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1. Introduction

Perturbation theory describes the effects of an often unknown perturbation Δ on the 
perturbed matrix A +Δ. It has applications in a broad range of disciplines including sys-
tems and control theory, engineering, numerical analysis and numerical linear algebra. In 
recognition of the importance (and intricacies) of perturbation theory, there are several 
monographs dedicated to its study including [47,31,55]. Perturbation theory arises natu-
rally in a context of linear dynamical systems — ubiquitous objects in the mathematical 
sciences. In discrete-time and finite-dimensions these take the form

x(t + 1) = Ax(t) , x(0) = x0 , t ∈ N0 , (1.1)

where A is an n ×n matrix for some n ∈ N. Perturbation to a linear system replaces (1.1)
by

x(t + 1) = (A + Δ)x(t) , x(0) = x0 , t ∈ N0 . (1.2)

Equations of the form (1.2) are relevant when the original A in (1.1) is not reliably known, 
so that Δ captures parametric or structural uncertainty in the dynamics. Alternatively, 
Δ in (1.2) may denote an introduced or forced change to the dynamics. For instance, 
the choice of state-feedback u(t) := Kx(t) in the controlled linear system

x(t + 1) = Ax(t) + Bu(t) , x(0) = x0 , t ∈ N0 ,

gives rise to (1.2) with Δ = BK. For non-zero x0, the asymptotic behaviour of (1.1)
and (1.2) is determined by the spectral radii r(A) and r(A + Δ), respectively. In the 
context of linear systems, a natural question is to ask how r(A + Δ) is determined, 
particularly when A in (1.2) is known, but Δ is not. An answer to that question was 
given by Hinrichsen & Pritchard in [24,25] where the concept of the stability radius 
was developed in a control theoretic setting. The stability radius provides a notion of 
maximal, local robustness to perturbations in that when r(A) < 1, the stability radius 
is the largest β > 0 with the property that

r(A + Δ) < 1 , ∀ Δ such that ‖Δ‖ < β .

In particular, if β is finite, then there exists a destabilising perturbation Δ0 with 
‖Δ0‖ = β and r(A +Δ0) = 1. We note that the stability radius is dependent on the norm 
that the set of perturbations is equipped with. We comment as well that the stability 
radius was developed independently in other contexts and is, in fact, an instance of the 
more general Wald’s maximin model [54], see [44] for a helpful and interesting discussion. 
In numerous applications, the perturbations are structured, so that

Δ = BPC , B ∈ R
n×m, C ∈ R

p×n for some m, p ∈ N. (1.3)
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The matrices B and C in (1.3) are known and describe the perturbation structure. The 
unknown m × p matrix P denotes the perturbation magnitude. In this set-up, the com-
plex stability radius (when it is finite) is equal to the smallest ‖P0‖ over all P ∈ C

m×p, 
where P0 destabilises A + BP0C. When P is constrained to be real, that is P ∈ R

m×p, 
then the resulting (minimal) norm of a destabilising perturbation is equal to the real
stability radius (again, assuming that such a real perturbation exists). It is well-known 
that the complex and real stability radii need not coincide [22], see also [21]. Further-
more, whilst the complex stability radius is readily computable with a formula appearing 
in [25], computing the real stability radius is much more complicated in general, see [23, 
Section 5.3]. Suffice it to say, the stability radius is a ubiquitous and well-studied tool 
in robust control theory, a discipline predicated on tolerating uncertainty in controlled 
dynamical systems, such as in the sense of the Δ that appears in (1.2). The stability ra-
dius is complemented with other concepts such as that of μ-values, introduced by Doyle 
in [8], see more recently, [23, Chs. 4–5] or, for example, [30].

By using the Matrix Inversion Lemma, also known as the Sherman–Morrison–
Woodbury formula [29, p. 19], it is possible to derive a relationship between the spectrum 
of the perturbed matrix A + BPC and the perturbation P in terms of the model data 
A, B and C. In the present note we exploit this relationship to provide formulae for 
the left and right eigenvectors of A + BPC. Despite their simplicity, and the wealth 
of existing knowledge on perturbation theory, we cannot find these results elsewhere 
in the literature. They demonstrate that determining eigenvectors of the n × n matrix 
A + BPC reduces to determining the eigenvectors of a min{m, p} dimensional matrix 
(the rank of the perturbation BPC), which in applications may be much smaller than n. 
The formulae are of interest in examples where eigenvectors are the desired object, such 
as the Google PageRank [37]. Another application, which we proceed to introduce and 
motivate, is that perturbed positive eigenvectors associated with a perturbed positive 
matrix specifying the perturbed linear system (1.2)–(1.3) induce norms that, in turn, 
provide estimates of the transient dynamics of (1.2)–(1.3).

Transient dynamics refers to short-term behaviour of a dynamical system, particu-
larly dynamics which deviate away from those at steady-state. Even seemingly simple 
linear models (1.1) can exhibit exotic transient dynamics that are often neglected and 
overlooked and which may have serious implications in a myriad of physical contexts. 
Unlike asymptotic behaviour, transient dynamics of linear systems are not well captured 
by an eigenvalue (and thus by the stability radius either), as highlighted in the seminal 
work [53] related to the transition from laminar to turbulent flow in hydrodynamic stabil-
ity theory. Instead, transition to turbulence occurs when the pseudospectrum crosses the 
stability/instability threshold. We refer the reader to [51] or [52] for more background 
and history on the development of the pseudospectrum. The term pseudospectrum is 
perhaps more commonly used by numerical analysts and the term spectral value sets, 
introduced in [19,20], is used by those in the control theory community for an equivalent 
concept. With either set of nomenclature, pseudospectral techniques are useful in un-
derstanding transient dynamics, see [52, Ch. IV], and complement approaches based on 
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choosing norms under which the solutions of (1.1) satisfy a difference equation or inequal-
ity. These norms enable transient dynamics to be estimated as they describe level sets 
where solutions are constrained to evolve. In the case that these norms decrease along 
solutions, one would typically call the norm a Lyapunov function. Stable linear systems, 
that is, where A in (1.1) is Schur (meaning that r(A) < 1), admit quadratic Lyapunov 
functions. Indeed, a classical result in linear algebra states that a matrix A ∈ C

n×n is 
Schur if, and only if, for every positive definite Q there exists a positive definite solution 
P of the so-called discrete-time Lyapunov equation

ATPA− P = −Q ,

and in this case t �→ V (x(t)) defined by Cn � x �→ V (x) := 〈x, Px〉, where 〈·, ·〉 denotes 
the usual inner-product on Cn, decreases along solutions of (1.1).

Dynamical systems that leave a positive cone invariant are called positive dynamical 
systems, or simply positive systems. There are different conventions in the academic 
literature regarding the use of the words “positive” and “nonnegative” in this context. 
The nonnegative orthant in Rn, denoted Rn

+, with the usual partial ordering of com-
ponentwise inequality of vectors in Rn is perhaps the most widely used positive cone 
in applications, for instance. Here invariance of the positive cone captures the essen-
tial feature that state-variables of positive systems, typically modelling abundances or 
concentrations, must be nonnegative. The study of positive systems is motivated by nu-
merous models arising in a diverse range of fields from biology, chemistry, ecology and 
economics to genetics, medicine and engineering [17, p. xv]. The linear system (1.1) is 
positive if, and only if, A in (1.1) is a (componentwise) nonnegative matrix. The seminal 
work of Perron and Frobenius in the early 1900s, pertaining to nonnegative, irreducible 
and primitive matrices (for a recent treatment see, for example, [3, Ch. 2]) underpins 
linear positive systems.1 There has subsequently been much attention devoted to general-
isations of the Perron–Frobenius Theorem to nonlinear functions, including, for example 
[14,42,35]. Owing to their importance in applications there are several textbooks dedi-
cated to the study of positive systems, such as [4,33,9], and to perturbations of positive 
semigroups [2]. In a context of perturbation theory, when A in (1.1) and B and C in (1.3)
are all nonnegative, then the real and complex stability radii are known to be equal, and 
readily computable, see [27,26] (and [45] for continuous-time systems).

A stability radius approach to perturbation theory for linear positive dynamical sys-
tems and their transients has been considered by Hinrichsen & Plischke in [18]. There 
the authors note, as is well-known, that right and left eigenvectors (ensured by the 
celebrated Perron–Frobenius Theorem) associated with stable linear positive systems in-
duce weighted infinity- and one-norms, respectively, which consequently act as Lyapunov 
functions. Using both these, and other candidate so-called Lyapunov vectors, estimates 

1 Although, we note, the term linear is misleading as solutions evolve in positive cones, where subtraction 
is not always well-defined.
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for transient dynamics of continuous time linear systems (1.4) are derived. The cur-
rent work is similar in outlook to [18], although we comment that there the authors 
restrict attention to (exponentially) stable systems, which is not required presently. The 
Lyapunov functions induced by a left positive eigenvector of a nonnegative or Metzler 
(see below) matrix are used extensively elsewhere in the analysis and control of posi-
tive systems. Applications include, for example, robust control [38,39,5] and the control 
of switched-positive systems [12]. Moreover, these Lyapunov functions are examples of 
so-called max-separable and sum-separable Lyapunov functions [40] in the non-linear 
control literature see, for example, [7] and the references therein.

The results we derive apply to linear positive systems in continuous-time as well, 
specified by

ż(t) = Mz(t) , z(0) = z0 ∈ R
n , t ∈ R+ . (1.4)

Here the matrix M ∈ R
n×n is Metzler (also known as essentially positive or quasi-

positive), meaning that every off-diagonal entry is nonnegative and z0 ∈ R
n
+. Recall 

that Metzler matrices characterise the matrices for which the matrix exponential eMt

for t ≥ 0 — and hence the solution of (1.4) — is componentwise nonnegative.
Our main result of this note is Theorem 2.1, stated and proven in Section 2, which 

provides formulae for eigenvectors of matrices subject to structured perturbations. The 
formulae for the eigenvectors do not require that the matrices are nonnegative, and we 
present them for full generality. Section 3 applies these results to Lyapunov functions 
for perturbed linear systems. We illustrate the theory with examples in Section 4 and 
Section 5 contains a brief discussion.

Notation: Most notation we use is standard or is defined as it is introduced. The 
symbols N, R and C denote the sets of positive integers, real numbers and complex 
numbers, respectively. The symbol N0 denotes the set of nonnegative integers. For n ∈ N, 
we let n := {1, 2, . . . , n}.

We recall that a square matrix A ∈ R
n×n with entries aij is said to be reducible if 

there exist non-empty, disjoint subsets J1, J2 ⊆ n such that J1 ∪ J2 = n and aij = 0
for all (i, j) ∈ J1 × J2. If A is not reducible then it is said to be irreducible. If A is 
additionally nonnegative, then A is irreducible if, and only if, for each i, j ∈ n there 
exists k ∈ N such that the (i, j)-th entry of Ak is positive. We write that a vector or 
matrix is strictly positive if every component is positive. We let σ(A) and r(A) denote 
the spectrum of A and spectral radius of A, respectively.

2. Eigenvectors of matrices with structured perturbations

Theorem 2.1. Given A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n, for m, n, p ∈ N, let G denote 

the matrix-valued meromorphic function

z �→ G(z) := C(zI −A)−1B , (2.1)
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defined for all z ∈ C that are not poles of G. For any P ∈ R
m×p and λ ∈ C

(a) λ /∈ σ(A) satisfies λ ∈ σ(A + BPC) if, and only if, 1 ∈ σ(G(λ)P ). The geometric 
multiplicity of λ as an eigenvalue of A +BPC is equal to that of one as an eigenvalue 
of G(λ)P or PG(λ).

Let λ ∈ σ(A + BPC) be such that λ /∈ σ(A).

(b) Every left eigenvector of A +BPC corresponding to the eigenvalue λ is of the form 
ξTC(λI−A)−1 or ζTPC(λI−A)−1, where ξT and ζT are left eigenvectors of G(λ)P
and PG(λ) corresponding to the eigenvalue one, respectively; and

(c) every right eigenvector of A +BPC corresponding to the eigenvalue λ is of the form 
(λI − A)−1Bν or (λI − A)−1BPη, where ν and η are right eigenvectors of PG(λ)
and G(λ)P corresponding to the eigenvalue one, respectively.

If additionally A ∈ R
n×n
+ , A + BPC is nonnegative, irreducible and λ = r(A + BPC), 

λ /∈ σ(A), then

(d) ξTC(λI−A)−1 or ζTPC(λI−A)−1 are equal to a left eigenvector of A +BPC (which 
may be chosen to be strictly positive), corresponding to the simple eigenvalue λ, where 
ξT and ζT are as in (b); and

(e) (λI −A)−1Bν, (λI −A)−1BPη are equal to a right eigenvector of A +BPC (which 
may be chosen to be strictly positive), corresponding to the simple eigenvalue λ, where 
ν and η are as in (c).

Remark 2.2. Converses to parts (b) and (c) of the above theorem hold, which we de-
scribe here for completeness and are in fact used to prove the assertion in (a) regarding 
geometric multiplicities. Namely, if θT is a left eigenvector of A +BPC corresponding to 
the eigenvalue λ /∈ σ(A), then θTBP and θTB are left eigenvectors of G(λ)P and PG(λ)
corresponding to the eigenvalue one, respectively. Similarly, if ω is a right eigenvector 
of A + BPC corresponding to the eigenvalue λ /∈ σ(A), then Cω and PCω are right 
eigenvectors of G(λ)P and PG(λ) corresponding to the eigenvalue one, respectively. �
Proof of Theorem 2.1. The first part of assertion (a) is known and follows from [22, 
Proposition 2.3] (alternatively compare with, for example, [28, Theorem 4.3]). The second 
part shall be derived in the proof of (b), which we proceed to next. We let g.m.M (μ)
denote the geometric multiplicity of the eigenvalue μ of the square matrix M and recall 
that 1 ∈ σ(G(λ)P ) if, and only if, 1 ∈ σ(PG(λ)).

For λ ∈ σ(A + BPC), λ /∈ σ(A), suppose that g.m.G(λ)P (1) = � and let ξT1 , . . . , ξT�
denote � linearly independent left eigenvectors of G(λ)P , corresponding to the eigenvalue 
one, so that

ξTj G(λ)P = ξTj ∀ j ∈ � . (2.2)
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A calculation shows that for every j ∈ �

ξTj C(λI −A)−1(A + BPC)

= ξTj C(λI −A)−1A + ξTj C(λI −A)−1BPC

= ξTj C(λI −A)−1(A + λI −A) = λξTj C(λI −A)−1 , by (2.2),

demonstrating that ξTj C(λI − A)−1 is a left eigenvector of A + BPC corresponding to 
the eigenvalue λ. If there exist constants δ1, . . . , δ� ∈ C such that

0 =
�∑

j=1
δjξ

T
j C(λI −A)−1

⇒ 0 =
�∑

j=1
δjξ

T
j C(λI −A)−1BP =

�∑
j=1

δjξ
T
j G(λ)P =

�∑
j=1

δjξ
T
j

⇒ δ1 = · · · = δ� = 0 , (2.3)

since the ξTj are linearly independent. We conclude that the � vectors ξTj C(λI − A)−1, 
j ∈ �, are linearly independent, and thus

g.m.A+BPC(λ) ≥ g.m.G(λ)P (1) . (2.4)

If ζT is a left eigenvector of PG(λ) corresponding to the eigenvalue one, that is

ζTPG(λ) = ζT , (2.5)

then

ζTPC(λI −A)−1(A + BPC)

= ζTPC(λI −A)−1A + ζTPC(λI −A)−1BPC

= ζTPC(λI −A)−1(A + λI −A) = λζTPC(λI −A)−1 , by (2.5),

as required. A similar calculation to that in (2.3) demonstrates that if ζTj are lin-
early independent left eigenvectors of PG(λ) corresponding to the eigenvalue one, then 
ζTj PC(λI −A)−1 are linearly independent, and thus

g.m.A+BPC(λ) ≥ g.m.PG(λ)(1) . (2.6)

Now suppose that g.m.A+BPC(λ) = r and let θT1 , . . . , θTr denote r linearly independent 
left eigenvectors of A + BPC, corresponding to the eigenvalue λ, so that

θTj (A + BPC) = λθTj ∀ j ∈ r . (2.7)
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Since λ /∈ σ(A), it follows from (2.7) that both θTj B �= 0 and θTj BP �= 0. Rearranging 
(2.7) we obtain

θTj BPC(λI −A)−1 = θTj

⇒ θTj BPG(λ) = θTj B and θTj BPG(λ)P = θTj BP ∀ j ∈ r , (2.8)

which establishes that θTj BP and θTj B are left eigenvectors of G(λ)P and PG(λ), re-
spectively. If there exist constants ω1, . . . , ωr ∈ C such that

0 =
r∑

j=1
ωjθ

T
j BP or 0 =

r∑
j=1

ωjθ
T
j B ⇒ 0 =

r∑
j=1

ωjθ
T
j BPC(λI −A)−1 =

r∑
j=1

ωjθ
T
j

⇒ ω1 = · · · = ωr = 0 , (2.9)

where we have used (2.8), and since the θTj are linearly independent. We conclude that 
the r vectors θTj BP are linearly independent, as are the r vectors θTj B, whence

g.m.A+BPC(λ) ≤ g.m.G(λ)P (1), g.m.PG(λ)(1) . (2.10)

Combining (2.4), (2.6) and (2.10) we see that

g.m.A+BPC(λ) = g.m.G(λ)P (1) = g.m.PG(λ)(1) ,

and hence the claimed one-to-one correspondence between eigenvectors holds. The proof 
of statements (a) and (b) is now complete.

The proof of (c) is analogous to that of (b) and is therefore omitted. Parts (d) and (e) 
now follow from (b) and (c), respectively, noting that as A + BPC is nonnegative and 
irreducible, the Perron–Frobenius Theorem implies that λ = r(A + BPC) is a simple 
eigenvalue. Hence, the strictly positive left and right eigenvectors of A +BPC correspond-
ing to λ are uniquely given (up to multiplication by a positive scalar) by ξTC(λI−A)−1

and (λI−A)−1BPη, for ξT and η denoting left and right eigenvectors of G(λ)P , respec-
tively, corresponding to the simple eigenvalue one (necessarily simple by part (a)). �

The formulae derived in Theorem 2.1 may be of use in applications where eigenvectors 
are the desired object, as we seek to illustrate in Example 4.2. Another application of the 
theorem, that we pursue in Section 3, is that (perturbed) strictly positive eigenvectors 
induce norms which may be used to provide estimates of the transient dynamics of 
(perturbed) linear positive systems. Before that we provide some remarks on the above 
theorem.

Remark 2.3.

(i) The relationship in Theorem 2.1 (a) between eigenvalues λ of A + BPC, and one 
being an eigenvalue of G(λ)P , holds for all n eigenvalues of A + BPC, not just its 
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spectral radius. When A +BPC is nonnegative, determining the difference between 
λ ∈ σ(A +BPC) and λ = r(A +BPC) is not always immediate. We draw attention 
to [36, Theorem 2.2], however, for rank-one perturbations which provides sufficient 
conditions for when λ ∈ σ(A + bpcT ) does imply that λ = r(A + bpcT ).

(ii) If, in addition to the assumptions of Theorem 2.1 parts (d) and (e), A is assumed 
irreducible and 0 ≤ BPC �= 0 then, from [3, p. 27] it follows that

A ≤ A + BPC and A �= A + BPC ⇒ r(A) < r(A + BPC) ,

and thus λ = r(A + BPC) implies that λ /∈ σ(A).
(iii) If the assumption that A +BPC is irreducible in Theorem 2.1 for parts (d) and (e) 

is relaxed, and A + BPC is instead there only assumed to be nonnegative, then, 
although r(A + BPC) is still a (nonnegative) eigenvalue of A + BPC, the asso-
ciated nonnegative eigenvector (there may be others) need not be strictly positive 
in general. Strict positivity of eigenvectors is essential for the norms described in 
Section 3, although we comment on the reducible case in Section 3.3. �

Determining the eigenvectors of A +BPC is an a priori operation on n ×n matrices. 
Theorem 2.1 demonstrates that it is, in fact, a min{m, p} dimensional problem — the 
rank of the perturbation BPC — which may be much smaller than n. To demonstrate 
this property, we present as a corollary the case where B = b ∈ R

n; the case where 
C = cT ∈ R

1×n is analogous.

Corollary 2.4. Given A ∈ R
n×n, B = b ∈ R

n, C ∈ R
p×n let G denote the function (2.1). 

For any P = qT ∈ R
1×p

(a) λ ∈ C, λ /∈ σ(A) satisfies λ ∈ σ(A + bqTC) if, and only if, 1 = qTG(λ) = qTC(λI −
A)−1b. Such a λ is necessarily a simple eigenvalue of A + bqTC.

(b) qTC(λI−A)−1 is a left eigenvector of A + bqTC corresponding to λ ∈ σ(A + bqTC), 
λ /∈ σ(A);

(c) (λI −A)−1b is a right eigenvector of A + bqTC corresponding to λ ∈ σ(A + bqTC), 
λ /∈ σ(A).

If A + bqTC is nonnegative, irreducible and λ = r(A + bqTC), λ /∈ σ(A), then the vectors 
in parts (b) and (c), as left and right eigenvectors of A + bqTC corresponding to the 
simple eigenvalue λ, respectively, may be chosen to be strictly positive and are unique up 
to multiplication by a positive scalar.

The condition 1 = qTG(λ) in Corollary 2.4 (a) is a scalar equation in at most p + 1
unknowns — the p entries of qT and λ. Therefore, computing the eigenvectors of G(λ)qT

or qTG(λ) is not required in this case.
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3. Perturbations of norms and Lyapunov functions for linear positive systems

Here we recall how eigenvectors of the nonnegative, irreducible matrix A induce norms 
that help describe the dynamics of the linear positive dynamical system (1.1). We first 
consider the case where the matrices involved are irreducible, in discrete- and continuous-
time in Sections 3.1 and 3.2, respectively, before commenting on the reducible case in 
Section 3.3.

3.1. Discrete-time

Given irreducible A ∈ R
n×n
+ , let vT and w denote strictly positive left and right 

eigenvectors of A corresponding to the eigenvalue r = r(A) of A, which exist and are 
unique up to multiplication by a positive scalar by the Perron–Frobenius Theorem. Let 
V, W : Rn

+ → R+ denote the norms on the positive cone Rn
+ given by

V (x) := vTx and W (x) := max
1≤i≤n

xi

wi
, (3.1)

where wi denotes the (necessarily positive) i-th component of w, for i ∈ n. Note that 
V is linear, whilst W is not. Both V and W are only determined up to multiplication 
by a positive scalar, which may be fixed by fixing the norm of vT and w. In words, 
V and W are weighted one- and infinity-norms on Rn

+, respectively, and satisfy the norm 
equivalences:

min
1≤j≤n

vj‖x‖1 ≤ V (x) ≤ max
1≤j≤n

vj‖x‖1

min
1≤j≤n

1
wj

‖x‖∞ ≤ W (x) ≤ max
1≤i≤n

1
wi

‖x‖∞

⎫⎪⎪⎬
⎪⎪⎭ ∀ x ∈ R

n
+ .

As mentioned in the introduction, the functions V and W appear elsewhere in the positive 
systems literature, with different terminology. For instance, the function V is called a 
linear copositive Lyapunov function in [5] and is an example of a sum-separable Lyapunov 
function from [40]. The function W is an example of a max-separable Lyapunov function, 
also from [40].

Along solutions x of the discrete-time linear positive system (1.1), V satisfies the 
equalities

V (x(t + 1)) = vTx(t + 1) = vTAx(t) = rV (x(t)) , t ∈ N0 (3.2)

(see also, for example, the proof of [16, Theorem 1]). The difference equation (3.2) has 
solution

V (x(t)) = rtV (x0) , t ∈ N0 . (3.3)
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Similarly, arguing now for W , we estimate for t ∈ N0

W (x(t + 1)) = max
1≤i≤n

xi(t + 1)
wi

= max
1≤i≤n

(Ax(t))i
wi

= max
1≤i≤n

n∑
j=1

Aijxj(t)
wj

≤ max
1≤i≤n

n∑
j=1

Aijwi

wj
max

1≤k≤n

xk(t)
wk

= r max
1≤k≤n

xk(t)
wk

= rW (x(t)) , (3.4)

and comment that the inequality in (3.4) is an equality if x(t) = w, for t ∈ N0. The 
inequality (3.4) admits the estimate

W (x(t)) ≤ rtW (x0) , t ∈ N0 . (3.5)

Remark 3.1. When r = r(A) < 1, then the known expressions (3.2) and (3.4) demon-
strate that both V and W are Lyapunov functions for the discrete-time linear positive 
system (1.1). However, the following observations hold for any r > 0. For large t, the 
right hand sides of (3.3) and (3.5) are dominated by rt, determining the asymptotic 
dynamics of the linear system (1.1) (unless x0 = 0). For small t, the terms V (x0) and 
W (x0) play a larger role in determining V (x(t)) and W (x(t)), respectively, and may cap-
ture the transients of x(t), in either a weighted one- or infinity-norm, respectively. For 
fixed c1, c2 > 0 the equations V (x0) = c1 and W (z0) = c2 describe n-hyperplanes and 
n-hyperrectangles, respectively, intersected with the positive cone Rn

+ in the unknowns 
x0, z0 ∈ R

n
+. �

Combining the calculations of this section with Theorem 2.1 yields the obvious corol-
lary.

Corollary 3.2. Given A ∈ R
n×n
+ , B ∈ R

n×m and C ∈ R
p×n, assume that P ∈ R

m×p and 
r ≥ 0 are such that

(a) A + BPC ∈ R
n×n
+ is irreducible;

(b) r = r(A + BPC) /∈ σ(A);

let ξT , ζT , ν and η be as in Theorem 2.1. Then V1, V2, W1, W2 : Rn
+ → R+ defined by

V1(x) := ξTC(rI −A)−1x , V2(x) := ζTPC(rI −A)−1x

W1(x) := max
1≤i≤n

xi

((rI −A)−1Bν)i
, W2(x) := max

1≤i≤n

xi

((rI −A)−1BPη)i

⎫⎬
⎭ (3.6)

are norms on Rn
+ (once the eigenvectors from Theorem 2.1 are chosen to have posi-

tive components). Further, the solutions x of the perturbed, discrete-time linear positive 
system
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x(t + 1) = (A + BPC)x(t) , x(0) = x0 , t ∈ N0 , (3.7)

satisfy (3.3) with V replaced by V1 or V2 and (3.5) with W replaced by W1 or W2.

Remark 3.3. Appealing to statements (b) and (c) of Corollary 2.4, we note that the 
functions Vi and Wi in (3.6) simplify in the special cases that m = 1 or p = 1. �

When r(A) = 1 and A is primitive then the function V in (3.1) provides estimates of 
the one-norm of the asymptotic solution x of (1.1). Particularly, when A is primitive it 
is well-known that for any r(A) the solution x of (1.1) satisfies

lim
t→∞

r(A)−tx(t) = vTx0

vTw
w , (3.8)

where vT and w are positive left and right eigenvectors of A corresponding to r(A), 
respectively. Note that the right hand side of (3.8) is independent of the scalings of vT
and w chosen. Thus, if vT , w are (uniquely) chosen so that

‖w‖1 = 1 and vTw = 1 , (3.9)

then (3.8) may be rewritten as

lim
t→∞

r(A)−tx(t) = V (x0)w ,

where V is as in (3.1). Therefore, in the situation that r(A) = 1 it follows that

V (x0) =
∥∥ lim

t→∞
x(t)

∥∥
1 = lim

t→∞
‖x(t)‖1 , (3.10)

that is, the solution x(t) converges in one-norm to V (x0), and is asymptotically parallel 
to w. Clearly, ‖ limt→∞ x(t)‖1 depends linearly on ‖x0‖1 and hence over all initial states 
with one-norm one we have

max
‖x0‖1=1

∥∥ lim
t→∞

x(t)
∥∥

1 = max
‖z‖1=1

V (z) = max
1≤j≤n

vj =: vk ,

and min
‖x0‖1=1

∥∥ lim
t→∞

x(t)
∥∥

1 = min
‖z‖1=1

V (z) = min
1≤j≤n

vj =: v� ,

for some k, � ∈ n. Moreover, the above maximum and minimum are respectively attained 
at x0 = ek and x0 = e�. By replacing A and V above by A +BPC and V1 or V2 from (3.6), 
respectively, and appealing to Theorem 2.1 and Corollary 3.2, the same comments apply 
to the solution of the perturbed linear system (3.7). The equation (3.8) has relevance in 
ecological and population modelling, explored further in Examples 4.3 and 4.4.
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3.2. Continuous-time

Here we present parallel results to those in Sections 2 and 3.1 only now for continuous-
time linear positive systems (1.4), that is,

ż(t) = Mz(t) , z(0) = z0 , t ∈ R+ .

In (1.4), z0 ∈ R
n
+ for n ∈ N and M ∈ R

n×n is Metzler, meaning that Mij ≥ 0 for all 
i, j ∈ n such that i �= j. Noting that the unique solution of (1.4) is given by

z(t) = eMtz0 , t ∈ R+ ,

where R+ � t �→ eMt denotes the usual matrix exponential, it is well-known that the 
family of semigroups (eMt)t≥0 is componentwise nonnegative for all t ∈ R+ if, and only 
if, M is Metzler, see for example [43, Section 3.1] or [41, Theorem 3] for a proof.

In continuous-time the asymptotic dynamics of (1.4) (certainly for z0 �= 0) are deter-
mined by the spectral abscissa of M , which is defined as

α(M) := max {Re λ : λ ∈ σ(M)} .

The following result is an analogue of the Perron–Frobenius Theorem for irreducible 
Metzler matrices, and is well-known.

Proposition 3.4. Let M ∈ R
n×n denote a Metzler matrix, set a := α(M) and let μ > 0

be such that μI + M ∈ R
n×n
+ . Then the following statements hold:

(1) a ∈ σ(M) and a = r(μI + M) − μ;
(2) if λ ∈ σ(M) and λ �= a, then Re λ < a.

Furthermore, under the additional assumption that M is irreducible, the following state-
ments hold.

(3) a is simple;
(4) there exist positive vectors v, w ∈ R

n, unique up to multiplication by a positive scalar, 
such that

vTM = avT and Mw = aw . (3.11)

Proof. Statement (1) is taken from [45, part (i) of Proposition 1 and equation (8)] and 
statement (2) from [45, part (ii) of Proposition 1]. Statements (3) and (4) follow from, 
for example, [9, Theorems 11 and 17]. �
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Theorem 3.5. Given M ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n, let G denote the meromor-

phic function

z �→ G(z) := C(zI −M)−1B ,

defined for all z ∈ C that are not poles of G. If P ∈ R
m×p is such that M+BPC ∈ R

n×n

is irreducible and Metzler and λ = α(M + BPC), λ /∈ σ(M), then

(a) ξTC(λI−M)−1, ζTPC(λI−M)−1 are left eigenvectors of M+BPC, corresponding 
to the simple eigenvalue λ, where ξT and ζT are left eigenvectors of G(λ)P or PG(λ)
corresponding to the simple eigenvalue one, respectively;

(b) (λI −M)−1Bν, (λI −A)−1BPη are right eigenvectors of M +BPC, corresponding 
to the simple eigenvalue λ, where ν and η are right eigenvectors of PG(λ) or G(λ)P
corresponding to the simple eigenvalue one, respectively.

Proof. The proof is very similar to that of Theorem 2.1, and uses Theorem 2.1 (a), as 
well as Proposition 3.4. The details are omitted. �

Given an irreducible, Metzler M ∈ R
n×n, let vT and w denote strictly positive left and 

right eigenvectors of M corresponding to the spectral abscissa a = α(M), respectively, 
the existence of which is ensured by Proposition 3.4. The norms V and W are defined 
as in (3.1) and, along solutions z of (1.4), t �→ V (z(t)) is differentiable and moreover

d

dt
V (z(t)) = d

dt
vT z(t) = vTMz(t) = aV (z(t)) , t ∈ R+ . (3.12)

The differential equation (3.12) has solution

V (z(t)) = eatV (z0) , t ∈ R+ . (3.13)

Arguing now for t �→ W (w(t)) (which need not be classically differentiable), we use the 
series expansion of the matrix exponential and (3.11) to see that

eMtw =
∑
k∈N0

tk

k!M
kw =

∑
k∈N0

tk

k!a
kw = eatw , t ∈ R+ . (3.14)

Therefore, for t ∈ R+

W (z(t)) = max
1≤i≤n

zi(t)
wi

= max
1≤i≤n

(eMtz0)i
wi

= max
1≤i≤n

∑n
j=1(eMt)ijz0

j

wi
= max

1≤i≤n

∑n
j=1(eMt)ijwj

wi
·
z0
j

wj

≤ max
∑n

j=1(eMt)ijwj max z0
k

1≤i≤n wi 1≤k≤n wk
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= eatW (z0) , (3.15)

where we have used (3.14). The inequality in (3.15) is an equality if z0 = w.

Remark 3.6. The expressions (3.13) and (3.15) are well-known (see, for example, [39, 
Proposition 1, Remark 1]) and are the continuous-time versions of (3.3) and (3.5), re-
spectively. In particular, if a = α(M) < 0, then V and W are Lyapunov functions 
for (1.4). Their interpretation and utility in capturing transient dynamics, particularly 
through V (z0) and W (z0), is the same as that described in Remark 3.3. �

Combining the calculations of this section with Theorem 3.5 yields the obvious corol-
lary.

Corollary 3.7. Given M ∈ R
n×n
+ , B ∈ R

n×m and C ∈ R
p×n, assume that P ∈ R

m×p and 
a ∈ R are such that

(a) M + BPC ∈ R
n×n
+ is Metzler and irreducible;

(b) a = α(M + BPC) /∈ σ(M);

let ξT , ζT , ν and η be as in Theorem 3.5. Then V1, V2, W1, W2 : Rn
+ → R+ defined by

V1(x) := ξTC(aI −M)−1x , V2(x) := ζTPC(aI −M)−1x ,

W1(x) := max
1≤i≤n

xi

((aI −M)−1Bν)i
, W2(x) := max

1≤i≤n

xi

((aI −M)−1BPη)i
,

are norms on Rn
+ (once the eigenvectors from Theorem 3.5 are chosen to have posi-

tive components). Further, solutions z of the perturbed, continuous-time linear positive 
system

ż(t) = (M + BPC)z(t) , z(0) = z0 , t ∈ R+ , (3.16)

satisfy (3.13) with V replaced by V1 or V2 and (3.15) with W replaced by W1 or W2.

3.3. The reducible case

The material in Section 3 thus far has assumed irreducibility to ensure that V and 
W in (3.1) (as well as Vi and Wi in Corollaries 3.2 and 3.7) are well-defined norms. The 
irreducibility assumption may be dropped at the potential loss of accuracy and increased 
conservatism, as we proceed to describe.

Given A ∈ R
n×n
+ , it follows that Aε := A +εQ is strictly positive and hence irreducible, 

for all ε > 0 and strictly positive Q ∈ R
n×n
+ . The spectral radius of A is continuous 

with respect to the entries of A and so with rε := r(A + εQ) and r = r(A), then 
0 ≤ rε − r → 0 as ε → 0. Letting vTε and wε denote strictly positive left and right 
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eigenvectors of Aε corresponding to rε, respectively, we may define Vε and Wε as in (3.1). 
Straightforward adjustments to the calculations (3.2) and (3.4) demonstrate that along 
solutions x of (1.1)

Vε(x(t + 1)) ≤ rεVε(x(t)) and Wε(x(t + 1)) ≤ rεWε(x(t)) t ∈ N0 . (3.17)

If r(A) < 1, then ε > 0 and strictly positive Q ∈ R
n×n
+ may be chosen so that rε < 1, 

and so (3.17) demonstrates that Vε and Wε are Lyapunov functions for (1.1) — in other 
words, Vε and Wε still capture the same qualitative behaviour of solutions of (1.1). 
Corollary 3.2 naturally extends to the reducible case by replacing A with Aε. When 
r ≥ 1, however, the inequalities in (3.17) (compare with the equality in (3.2)) are less 
informative and may be conservative. Further, recall that our motivating application 
for Corollary 3.2 is to see how structured perturbations affect transient dynamics in 
linear positive systems, that is, how the transients of (3.7) compare to those of (1.1). 
The solution that we propose uses the norms Vi and Wi in (3.6). The introduction of 
ε > 0 and strictly positive Q ∈ R

n×n
+ obfuscates the relative contributions of εQ and the 

perturbation BPC to (Vε)i and (Wε)i.
A different perspective is that irreducibility of A ensures that every (non-zero) so-

lution of the linear positive dynamical system (1.1) experiences the same asymptotic 
rate of growth or decline (in the norm V ), captured by (3.2). This qualitative property 
of independence of asymptotic rates of growth on initial conditions — reminiscent of 
the independence of initial distributions on the limiting distribution of ergodic Markov 
chains, see [13, Theorem 11’, p. 95] — need not hold for reducible matrices. Consider 
the simple example of a reducible A given by

A :=
[
A1 A2
0 A3

]
∈ R

n×n
+ ,

where A1 and A3 are both irreducible. Since A leaves a proper cone invariant if, for 
example, r(A1) < 1 and r(A3) > 1, then clearly, the solutions of (1.1) from the initial 
states 

[
x0

0

]
and 

[
0
x0

]
shall exhibit different asymptotic rates of growth. Although adding 

εQ to A would make the material of Section 3 applicable, it is arguably qualitatively more 
appropriate to consider instead the eigenvectors and norms induced by the irreducible 
components A1 and A3.

The above comments are also applicable in the continuous-time case, by noting that 
Aε := A + εQ is Metzler if A is, ε > 0 and Q ∈ R

n×n
+ is strictly positive.

4. Examples

Example 4.1. Block-wise matrix inversion — the Matrix Inversion Lemma — states that 
for A ∈ C

n×n, b, c ∈ C and d ∈ C, the block matrix M has inverse given by

M−1 :=
[
A b
cT d

]−1

=
[
A−1 + A−1bcTA−1/G(0) −A−1b/G(0)

−cTA−1/G(0) 1/G(0)

]
, (4.1)
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a formula also known as the Abcd lemma, provided that A−1 exists and the Schur 
complement G(0) = d −cTA−1bc �= 0. The expression (4.1) is useful because it determines 
M−1 from lower dimensional quantities and is particularly effective when computing A−1

is elementary (or A−1 is already known). We seek formulae for the eigenvectors of M in 
terms of A, b, cT and d.

By decomposing M into the sum of a matrix and a rank-one perturbation

M =
[
A b
0 0

]
+

[
0 0
cT d

]
=

[
A b
0 0

]
+

[
0
1

] [
cT d

]
,

the eigenvalues and eigenvectors of M are described by Corollary 2.4 in terms of A, b, c
and d. Specifically, by Corollary 2.4 (a), λ /∈ σ(A) ∪{0} satisfies λ ∈ σ(M) if, and only if,

1 =
[
cT d

]([
λI 0
0 λI

]
−

[
A b
0 0

])−1 [0
1

]

=
[
cT d

] [(λI −A)−1 (λI −A)−1b/λ
0 1/λ

] [
0
1

]
= G(λ)/λ , (4.2)

where G is as in (2.1). For such λ ∈ σ(M) the corresponding left and right eigenvectors 
of M are given by

[
cT d

] [(λI −A)−1 (λI −A)−1b/λ
0 1/λ

]
=

[
cT (λI −A)−1 G(λ)/λ

]
=

[
cT (λI −A)−1 1

]
, (4.3)

by (4.2), and

[
(λI −A)−1 (λI −A)−1b/λ

0 1/λ

] [
0
1

]
=

[
(λI −A)−1b/λ

1/λ

]
, (4.4)

respectively. We note that the same formulae as (4.2)–(4.4) (the latter two up to multi-
plication by a positive scalar) are obtained when M is instead decomposed as

M =
[
A 0
cT 0

]
+

[
0 b
0 d

]
=

[
A 0
cT 0

]
+

[
b
d

]
[0 1] .

The above arguments do not require that M is nonnegative. If M is nonnegative then 
by [36, Theorem 2.1], it follows that M may only have one positive eigenvalue greater 
than that of r(A), which therefore must necessarily equal r(M). �
Example 4.2. Markov chains on finite state-spaces are examples of linear, discrete-time 
positive dynamical systems described by (1.1). Examples include simple random walks 
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with absorbing or reflecting boundaries or simple queuing models, as well as applications 
in group theory in [1]. Amongst numerous suitable monographs on stochastic processes 
we refer the reader to, for example, [10, Ch. 16] or [34, Ch. 1]. Let Xt denote the state 
of a discrete-time (time-homogeneous or stationary) Markov chain, for t ∈ N0, taking 
values in {1, 2, . . . , n} with associated transition probabilities

P(Xt+1 = i |Xt = j) =: aij ≥ 0 . (4.5)

Defining A ∈ R
n×n
+ with (i, j)-th entry aij it follows that A is a (left) stochastic matrix 

(also termed a probability matrix, transition matrix, substitution matrix or Markov 
matrix) since

n∑
i=1

aij = 1 , ∀ j ∈ {1, 2, . . . , n}. (4.6)

In words, (4.6) states that every column sum of A is one, and thus as r(A) ∈ σ(A)

r(A) ≤ ‖A‖1 = max
‖v‖1=1

‖Av‖1 = max
1≤j≤n

{
n∑

i=1
aij

}
= 1 .

However, evidently (4.6) also yields that

[1 1 . . . 1]A = [1 1 . . . 1] ,

so that 1 ∈ σ(A), whence r(A) = 1. Assuming that A is primitive (so that the Markov 
chain is ergodic), it follows from the Perron–Frobenius Theorem that r(A) is a simple 
eigenvalue. Letting w denote the right eigenvector of A corresponding to r(A) = 1, with 
‖w‖1 = 1, the equalities

lim
n→∞

Anx0 = Aw = w ,

for any x0 ∈ R
n
+ with ‖x0‖1 = 1 imply that, as is well-known, w is the limiting, stationary 

distribution of (Xt)t∈N0 .
Here we use Theorem 2.1 to give an example of how the stationary distribution changes 

analytically with perturbations to the transition matrix. Consider a Markov chain with 
n = 3 states, transition matrix T and stationary distribution w0:

T :=

⎡
⎣ 1

2
1
3

1
6

1
4

1
3

1
6

1
4

1
3

2
3

⎤
⎦ w0 = 1

13

[4
3
6

]
=

[0.3077
0.2308
0.4615

]
. (4.7)

Any perturbation to T must preserve the properties (4.5) and (4.6) and we consider the 
two-parameter perturbation
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⎡
⎣ 1

2
1
3

1
6 − q

2
1
4

1
3 − p 1

6 − q
2

1
4

1
3 + p 2

3 + q

⎤
⎦ , p ∈

(
−1

3 ,
1
3

)
, q ∈

(
−2

3 ,
1
3

)
, (4.8)

which we write as

T =

⎡
⎣ 1

2
1
3

1
6 − q

2
1
4

1
3 − p 1

6 − q
2

1
4

1
3 + p 2

3 + q

⎤
⎦ =

⎡
⎣ 1

2
1
3 0

1
4 0 0
1
4 0 1

2

⎤
⎦ +

⎡
⎣ 0 1

6 − q
2

1
3 − p 1

6 − q
2

1
3 − p 1

6 + q

⎤
⎦[

0 1 0
0 0 1

]
:= A + PC ,

where we note that r(A) < 1. By construction each column sum of the matrix in (4.8)
is equal to one, and thus we expect that 1 = r(A + BPC) (with B = I) for any 
p, q as in (4.8). For consistency we demonstrate that condition Theorem 2.1 (a) that 
1 ∈ σ(A +BPC) if, and only if, 1 ∈ σ(C(I−A)−1P ) = σ(G(1)P ), always holds. Indeed, 
an elementary calculation shows that

G(1)P = C(I −A)−1P = 1
10

[
4 − 12p 3 − 9q
16p + 8 12q + 6

]
⇒

⎧⎪⎨
⎪⎩

tr (G(1)P ) = 1 + 6
5(q − p)

det(G(1)P ) = 6
5(q − p)

⇒ σ(G(1)P ) =
{

1, 6
5(q − p)

}
.

We now seek the right eigenvector of T corresponding to r(T ) = 1. A right eigenvector 
η of G(1)P corresponding to the eigenvalue one is given by

η =
[ (1−3q)

2(2p+1)
1

]
,

and hence, by Theorem 2.1 (c), w = (I − A)−1BPη = (I − A)−1Pη is a simple right 
eigenvector of T corresponding to r(T ) = 1. Once normalised so that ‖w‖1 = 1 we find 
that

w = w(p, q) =
[

4(1−3q)(p+1)
16p−21q−12pq+13

3(1−3q)
16p−21q−12pq+13

6(2p+1)
16p−21q−12pq+13

]T
. (4.9)

Correctly, we see from (4.9) that when p = q = 0 we recover w(0, 0) = w0 in (4.7). 
As the number of parameters is low, the components of w have been graphed over 
(p, q)-parameter space in Fig. 1.

We conclude this example by noting that as the state-dimension n = 3 is low, the 
right eigenvalue in (4.9) could be derived directly from T in (4.8), either by hand or 
through symbolic computing. We have chosen n = 3 so as to demonstrate the concepts 
involved without obscuring them with calculations — the real value of Theorem 2.1 and 
Theorem 3.5 is that they apply when n is very large, and computing w in (4.9) directly 
is computationally expensive. �
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Fig. 1. Plots from Example 4.2. Components of w(p, q) in (4.9) plotted over the parameter as surface (a)–(c) 
and contour (d) plots. The components of w(0, 0) = w0 are marked with black crosses.

Example 4.3. Matrix population projection models are linear systems of the form (1.1)
and are a tool for modelling stage-structured populations. They are used broadly from 
conservation and harvesting to evolutionary theory and we refer the reader to the mono-
graph of Caswell [6] for further background. A reasonable assumption for meaningful 
ecological models (see [48]) is that A is primitive, so that (3.8) holds, that is,

lim
t→∞

r(A)−tx(t) = vTx0

vTw
w .

Here w and vT are positive right and left eigenvectors of A, respectively, corresponding 
to r(A) and are typically called the stable-stage structure and the reproductive vector, 
respectively. The latter receives its name as vT contains the reproductive values (as 
in [11]) of each stage-class [15]. The product vTx0 that appears in the numerator of (3.8)
contains the contributions to the asymptotic population from the initial population dis-
tribution x0. The nonnegative constant

vTx0
,

vTw
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that appears on the right hand side of (3.8) is defined as the population inertia [32]
of A from x0. Noting that the population inertia from x0 = w is one; the population 
inertia of A from arbitrary x0 is a long term multiplicative ratio of the size of the 
population projected from y0 compared to that projected from stable stage-structure w. 
Combining (3.8) with Theorem 2.1 for the perturbed eigenvectors demonstrates that

ξTC(λI −A)−1x0

ξTC(λI −A)−2BPη
= ζTPC(λI −A)−1x0

ζTPC(λI −A)−2Bν
, (4.10)

is equal to the population inertia of A +BPC from x0, where ξT , ζT , η and ν are as in 
Theorem 2.1. The expressions in (4.10) are the expected generalisations of the rank-one, 
one-parameter perturbations presented in [49]. �
Example 4.4. Our final example is based on [36, Section 3.1] which considers the effects of 
three parameters on the spectral radius of matrix population projection model from [50]
for the invasive weed Cirsium vulgare. The linear model has four stage-classes denoting 
the seed bank, small, medium and large weeds, respectively, and is given by:

A(s, g, h) =

⎡
⎢⎣

0 0 2043.8(1 − h)(1 − g) 9289.98(1 − h)(1 − g)
0.015s 0 1052.37g(1 − h)s 4783.51g(1 − h)s

0 0.12 0.11 0
0 0.02 0.27 0.17

⎤
⎥⎦ ,

where the three parameters of interest are the germination rate g, summer survival s
of small plants and mortality caused by floral herbivory h. As survival/mortality rates 
(or proportions) the parameters s, g, h satisfy 0 ≤ s, g, h ≤ 1 and A is easily observed to 
be primitive whenever 0 < s, g, h < 1. The nominal values gnom = 0.2142, snom = 0.516
and hnom = 0.942 from [50] give rise to r(A) = 1.58 > 1 where A := A(snom, gnom, hnom).

To write A as a structured perturbation of A depending on the parameters s, g and 
h we write

A = A + (A(s, g, h) −A)

= A +

⎡
⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎦

︸ ︷︷ ︸
=:B

×
[

0 0 c1[(1 − h)(1 − g) − 0.0456] c2[(1 − h)(1 − g) − 0.0456]
c3(s− 0.5160) 0 c4[g(1 − h)s− 0.0064] c5[g(1 − h)s− 0.0064]

]
︸ ︷︷ ︸

=:P

,

(4.11)

with c1 = 2043.8, c2 = 9289.98, c3 = 0.015, c4 = 1052.37 and c5 = 4783.51. In [36] the 
authors seek to describe the required changes to g, s or h that asymptotically stabilise 
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Fig. 2. Plots from Example 4.4. (a) Surface of r(A) = 1 in (g, s, h)-parameter space overlaid with contours 
of maxz V2(z) (b) Surface plot of maxz V2(z). (c) Projections ‖x(t)‖1 from 20 initial states.

the weed population, that is, give rise to r(A) = 1. The r(A) = 1 surface is plotted 
in (g, s, h)-parameter space in Fig. 2(a) and has been found from Theorem 2.1 (a) by 
varying s and g in the interval [0.1, 0.9] and determining h by solving

det(I − PG(r(A))) = det(I − PG(1)) = 0 .

Here G(1) = C(I − A)−1B = (I − A)−1B, as C = I in (4.11). The surface in Fig. 2(a) 
is a reproduction of [36, Fig. 3.1]. Any (g, s, h)-triple lying on the surface results in 
r(A) = 1. However, the analysis in [36] does not consider the impact of the any potential 
management strategy (that is, perturbation) on the resulting dynamics — particularly 
‖x(t)‖1 as t → ∞.

Supposing that (s∗, g∗, h∗) are such that r(A) = 1 then, as in Remark 3.3 (iii), it 
follows that

max
‖x0‖1=1

∥∥ lim
t→∞

x(t)
∥∥

1 = max
‖z‖1=1

V2(z) = max
1≤j≤4

(ζTP (I −A)−1)j ,

where Rn
+ � z �→ V2(z) = ζTP (I −A)−1z has been chosen with the normalisation

‖(I −A)−1Bν‖1 = 1 and ζTP (I −A)−1(I −A)−1Bν = 1 , (4.12)
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as in (3.9). In (4.12), ζT and ν are any right and left eigenvectors of PG(1) corresponding 
to the eigenvalue one. In addition to the r(A) = 1 surface in Fig. 2(a), contours of 
max V2(z) have been overlaid (as well as plotted in the h = 0.8 plane). Combined, it 
is possible to inspect how both r(A) and max V2(z) vary over the parameter space. 
In Fig. 2(b), the surface max V2(z) has been plotted. In the present applied context of 
managing an invasive weed, perturbations that result in r(A) ≤ 1 are desirable. We note, 
however, that although small values of s, g require smaller values of h to lead to r(A) = 1, 
they also result in both a larger transient and asymptotic population abundance. Finally, 
20 projections of (1.1) with (s, g, h) = (0.79, 0.58, 0.9954) are plotted in Fig. 2(c) from 18 
random initial conditions. Additionally, the two lines initial conditions to x0

1 = e1 and 
x0

4 = e4 are plotted so that

V2(x0
1) = v1 = min

‖z‖1=1
V2(z) = 0.0129 and V2(x0

4) = v4 = max
‖z‖1=1

V2(z) = 13.4392 ,

the dotted lines — asymptotically the smallest and largest possible values for ‖x(t)‖1, 
respectively. For each initial condition the asymptotic population abundance is equal to 
V (x0), see (3.10). �
5. Conclusion

We have considered structured perturbations of matrices and especially the co-
dependencies of eigenvalues and eigenvectors. The perturbed eigenvalues capture the 
asymptotic behaviour of the perturbed time-invariant linear systems (1.2) or (3.16), and 
here we have followed existing stability radius arguments. Meanwhile, the perturbed 
eigenvectors capture other, example specific, features of the perturbed model. When 
the perturbed matrix has a fixed spectrum, for example as a consequence of “pole-
placement” (also known as pole-shifting, see [46, Ch. 5]) or because of other constraints 
such as a need to preserve column stochasticity in matrix models of Markov chains, we 
find that the perturbed left and right eigenvectors themselves are then highly constrained 
by the structure of the perturbation. When the dimension of the matrix model is high 
but the rank of the perturbation is low, then the dimension of the problem of finding 
eigenvectors is significantly reduced. Similarly, when the number of parameters defining 
the perturbation is low (typically no greater than three) then the co-dependencies of 
eigenvalues and (entries of the) eigenvectors may be displayed graphically. We believe 
that our results are useful in a variety of contexts: they can be used to investigate the 
stable stage structure in ecological or population models, equivalently the stationary 
distribution in perturbed Markov Chains; to study the dependence of population iner-
tia on vital rates, and; to consider how linear Lyapunov functions, as determined by 
left and right eigenvectors, respond to perturbations. These applications are considered 
through four simple examples and the connection to estimating or controlling transient 
dynamics via induced norms (or Lyapunov functions) is complementary to the results 
of [18].
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