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We revisit the question of when can dispersal-induced coupling between discrete sink populations cause 

overall population growth? Such a phenomenon is called dispersal driven growth and provides a sim- 

ple explanation of how dispersal can allow populations to persist across discrete, spatially heteroge- 

neous, environments even when individual patches are adverse or unfavourable. For two classes of math- 

ematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven 

growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our 

approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to 

both discrete- and continuous-time models. The theory is illustrated with examples and both biological 

and mathematical conclusions are drawn. 
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. Introduction 

Persistence is a fundamental line of enquiry in the mathemati-

al modelling of populations. Models for populations date back as

arly as the work of Leonardo of Pisa in the 1200s, with later no-

able historical contributions by Malthus in the 1790s, Verhulst in

he 1840s and Lotka and Volterra in the 1920s, see Murray (2002) .

ore recently persistence, as a property of mathematical models,

as been incorporated into mainstream mathematical biology with

etailed treatments from both deterministic ( Smith and Thieme,

011 ) and stochastic ( Schreiber, 2012 ) perspectives. There are ob-

ious applications of a theoretical framework which describes and

xplains persistence, from ecosystem composition and function,

atural resource management or conservation, to the control of in-

asive or pest species. 

A simple class of linear models for populations assumes a

iscrete-time unit, and partitions the population according to some

iscrete age-, stage- or size-class, which leads to the linear vector

ifference equation 

 (t + 1) = Ax (t) , x (0) = x 0 , t ∈ N , (1.1)
0 
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alled a matrix population projection matrix model. The reader is

eferred to, for example, the monograph of Caswell (2001) for a

horough treatment of matrix population models. The matrix A in

1.1) models vital rates or life-history parameters of the popula-

ion and the vector x ( t ) denotes the abundances of each stage-class

t time-step t , with initial stage-structure determined by x 0 . Sim-

le linear algebra can be used to project structured populations

hrough time and, under biologically reasonable mathematical as-

umptions, the long-term or asymptotic behaviour of the solution

 of (1.1) is determined by the spectral radius of A , denoted r ( A ),

hich is also an eigenvalue of A . Correspondingly, this term is of-

en called the asymptotic growth rate , the dominant eigenvalue or

ometimes just λ. The situations r ( A ) < 1 or r ( A ) > 1 have been

ermed a (deterministic) sink or source population as they corre-

pond to the model predicting asymptotic extinction or growth, re-

pectively. 

The model (1.1) does not include an explicit spatial compo-

ent which is an obvious limitation since in reality all populations

xhibit a spatial extent and range. Spatial structure is known to

e a crucial factor affecting the persistence of metapopulations,

dentified in the seminal work of Pulliam (1988) . Patch dynam-

cs is a term used to describe the situation whereby a popula-

ion’s temporal dynamics are augmented with a (finite) discrete-

patial structure, that is, finitely many distinct locations or patches.

 patch model is obtained from (1.1) by, in essence, connecting

ultiple copies of (1.1) together via dispersal. One explanation for

ersistence of sink populations, either individually or with a patch
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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structure, is the contribution from external immigration. Amongst

a variety of possible references, we refer the reader to, for ex-

ample, Gonzalez and Holt (2002) , Holt et al. (2003) and Roy

et al. (2005) as well as Matthews and Gonzalez (2007) or Eager

et al. (2014a ) which, broadly, have explored and estimated both

theoretically and empirically the effects of immigration on pop-

ulation abundance and distribution. It is certainly the case, by

definition, that models for any number of deterministic sinks in

the absence of dispersal or immigration predict asymptotic de-

cline. However, perhaps somewhat counter-intuitively, determinis-

tic sinks, when coupled by dispersal, may lead to a population that

persists asymptotically, understood appropriately; a phenomenon

known as dispersal driven growth (DDG). DDG may occur in the

absence of immigration or a (single) deterministic source patch. 

For sink patches in isolation, zero is a stable equilibrium. More-

over, dispersal is a diffusive and not (directly) creative process —

indeed, there may be a mortality risk associated with dispersing

— and so appears an a priori stabilising process. At first glance,

therefore, DDG posits that a seemingly stabilising connection of

stable objects need not be stable. Such dynamical behaviour should

not come as surprising, however, as “instability from stability” oc-

curs elsewhere in mathematical biology; the most famous and now

archetypal example being proposed by Turing (1952) as a mech-

anism for the formation of spatial heterogeneity from a homo-

geneous steady state in reaction-diffusion equations. The instabil-

ity that arises in reaction-diffusion equations caused by diffusion,

which is usually ‘stabilising’ (in the sense that heat dissipates over

time), now bears his namesake Turing Instability and is also known

as Diffusion Driven Instability; see, for example, Murray (1982) . 

The recent paper ( Elragig and Townley, 2012 ) presents a neces-

sary condition for Turing Instability in terms of the non-existence

of a so-called joint or common Lyapunov function, and builds

on Neubert et al. (2002) . To summarise Elragig and Townley (2012) ,

when the linearized reaction matrix and the diffusion matrix ad-

mit a common Lyapunov function, Turing Instability is not possi-

ble. Common Lyapunov functions are a powerful tool which have

primarily been considered in systems & control theory ( Hinrichsen

and Pritchard, 2005; Sontag, 1998 ) as a tool for understanding the

stability (or otherwise) of switched systems — typically difference

or differential equations which are governed by multiple distinct

operating modes. We refer the reader to, for example, Liberzon

and Morse (1999) or Lin and Antsaklis (2009) and the references

therein, for further background on switched systems and common

Lyapunov functions. 

Here we present a necessary condition for DDG for two classes

of deterministic discrete-time (difference equation) models of pop-

ulations with a discrete-patch spatial structure. To summarise our

results briefly, when the patch dynamics (which are governed by

a set of matrices in the linear case) admit a certain common Lya-

punov function, then DDG is not possible for any dispersal struc-

ture or parameters and consequently, the model predicts asymp-

totic decline of the population to extinction. The motivation for our

study is that, we posit, describing analytically the onset of DDG as

a function of the model parameters is often intractable — although

in the sequel we suggest how perturbation tools from robust con-

trol theory may play a role. When the dynamics on each patch are

assumed to be governed by a linear model (of the form (1.1) when

no dispersal is present); testing for DDG amounts to computing

eigenvalues of the dispersal-coupled system which is numerically

straightforward, at least for low-dimensional problems. However,

such an approach does not provide much insight into the relation-

ships between patch dynamics and structure, dispersal and the on-

set of DDG. Moreover, computing eigenvalues for large problems

may be often computationally intensive, especially to fully traverse

all possible parameter values. The readily checkable “common Lya-

punov function” test for DDG partially obviates the requirement for
uch calculations. Our approach follows the spirit of Elragig and

ownley (2012) , although we demonstrate that the notion of com-

on quadratic stability used there is not the correct notion for

esting for DDG. Instead a notion of common linear stability is re-

uired. 

One motivation for the present line of enquiry is that the nec-

ssary condition for DDG to be possible imposes conditions on the

ife-histories of metapopulations. For example, DDG is not possi-

le in models where the patch dynamics are sufficiently “similar”

as such sets of matrices admit a common linear Lyapunov func-

ion). Additionally, for the dispersal models we consider, DDG is

nly possible when at least one patch is “reactive”, meaning that

ertain stage-classes must exhibit short-term (transient) popula-

ion growth ( Ezard et al., 2010; Hastings, 2004; Stott et al., 2011 ). 

Pertinent to models for dispersal, and underpinning our mathe-

atical approach, is the fact that they are instances of positive dy-

amical systems — dynamical systems which leave a positive cone

nvariant. Possibly the most natural positive cone is the nonnega-

ive orthant in real n -dimensional Euclidean space. Positive dynam-

cal systems are well-studied objects, motivated by their preva-

ence in models arising in a diverse range of fields from biology,

hemistry, ecology and economics to genetics, medicine and en-

ineering ( Haddad et al., 2010 ). An essential feature is that their

tate-variables, typically modelling abundances or concentrations,

re necessarily nonnegative. The theory of linear positive dynam-

cal systems is rooted in the seminal work of Perron and Frobe-

ius in the early 1900s on nonnegative matrices (for a recent treat-

ent see, for example, Berman and Plemmons (1994 , Chapter 2)).

riefly, techniques such as comparison or monotonicity arguments

re applicable when working with positive dynamical systems; ar-

uments which need not hold in more general settings. Common

inear Lyapunov functions for both discrete- and continuous-time

ositive systems have been considered in, for example, Hinrichsen

nd Plischke (2007) , Knorn et al. (2009) and Fornasini and Valcher

2010 ; 2012) (and the references therein). Although there is some

artial overlap between the techniques used in these papers and

ere, we have quite different emphases and potential applications. 

A criticism of the model (1.1) is its linear structure or, bio-

ogically, its density-independence, which neglects any potential

rowding, competition or Allee effects ( Courchamp et al., 2008 ),

nd allows for unbounded exponential growth. Therefore, we also

erive a necessary condition for DDG in the case where each

atch has dynamics governed by a non-linear model. The mod-

ls used here are known in systems & control theory as Lur’e (or

urie) systems. Their name is attributed to the Soviet scientist and

cholar Anatolii I. Lurie, one of the first, but by no means only,

uthors to study them, and who made significant early contribu-

ions to their development. In a biological context, these models

llow both linear and non-linear vital rates, and exhibit a wider

ange of dynamic behaviour than linear models. Much attention

as been devoted in the control theory literature to the study

f Lur’e systems including, but not restricted to, Liberzon (2006) ,

ayawardhana et al. (2011) and Vidyasagar (2002) . The dynamics

f biologically motivated Lur’e systems have been addressed in, for

xample, Townley et al. (2012) , Rebarber et al. (2011) , Smith and

hieme (2013) , Franco et al. (2014) and Eager et al. (2014b ), see

lso particularly Eager (2016) for a helpful and informative dis-

ussion. As with the linear case, providing analytic conditions in

erms of the model parameters for when DDG occurs in stage-

tructured non-linear models with a discrete patch structure is, at

est, very specific to each example and, at worst, intractable. How-

ver, by appealing to absolute stability results from linear dissipa-

ivity theory ( Haddad and Chellaboina, 2005; Haddad et al., 2003 ),

e present a necessary condition for DDG again in terms of the

on-existence of a candidate common linear Lyapunov function.

ualitatively the same results as those in the linear case apply. 
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The manuscript is organised as follows. After recording some

otation, Sections 2 and 3 form the heart of the manuscript and

onsider DDG in population models with a discrete-spatial struc-

ure in the two cases that each patch is assumed to have linear and

on-linear dynamics, respectively. Our main results in Section 2 are

heorem 2.6 and Corollary 2.7 . Section 4 is technical and demon-

trates that the continuous-time versions of the results in the pre-

ious two sections hold, illustrating that our findings are not an

rtefact of a discrete-time modelling framework. The interpretation

f these results is the same as their discrete-time counterparts. We

rovide a summary of our work and biological interpretation in

ection 5 . Lengthier proofs appear in the Appendix. 

Notation: Most notation we use is standard. The symbols N and

 denote the sets of positive integers and real numbers, respec-

ively, and N 0 = { 0 } ∪ N . For n, m ∈ N , we let n := { 1 , 2 , . . . , n } , R 

n

nd R 

n ×m denote usual n -dimensional Euclidean space and the set

f n × m matrices with real entries, respectively. The superscript
 denotes both matrix and vector transposition. For M, N ∈ R 

n ×m 

ith entries m ij and n ij , respectively, we write 

M ≤ N if m i j ≤ n i j for all i ∈ n , j ∈ m , 

M < N if M ≤ N and M � = N , 

M � N if m i j < n i j for all i ∈ n , j ∈ m , 

ith the obvious corresponding definitions for ≥, > and 	, respec-

ively. We let R 

n ×m 

+ denote the set of nonnegative matrices, that is,

 ∈ R 

n ×m 

+ if 0 ≤ M . We call M positive or strictly positive if 0 <

 or 0 � M , respectively, noting that there are different conven-

ions present in the academic literature for the term positive ma-

rix . The symbols I and 1 denote the identity matrix and the vector

ith each component equal to one, respectively — the dimension

f which shall be consistent with the context. 

Given a square matrix M ∈ R 

n ×n , we let r ( M ) denote the spectral

adius of M which, recall, is given by 

(M) := max { | λ| : λ ∈ σ (M) } , 
here σ ( M ) denotes the set of eigenvalues of M . For v ∈ R 

n , ‖ v ‖ ,
 M ‖ and col i ( M ) denote a (any) norm of v , the corresponding in-

uced operator norm of M and the i -th column of M , respectively.

e shall occasionally require the induced matrix one-norm, de-

oted ‖·‖ 1 . We recall that if M is additionally nonnegative, then

 is irreducible if, and only if, for each i , j ∈ n there exists k ∈ N
uch that the ( i , j )-th entry of M 

k is positive. Irreducible matrices

resently play a role as the celebrated Perron–Frobenius Theorem

nsures that if M is irreducible, then r ( M ) ∈ σ ( M ) and further, r ( M )

s a simple eigenvalue with corresponding left and right eigenvec-

ors which may be chosen strictly positive (from numerous possi-

le references see, for example, Berman and Plemmons (1994 , The-

rem 1.4, p. 27)). 

. Dispersal driven growth for linear models 

We begin by describing the class of linear discrete-time,

iscrete-patch models we consider, before reviewing the concept

f dispersal driven growth (DDG) and then presenting a necessary

ondition for DDG. 

.1. Problem formulation 

We consider the following model to describe a population

cross m ∈ N patches: 

 i (t + 1) = A i x i (t) − D i x i (t) + 

m ∑ 

j=1 
j � = i 

γi j D j x j (t) , x i (0) = x 0 i , 

t ∈ N 0 , i ∈ m . (2.1) 
ere x i ( t ) denotes the population in the i -th patch at time-step t ,

or i ∈ m . The vector x i ( t ) is partitioned into n ∈ N stage-classes

nd x 0 
i 

is the initial distribution on the i -th patch, which is neces-

arily (componentwise) nonnegative. The matrices A i ∈ R 

n ×n 
+ model

he vital rates of the population in the i -th patch and D i is a dis-

ersal matrix associated with that patch. The terms γ ij in (2.1) are

onnegative scalars taking values between zero and one which ac-

ount for the proportion of the population which survives dispersal

rom patch j to patch i . 

For a meaningful mathematical model, we record the following

ssumptions for the terms which appear in (2.1) : 

(A1) A i , D i , A i − D i ≥ 0 , for every i ∈ m ; 

(A2) γ ij ∈ [0, 1] and 

∑ m 

k =1 
k � = j 

γk j ∈ [0 , 1] , for every i , j ∈ m . 

The first assumption ensures that (2.1) always predicts nonneg-

tive populations, and the second guarantees that dispersal is not

 creative process. Moreover, the sum in (A2) may be less than one

hich then models a mortality rate associated with dispersal. 

We are primarily interested in exploring the situation wherein

ach patch is a deterministic sink, yet cumulatively the dispersal

odel may demonstrate growth. To that end, we record the third

ssumption: 

(A3) r ( A i ) < 1, for every i ∈ m . 

The dispersal model (2.1) may equivalently be expressed in the

lock form 

 

 

 

 

x 1 (t + 1) 
x 2 (t + 1) 

. . . 
x m 

(t + 1) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A 1 − D 1 γ12 D 2 . . . γ1 m 

D m 

γ21 D 1 A 2 − D 2 

. . . γ2 m 

D m 

. . . 
. . . 

. . . 

γm 1 D 1 . . . 
. . . A m 

− D m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x 1 (t) 
x 2 (t) 

. . . 
x m 

(t) 

⎤ 

⎥ ⎥ ⎦ 

,

⎡ 

⎢ ⎢ ⎣ 

x 1 (0) 
x 2 (0) 

. . . 
x m 

(0) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

x 0 1 

x 0 2 
. . . 

x 0 m 

⎤ 

⎥ ⎥ ⎦ 

, t ∈ N 0 . (2.2

vidently, zero is an equilibrium of (2.1) , corresponding to popula-

ion absence. Moreover, if no dispersal is present, meaning D i = 0

or every i ∈ m , then (2.1) or (2.2) reduces to m versions of (1.1) ,

ach with the matrix A in (1.1) replaced by A i . Assumption (A3)

hen implies that x i ( t ) → 0 as t → ∞ for every x 0 
i 

and every i ∈
 so that, in particular, the zero equilibrium of (2.1) is globally

symptotically stable. The next definition records what we mean

y dispersal driven growth. 

efinition 2.1. We say that the dispersal model (2.1) under as-

umptions (A1)–(A3) demonstrates dispersal driven growth if the

ero equilibrium is not globally asymptotically stable. 

.2. When does dispersal driven growth occur? 

Given the dispersal model (2.1) , let A denote the block matrix

n (2.2) . In the present linear setting, DDG occurs precisely when

(A ) ≥ 1 . A consequence of assumption (A1) is that A ≥ 0 and so

(A ) is an eigenvalue of A . Let A 0 denote the block diagonal ma-

rix: 

 0 : = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A 1 0 . . . 0 

0 A 2 0 . . . 
. . . 

0 . . . 
. . . 

. . . 
. . . 

0 . . . . . . 
. . . 0 

0 . . . . . . 0 A m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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Fig. 2.1. Contour plot of r(A ) from (2.2) against parameters δ1 and δ2 . Model data 

is as in (2.3) . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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so that r(A 0 ) = max r(A 1 ) , . . . , r(A m 

) < 1 , 

when (A3) holds. In the absence of dispersal, A = A 0 and so

r(A ) = r(A 0 ) < 1 . The example below illustrates that the inclusion

of non-zero dispersal terms in A may cause r(A ) to exceed the

DDG threshold of r(A ) = 1 , that is, the model (2.1) may exhibit

dispersal driven growth. 

Example 2.2. Take m = 2 and n = 3 and consider (2.1) with 

A 1 = 

[ 

0 . 06 1 . 16 3 . 29 

0 . 65 0 0 

0 0 . 03 0 . 05 

] 

, D 1 = 

[ 

0 0 0 

0 . 65 0 0 

0 0 0 

] 

A 2 = 

[ 

0 . 41 0 . 02 0 . 03 

0 . 18 0 . 39 0 

0 0 . 41 0 . 35 

] 

, D 2 = 

[ 

0 0 0 

0 0 0 

0 0 . 41 0 

] 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(2.3)

and where γ21 = δ1 and γ12 = δ2 are parameters. The matrices A 1 

and A 2 are taken from Davis and Levin (2002 , pp.243–244) as ma-

trix population projection models for US populations of woolly

sculpin at different sites. The spectral radii are r(A 1 ) = 0 . 9394 and

r(A 2 ) = 0 . 5272 , evidently both less than one. The contour plot in

Fig. 2.1 shows contours of constant spectral radius of A (the block

matrix in (2.2) ) as the parameters δ1 and δ2 vary. Here δi = 0

denotes no dispersal and δi = 1 denotes dispersal (and survival)

of everything from that stage-class, for i ∈ {1, 2}. The black con-

tour denotes the parameter values for which the spectral radius is

equal to one. The region to the right and above the black contour

give values of the parameters where dispersal driven growth takes

place. We note the asymmetry between δ1 and δ2 : δ1 may be as

low as 0.2 if δ2 is sufficiently large, in part, we suspect paralleling

the fact that r ( A 2 ) is much smaller than r ( A 1 ) in this example. ♦

In certain, rather particular, cases we are able to make asser-

tions about r(A ) based on the structure of A alone. 

Lemma 2.3. Given the dispersal model (2.1) satisfying assumptions

(A1)–(A3), DDG is not possible if dispersal is uni-directional in the

sense that γi j = 0 for all i < j (or i > j), for any dispersal matrices

{ D 1 , . . . , D m 

} . 
Proof. Either set of assumptions leads to the block matrix in

(2.2) being block triangular, so that the spectral radius is deter-

mined by the diagonal blocks. For example, if γi j = 0 for all i > j ,
hen 

 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

A 1 − D 1 γ12 D 2 . . . γ1 m 

D m 

0 A 2 − D 2 

. . . γ2 m 

D m 

. . . 
. . . 

. . . 
. . . 

0 . . . 0 A m 

− D m 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

nd thus 

(A ) = max 
i ∈ m 

{
r(A i − D i ) 

}
≤ max 

i ∈ m 

{
r(A i ) 

}
< 1 , 

here we have used the monotonicity of the spectral radius; see,

or example, Berman and Plemmons (1994 , p.27). It follows that

he zero equilibrium of (2.1) is globally exponentially stable and

DG is not possible. The case when γi j = 0 for all i < j is proven

imilarly. �

We emphasise the point that, of course, given { A 1 , . . . , A m 

} ,
 D 1 , . . . , D m 

} and γ ij , the leading eigenvalue r(A ) may be com-

uted numerically. However, apart from a few special cases such

s Lemma 2.3 above, computing eigenvalues alone does not yield

uch insight into the interplay between biological and dispersal

rocesses, or the patch network structure and the onset of DDG,

hich is rather unsatisfactory. The field of describing the effects of

erturbations on matrices is known broadly as perturbation the-

ry. Matrices and eigenvalues are such ubiquitous objects, appear-

ng throughout engineering, mathematics and science, that per-

urbation theory is a mature subject; see, for example, Stewart

nd Sun (1990) and Kato (1995) or Wilkinson (1988) , with dif-

erent academic communities having developed their own theory.

ithin theoretical ecology, we are aware of two frameworks which

ay be used to describe how r(A ) depends on the model data:

 A 1 , . . . , A m 

} , { D 1 , . . . , D m 

} and γ ij . The first appeals to sensitiv-

ty ( Demetrius, 1969 ) (or elasticity ( de Kroon et al., 1986 )) anal-

sis — using calculus to determine local rates of change, say of

(A ) , with respect to various quantities, such as matrix entries.

e refer the reader particularly to Hunter and Caswell (2005) , as

ell as Caswell (2007) for similar techniques. The second seeks an

nalytic relationship between perturbation and effect (say on the

pectral radius) suggested in this context in Hodgson and Townley

2004) and Hodgson et al. (2006) . The reader is referred to Lubben

t al. (2009) as well. The latter approach is based on the so-called

tability radius, introduced in a robust control theoretic setting by

inrichsen and Pritchard (1986a ; 1986b) . We comment that the

tability radius for positive systems (that is, where the matrices in-

olved are componentwise nonnegative) has been well-studied by

inrichsen and others in Lin and Antsaklis (2009) , Hinrichsen and

on (1998) and Son and Hinrichsen (1996) . 

It is beyond the scope, and not the purpose, of the present

anuscript to bring the wealth of perturbation theory available

o describe how A and particularly r(A ) , in fullest generality, de-

end on {A 1 , . . . , A m 

} , { D 1 , . . . , D m 

} and γ ij — there are too many

egrees of freedom for a concise treatment. Instead, we motivate

hese tools’ utility by applying them to an example. 

xample 2.4. Consider (2.1) in the special case that m = 2 , D 1 =
 1 e 

T 
1 , D 2 = d 2 e 

T 
2 , for vectors d i , e i ∈ R 

n + , i ∈ {1, 2} (meaning that the

ispersal matrices D i both have rank one). Assuming that A i , d i and

 

T 
i 

are known and the assumptions A i − d i e 
T 
i 

≥ 0 and r ( A i ) < 1 hold

or i ∈ {1, 2}, we seek to describe the relationship between the

igenvalues of 

 = 

[
A 1 − D 1 γ12 D 2 

γ21 D 1 A 2 − D 2 

]
= 

[
A 1 − d 1 e 

T 
1 δ2 d 2 e 

T 
2 

δ1 d 1 e 
T 
1 A 2 − d 2 e 

T 
2 

]
, (2.4)

nd the dispersal survival parameters δ1 := γ 21 ∈ [0, 1] and δ2 :=
∈ [0, 1] with the aim of determining if or when DDG occurs.
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riting 

A : = 

[
A 1 − d 1 e 

T 
1 0 

0 A 2 − d 2 e 
T 
2 

]
, D := 

[
d 2 0 

0 d 1 

]
, 

: = 

[
δ2 0 

0 δ1 

]
, E := 

[
0 e T 2 
e T 1 0 

]
, 

e have that A = A + D �E and 1 ∈ σ (A ) if, and only if, there ex-

sts v ∈ R 

2 n , v � = 0 such that A v = v . Noting that 1 �∈ σ (A ) , we may

earrange A v = v to give 

 (I − A ) −1 D �E v = E v , 

nd as E v � = 0 (else A v = A v = v , which is false as v � = 0 and 1 �∈
(A ) ), it follows that 1 ∈ σ (E (I − A ) −1 D �) . The converse is also

rue. Observe that the problem of determining an eigenvalue of

he 2 n × 2 n matrix A has been reduced to that of determining an

igenvalue of the 2 × 2 (the rank of the perturbation D �E ) matrix

 (I − A ) −1 D �. Thus there exists w 1 , w 2 ∈ R such that 

w 1 

w 2 

]
= E (I − A ) −1 D 

[
w 1 

w 2 

]

= 

[
0 e T 2 
e T 1 0 

][
(I − (A 1 − d 1 e 

T 
1 )) 

−1 0 

0 (I − (A 2 − d 2 e 
T 
2 )) 

−1 

]

×
[

d 2 0 

0 d 1 

][
w 1 

w 2 

]
. (2.5) 

efining the scalar-valued functions by g 1 , g 2 : [1 , ∞ ) → R + by 

 1 (λ) : = e T 1 (λI − (A 1 − d 1 e 
T 
1 )) 

−1 d 2 ≥ 0 and 

 2 (λ) : = e T 2 (λI − (A 2 − d 2 e 
T 
2 )) 

−1 d 1 ≥ 0 , 

 routine simplification of (2.5) shows that 1 ∈ σ (A ) if, and only

f, 

1 δ2 g 1 (1) g 2 (1) = 1 . (2.6)

oreover, straightforward adjustments to the above arguments

ield that 1 ≤ λ ∈ σ (A ) if, and only if 

1 δ2 g 1 (λ) g 2 (λ) = 1 . 

iven that 0 ≤ δ1 , δ2 ≤ 1, we see immediately that the product

1 δ2 must be sufficiently large for DDG to occur. Since δ1 , δ2 ∈ [0,

], we also require that 1/( g 1 (1) g 2 (1)) ∈ (0, 1] for DDG to be possi-

le. Indeed, the case that δ1 = 0 or δ2 = 0 corresponds to unilateral

ispersal, where we already know by Lemma 2.3 that DDG is not

ossible. Furthermore, it is readily proven that the functions g 1 , g 2 
re non-increasing with g i ( λ) → 0 as λ → ∞ . Thus, the disper-

al survival parameters δ1 , δ2 must correspondingly increase for a

rowth rate λ ≥ 1 to be exhibited in (2.1) . 

As a numerical example, we reconsider (2.3) and note that 

 1 = d 1 e 
T 
1 with d 1 = 

[ 

0 

0 . 65 

0 

] 

, e 1 = 

[ 

1 

0 

0 

] 

, 

D 2 = d 2 e 
T 
2 with d 2 = 

[ 

0 

0 

0 . 41 

] 

, e 2 = 

[ 

0 

1 

0 

] 

, 

o that A from (2.2) is in the form (2.4) . Appealing to (2.6) , a com-

utation shows that 

 1 (1) = 1 . 5105 and 

 2 (1) = 1 . 0763 ⇒ 1 / (g 1 (1) g 2 (1)) = 0 . 6151 . 
In particular, DDG occurs in the dispersal model (2.1) with data

2.3) when the product δ1 δ2 is no less than 0.6151. The line δ1 δ2 =
 . 6151 is, in fact, the same as the black line in Fig. 2.1 . ♦

The methods used in Example 2.4 of course extend to more

eneral forms of (2.1) , although an analytic relationship as sim-

le as (2.6) may not always be achievable. We refer the reader

o Hodgson and Townley (2004) , Hodgson et al. (2006) and Lubben

t al. (2009) for more examples of this approach. 

As we have hopefully suggested, tools from perturbation theory

ay simplify the dependence of r(A ) on { A 1 , . . . , A m 

} , { D 1 , . . . , D m 

}
nd γ ij but, in its fullest generality, this is still a large problem.

hese considerations have led to the main contribution of the

resent manuscript — a simple test for ruling out DDG, which we

roceed to describe. 

.3. A necessary condition for dispersal driven growth 

The material which follows is predicated on common linear

yapunov functions, also known as a (common) linear copositive

yapunov functions ( Briat, 2013 ) and the references therein, or by

he term linearly stable ( Hinrichsen and Plischke, 2007 ). 

efinition 2.5. A set of nonnegative matrices { A 1 , . . . , A m 

} ⊆ R 

n ×n 
+ 

dmits a common linear Lyapunov function (CLLF) if there exists a

trictly positive v ∈ R 

n + and ε ∈ (0, 1) such that 

 

T A i ≤ εv T , ∀ i ∈ m . (2.7)

By way of commentary, if { A 1 , . . . , A m 

} admit a CLLF, then it fol-

ows from, for example, Krasnosel’skij et al. (1989 , Lemma 16.1)

hat (A3) certainly holds. The converse is not true, and hence the

erminology common — the property (2.7) is enjoyed by each of the

 i for the same v . Note also that the above definition is equivalent

o: there exists a strictly positive v ∈ R 

n + such that 

 

T A i � v T , ∀ i ∈ m . 

he next result is the main result of this section and states that

xistence of a CLLF for { A 1 , . . . , A m 

} means that DDG in (2.1) is not

ossible, irrespective of the dispersal terms. 

heorem 2.6. If { A 1 , . . . , A m 

} admits a common linear Lyapunov

unction, then the zero equilibrium of the dispersal model (2.1) is glob-

lly exponentially stable, for all dispersal matrices { D 1 , . . . , D m 

} and

or all weightings ( γ ij ) which satisfy assumptions (A1)–(A2). Conse-

uently, that { A 1 , . . . , A m 

} does not admit a CLLF is a necessary con-

ition for DDG to occur. 

roof. Let v T denote a common linear Lyapunov function for

 A 1 , . . . , A m 

} with ε ∈ (0, 1) as in (2.7) . Define 

 : R 

nm 

+ → R + , W ((z 1 , . . . , z m 

)) := 

m ∑ 

i =1 

v T z i , (2.8)

nd let x := (x 1 , . . . , x m 

) denote the solution of (2.1) . We note that

ur assumptions (A1) and (A2) ensure that x i ( t ) ≥ 0 for each t ∈ N 0 

nd thus x (t) ∈ R 

nm + for each t ∈ N 0 . For t ∈ N 0 , we estimate that 

 (x (t + 1)) = 

m ∑ 

i =1 

v T x i (t + 1) 

= 

m ∑ 

i =1 

v T 
[ 

A i x i (t) − D i x i (t) + 

m ∑ 

j=1 
j � = i 

γi j D j x j (t) 
] 

= 

m ∑ 

i =1 

v T A i x i (t) −
m ∑ 

i =1 

v T D i x i (t) + 

m ∑ 

j=1 

( m ∑ 

i =1 
i � = j 

γi j 

)
v T D j x j (t)
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≤
m ∑ 

i =1 

v T A i x i (t) −
m ∑ 

i =1 

v T D i x i (t) 

+ 

m ∑ 

j=1 

v T D j x j (t) , by assumption A2 

= 

m ∑ 

i =1 

v T A i x i (t) ≤ ε 
m ∑ 

i =1 

v T x i (t) , by (2 . 7) 

= εW (x (t)) . (2.9)

We conclude from the difference inequality (2.9) that for t ∈ N 0 

0 ≤ W (x (t)) ≤ ε t W (x (0)) → 0 as t → ∞ . (2.10)

Finally, since 0 � v , we may estimate W ( z ) by 

θ1 ‖ z‖ ≤ W (z) ≤ θ2 ‖ z‖ ∀ z ∈ R 

nm 

+ , 

for some 0 < θ1 ≤ θ2 and so we conclude from (2.10) that x ( t ) →
0 as t → ∞ , completing the proof. �

There are several immediate consequences of

Theorem 2.6 which describe when DDG is not possible, which

we formulate in the corollary below. Arguably, these observations

would have been harder to establish without Theorem 2.6 . 

Corollary 2.7. Given the dispersal model (2.1) , assume that (A1)–(A3)

hold. 

(1) DDG is not possible in scalar models, that is, where the A i ∈ [0,

1) are scalar, i ∈ m . 

(2) DDG is not possible in models where the set of matrices

{ A 1 , . . . , A m 

} commute, and at least one of the A i is irreducible.

(3) DDG is not possible in models where the patch dynamics are

identical and irreducible, meaning that { A 1 , . . . , A m 

} = { A } for

an irreducible A. 

(4) For DDG to be possible, at least one of the A i matrices must be

“reactive”, meaning that ‖ A j ‖ 1 ≥ 1 for some j ∈ m . 

(5) DDG is not possible if the set of matrices { A 1 , . . . , A m 

} has a

maximal element which is irreducible, meaning that there ex-

ists k ∈ m such that A i ≤ A k for all i ∈ m , and A k is irreducible.

(6) Knowledge that { A 1 , . . . , A m 

} does not admit a CLLF is not, by

itself, enough information to determine whether DDG occurs in

(2.1) . 

The irreducibility assumption in statements (3) and (5) has

been imposed as a technical assumption to aid the proofs of these

claims. It is not necessary in either case, and may be relaxed to:

there exists a strictly positive v ∈ R 

n + and ε ∈ (0, 1) such that

v T A ≤ εv T or v T A k ≤ εv T in statements (3) or (5), respectively. We

note, however, that irreducibility is a realistic assumption for nu-

merous empirically derived matrix population projection models

available in the literature, see Stott et al. (2010) , and so does not

seem overly restrictive. 

Proof of Corollary 2.7. (1): A set of scalars { A 1 , . . . , A m 

} with the

property that r(A j ) = A j < 1 for each j ∈ m (by assumption (A3))

certainly admits the common linear Lyapunov function v = 1 . We

note that the same conclusion could have also been derived in this

special case by observing that the column sums of the nonnegative

matrix in (2.2) are all less than one. 

(2): It follows from, for example Krasnosel’skij et al. (1989 ,

Lemma 9.6, p. 99), that if the family { A 1 , . . . , A m 

} commutes, then

the A i admit a common left nonnegative eigenvector, denoted v T .
Since at least one of the A i is assumed irreducible, it follows from

the Perron-Frobenius Theorem that in fact v T 	 0 . Finally, assump-

tion (A3) implies that v T is a CLLF for { A , . . . , A m 

} . 
1 
(3): The claim follows immediately from (2), as every matrix

rivially commutes with itself. 

(4): Recall that the induced one-norm ‖ M ‖ 1 of a nonnegative

atrix M is equal to the largest column sum of M . The vector of

olumn sums of M is given by 1 T M. Thus if ‖ A i ‖ 1 < 1 for all i ∈ m ,

hen 1 T 	 0 is a CLLF for { A 1 , . . . , A m 

} . 
(5): Let v T denote the simple, positive (up to scalar multiplica-

ion) left eigenvector of A k corresponding to the eigenvalue r ( A k ),

he existence of which is ensured by the Perron-Frobenius The-

rem. Note that r ( A k ) < 1, by (A3). Then for each i ∈ m , v T A i ≤
 

T A k ≤ r(A k ) v T and hence v T is a CLLF for { A 1 , . . . , A m 

} . 
(6): It suffices to find an example. The set { A 1 , A 2 } in (2.3) does

ot admit a CLLF. For the dispersal matrices { D 1 , D 2 } also in (2.3) ,

he condition (2.6) demonstrates that DDG occurs for δ1 δ2 suffi-

iently large, and not if δ1 δ2 is sufficiently small. �

We conclude this subsection with some examples. 

xample 2.8. A matrix projection model for the peregrine fal-

on ( Falco peregrinus anatum ) was derived in Wootton and Bell

1992) (and also studied in Hunter and Caswell (2005) ). The model

escribes a population with patch dynamics over two locations

representing northern and southern California). On each patch the

opulation is modelled with two stage-classes (denoting juveniles

nd adults, respectively), with projection matrices: 

 1 = 

[
0 0 . 2556 

0 . 72 0 . 77 

]
and A 2 = 

[
0 0 . 1908 

0 . 72 0 . 77 

]
. 

ach patch is asymptotically declining, as r(A 1 ) = 0 . 9614 < 1 and

(A 2 ) = 0 . 9194 < 1 . Noting that A 2 ≤ A 1 , it follows from statement

5) of Corollary 2.7 that DDG is not possible in this model. From a

onservation perspective, the model suggests that dispersal alone

annot asymptotically bring the population to stasis or growth and

ither a reintroduction scheme is required, or efforts should be

oncentrated on improving the quality of the patches (leading to

n increase in r ( A i )). ♦

xample 2.9. The result ( Fornasini and Valcher, 2012 , Theorem

) contains necessary and sufficient conditions for when a set

f nonnegative matrices { A 1 , . . . , A m 

} admits a CLLF which may

e checked in examples. Specifically, from Fornasini and Valcher

2012 , Theorem 1), it follows that { A 1 , . . . , A m 

} admits a CLLF if,

nd only if, for all π : n → m 

 π := [ col 1 (A π(1) ) , col 2 (A π(2) ) , . . . , col n (A π(n ) )] ∈ R 

n ×n 
+ , 

atisfies r(A π ) < 1 . In words, every matrix formed from ordered

olumns of every possible combination of the matrices of A j must

ave spectral radius less than one. There are m 

n such matrices.

lthough exhaustive, the above test is computationally expensive

hen m and n are large, and a quicker (although not exhaustive)

ethod is to search for a CLLF by solving the linear program: fix ε
 (0, 1) and 0 < κ1 < κ2 and seek to solve 

in 

v ∈ R n 
1 T v subject to 

⎡ 

⎣ 

A 

T 
1 − εI 

. . . 

A 

T 
m 

− εI 

⎤ 

⎦ v ≤ 0 and κ1 1 ≤ v ≤ κ2 1 . 

ote that as CLLFs are invariant under multiplication by positive

calars, the choice of positive κ1 and κ2 is arbitrary. The inclu-

ion of the bound v ≤ κ2 1 is a conditioning property to ensure that

 remains “reasonably” bounded. Further, if (v T , ε 0 ) satisfy (2.7) ,

hen certainly (v T , ε) do as well for all ε ∈ ( ε0 , 1). Therefore, since

he size of ε makes no qualitative difference in Theorem 2.6 and

ts extensions, it is reasonable in practice to choose ε “very close

o one”. ♦
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xample 2.10. The viability of the endangered plant species

lowout penstemon ( Penstemon haydenii ), a perennial plant species

hich is endemic to the Sandhills of Nebraska and the northeast

reat Divide Basin in Wyoming, is considered in the Ph.D. the-

is of Kottas (2012) (see also Eager et al., 2014a ). The habitat of

lowout penstemon is limited to so-called blowouts — depressions

r eroded areas on hillsides. As a dispersal specialist, newly formed

lowouts may be colonised by penstemon from existing popula-

ions. Quoting ( Eager et al., 2014a ): “The viability of penstemon

s dependent on blowout suitability, particularly the formation of

egetative cover, as above–ground penstemon cannot persist in

n environment consisting largely of grasses which have compact

rowth and an efficient root system”. Changing agricultural prac-

ices which historically and periodically reduced vegetative cover

nd created new blowouts have put pressure on current penste-

on populations. Yet another pressure on penstemon dispersal is

 reduction of the frequency of fires which themselves aid disper-

al by clearing other vegetation and creating bare sand which is

asily blown by wind. 

The viability of penstemon populations across a spatial region

ay be explored theoretically by adopting a discrete patch model,

ith patches denoting distinct blowouts, and stage-structured ma-

rix models, with matrices A i , modelling the population within

n each blowout. That is, the model (2.1) may be used, where

he terms D i model dispersal between blowouts. Suitability of

lowouts may be captured by A i , particularly r ( A i ), and r ( A i ) <

 and r ( A i ) > 1 corresponds to blowouts which are (asymptotic)

inks or sources, respectively. 

Matrix models for penstemon are presented in Kottas (2012 , Ta-

le 5.7, p. 232), each with four stage-classes denoting the seed-

ank, juvenile, adult and vegetative adult, respectively. Matrices

re parameterised for 11 different blowouts and four of these ma-

rices have spectral radius greater than one. The present example

eeks to illustrate our results and, in the current context, investi-

ate whether persistence of penstemon populations is possible via

DG. To that end, the matrices for blowouts CL168 and E1, with

pectral radii 0.84 and 0.8, respectively, are given by 

 

 

 

0 . 003 0 0 . 624 0 

0 . 008 0 . 353 2 0 

0 0 . 127 0 . 3 0 . 25 

0 0 0 . 025 0 . 25 

⎤ 

⎥ ⎦ 

and 

 

 

 

0 . 003 0 0 . 624 0 

0 . 008 0 . 454 1 . 243 0 

0 0 . 09 0 . 338 0 . 17 

0 0 0 . 324 0 . 407 

⎤ 

⎥ ⎦ 

. 

ith A 1 and A 2 denoting the respective matrices above, the

atlab ( MATLAB and Statistics Toolbox Release, 2014a ) code

ives v T = [0 . 1 0 . 1 0 . 3908 0 . 1338] , which (by construction) is a

LLF for { A 1 , A 2 }. Consequently, DDG is not possible between

lowouts CL168 and E1. However, the matrices for blowouts E3

nd G3, given by 

 

 

 

0 . 003 0 0 . 624 0 

0 . 008 0 . 251 1 . 385 0 

0 0 . 229 0 . 427 0 . 15 

0 0 0 . 156 0 . 1 

⎤ 

⎥ ⎦ 

and 
 

 

 

0 . 003 0 0 . 258 0 

0 . 008 0 . 633 0 . 903 0 

0 0 . 079 0 . 736 0 

0 0 0 . 264 0 . 75 

⎤ 

⎥ ⎦ 

, 

ith spectral radii 0.9266 and 0.9568, respectively, do not admit a

LLF as 

 col 1 (A 1 ) , col 2 (A 1 ) , col 3 (A 2 ) , col 4 (A 1 )] 

 

⎡ 

⎢ ⎣ 

0 . 003 0 0 . 258 0 

0 . 008 0 . 251 0 . 903 0 

0 0 . 229 0 . 736 0 . 15 

0 0 0 . 264 0 . 1 

⎤ 

⎥ ⎦ 

, 

as spectral radius 1.04 > 1. Hence a CLLF does not exist

by Fornasini and Valcher (2012 , Theorem 1)) and, therefore, we

annot rule out the possibility of DDG between blowouts E3 and

3. In fact, DDG is possible between these blowouts, theoretically

uggesting that penstemon may persist via dispersal alone. For ex-

mple, with D 1 and D 2 both equal to the four by four zero matrix

part from entries (3, 2) and (2, 3) with values 0.2107 and 0.8308,

espectively, it follows that (A1)–(A3) hold with γ12 = γ21 = 1 and

 given by the block matrix in (2.2) has r(A ) = 1 . 0 0 08 > 1 . We

omment that D 1 having a non-zero (3, 2) component means that

t each time-step juvenile plants from E 3 disperse (and grow) to

he adult plant stage-class in G 3, which may not occur by wind

lone, but require other transport mechanisms. ♦

.4. Further extensions to the necessary condition for dispersal driven

rowth 

To summarise thus far, the asymptotics of the model

2.1) depend on the terms A i (modelling biological processes),

s well as the D i and γ ij (modelling dispersal processes).

heorem 2.6 demonstrates that the existence of a CLLF for

 A 1 , . . . , A m 

} prevents DDG from occurring, independently of the

ispersal terms D i and γ ij . The proof of Theorem 2.6 in fact in-

icates that a stronger result is true: if { A 1 , . . . , A m 

} admits a CLLF,

hen DDG is not possible even when a more complicated math-

matical form is adopted for modelling dispersal, such as assum-

ng that dispersal is time-varying, delayed or non-linear — the first

laim we formulate as a corollary. 

orollary 2.11. If { A 1 , . . . , A m 

} admits a CLLF, then the zero equilib-

ium of the dispersal model 

 i (t + 1) = A i x i (t) − D i (t) x i (t) + 

∑ 

j � = i 
γi j (t ) D j (t ) x j (t ) , 

x i (0) = x 0 i , t ∈ N 0 , i ∈ m , 

s globally exponentially stable, for all possibly time-varying disper-

al matrix functions { D 1 , . . . , D m 

} and for all weightings ( γ ij ) which

atisfy the assumptions: 

( A 1) ′ A i , D i ( t ), A i − D i (t) ≥ 0 , for every i ∈ m and t ∈ N 0 ; 

( A 2) ′ γ ij ( t ) ∈ [0, 1] and 
∑ m 

k =1 
k � = j 

γk j (t) ∈ [0 , 1] , for every i , j ∈ m

and t ∈ N 0 . 

The proof of Corollary 2.11 is the same as that of Theorem 2.6 ,

nd is thus omitted. 

Provided that the corresponding versions of assumptions (A1)

nd (A2) hold, the conclusions of Corollary 2.11 apply if dispersal

n (2.1) is assumed to be subject to delays, that is D i x i (t) is re-

laced by D i (t) x i (t − τ ) for all i ∈ m , t ∈ N 0 and some τ ∈ N 0 . For

he sake of brevity we do not give a formal statement. 

We have so far assumed that the patch dynamics are time-

nvariant (also known as autonomous). Time-varying matrix pro-

ection models allow for temporal variation in vital rates owing
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to demographic stochasticity or fluctuations. Our next result shows

that if the set of nonnegative-valued matrix functions { A 1 , . . . , A m 

}
admits a CLLF uniformly in time , then again DDG is not possible in

the now time-varying dispersal model (2.12) . The proof is the same

as that of Theorem 2.6 . 

Corollary 2.12. If the set of matrix-valued functions { A 1 , . . . , A m 

} ad-

mits a CLLF uniformly in time, meaning that there exists a strictly

positive v ∈ R 

n + and ε ∈ (0, 1) such that 

v T A i (t) ≤ εv T i ∈ m , t ∈ N 0 , (2.11)

then the zero equilibrium of the time-varying dispersal model 

x i (t + 1) = A i (t) x i (t) − D i (t) x i (t) + 

∑ 

j � = i 
γi j (t ) D j (t ) x j (t ) , 

x i (0) = x 0 i , t ∈ N 0 , i ∈ m , (2.12)

is globally exponentially stable, for all dispersal matrix functions

{ D 1 , . . . , D m 

} and for all weightings ( γ ij ) which satisfy the assump-

tions: 

( A 1) ′ ′ A i ( t ), D i ( t ), A i (t) − D i (t) ≥ 0 , for every i ∈ m and t ∈ N 0 ; 

and ( A 2) ′ . 

Remark 2.13. 

(a) The conclusions of Corollary 2.12 still hold if the condition

(2.11) is relaxed to 

lim sup 

t→∞ 

v T A i (t) ≤ εv T i ∈ m , 

roughly meaning that the CLLF for { A 1 , . . . , A m 

} need only

exist uniformly for large enough times. 

(b) A downside with using Corollary 2.12 practically is that es-

tablishing whether condition (2.11) holds requires verify-

ing infinitely many inequalities — a task compounded by

the fact that in reality the A i may not be known exactly.

We mention two instances where it may be more readily

checked. First, if the A i are assumed periodic, then establish-

ing (2.11) reduces to finding a (usual) CLLF for the larger, but

finite, set { A j ( τ )} so that Fornasini and Valcher (2012 , Theo-

rem 1) applies, or a linear program may be used. Second, if

A i (t) = B i + �i (t) where the B i admit a CLLF and the �i are

sufficiently “small”, then (2.11) holds. �

The dispersal model (2.1) assumes that dispersal acts additively

via addition and subtraction of the D i terms. In certain situations,

it may be more appropriate to model dispersal multiplicatively. To

that end, for m ∈ N consider: 

x i (t + 1) = A i 

[ 
�i (t) x i (t) + 

∑ 

j � = i 
γi j (t)(I − � j (t)) x j (t) 

] 
x i (0) = x 0 i , t ∈ N 0 , i ∈ m . (2.13)

We assume that: 

( B 3)1 A i , �i (t) ∈ R 

n ×n 
+ and �i ( t ) is diagonal with diagonal en-

tries taking values in [0, 1] for every i ∈ m and t ∈ N 0 ; 

which ensures that x i ( t ) ≥ 0 for each i ∈ m and t ∈ N 0 . The term

�i ( t ) x i ( t ) denotes the (possibly time-varying) proportion of the

population of the i -th patch that remains in the i -th patch at time-

step t . The remaining quantity (I − �i (t)) x i (t) is assumed to dis-

perse to other patches. The γ ij appearing in (2.13) play the same

role as in (2.1) . The interpretation in (2.13) is that dispersal takes

place across all patches before the biological processes, hence the

products A i �i appear, instead of �i A i . 

The conclusion of the next corollary is the same as that of

Theorem 2.6 , namely; existence of a CLLF for { A , . . . , A m 

} prevents
1 
DG from occurring in the multiplicative (or proportional) disper-

al model (2.13) . 

orollary 2.14. If { A 1 , . . . , A m 

} admits a common linear Lyapunov

unction, then the zero equilibrium of the dispersal model (2.13) is

lobally exponentially stable, for all dispersal matrix functions

 �1 , . . . , �m 

} and for all weightings ( γ ij ) which satisfy assumptions

A1) ∗ and ( A 2) ′ . 

The proof of Corollary 2.14 is along the lines of that of

heorem 2.6 , and hence is omitted. 

We conclude the section by providing some commentary on an-

ther notion of common stability, and its relation to our necessary

ondition for DDG, and also how dispersal may be stabilising (the

pposite phenomenon to DDG). 

emark 2.15. In deriving tests for DDG, we have explored the util-

ty and application of common linear Lyapunov functions. Another

echanism for ensuring certain notions of common stability are

o-called common quadratic Lyapunov functions — used in clas-

ical stability analysis of switched control systems; see, for in-

tance, Liberzon and Morse (1999) . We recall that the symmetric,

ositive definite P ∈ R 

n ×n is a common quadratic Lyapunov func-

ion for the set { M 1 , . . . , M m 

} of n × n (not necessarily nonnega-

ive) matrices if there exists β > 0 such that 

 

∗
i P M i − P � −βI i ∈ m , (2.14)

here the notation X � Y means that Y − X is positive semi-definite

nd M 

∗ denotes the conjugate transpose of M . The terminology

uadratic Lyapunov function is used here as associated with P

atisfying (2.14) is the quadratic functional V : C 

n → R + , V (w ) =
 w, P w 〉 = w 

T P w and (2.14) demonstrates that solutions z of 

(t + 1) = M i (t) z(t) z(0) = z 0 t ∈ N 0 , 

onverge to zero, for any “switching sequence” i : N 0 → m . 

A natural question to ask, therefore, is given the dispersal

odel (2.1) satisfying (A1)–(A3), does existence of a common

uadratic Lyapunov function for { A 1 , . . . , A m 

} rule out DDG? The

nswer is, in fact, no. The matrices 

 1 = 

[
0 . 8 0 . 1 

0 . 18 0 . 9 

]
and A 2 = 

[
0 . 8 0 . 05 

0 . 5 0 . 8 

]
, 

dmit the common quadratic Lyapunov function 

 = 

[
488 −55 

−55 166 

]
, 

et the dispersal model (2.1) exhibits DDG with, for example, 

D 1 = 

[
0 . 36 0 . 0075 

0 . 081 0 . 0675 

]
, D 2 = 

[
0 . 06 0 . 0225 

0 . 0375 0 . 36 

]
and 

12 = γ21 = 1 . 

t is for this reason that we have focussed our attention on CLLFs

or the set { A 1 , . . . , A m 

} when designing a necessary condition for

DG. �

emark 2.16. Throughout the present contribution we have fo-

ussed on how dispersal in matrix models with discrete patch dy-

amics may act to “destabilise” them — in the sense that the in-

lusion of dispersal terms causes the zero equilibrium to become

nstable. Our motivating application is the potential consequences

o population persistence via dispersal alone. For the sake of clar-

ty, we comment that dispersal between two (or more) unstable

atrices may be stabilising — the opposite effect of what we have

ermed DDG. As an example, the matrices 

 1 := 

[
0 . 9 0 . 35 

0 . 3 0 . 7 

]
and A 2 := 

[
0 . 3 1 . 2 

0 . 4 0 . 5 

]
, 
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Fig. 3.1. Illustration of the sector condition (3.4) — the graph of F must lie within 

the shaded region, with boundary the straight line through (0,0) with slope q / r . A 

sample graph of such an F is plotted. 
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ave r(A 1 ) = 1 . 1391 > 1 and r(A 2 ) = 1 . 1 > 1 . However, the disper-

al terms 

 1 := 

[
0 . 5888 0 . 2163 

0 . 0438 0 . 0310 

]
and D 2 := 

[
0 . 1535 0 . 2657 

0 . 3826 0 . 3967 

]
, 

atisfy (A1) yet cause 

 

([
A 1 − D 1 D 2 

D 1 A 2 − D 2 

])
= 0 . 9971 < 1 . 

his observation parallels the comments made in the Introduction,

here we recalled that diffusion is widely recognised as “usu-

lly” being a stabilising process but can, for instance in reaction-

iffusion equations, lead to instability. 

Further, we note that dispersal in matrix models with dis-

rete patch dynamics may act to “improve decline” without actu-

lly causing asymptotic stasis or growth. By that we mean, given

 A 1 , . . . , A m 

} , { D 1 , . . . , D m 

} and ( γ ij ) ij satisfying (A1)–(A3), let A de-

ote the block matrix in (2.2) . It is possible that 

ax 
{

r (A 1 ) , . . . , r (A m 

) 
}

< r (A ) < 1 , (2.15)

o that the inclusion of dispersal has raised the asymptotic rate

f decline of the matrix model, compared to that without disper-

al, but that asymptotic stasis or growth still does not occur. We

cknowledge that there are reasonable arguments as to why the

henomenon (2.15) may also be termed dispersal driven growth.

e have chosen the current definition of DDG to capture the qual-

tatively different situation wherein stasis (r(A ) = 1) or growth

(r(A ) > 1) arises as a consequence of dispersal. �

. Dispersal driven growth for a class of non-linear models 

We next consider models for populations with a discrete-spatial

tructure but where, in contrast to Section 2 , the dynamics on each

atch are assumed non-linear. As stated in the Introduction, the

otivation for doing so is that the non-linear models we consider

xhibit more varied and biologically realistic dynamic behaviour

han the linear models used in Section 2 . 

The present section is organised as follows. We first introduce

nd motivate the models we shall use for the patch dynamics, and

emonstrate numerically that DDG is possible when these models

re coupled via dispersal, even when the zero equilibrium of each

odel is GES in isolation. Determining analytically when DDG oc-

urs in the non-linear case is, in general, even less tractable than

he linear case and so, in the spirit of Section 2 , we provide a nec-

ssary condition for DDG to occur, which is readily checkable nu-

erically. Our main result of this section is Theorem 3.2 . 

.1. A class of non-linear models 

Consider first the following single patch model 

 (t + 1) = Ax (t) + BF (Cx (t)) , x (0) = x 0 , t ∈ N 0 . (3.1)

s in Section 2 , the vector x (t) ∈ R 

n + denotes the stratified pop-

lation at time-step t , with n distinct stage-classes. The non-

egative n × n matrix A in (3.1) contains vital rates which

re assumed density-independent, typically movement between

tage-classes (such as growth or survival) and the second term

n the right hand side of (3.1) models vital rates which are

ssumed density-dependent, typically recruitment. In this case,

he p × n and n × � nonnegative matrices C and B cap-

ure the fecundities of the various stage-classes, and the dis-

ribution of new members into the population, respectively, for

p, �, n ∈ N . The function F : R 

p 
+ → R 

� + in (3.1) captures density-

ependence and the components of F are typically sub-linear, such

s a Holling type II ( Holling, 1959 ) function (also known as a

f  
everton and Holt, 1957 ) or a ( Ricker, 1954 ) non-linearity. We re-

er the reader to, for example, Townley et al. (2012) , Rebarber et al.

2011) and Eager et al. (2014b ) or Eager (2016) for more biological

nterpretation of models of the form (3.1) . 

When F in (3.1) satisfies F (0) = 0 , then zero is an equilibrium

f (3.1) . If A , B , C are such that there exists nonnegative vectors

 ∈ R 

p 
+ , r ∈ R 

� + and strictly positive ρ ∈ R 

n + such that 

T A − ρT + q T C � 0 and ρT B − r T � 0 , (3.2)

hen the zero equilibrium of the dispersal model (3.5) is globally

xponentially stable (GES), for all functions F : R 

p 
+ → R 

� + which sat-

sfy 

 

T F (y ) ≤ q T y ∀ y ∈ R 

p 
+ . (3.3)

y Krasnosel’skij et al. (1989 , Lemma 16.1), the first inequality in

3.2) implies that r ( A ) < 1. When A only models movement within

nd between stage-classes (that is, not recruitment), r ( A ) < 1 is a

easonable requirement. The condition (3.3) is a linear constraint,

s the weighted nonnegative linear combination of the compo-

ents of F ( y ), r T F ( y ), must be bounded by the weighted nonneg-

tive linear combination of the components of y , q T y . The terms r

nd q are related to the linear data A , B and C by the condition 

 

T − q T C(I − A ) −1 B 	 0 , 

hich follows from (3.2) . Note that r ( A ) < 1 implies that I − A is

nvertible. 

The simplest case to consider is when p = � = 1 , so that r and

 are scalars and F is scalar-valued. Then, assuming that r > 0, the

ondition (3.3) reduces to 

 ≤ F (y ) ≤ q 

r 
y ∀ y ∈ R + , (3.4)

hich constrains the graph of F to belong to the sector with slope

 / r , as depicted in Fig. 3.1 . 

To augment (3.1) with a discrete-spatial structure and dispersal,

e consider the following model: 

 i (t + 1) = A i x i (t) + B i F i (C i x i (t)) − D i (x i (t)) 

+ 

m ∑ 

j=1 
j � = i 

γi j (t) D j (x j (t)) , x i (0) = x 0 i , t ∈ N 0 , i ∈ m , (3.5) 

here m ∈ N and we assume that: 

(B1) A i ∈ R 

n ×n 
+ , B i ∈ R 

n ×� 
+ , C i ∈ R 

p×n 
+ for n, �, p ∈ N and all i ∈ m ;

(B2) F i : R 

p 
+ → R 

� + for i ∈ m . 

The terms D i again model dispersal and are now assumed func-

ions D i : R 

n + → R 

n + . For a meaningful mathematical model of non-

egative populations we further assume that: 

(B3) A i x + B i F i (C i x ) − D i (x ) ≥ 0 , for all x ∈ R 

n + and i ∈ m , 

mplying that x i ( t ) ≥ 0 for all t ∈ N 0 , all x 0 
i 

∈ R 

n + and all i ∈ m . The

erms γ ij in (3.5) are as in (2.1) and are assumed to satisfy ( A 2) ′ .
e note that the above framework permits the situation that D k 

or k ∈ m is linear and corresponds to matrix multiplication, that
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Fig. 3.2. Numerical simulations of the two-patch model with non-linear dynamics from Example 3.1 . (a) Sector condition for F 1 (dashed blue) and F 2 (dashed red) curves. 

The straight lines have slopes 1 / (C 1 (I − A 1 ) 
−1 B 1 ) (blue) and 1 / (C 2 (I − A 2 ) 

−1 B 2 ) (red) (b) Norms of sample trajectories ‖ x i ‖ 1 of the individual patch models (3.1) with model 

data 3.6 and x = (x 1 , x 2 ) of the dispersal model (3.5) from three (pseudo) random initial conditions. The blue, red and black curves correspond to patches one, two and the 

combined model, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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b  
is, D k (x ) = D k x for all x ∈ R 

n + . In such a situation we shall abuse

notation and use the symbol D k to denote both the function and

the matrix. 

Example 3.1. We reconsider Example 2.2 , but introduce density-

dependent recruitment in both patches. Specifically, we consider 

A 1 = 

[ 

0 0 0 

0 . 65 0 0 

0 0 . 03 0 . 05 

] 

B 1 = 

[ 

1 

0 

0 

] 

C 1 = 

[
0 . 06 1 . 16 3 . 29 

]
A 2 = 

[ 

0 0 0 

0 . 18 0 . 39 0 

0 0 . 41 0 . 35 

] 

B 2 = 

[ 

1 

0 

0 

] 

C 2 = 

[
0 . 41 0 . 02 0 . 03 

]

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(3.6a)

with F 1 , F 2 : R + → R + defined by 

F 1 (w ) = 

2 . 95 w 

3 + w 

and F 2 (w ) = 

0 . 95 w 

1 + 0 . 25 w 

2 
. (3.6b)

Note that A 1 + B 1 C 1 and A 2 + B 2 C 2 are equal to the matrices in

(2.2) . The solution of each of the patch models without dispersal

(3.1) converges exponentially to zero, which may be established by

checking that (3.2) and (3.4) hold for i ∈ {1, 2}. It is more readily

seen graphically in Fig. 3.2 (a), by noting that the graphs of F 1 and

F 2 are contained within the sector with slopes θ/ (C 1 (I − A 1 ) 
−1 B 1 )

and θ/ (C 2 (I − A 2 ) 
−1 B 2 ) , respectively, for some θ < 1. 

Introducing the dispersal terms D 1 and D 2 as in (2.2) ,

with γ12 = γ21 = 0 . 95 the combined model (3.5) exhibits DDG.

Fig. 3.2 (b) plots sample state trajectories from both the individual

patches (without dispersal) as well as the dispersal model (3.5) .

As expected, the state trajectories from the individual patches con-

verge to zero, whereas the state trajectory of the dispersal model

converges to a non-zero equilibrium. Since the functions F 1 and

F 2 are bounded, it follows that for any initial conditions, first, the

solutions of the two separate (declining) patches are bounded and,

second, that the solution of the combined patch model (3.5) is also

bounded. ♦

3.2. A necessary condition for dispersal driven growth 

Our main result of this section provides a necessary condition

for DDG to occur in the dispersal model (3.5) . For ease of expo-
ition, the proofs of all results in this section are relegated to the

ppendix. 

heorem 3.2. Given the dispersal model (3.5) , assume that ( A 1) ′ and

B1)–(B3) hold. If there exists nonnegative vectors q i ∈ R 

p 
+ , r i ∈ R 

� + 
nd strictly positive ρ ∈ R 

n + such that 

T A i − ρT + q T i C i � 0 and ρT B i − r T i � 0 i ∈ m , (3.7)

hen the zero equilibrium of the dispersal model (3.5) is globally ex-

onentially stable, for all functions F i which satisfy 

 

T 
i F i (y ) ≤ q T i y ∀ y ∈ R 

p 
+ , i ∈ m , (3.8)

or all dispersal functions { D 1 , . . . , D m 

} and for all dispersal weight-

ngs ( γ ij ) . In other words, under these assumptions, DDG is not possi-

le in (3.5) . 

Our next result demonstrates that the existence of a strictly

ositive ρ satisfying (3.7) — the key condition made in

heorem 3.2 — is also a necessary condition for ruling out DDG

hen the patch dynamics are assumed non-linear and dispersal is

odelled multiplicatively. 

roposition 3.3. Given the dispersal model 

x i (t + 1) = A i 

[ 
�i (t) x i (t) + 

m ∑ 

j=1 
j � = i 

γi j (t)(I − � j (t)) x j (t) 
] 

+ B i F i 

(
C i 

[ 
�i (t) x i (t) + 

m ∑ 

j=1 
j � = i 

γi j (t)(I − � j (t)) x j (t) 
] )

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

x i (0) = x 0 i , t ∈ N 0 , i ∈ m , 

(3.9)

or m ∈ N , assume that (B1), (B2), ( A 2) ′ and 

( B 3) ′ �i (t) ∈ R 

n ×n 
+ and �i ( t ) is diagonal with diagonal entries tak-

ing values in [0, 1] for every i ∈ m and t ∈ N 0 

hold. If there exists nonnegative vectors q i ∈ R 

p 
+ , r i ∈ R 

� + and

trictly positive ρ ∈ R 

n + such that (3.7) holds, then the zero equi-

ibrium of the dispersal model (3.9) is globally exponentially sta-

le, for all functions F which satisfy (3.8) , for all dispersal functions
i 
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 θ1 , . . . , θm 

} and for all dispersal weightings ( γ ij ) . In other words, un-

er these assumptions, DDG is not possible in (3.9) . 

We conclude this section with some remarks. 

emark 3.4. 

(a) Given model data ( A i , B i , C i ) and q i ∈ R 

p 
+ , r i ∈ R 

� + , check-

ing whether there exists a strictly positive ρ ∈ R 

n + such that

(3.7) holds may be formulated as a linear program, and is

thus readily implemented numerically. 

(b) The inferences which may be drawn from Theorem 3.2 par-

allel those which follow from the earlier result, Theorem 2.6 ,

which treats the linear case. For example, DDG is not pos-

sible in (3.5) when each patch has scalar dynamics (mean-

ing n = � = p = 1 ) and satisfies (3.2) and (3.3) , cf. statement

(1) of Corollary 2.7 . Recall that these assumptions imply that

the zero equilibrium of each patch (without dispersal) is GES

and in the scalar case means that there exists (scalar) ρ i >

0 such that 

ρi a i − ρi + q i c i < 0 and ρi b i − r i < 0 ∀ i ∈ m . (3.10)

Note that the first inequality implies that a i < 1 for all i ∈
m . By taking 

ρ := min 

j∈ m 

q j c j 

1 − a j 
+ ε , 

for ε > 0 sufficiently small, it may be proven from (3.10) that

ρ satisfies all the inequalities 

ρa i − ρ + q i c i < 0 and ρb i − r i < 0 ∀ i ∈ m . 

and Theorem 3.2 thus applies. 

(c) The analogous version of statement (3) of Corollary 2.7 ap-

plies to the dispersal model (3.5) . Namely, the patch models

( A i , B i , C i ), together with r i and q i that constrain the non-

linear terms F i , must be sufficiently distinct — in the sense

that they do not admit a strictly positive ρ ∈ R 

n + satisfying

(3.7) — for DDG to be possible. �

. Dispersal driven growth in continuous-time models 

The penultimate section demonstrates that versions of the

iscrete-time results stated and proven in Sections 2 and

 translate to their continuous-time analogues. The proofs of

heorems 4.2 and 4.3 appear in the Appendix. The interpretation

f these results is similar to that of their discrete-time counter-

arts, and thus commentary is kept to a minimum. One purpose of

his short section is to substantiate the claim that, at least theoret-

cally, our test for DDG in terms of a non-existence of a CLLF is not

n artefact of the assumed discrete-time modelling framework. We

o note that discrete-time models seem more prevalent in ecology

han their continuous-time counterparts. However, as an example

f a positive dynamical system, the dispersal model (4.1) may have

pplications outside of ecology, say, in models for transport, logis-

ics, communications or flows on networks ( Haddad et al., 2010 ). 

The continuous-time version of the linear patch model

2.1) is: 

˙ 
 i (t) = A i x i (t) − D i x i (t) + 

m ∑ 

j=1 
j � = i 

γi j D j x j (t) , x i (0) = x 0 i , 

t ∈ R + , i ∈ m , (4.1) 

here m ∈ N . We here assume that: 

(C1) A i and A i − D i are Metzler and D i ≥ 0 for every i ∈ m ; 

(C2) γ ij ∈ [0, 1] and 

∑ m 

k =1 
k � = j 

γk j ∈ [0 , 1] , for every i , j ∈ m ; 
(C3) α( A i ) < 0, for every i ∈ m . 
Recall that a square matrix M is called Metzler if ev-

ry off-diagonal entry is nonnegative (see, for example,

 Berman and Plemmons, 1994 , Ch. 6)). Further, α( M ) denotes

he spectral abscissa of M , given by 

(M) := max { Re λ : λ ∈ σ (M) } . 
etzler matrices go by the terms essentially non-negative ( Berman

t al., 1989 , p. 146) or quasi positive ( Smith, 1995 , p. 60), as well.

n a dynamical systems context, they are the continuous-time ana-

ogue of nonnegative matrices. The following well-known result

see, for example, Smith (1995 , Section 3.1)) demonstrates that the

etzler property characterises linear flows which leave the non-

egative orthant invariant: a matrix M ∈ R 

n ×n is Metzler if, and

nly if, e Mt > 0 for all t ≥ 0. 

We mention that assumption (C1) is satisfied if A i is Metzler

nd D i is diagonal with nonnegative diagonal entries, for each i ∈
 . In this case the diagonal entries of D i may be arbitrarily large,

s they correspond to dispersal rates, not proportions. Assumption

C3) is the continuous-time version of (A3) and implies that with-

ut dispersal (that is, D i = 0 for all i ∈ m ), the solution x i of the

ynamics of i -th patch satisfies 

˙ 
 i (t) = A i x i (t) ⇒ x i (t) = e A i t x 0 i → 0 as t → ∞ ∀ x 0 i ∈ R 

n 
+ . 

efinition 4.1. A set of Metzler matrices { A 1 , . . . , A m 

} ⊆ R 

n ×n 
+ ad-

its a common linear Lyapunov function (CLLF) if there exists a

trictly positive v ∈ R 

n + and a > 0 such that 

 

T A i ≤ −a v T , i ∈ m . (4.2)

Paralleling Definition 2.5 and the comments afterwards, if the

et of Metzler matrices { A 1 , . . . , A m 

} admits a CLLF in the sense of

efinition 4.1 , then assumption (C3) holds. This claim follow from,

or example Berman and Plemmons (1994 , Theorem 6.2.3, charac-

erisation I 27 ), noting that P is a Metzler matrix with α( P ) < 0 if,

nd only if, −P is a non-singular M -matrix. The converse is not true

n general. 

heorem 4.2. If the set of Metzler matrices { A 1 , . . . , A m 

} admits a

ommon linear Lyapunov function, then the zero equilibrium of the

ispersal model (4.1) is globally exponentially stable, for all dispersal

atrices { D 1 , . . . , D m 

} and for all weightings ( γ ij ) which satisfy as-

umptions (C1)–(C2). Consequently, that { A 1 , . . . , A m 

} does not admit

 CLLF is a necessary condition for DDG to occur. 

The analogous versions of Corollaries 2.7, 2.11 and 2.12 hold

n the continuous-time case, mutatis mutandis. For the sake of

revity, we do not give formal statements. The case of dispersal

cting multiplicatively, viz. Corollary 2.14 , does not have a natural

ontinuous-time analogue, as here the right hand side of (4.1) de-

cribes rates of change of the x i , not the actual change of x i (which

s a nonnegative quantity, is necessarily a proportion). 

We comment that Fornasini and Valcher (2010) ; Knorn et al.

2009) contain checkable characterisations for a set of Metzler ma-

rices to admit a CLLF. Alternatively, testing for a CLLF in practice

ay be formulated as a linear program, analogously to as proposed

n Example 2.9 . 

To accommodate dispersal between density-dependent (non- 

inear) patch dynamics, modelled in continuous-time, we con-

ider: 

˙ x i (t) = A i x i (t) + B i F i (C i x i (t)) − D i x i (t) + 

m ∑ 

j=1 
j � = i 

γi j (t) D j x j (t) , 

 i (0) = x 0 i , t ∈ R + , i ∈ m , (4.3) 
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where m ∈ N and, we additionally assume that 

(C4) F i : R 

p 
+ → R 

� + is locally Lipschitz continuous and there ex-

ists R i > 0 such that 

‖ F i (y ) ‖ ≤ R i ‖ y i ‖ ∀ y ∈ R 

p 
+ , ∀ i ∈ m . 

From standard theory of differential equations, the assump-

tions (C1)–(C4) imply that for all x 0 
i 

∈ R 

n + , the differential equation

(4.3) has a unique solution defined for all t ≥ 0 see, for exam-

ple, Logemann and Ryan (2014 , Proposition 4.24). 

Theorem 4.3. Given the dispersal model (4.3) , assume that (C1), (C2)

and (C4) hold. If there exists nonnegative vectors q i ∈ R 

p 
+ , r i ∈ R 

� + and

strictly positive ρ ∈ R 

n + such that 

ρT A i + q T i C i � 0 and ρT B i − r T i � 0 ∀ i ∈ m , (4.4)

then the zero equilibrium of the dispersal model (4.3) is globally expo-

nentially stable, for all functions F i which satisfy (3.8) , for all dispersal

matrices { D 1 , . . . , D m 

} and for all dispersal weightings ( γ ij ) . In other

words, under these assumptions, DDG is not possible in (4.3) . 

5. Discussion 

Models for structured populations with a discrete spatial

(patch) structure coupled via dispersal have been considered. We

have focussed on the situation wherein each patch is a sink, but

the inclusion of dispersal between patches leads to overall pop-

ulation growth — so-called dispersal driven growth. Such a phe-

nomenon may occur, at least theoretically, in the absence of either

a source patch or contribution from external immigration. Our re-

sults supplement the existing body of literature on population per-

sistence and, for example, are potentially of interest and utility to

those both looking to eradicate, or control, an invasive population,

or conserve another. We have shown that for the classes of mod-

els considered, if the terms modelling the dynamics on each patch

admit a common linear Lyapunov function, then the zero equilib-

rium is globally asymptotically stable, irrespective of the dispersal

terms, which thus rules out DDG. In other words, we have derived

a necessary condition for DDG to occur. 

The first class of models considered were discrete-time and lin-

ear (hence specified by nonnegative matrices), Section 2 , and our

main results are formulated as Theorem 2.6 and Corollary 2.7 .

Given a set of nonnegative matrices, a checkable characterisation

exists for testing whether the set admits a CLLF, see Example 2.9 ,

and linear programming may also readily be implemented. Sev-

eral extensions were considered to, for example, time-varying, de-

layed or non-linear dispersal and worked examples have been pre-

sented. Sections 3 and 4 considered classes of models with non-

linear patch dynamics and in continuous time, respectively. Qual-

itatively, the same results as in Section 2 were obtained — exis-

tence of a CLLF, interpreted appropriately, rules out the possibility

of DDG. 

We conclude the present paper by considering some of the bio-

logical and mathematical implications of Corollary 2.7 . Statements

(2)–(4) of Corollary 2.7 demonstrate that for DDG to be possible,

(at least some of) the matrices A i must be distinct from one an-

other. Noting that the left eigenvector of a nonnegative matrix A

corresponding to the spectral radius r ( A ) satisfies v T A = r(A ) v T , the

definition of a CLLF for a set { A 1 , . . . , A m 

} is roughly similar to

the assertion that the matrices A i have a common left eigenvec-

tor, which is the case if the A i all commute, for instance. Recall

that in our applied context the A i seek to capture the biological

processes occurring on each patch — which are affected by local

factors such as environmental quality, availability of and access to
ood, risk of predation or disease, and so on. For such matrix pro-

ection models, the left eigenvector v T (unique once a scaling is

xed) corresponding to r ( A ) is often called the reproductive vec-

or, as it contains the reproductive values (as in Fisher, 1958 ) of

ach stage-class ( Goodman, 1968 ). The claim that the A i must be

ufficiently distinct supports the intuition that connecting multi-

le versions of the same patch cannot lead to asymptotic growth,

hen each patch is assumed to be asymptotically declining without

ispersal. 

Further, statements (4) and (5) of Corollary 2.7 indicate that

or DDG to be possible some patches must have dynamics which

xhibit transient growth, that is, certain stage-classes must cause

hort-term population growth. These conclusions support the intu-

tion that DDG is likely to occur when distinct stage-classes of a

opulation amplify short-term in distinct patches. The cumulative

ffect of combining these “boomy” patches is overall growth, or

DG. This assertion complements the findings of Elragig and Town-

ey (2012) or Neubert et al. (2002) , there in the context of Turing

nstability in reaction-diffusion equations. We emphasise that the

onverse of the above remarks need not hold (cf. statement (6) of

orollary 2.7 ), meaning that the set of matrices { A 1 , . . . , A m 

} could

xhibit wide variation or marked transient growth, yet the com-

ined dispersal model (2.1) still does not exhibit DDG for some

ij and { D 1 , . . . , D m 

} parameters. As we discussed at the end of

ection 2.2 , determining when DDG does occur in terms of the

odel parameters is analytically intractable, in general. We reit-

rate here that the value of Theorem 2.6 and its extensions is that

 readily checkable condition is available for “ruling out” DDG, not

ruling it in”. 

Finally, statement (1) of Corollary 2.7 makes a rather differ-

nt claim to the others, which may be rationalised as follows.

or scalar, linear dynamical systems x (t + 1) = ax (t) with a > 0,

here is no distinction between transient and asymptotic behaviour

the solution is given by x (t) = a t x (0) which either grows or

hrinks (discarding a = 1 or x (0) = 0 ) at every time-step from t =
 , dependent on whether a > 1 or a < 1, respectively. Since we

ave already commented that some transient growth is necessary

or DDG to occur — scalar models shall never exhibit DDG by our

nsistence that a < 1 — our imposed asymptotic decline. By way of

ontrast, a matrix A may have both r ( A ) < 1 but ‖ A ‖ 1 arbitrarily

arge, in which case the solution x of x (t + 1) = Ax (t) may grow

n norm short-term, before eventually declining. Thus scalar mod-

ls do not capture the richness of transient dynamics required to

ee DDG and, biologically, do not capture the different vital rates

ssociated with different developmental-stage classes. 

ppendix A. Remaining proofs of stated results 

roof of Theorem 3.2. We note that the condition (3.7) implies

hat for each i ∈ m 

T A i − ρT ≤ ρT A i − ρT + q T i C i � 0 ⇒ ρT A i � ρT , 

nd hence assumption (A3) holds by, for example, Krasnosel’skij

t al. (1989 , Lemma 16.1). Let x := (x 1 , . . . , x m 

) denote the solution

f (3.5) . We note that assumptions (B1)–(B3) ensure that x i ( t ) ≥ 0

or each t ∈ N 0 and i ∈ m and thus x (t) ∈ R 

nm + for each t ∈ N 0 . 

Choose μ > 1 such that 

(μA i ) = μr(A i ) < 1 ∀ i ∈ m , (A.1)

nd 

T μA i − ρT + q T C i ≤ 0 and ρT μB i − r T ≤ 0 ∀ i ∈ m , (A.2)
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hich is possible by (A3) and (3.7) . Define w := (w 1 , . . . , w m 

) and

 by 

w i (t) : = μt x i (t) i ∈ m , t ∈ N 0 and W : R 

nm → R +

 ((z 1 , . . . , z m 

)) : = 

m ∑ 

j=1 

ρT z j . 

 routine calculation using (3.5) shows that w i has dynamics given

y 

 i (t + 1) = μA i w i (t) + μB i μ
t F i (μ

−t C i w i (t)) − μt D i (μ
−t w i (t)) 

+ 

m ∑ 

j=1 
j � = i 

γi j μ
t D j (μ

−t w j (t)) , t ∈ N 0 , i ∈ m , (A.3) 

pplying (3.8) to y = μ−τ ξ for ξ ∈ R 

p 
+ and τ ∈ N 0 , and multiplying

oth sides by μτ yields 

τ r T i F i (μ
−τ ξ ) ≤ μτ · q T i 

(
μ−τ ξ

)
= q T i ξ ∀ ξ ∈ R 

p 
+ ∀ i ∈ m . (A.4)

or t ∈ N 0 , we now estimate W (w ) using (A.3) (suppressing the

rgument t of w for clarity) 

 (w (t + 1)) = 

m ∑ 

i =1 

ρT w i (t + 1) 

= 

m ∑ 

i =1 

ρT 
[ 
μA i w i + μB i μ

t F i (μ
−t C i w i ) − μt D i (μ

−t w i )

+ 

m ∑ 

j=1 
j � = i 

γi j μ
t D j (μ

−t w j ) 
] 

≤
m ∑ 

i =1 

ρT w i − q T i C i w i + r T i μ
t F i (μ

−t C i w i ) 

−
m ∑ 

i =1 

μt ρT D i (μ
−t w i ) 

+ 

m ∑ 

j=1 

( m ∑ 

i =1 
i � = j 

γi j 

)
μt ρT D i (μ

−t w i ) by (A.2), 

≤ W (w (t)) + 

m ∑ 

i =1 

−q T i C i w i + r T i μ
t F i (μ

−t C i w i ) 

by (A2) 
′ 
, 

≤ W (w (t)) , (A.5)

here in the last estimate we invoked (A.4) . We conclude from

A.5) that W (w ) is bounded, specifically, that 

 ≤ W (w (t)) ≤ W (x 0 ) ∀ t ∈ N 0 . 

ince ρ is strictly positive, the above bound implies that w is

ounded, meaning there exists M > 0 such that 

 w (t) ‖ ≤ M‖ x 0 ‖ ∀ t ∈ N 0 . (A.6)

nserting the definition of w into (A.6) , we see that 

 x (t) ‖ ≤ Mμ−t ‖ x 0 ‖ → 0 as t → ∞ , 

hich completes the proof. �
roof of Proposition 3.3. Define μ, w and W as in the proof of

heorem 3.2 . A routine calculation using (3.9) shows that w satis-

es 

 i (t + 1) = μA i 

[ 
�i (t) w i (t) + 

m ∑ 

j=1 
j � = i 

γi j (t)(I − � j (t)) w j (t) 
] 

+ μB i μ
t F i 

(
μ−t C i 

[ 
�i (t) w i (t) 

+ 

m ∑ 

j=1 
j � = i 

γi j (t)(I − � j (t)) w j (t) 
] )

t ∈ N 0 . (A.7) 

or t ∈ N 0 , we now estimate using (A.7) (suppressing the argument

 for clarity) 

 (w (t + 1)) = 

m ∑ 

i =1 

ρT w i (t + 1) 

= 

m ∑ 

i =1 

ρT 
{ 

μA i 

[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] 

+ μB i μ
t F i 

(
μ−t C i 

[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] )} 

≤
m ∑ 

i =1 

(
ρT − q T i C i 

)[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] 

+ r T i μ
t F i 

(
μ−t C i 

[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] )

by (3.7), 

≤
m ∑ 

i =1 

(
ρT − q T i C i 

)[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] 

+ q T i C i 

[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] 
by (A.4), 

= 

m ∑ 

i =1 

ρT 
[ 
�i w i + 

m ∑ 

j=1 
j � = i 

γi j (I − � j ) w j 

] 

= 

m ∑ 

i =1 

ρT �i w i + 

m ∑ 

j=1 

( m ∑ 

i =1 
i � = j 

γi j 

)
ρT (I − � j ) w j 

≤
m ∑ 

i =1 

ρT w i by A2 

′ 

= W (w (t)) . (A.8) 

rom (A.8) we infer that w is bounded, and hence the final part of

he proof mirrors that of Theorem 3.2 . �

roof of Theorem 4.2. Let x = (x 1 , . . . , x m 

) denote the solution of

4.1) and define W as in (2.8) . For t ≥ 0, a calculation using (4.1),

4.2) and assumption (C2) shows that 

d 

dt 
W (x (t)) = 

m ∑ 

i =1 

v T ˙ x i (t) 

= 

j ∑ 

i =1 

v T 
[ 

A i x i (t) − D i x i (t) + 

m ∑ 

j=1 
j � = i 

γi j D j x j (t) 
] 
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≤
m ∑ 

i =1 

v T A i x i (t) ≤ −a 

m ∑ 

i =1 

v T x i (t) 

= −aW (x (t)) , 

whence 

0 ≤ W (x (t)) ≤ e −at W (x 0 ) ∀ t ≥ 0 . (A.9)

The inequalities in (A.9) prove that W ( x ( t )) → 0 as t → ∞ , and

hence x ( t ) → 0 as t → ∞ because v is strictly positive and x i ( t ) ≥
0 for all t ≥ 0 and each i ∈ m . �

Proof of Theorem 4.3. We begin by noting that the first condition

in (4.4) implies that for each i ∈ m 

ρT A i ≤ ρT A i + q T i C i � 0 ⇒ ρT A i � 0 , 

and so property (C3) holds (see the comment after Definition 4.1 ).

Let x := (x 1 , . . . , x m 

) denote the solution of (4.3) . We note that as-

sumptions (C1), (C2) and (C4) ensure that x i ( t ) ≥ 0 for each t ∈ R +
and i ∈ m and thus x (t) ∈ R 

nm + for all t ∈ R + . 
Choose γ > 0 such that 

α(A i + γ I) = α(A i ) + γ < 0 ∀ i ∈ m , (A.10)

and 

ρT (A i + γ I) + q T C i ≤ 0 and ρT B i − r T ≤ 0 ∀ i ∈ m , (A.11)

which is possible by (C3) and (4.4) . Define w := (w 1 , . . . , w m 

) and

W by 

w i (t) : = e γ t x i (t) i ∈ m , t ∈ R + and W : R 

nm → R + , 

W ((z 1 , . . . , z m 

)) := 

m ∑ 

j=1 

ρT z j . 

A routine calculation using (4.3) shows that w i has dynamics given

by 

˙ w i (t) = (A i + γ I) w i (t) + B i e 
γ t F i (e −γ t C i w i (t)) − D i w i (t) 

+ 

m ∑ 

j=1 
j � = i 

γi j D j w j (t) , t ∈ R + , i ∈ m , (A.12)

Applying (3.8) to y = e −γ τ ξ for ξ ∈ R 

p 
+ and τ ∈ R + , and multiply-

ing both sides by e γ τ yields 

e γ τ r T F i (e −γ τ ξ ) ≤ e γ τ · q T 
(
e −γ τ ξ

)
= q T ξ ∀ ξ ∈ R 

p 
+ ∀ i ∈ m . 

(A.13)

We now estimate t �→ 

d 
dt 

W (w (t)) using (A.12) for t ≥ 0 

d 

dt 
W (w (t)) = 

m ∑ 

i =1 

ρT ˙ w i (t) 

= 

m ∑ 

i =1 

ρT 
[ 
(A i + γ I) w i (t) + B i e 

γ t F i (e −γ t C i w i (t)) 

−D i w i (t) + 

m ∑ 

j=1 
j � = i 

γi j D j w j (t) 
] 

≤
m ∑ 

i =1 

ρT 
[ 
(A i + γ I) w i (t) + B i e 

γ t F i (e −γ t C i w i (t)) 
] 

by (C2) 

≤
m ∑ 

i =1 

[
− q T i C i w i + r T i e 

γ t F i (e −γ t C i w i ) 
]

by(A . 11) 

≤ 0 , (A.14)
here in the last estimate we invoked (A.13) . We conclude from

A.14) that W (w ) is bounded, specifically, that 

 ≤ W (w (t)) ≤ W (x 0 ) ∀ t ∈ R + . 

ince ρ is strictly positive, the above bound implies that w is

ounded, meaning there exists M > 0 such that 

 w (t) ‖ ≤ M‖ x 0 ‖ ∀ t ∈ R + . (A.15)

nserting the definition of w into (A.15) , we see that x ( t ) → 0 as t

 ∞ , which completes the proof. �
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