interval√
2/4, 16] are justified in Appendix C. Briefly, they are consequences

f the choice of model data (4.1)–(4.3) and (4.5) and the resulting

quilibrium analysis. The number 1 −
√

2/10 in (4.8) is the largest

ossible resident equilibrium abundance for which the invader is also

t a nonzero equilibrium.

From Figs. 2(a)–4(a) the following trends are observed:

(i) the largest value of population inertia is achieved in the third stage

class, which also has a larger range of inertias than stage classes

one and two (compare the x-axes of Figs. 2(a)–4(a));

ii) at very low values of inertia, invasion did not succeed for any

s or δ value, marked by crosses (see bottom left of Figs. 3(a)

and 4(a));

ii) for fixed population inertia, the minimal s required for successful

invasion decreases as δ increases (the increase in δ is depicted in

different line styles from dotted through to solid);

v) for fixed s, invasion is successful if the combination of δ and inertia

together are sufficiently large (for each horizontal line in the fig-

ures, as δ decreases, the population inertia required for successful

invasion increases);

v) for fixed δ, the minimal s required for successful invasion de-

creases as inertia increases (for each line style, there is a broadly

inverse relationship between minimal s required for successful

invasion and population inertia);

i) invasion attempts into the third stage class succeed at lower initial

abundances δ than invasion into the first stage class (the δ values

used to generate Fig. 4(a) are smaller than those used in Figs. 2(a)

and 3(a)—see the figure legends).

The trends observed in (ii)–(v) are suggested by (the admittedly

onservative) Theorem 1. For the choice of model (4.1)–(4.3), the

stimate (3.9) for an invasion attempt to fail becomes

δ�V(z̄) = 8sδ

[
ξ2

ξ1
(ξ Tζ )max

1≤j≤3

(
1

ξj

)]
V(z̄) < 1 − (r + ε) < 1 ,

here we have substituted the choice of b and c into the expression

3.10) for � and have obtained a = 8s in (3.7) via

α(y)− α(0)| ≤ α′(0)y = 8sy , ∀ y ≥ 0 .

s the quantities � and r depend on fT, they vary as fT varies. Despite

his variation, Figs. 2(a)–4(a) demonstrate that there is still a (broadly)
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(a) (b)

Fig. 2. Invasion into the first stage class: Minimal s required for successful invasion plotted against inertia (a) and invasion exponent (b) of the coupled-resident–invader model

(2.4) specified in Section 4. Different line styles correspond to different initial invader abundance δ. The horizontal dotted line denotes s = sm , the smallest s value considered.

(a) (b)
Fig. 3. Invasion into the second stage class: Minimal s required for successful invasion plotted against inertia (a) and invasion exponent (b) of the coupled-resident–invader model

(2.4) specified in Section 4. Different line styles correspond to different initial invader abundance δ.The horizontal dotted line denotes s = sm , the smallest s value considered.

(a) (b)

Fig. 4. Invasion into the third stage class: Minimal s required for successful invasion plotted against inertia (a) and invasion exponent (b) of the coupled-resident–invader model

(2.4) specified in Section 4. Different line styles correspond to different initial invader abundance δ.The horizontal dotted line denotes s = sm , the smallest s value considered..
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inverse relationship between population inertia and the minimal s

required for a successful invasion. Property (vi) may be attributed to

the fact that stage-class three admits much larger values of inertia

than stage-class one, and thus a smaller δ is required for a successful

invasion attempt.

From Figs. 2(b)–4(b) we see that the corresponding relationships in

(iv) and (v) between the minimal s required for invasion and invasion

exponent do not always hold. Indeed, compared to (v), in Figs. 2(b)–

4(b) there is a (roughly) decreasing, increasing and then no obvious

monotone relationship between invasion exponent and minimal s

required for successful invasion, respectively.

5. Discussion

A mathematical investigation into a class of structured models

for coupled resident–invader populations has been conducted. The

aim of the investigation has been to help answer the question “what

quantifiers are indicative in predicting the outcome of an invasion

attempt?” We consider mean-field models with an additional Allee

effect which ensures that at infinitesimally small abundance of an in-

vasion attempt, invasion will fail. Therefore, it is reasonable to expect

that in order to reach a critical threshold abundance, fitter invaders

will have to find a fitness advantage elsewhere. What we find from

our study is that a proxy for this fitness advantage is the (linearised)

invader’s population inertia—invasive populations with high popu-

lation inertia are better adapted to invade than those with lower

inertia. More precisely, our main result, Theorem 1, states that for the

class of models (2.4) considered, when the combination of inertia, the

initial invader abundance and boost to invader fitness from density-

dependent terms is small, then invasion cannot succeed. Furthermore,

there is an inverse relationship between these three quantities, so for

a fixed initial abundance of invader, as inertia increases, the boost

to invader fitness required so that an invasion attempt does not fail

is smaller. The dependence on the three parameters was estimated

by appealing to the fact that, as an example of a positive system,

underpinned by the Perron–Frobenius Theorem, the model admits a

linear Lyapunov functional. In the special case of linear matrix PPMs

used in ecological modelling, the Lyapunov functional used goes by

the name of population inertia. A heuristic explanation of why large

population inertia is indicative of successful invasion is that inertia

is an index of transient growth or decline. Loosely speaking, initial

invader population distributions with large inertia amplify rapidly

in the short term meaning that after just a few time-steps the lin-

earisation (2.8) is not a reliable approximation of (2.4). Conversely,

initial invader population distributions that have low inertia tend to

attenuate in the short term, from which the linearisation (2.8), now

justifiably usable, predicts asymptotic extinction of the invader.

Parallel to the role of population inertia in predicting the outcome

of an invasion attempt, we also considered the role of the invasion

exponent. Our numerical examples demonstrated that the invasion

exponent was not always a reliable indicator of the outcome of an

invasion attempt. Particularly we noted that an increasing exponent

(which might suggest invasion becoming more likely) did not always

result in a smaller boost to invader fitness required for successful in-

vasion. In Fig. 3(b) the opposite relationship was observed: invasion

exponents close to zero required a large boost to fitness for success-

ful invasion, and in Fig. 4(b) no obvious monotone relationship was

observed. Why should the invasion exponent provide a less reliable

comparative index in predicting invasion than an index of transient

growth or decline? To fully answer that question is beyond the scope

of the present contribution, and instead we provide some suggestions.

The transition from non-invasion to invasion in the model is a qualita-

tive shift of dynamical behaviour. That such a transition might not be

well predicted by changes in an eigenvalue (the invasion exponent)

was highlighted in the seminal work [50] related to the transition

from laminar to turbulent flow in hydrodynamic stability theory and
as itself motivated by the apparent mismatch between predictions

ased on models and real observations. The subsequent research on

he so-called pseudospectrum and pseudospectral techniques [51]

eeks, amongst other things, to describe the dynamics of non-normal

ynamical systems. A matrix A is normal if ATA = AAT, and non-normal

therwise. Non-normal matrices are pervasive in that almost every

quare matrix is non-normal in the same manner that almost every

quare matrix is invertible. A dynamical system is non-normal if its

acobian is a non-normal matrix (assuming of course that the Jacobian

s well-defined). Broadly speaking, a main result is that the qualitative

ehaviour of non-normal dynamical systems and qualitative changes

f dynamical behaviour, such as the transition from laminar to tur-

ulent flow, are not well-described by eigenvalues, but rather by the

seudospectrum. The pseudospectrum of a matrix A is the set of com-

lex numbers that are “nearly” eigenvalues (informally, they are the

igenvalues of a perturbation of A, A + E, say, where the norm of E is

mall). Normal matrices have benign pseudospectra, and non-normal

atrices may have very complicated pseudospectra. The departure

rom normality, that is, exactly how “non-normal” is a non-normal ma-

rix is not captured entirely by any one scalar index [51, Section 48],

uch like transient dynamics. However, through the study of pseu-

ospectra, a connection is made between non-normal matrices and

arked transient growth or decline—as has been documented in a

iological context in, for example, [25]. When recruitment is large

ompared to survival rates, population projection matrices are typ-

cally non-normal. In projection matrix models, if the recruitment

ector fT is highly skewed, so that some stage-classes are much more

ecund than others, then the left eigenvector vT (the so-called repro-

uctive vector in ecological models) usually is as well. Wide variation

n the components of vT gives rise to stage-classes with very large

nertia, and stages with very small inertia. It is these former stage-

lasses that are much more likely to succeed in an invasion attempt,

s observed across Figs. 2(a)–4(a).

The models we consider are mean-field, averaged or population

evel, and as deterministic models do not contain stochastic compo-

ents. Stochasticity in ecological modelling is typically divided into

emographic and environmental stochasticity [46], and is a power-

ul language for describing ecological processes. Indeed, Liebhold &

ascompte write in [47]: “Random processes affect the dynamics

f virtually all populations.” Our justification for using determinis-

ic models is that they often appear as the limit (as population size

ends to infinity) of finite-size population models; an example being

he Lotka predator-prey differential equations, see [48]. Determinis-

ic models for invasion, such as those considered here, are then most

ppropriate and efficacious when the number of resident individu-

ls is large in absolute terms (which, of course, in practice is species

pecific). Our assertions are relevant when an invasion attempt is

y a large number of individuals (but a small proportion of the res-

dent population). We refer the reader to the work of McKane and

ollaborators, such as the review [49] and the references therein, for

ore information on stochastic and deterministic models in biology

nd ecology and particularly how the latter provide approximation

f the former in the limit as population size tends to infinity. In sum-

ary, the outcome of many biological processes (such as the success

r failure of an invasion attempt) involving just a few individuals is

ssentially random and thus will be only crudely approximated by

opulation level models.

In closing, we reiterate our central thesis that one should critique

arefully the reliance on infinitesimals (overcoming the caveat “how

mall is small enough”) tied to using the invasion exponent to pre-

ict the outcome of invasion in stage-structured models. An obvious

etort to our findings is, well, “how large is large population iner-

ia?” In light of Theorem 1 our response is that population inertia is a

omparative measure—if one modelled population has a larger inertia

han another then, all else equal, it is more likely to be a successful

nvader.
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ppendix A. Equilibria analysis

Here we describe equilibria of the single population model (2.3),

he coupled resident–invader model (2.4f) and the role of the extra

ssumptions in (2.4). That zero and (0,0) are equilibria of (2.3) and

2.4f), respectively, is clear. We note that if z(0) = 0 then (2.4f) col-

apses to (2.3). We proceed to derive the equilibrium x∗ of (2.3) which,

n light of the previous sentence, implies that (x∗, 0) is an equilibrium

f (2.4). An equilibrium x∗ of (2.3) satisfies (2.6) and occurs if, and

nly if, x∗ is an eigenvector of AR + φ(‖x∗‖1)efT corresponding to the

igenvalue one. For y � 0, one is an eigenvalue of AR + φ(y)efT if, and

nly if, there exists v ∈ R
n, v � 0 such that

AR + φ(y)ef T)v = v . (A.1)

ince r(AR) < 1 and thus 1 �∈ σ(AR), I − AR is invertible and we may

earrange (A.1) to give

(y)ef T v = (I − AR)v ⇒ (I − AR)
−1φ(y)ef T v = v ,

nd multiplying by fT on the left yields

(y)f T(I − AR)
−1ef T v = f T v . (A.2)

ince 1 �∈ σ(AR) it follows from (A.1) that fTv � 0 which we invoke in

A.2) to deduce that

(y)f T(I − AR)
−1e = 1 . (A.3)

ccording to (2.4c), fT is chosen so that (A.3) holds when y = 1. Fur-

hermore, as φ is strictly decreasing, (A.3) only holds for y = 1. A

traightforward calculation using x∗ defined by (2.5) shows that (A.3)

s sufficient for x∗ to satisfy (2.6). Therefore, (2.4c) is necessary and

ufficient for x∗ defined by (2.5) with ‖x∗‖1 = 1 to be an equilibrium of

2.3). Since AR + φ(1)efT is assumed primitive in (2.4d), it follows from

he Perron–Frobenius Theorem that x∗ is unique up to multiplication

y a positive scalar. The scaling γ of x∗ has been fixed, however, by the

onstraint that ‖x∗‖1 = 1. We note further that the above arguments

emonstrate that the conditions (A.3) and (A.1) imply one another

nd are thus equivalent.

A general equilibrium (x̂, ẑ) of (2.4f) satisfies

ˆ = (AR + φ(‖x̂‖1 + ‖ẑ‖1)ef T)x̂ , (A.4a)

nd ẑ = (AI + α(‖ẑ‖1)bcT + φ(‖x̂‖1 + ‖ẑ‖1)ef T)ẑ , (A.4b)

here note that we only seek nonnegative solutions, so that x̂, ẑ ∈ R
n+.

f x̂ �= 0, then from (A.4a) and the derivation of (x∗, 0) above, it follows

hat

x̂‖1 + ‖ẑ‖1 = 1 , (A.5)

s AR + φ(‖x̂‖1 + ‖ẑ‖1)ef T only has spectral radius one when the ar-

ument of φ is equal to one. If ẑ = 0, then we recover (x̂, ẑ) = (x∗, 0),
o assume that ẑ �= 0. The condition (A.5) now implies that both
x̂‖1,‖ẑ‖1 < 1. Clearly, (A.4b) holds if, and only if,

∈ σ(B) where B := AI + α(‖ẑ‖1)bcT + φ(1)ef T . (A.6)

n words, (A.4b) is equivalent to one being an eigenvalue of the matrix

given in (A.6). Recalling that (A.1) and (A.3) are equivalent (derived

bove), it follows that (A.6) is equivalent to

(1)f T(I − (AI + bcTα(‖ẑ‖1))
−1e = 1 . (A.7)

o see this argue from (A.1) with AR replaced by AI + bcTα(‖ẑ‖1) and

replaced by 1. The equation (A.7) has at least one solution with

ẑ‖1 ∈ (0, 1) by assumption (2.4j). Moreover, every solution q � (0,

) of (2.4j) gives rise to an equilibrium (x̂, ẑ) with x̂ = (1 − q)x∗ and ẑ

n eigenvector of B in (A.6) corresponding to the eigenvalue one with

ẑ‖1 = q. The eigenvector ẑ is uniquely determined by the Perron–

robenius Theorem (as here r(B) = 1).

Note that an invader only equilibrium (0, z∗) occurs if, and only if,

here exists q > 0 such that

(q)f T(I − (AI + α(q)bcT))−1e = 1 . (A.8)

ach solution q > 0 of (A.8) gives rise to the unique equilibrium (0,
∗) where z∗ is the positive eigenvector of AI + α(q)bcT + φ(q)efT cor-

esponding to the eigenvalue one, with ‖z∗‖1 = q. Again, unicity of z∗

s ensured by the Perron–Frobenius Theorem.

To see that both the zero equilibrium and any invader-only equi-

ibrium (0, z∗) with ‖z∗‖1 < 1 are not attractive, and hence not asymp-

otically stable, let vT∗ denote the simple, positive left eigenvector of

R + φ(1)efT, corresponding to the eigenvalue one, and consider the

unctional y �→ V(y) = vT∗y (see (3.3)), which is positive definite on R
3+.

or t = 0, 1, 2, . . ., the resident population x(t) satisfies

W(x(t + 1)) = vT
∗x(t + 1) = W(x(t))+ vT

∗ef T x(t)[φ(N(t))− φ(1)] ,

≥ (1 + ε)W(x(t)), whenever 0 ≤ N(t) < ρ ≤ 1,

(A.9)

or some fixed ρ � (0, 1) and ε > 0.

ppendix B. Proof of Theorem 1

The existence of (a sufficiently small) δ0 > 0 such that ε > 0 defined

y (3.8) which satisfies

< ε <
1 − r

2
,

or all δ � (0, δ0) is ensured by the asymptotic stability of (2.4) and

he continuity of φ. For δ � (0, δ0) we now compute for t ∈ N0

≤ V(z(t + 1)) = ξ T z(t + 1)

ξ Tζ
= ξ T

ξ Tζ
(AI + α(‖z(t)‖1)bcT

+φ(‖x(t)‖1 + ‖z(t)‖1)ef T)z(t)

= rV(z(t))+ (ξ T b)[α(‖z(t)‖1)− α(0)]
cT z(t)

ξ Tζ

+ (ξ T e)[φ(‖x(t)‖1 + ‖z(t)‖1)− φ(1)]
f T z(t)

ξ Tζ
,

≤ rV(z(t))+ a(ξ T b)‖z(t)‖1
cT z(t)

ξ Tζ

+(ξ T e)[φ
(‖x(t)‖1 + ‖z(t)‖1)− φ(1)]

f T z(t)

ξ Tζ
,

(B.1)

here we have used the bound (3.7) for α to obtain (B.1). Invoking

3.8) to estimate the final term on the right-hand side of (B.1) yields

he inequality

(z(t + 1)) ≤ (r + ε)V(z(t))+ a(ξ T b)‖z(t)‖1 max
i

(
ci

ξi

)
V(z(t)).

(B.2)
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We seek to bound ‖z(t)‖1 on the right-hand side of (B.2) by a term

involving V(z(t)). To that end, noting that

‖z(t)‖1 =
n∑

k=1

zk(t) =
n∑

k=1

ξkzk(t)

ξk

≤ max
k

(
1

ξk

)
ξ T z(t)

= max
k

(
1

ξk

)
(ξ Tζ )V(z(t)), (B.3)

since each ξ k > 0, we insert (B.3) into (B.2) to obtain

V(z(t + 1))

≤
(

r + ε + a(ξ T b)(ξ Tζ )max
j

(
1

ξj

)
max

i

(
ci

ξi

)
V(z(t))

)
V(z(t)).

(B.4)

The claim in the theorem follows once the bracketed term on the

right-hand side of (B.4) is less than one for all t ∈ N0. However,

by induction, this follows from (B.4) once it holds for t = 0, as

then the quantity V(z(t)) is decreasing with increasing t. In other

words, if

r + ε + a(ξ T b)(ξ Tζ )max
j

(
1

ξj

)
max

i

(
ci

ξi

)
V(z(0)) < 1 ,

then the theorem holds, which is precisely (3.9), as required.

Appendix C. Supplementary analysis for numerical examples

Here we apply the results of Appendix A to the model

(4.1)–(4.3) considered in Section 4. These calculations are also used

to help determine suitable parameter ranges for our numerical

projections.

For AR, AI, b and c given by (4.1) a shared equilibrium (x̂, ẑ) with

ẑ �= 0 occurs if, and only if, the invader abundance at equilibria ‖ẑ‖1

satisfies

α(‖ẑ‖1) = 1 , (C.1)

as here AI + α(‖ẑ‖1)bcT = AR. With α given by (4.3), the condition

(C.1) is the s-dependent quadratic equation in ‖ẑ‖1

4

5

(
1 + s

10‖ẑ‖1

1 + 50‖ẑ‖2
1

)
= 1 . (C.2)

Solving (C.1) or, equivalently, (C.2), yields two candidate invader

abundances at co-existent equilibrium:

‖ẑ1‖1 = 4s − √
16s2 − 2

10
, (C.3a)

and

‖ẑ2‖1 = 4s + √
16s2 − 2

10
, (C.3b)

where note that ‖ẑ1‖1 ≤ ‖ẑ2‖1. For ‖ẑ1‖1 and ‖ẑ2‖1 in (C.3) to be

real-valued requires that

s ≥ sm :=
√

2

4
. (C.4)

Elementary analysis demonstrates that ‖ẑ1‖1 = ‖ẑ1(s)‖1 ≤ 1 for all s

� sm, and so for these values of s, (2.4) admits the co-existent equi-

librium (x̂1, ẑ1), given by

x̂1 = (1 − ‖ẑ1‖1)x
∗ and ẑ1 = ‖ẑ1‖1x∗ , (C.5)

where x∗ and ‖ẑ1‖1 are given by (2.5) and (C.3a), respectively. The

function s �→ ‖ẑ2(s)‖1 is an increasing, unbounded function of s, and

takes the value one at s = 51/40. The constraints

0 ≤ ‖x̂2‖1 and 0 ≤ ‖ẑ2‖1 ≤ ‖x̂2‖1 + ‖ẑ2‖ = 1 ,
or a co-existent equilibrium imply that (2.4) admits a second co-

xistent equilibrium (x̂2, ẑ2), given by

x̂2 = (1 − ‖ẑ2‖)x∗ and

ẑ2 = ‖ẑ2‖x∗, for all s such that sm ≤ s ≤ 51

40
. (C.6)

n summary, for 0 � s < sm there are no (nonzero) co-existent equilib-

ia. For sm < s < 51/40 there are two, distinct co-existent equilibria,

iven by (C.5) and (C.6). For s > 51/40 there is one co-existent equi-

ibrium, given by (C.5).

When s � (0, sm), then α(y) < 1 for all y � 0 and the only possible

quilibrium with nonzero invader component is (0, z∗), which is not

ttractive for any nonzero initial resident population, by (A.9). Since

m is the minimal Allee strength such thatα(y) = 1 for some y, at which

oint we expect the invader to (possibly) reach a nonzero equilibrium,

he search over s > 0 in Section 4 was started at sm. Since the vital

ate g1α(‖z(t)‖1) denotes the growth rate from age-class one to two,

t must take values between zero and one. To ensure that

1 max
y≥0

α(y) = 0.1 max
y≥0

α(y) < 1 ,

laces an upper bound on the strength parameter s > 0. Elementary

alculus shows that

.1 max
y≥0

α(y) ≤ 1 ⇒ s ≤ sM := 23√
2

≈ 16.2 .

herefore, to explore the s parameter space where invasion might be

xpected, it is varied between
√

2/4 and 16 < 23/
√

2.
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