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Abstract

Incremental stability and convergence properties for forced, infinite-dimensional, discrete-
time Lur’e systems are addressed. Lur’e systems have a linear and nonlinear component and
arise as the feedback interconnection of a linear control system and a static nonlinearity.
Discrete-time Lur’e systems arise in, for example, sampled-data control and integro-difference
models. We provide conditions, reminiscent of classical absolute stability criteria, which are
sufficient for a range of incremental stability properties and input-to-state stability (ISS).
Consequences of our results include sufficient conditions for the converging-input converging-
state (CICS) property, and convergence to periodic solutions under periodic forcing.
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1 Introduction

In systems and control theory, feedback interconnections comprising a linear system in the for-
ward path and a static nonlinearity in the feedback path, as shown in Figure 1.1, are commonly
referred to as Lur’e systems. In this paper, we investigate certain stability and convergence prop-
erties of forced, infinite-dimensional, discrete-time Lur’e systems. Our focus is centred around
incremental stability notions, input-to-state stability (ISS) and converging-input converging-
state (CICS) properties. The concept of ISS first appeared in 1989 in [45] and is a stability
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Figure 1.1: Lur’e system with linear part Σ, nonlinearity f , output y and input v

concept pertaining to the states of (possibly nonlinear) control systems subject to external or
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exogenous inputs. It ensures boundedness of the state in terms of the initial states and inputs,
respectively, generalising the familiar additive estimate

‖x(t)‖ ≤ Γ

(

γt‖x0‖+ max
0≤s≤t−1

‖u(s)‖
)

, ∀ t ∈ N ,

for some γ ∈ (0, 1) and Γ > 0, for the state x of the exponentially stable discrete-time linear
system

x(t+ 1) = Ax(t) + u(t), x(0) = x0, ∀ t ∈ Z+ ,

with input u. Importantly, the constants γ and Γ are independent of x0 and u. Since its incep-
tion, much attention has been devoted to ISS with numerous papers on the subject including,
but not restricted to, [10, 19, 20, 21, 22, 23, 24, 46, 48, 49]. The reader is referred to [8, 47] for
overviews of key input-to-state stability ideas.

A related concept is incremental input-to-state stability (δISS), which is simply an incremental
version of the ISS concept and ensures boundedness of the difference of two state trajectories
in terms of the difference of the initial conditions and the difference of the inputs. Evidently,
for linear systems the notions of δISS and ISS coincide. The paper [1] constructs a suite of
Lyapunov methods for δISS for finite-dimensional, continuous-time nonlinear control systems.

The study of the stability properties of Lur’e systems constitutes absolute stability theory which
seeks to conclude stability of the feedback system shown in Figure 1.1 through the interplay of
frequency domain properties of the linear system Σ and the boundedness or sector properties
of the nonlinearity f . Absolute stability theory is typically concerned with the development
of criteria for global asymptotic stability of an equilibrium (typically zero) of unforced Lur’e
systems [25, 27], or for L2-stability in an input-output setting [50]. Classical absolute stabil-
ity results include the circle criterion, the (complexified) Aizerman conjecture, and the Popov
criterion [17, 25, 50].

As is well-known, global asymptotic or exponential stability of an equilibrium of an unforced
nonlinear system does, in general, not guarantee any stability or boundedness properties of the
system in the presence of forcing. A recent line of enquiry [2, 3, 4, 19, 20, 42, 43, 44] has been
investigating to what extent classical absolute stability criteria can be modified to ensure ISS
and state convergence properties of forced Lur’e systems. Indeed, a key finding has been that
existing absolute stability criteria, under slightly stronger assumptions, are sufficient for ISS in
many cases. The papers [2, 19, 20, 42, 43, 44] derive, in finite-dimensional settings, sufficient
conditions for ISS which are reminiscent of the complexified Aizerman conjecture and the circle
criterion. Furthermore, ISS properties underpin the paper [4], which considers the converging-
input converging-state (CICS) property for finite-dimensional, continuous-time Lur’e systems.

Here we consider incremental ISS notions for forced infinite-dimensional discrete-time Lur’e
systems. Our main result, Theorem 3.2, presents sufficient conditions for δISS in terms of a
“nonlinear incremental ball condition” inspired by the complexified Aizerman conjecture. We
appeal to exponential weighting and small-gain arguments to obtain a special type of δISS, that
being, exponential δISS. We subsequently utilise δISS to obtain several different stability and
convergence results. In particular, Corollary 3.3 provides an ISS result, Corollary 3.7 provides
sufficient conditions for δISS which are reminiscent of the circle criterion, Theorem 4.3 gives
sufficient conditions for the CICS property and Theorem 4.8 presents sufficient conditions for
the existence of, and convergence to, periodic solutions under periodic forcing. At the time of
writing, the study of ISS for infinite-dimensional, continuous-time control systems is an emerging
research area, with papers including [9, 16, 18, 34, 35, 37, 38], but to the best of our knowledge,
there is no existing literature that overlaps with the current paper.

A motivation for the present study is its applicability in numerous areas. One such application is
to infinite-dimensional sampled-data systems (see, for example, [28, 29, 30, 40]). The sampled-
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data systems considered here are obtained from the feedback interconnection of a continuous-
time infinite-dimensional system and a static nonlinearity using sample- and hold-operations.
Theorem 6.1 provides conditions which guarantee that if the continuous-time feedback system
is ISS, then the corresponding sampled-data system is ISS provided the sampling period is
sufficiently small. A second class of examples arises in ecological modelling, and are so-called
integral projection models (IPMs) [6, 12, 13], which are integro-difference models typically used
for populations partitioned according to a continuous variable such as size or weight. The
modelling assumption that there are both linear and nonlinear vital rates means that IPMs
often naturally lead a Lur’e system structure. In Example 7.2, we demonstrate that, under
natural assumptions, the theory developed in Sections 3 and 4 applies to a forced IPM for the
plant Platte thistle, based on the model found in [39].

The paper is structured as follows. In Section 2 we gather relevant preliminary results regarding
linear infinite-dimensional discrete-time systems. Section 3 contains the main results germane to
ISS and δISS. Then, in Section 4 we utilise these results to yield convergence properties. Section 5
and Section 6 comprise applications of our earlier results in the form of ‘four-block’ systems
and sampled-data systems, respectively. Finally, Section 7 contains detailed discussions of two
examples.

Notation. Most notation we use is standard. The set of positive integers is denoted by N, and R

and C denote the fields of real and complex numbers, respectively. We set R+ := {r ∈ R : r ≥ 0},
Z+ = N∪ {0}, C0 = {s ∈ C : Re (s) > 0}, Dα := {z ∈ C : |z| < α} and Eα := {z ∈ C : |z| > α},
where α > 0. For notational convenience, we let D := D1 and E := E1.

For normed spaces V andW, we let L(V,W ) denote the normed space of bounded linear operators
from V to W and set L(V ) := L(V, V ). Recall that an operator A ∈ L(V ) is exponentially (or
power) stable if the spectral radius of A is strictly less than 1. It is well known that A ∈ L(V )
is exponentially stable if, and only if, there exist M ≥ 1 and µ ∈ (0, 1) such that

‖An‖ ≤Mµn, ∀ n ∈ Z+ . (1.1)

In addition, the infimum of all µ > 0 satisfying (1.1) for some M ≥ 1, is equal to the spectral
radius of A. For L ∈ L(V,W ) and r > 0, we let

B(L, r) :=
{

M ∈ L(V,W ) : ‖M − L‖ < r
}

,

denote the open ball of radius r, centred at L. Throughout, for given normed spaces V and W
we set

∥

∥

∥

∥

(

η
ξ

)∥

∥

∥

∥

V×W

:= ‖η‖V + ‖ξ‖W , ∀
(

η
ξ

)

∈ V ×W .

For a Banach space W and α > 0, we define the Hardy space

H∞
α (W ) :=

{

g : Eα →W | g is holomorphic and bounded
}

,

with norm given by
‖g‖H∞

α
:= sup

z∈Eα

‖g(z)‖ .

For ease of notation, we define
H∞(W ) := H∞

1 (W ) .

For t ∈ R, we define ⌊t⌋ to be the greatest integer less than or equal to t and ⌈t⌉ to be the
smallest integer greater than or equal to t, that is, the floor and ceiling of t, respectively. For a
given τ ∈ Z+, we define τ := {0, 1, . . . , τ}, τ := {τ, τ + 1, . . .} and the left-shift operator Λτ by
(Λτv)(t) := v(t+ τ) for every t ∈ Z+ and every v : Z+ → V . For v : Z+ → V and t ∈ Z+, we set

(πtv)(s) :=

{

v(s), if s ∈ t

0, otherwise.
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For p ∈ [1,∞), let ℓp(V ) be the space of functions x : Z+ → V such that
(
∑∞

k=0 ‖x(t)‖
p
V

)1/p
<∞,

with norm ‖x‖ℓp :=
(
∑∞

k=0 ‖x(t)‖
p
V

)1/p
, and let ℓ∞(V ) be the space of functions x : Z+ → V

such that supt∈Z+
‖x(t)‖V < ∞, with norm ‖x‖ℓ∞ := supt∈Z+

‖x(t)‖V . Furthermore, for ρ > 0,

we define the weighted ℓ2 space

ℓ2ρ(V ) :=







x ∈ ℓ2(V ) :

(

∞
∑

t=0

‖x(t)‖2ρ2t
)1/2

<∞







,

with norm ‖ · ‖ℓ2ρ , defined by

‖x‖ℓ2ρ :=

(

∞
∑

t=0

‖x(t)‖2ρ2t
)1/2

, x ∈ ℓ2ρ(V ) .

We denote the set of functions from Z+ → V by V Z+ and the set of continuous functions
R+ → V by C(R+, V ). Finally, for ve ∈ V , we will abuse notation and interchangeably write ve

to denote an element of V and the constant function Z+ → V with value ve.

2 Preliminaries

To begin with, we present some preliminary results regarding the following linear difference
equation

x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

}

(2.1)

where

(A,B,Be, C,D,De) ∈ L(X)× L(U,X)× L(V,X)× L(X,Y )× L(U, Y )× L(V, Y ) =: L ,

u ∈ UZ+ and v ∈ V Z+ . Here X and V are complex Banach spaces and U and Y are complex
Hilbert spaces. The variables x and y in (2.1) are called the state and output, respectively, and
u and v are inputs. Occasionally, it will be convenient to identify the linear system (2.1) and
the sextuple (A,B,Be, C,D,De) and to refer to the linear system (A,B,Be, C,D,De). For ease
of notation, we set Σ := (A,B,Be, C,D,De) ∈ L.

Before continuing, it is worth noting that (2.1) encompasses other seemingly more general linear
systems. For instance, the linear system

x+ = Ax+Bu+ v1 ,

y = Cx+Du+ v2 ,

where v1 ∈ XZ+ and v2 ∈ Y Z+ , is a special case of (2.1) with V = X × Y , Be =
(

I 0
)

,

De =
(

0 I
)

and v =
(

v1

v2

)

.

We record some definitions associated with (2.1). First, we define the behaviour of (2.1) as

Blin :=
{

(u, v, x, y) ∈ UZ+ × V Z+ ×XZ+ × Y Z+ : (u, v, x, y) satisfies (2.1)
}

,

and set G(z) = C(zI − A)−1B + D, a L(U, Y )-valued function of the complex variable z, the
so-called transfer function of (2.1) from u to y. If µ denotes the exponential growth constant of
A, then G ∈ H∞

α (L(U, Y )) for all α > µ, meaning that G is bounded and holomorphic on the
exterior of any open disc in C centred at 0 with radius greater than µ. We say that Σ ∈ L is
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stabilisable (respectively detectable) if (A,B,C,D) is (exponentially) stabilisable (respectively
detectable).

We define the set of admissible feedback operators by

A(D) := {L ∈ L(Y, U) : I −DL is invertible} .

For L ∈ A(D), we set

AL := A+BL(I −DL)−1C, BL := B(I − LD)−1,

CL := (I −DL)−1C, DL := (I −DL)−1D .

}

(2.2)

We denote by GL the transfer function of (AL, BL, CL, DL), that is,

GL(z) = CL(zI −AL)−1BL +DL = G(z)(I − LG(z))−1 ,

where the second equality follows easily from (2.2). For given L ∈ A(D), the operators
AL, BL, CL and DL arise by applying the feedback u = Ly + ũ to (2.1) where ũ ∈ UZ+ . The
transfer function from ũ to y is GL. Finally, we define the set of (complex) stabilising feedback
operators

S(G) := {M ∈ A(D) : GM ∈ H∞(L(U, Y ))} .
We next state three lemmas which underpin our development. The first lemma is a discrete-time
version of [15, Proposition 5.6]. We omit the proof, since it is similar to that in [15].

Lemma 2.1. Let Σ ∈ L, L ∈ A(D) and r > 0. We have B(L, r) ⊆ S(G) if, and only if,
‖GL‖H∞ ≤ 1/r.

The following lemma relates Blin to the behaviour of a certain feedback system, a process often
called ‘loop shifting’ in control theory. The proof is relegated to Appendix A.

Lemma 2.2. Let Σ ∈ L and L ∈ A(D). The quadruple (u, v, x, y) is in Blin if, and only if,
(u, v, x, y) satisfies

x+ = ALx+BL(u− Ly) + (Be +BLLDe)v ,

y = CLx+DL(u− Ly) + (I −DL)−1Dev .

We set ΣL := (AL, BL, Be +BLLDe, C
L, DL, (I −DL)−1De) ∈ L.

We now state the third lemma, the proof of which is elementary, and is therefore omitted.

Lemma 2.3. Let Σ ∈ L and assume that A is exponentially stable. Then there exist c1, c2, c3 > 0
such that, for every (u, v, x, y) ∈ Blin, we have

‖πtx‖ℓ2 ≤ c1‖x(0)‖X + c2‖πt−1u‖ℓ2 + c3‖πt−1v‖ℓ2 , ∀ t ∈ N ,

and

‖πty‖ℓ2 ≤ c1‖x(0)‖X + ‖G‖H∞‖πtu‖ℓ2 + c3 ‖πtv‖ℓ2 , ∀ t ∈ Z+.

The nonlinear control systems considered in the current paper are given by the interconnection
of (2.1) with the nonlinear feedback u = f(y + w) for some f : Y → U , where w ∈ Y Z+ is an
output disturbance (see Figure 2.1).

Namely, we study
x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

u = f(y + w) ,











(2.3)
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Σ
u

yv

f
+ w

Figure 2.1: Block diagram of the feedback interconnection of (2.1) with u = f(y + w).

where Σ ∈ L, v ∈ V Z+ , w ∈ Y Z+ and f : Y → U .

We note that in the case that I −Df is invertible, then (2.3) may be expressed more succinctly
as

x+ = Ax+Bf
(

(I −Df)−1(Cx+Dev + w)
)

+Bev .

We define the behaviour of (2.3) as

B :=
{

(v, w, x, y) ∈ V Z+ × Y Z+ ×XZ+ × Y Z+ : (v, w, x, y) satisfies (2.3)
}

.

Note that if f(0) = 0, then (0, 0, 0, 0) ∈ B. An important observation is that B is left-shift
invariant:

(v, w, x, y) ∈ B ⇒ (Λτv,Λτw,Λτx,Λτy) ∈ B, ∀ τ ∈ Z+ . (2.4)

Associated with (2.3) is the following initial-value-problem.

x+ = Ax+Bu+Bev , x(0) = x0 ∈ X ,

y = Cx+Du+Dev ,

u = f(y + w) .











(2.5)

For a given x0 ∈ X, v ∈ V Z+ and w ∈ Y Z+ , we say that (x, y) ∈ XZ+ × Y Z+ is a solution
of (2.5) if x(0) = x0 and (v, w, x, y) ∈ B. It is straightforward to prove that if the map I −Df
is surjective, then, for a given x0 ∈ X, v ∈ V Z+ and w ∈ Y Z+ , solutions to (2.5) exist. It is
also straightforward to prove that if I − Df is injective, then, for a given x0 ∈ X, v ∈ V Z+

and w ∈ Y Z+ , there is at most one solution of (2.5). We note that both of these properties
are evidently satisfied if D = 0. The following example demonstrates that each of the previous
conclusions need not hold if injectivity or surjectivity of I −Df are respectively dropped.

Example 2.4. Consider (2.5) in the finite-dimensional single-input single-output case wherein
X = U = V = Y = C and A = B = C = D = Be = De = 1. Thus (2.5) becomes

x+ = x+ f(y + w) + v , x(0) = x0 ∈ X ,

y = x+ f(y + w) + v .

}

(2.6)

i) Let f(z) = z − ez, for all z ∈ C, and let x0 = 0 and v(0) = w(0) = 0. Suppose that
(x, y) is a solution to (2.6). Then, in particular, y(0) = f(y(0)) and so, ey(0) = 0, which is
impossible. Therefore, for x0 = 0 and v(0) = w(0) = 0, (2.6) has no solutions.

ii) Let f(s) = 2s−s2−s3, for all s ∈ C. Note that it is easy to verify that there exist multiple
solutions to (2.6) with x0 = 1 and v = w = 0. ♦

3 Exponential incremental stability

In this section, we recall notions of exponential input-to-state stability, define notions of expo-
nential incremental input-to-state stability and present a condition which guarantees that the
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Lur’e system (2.3) is exponentially incrementally input-to-state/output stable. Throughout the
following definitions we let Σ ∈ L and f : Y → U . A quadruple (ve, we, xe, ye) ∈ V ×Y ×X ×Y
is called an equilibrium quadruple of (2.3) if (ve, we, xe, ye) ∈ B. An equilibrium quadruple
(ve, we, xe, ye) is said to be exponentially input-to-state stable (ISS) if there exist c > 0 and
a ∈ (0, 1) such that, for all (v, w, x, y) ∈ B we have

‖x(t)− xe‖X ≤ c

(

at‖x(0)− xe‖X + max
s∈t−1

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

ve

we

)∥

∥

∥

∥

V×Y

)

, ∀ t ∈ N. (3.1)

Further, an equilibrium quadruple is said to be exponentially input-to-state/output stable (ISOS)
if there exist c > 0 and a ∈ (0, 1) such that, for all (v, w, x, y) ∈ B, (3.1) holds and

‖y(t)− ye‖Y ≤ c

(

at‖x(0)− xe‖X +max
s∈t

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

ve

we

)∥

∥

∥

∥

V×Y

)

, ∀ t ∈ Z+.

We say that (2.3) is exponentially ISS (respectively, ISOS) if (0, 0, 0, 0) is an exponentially ISS
(respectively, ISOS) equilibrium quadruple of (2.3).

The following example demonstrates a situation where (2.3) is exponentially ISS but not expo-
nentially ISOS.

Example 3.1. Consider (2.3) where X = U = V = Y = C
2, f is the identity map, A ∈ R

2×2

is exponentially stable,

B :=

(

0 1
0 0

)

, C :=

(

1 0
0 0

)

=: D, and Be :=

(

1 0
0 1

)

=: De.

Since BC = 0 = BD and A is exponentially stable, it is easily checked that (2.3) is exponentially
ISS. We shall now show that (2.3) is not exponentially ISOS. To this end, first let x0 ∈ R

2 and
let x := (x1 , x2)T ∈ (R2)Z+ be such that

x+ = Ax , x(0) = x0 .

By setting w := (−x1 , 0)T ∈ (R2)Z+ and y := (y1 , 0)T ∈ (R2)Z+ for arbitrary y1 ∈ R
Z+ , we see

that

Cx+D(y + w) =

(

x1

0

)

+

(

y1 − x1

0

)

=

(

y1

0

)

= y

and, since BC = 0 = BD and Bw = 0,

x+ = Ax = Ax+B(Cx+D(y + w) + w) = Ax+B(y + w).

Hence, (0, w, x, y) ∈ B. This holds for any y1 ∈ R
Z+ and so (2.3) is not ISOS. ♦

For a non-empty subset S ⊆ Y, we define the following sub-behaviour of (2.3)

BS := {(v, w, x, y) ∈ B : y(t) + w(t) ∈ S, ∀ t ∈ Z+} ,

and note that BY = B.
We say that (2.3) is exponentially incrementally input-to-state stable (δISS) with respect to the
non-empty sets S1, S2 ⊆ Y if there exist c > 0 and a ∈ (0, 1) such that, for all (v1, w1, x1, y1) ∈
BS1 and for all (v2, w2, x2, y2) ∈ BS2 we have

‖x1(t)− x2(t)‖X ≤ c

(

at‖x1(0)− x2(0)‖X + max
s∈t−1

∥

∥

∥

∥

(

v1(s)
w1(s)

)

−
(

v2(s)
w2(s)

)∥

∥

∥

∥

V×Y

)

, ∀ t ∈ N.

(3.2)
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Further, (2.3) is exponentially incrementally input-to-state/output stable (δISOS) with respect to
the sets S1 and S2, if there exist c > 0 and a ∈ (0, 1) such that, for all (v1, w1, x1, y1) ∈ BS1 and
for all (v2, w2, x2, y2) ∈ BS2 , (3.2) holds and

‖y1(t)− y2(t)‖Y ≤ c

(

at‖x1(0)− x2(0)‖X +max
s∈t

∥

∥

∥

∥

(

v1(s)
w1(s)

)

−
(

v2(s)
w2(s)

)∥

∥

∥

∥

V×Y

)

, ∀ t ∈ Z+.

In the case that f(0) = 0, if (2.3) is δISS (respectively, δISOS) with respect to S1 := Y and
S2 := {0}, then, trivially, (2.3) is also ISS (respectively, ISOS). The Lur’e system (2.3) is said to
be exponentially δISS or exponentially δISOS if S1 = S2 = Y in the above respective definitions.
Trivially, exponential δISOS with respect to S1 and S2 implies exponential δISS with respect to
the same sets. The following theorem is the main result of this section.

Theorem 3.2. Let Σ ∈ L be stabilisable and detectable and let S1, S2 ⊆ Y be non-empty.
Assume that r > 0 and K ∈ L(Y, U) satisfy B(K, r) ⊆ S(G) and that there exists δ ∈ (0, r) such
that

‖f(ξ)− f(ζ)−K(ξ − ζ)‖U ≤ (r − δ)‖ξ − ζ‖Y , ∀ ξ ∈ S1, ∀ ζ ∈ S2 . (3.3)

Then the following hold.

(i) There exist constants a > 0, b > 0 and ω > 1 such that, for all (v1, w1, x1, y1) ∈ BS1 ,
(v2, w2, x2, y2) ∈ BS2 , and all ρ ∈ [1, ω], we have

‖πt(x1 − x2)‖ℓ2ρ ≤ a

(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt−1

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

)

, ∀ t ∈ N , (3.4)

and

‖πt(y1 − y2)‖ℓ2ρ ≤ b

(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

)

, ∀ t ∈ Z+ . (3.5)

(ii) For q ∈ [2,∞], there exist constants c > 0, d > 0 and θ ∈ (0, 1) such that, for all
(v1, w1, x1, y1) ∈ BS1 and (v2, w2, x2, y2) ∈ BS2, we have

‖x1(t)− x2(t)‖X ≤ c

(

θt‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt−1

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

ℓq

)

, ∀ t ∈ N , (3.6)

and

‖y1(t)− y2(t)‖Y ≤ d

(

θt‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓq

)

, ∀ t ∈ Z+ . (3.7)

Here c and d depend on q, but θ does not.

As an immediate consequence of Theorem 3.2, by taking q = ∞, we obtain the following corollary.

Corollary 3.3. Under the assumptions of Theorem 3.2, the Lur’e system (2.3) is exponentially
δISOS with respect to S1 and S2. In particular, the following statements hold.

(i) If (3.3) holds with S1 = S2 = Y , then (2.3) is exponentially δISOS.

(ii) If (ve, we, xe, ye) is an equilibrium quadruple of (2.3) and (3.3) holds with S1 = Y and S2 =
{ye + we}, then (ve, we, xe, ye) is an exponentially ISOS equilibrium quadruple of (2.3).
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Proof of Theorem 3.2. The proof uses a combination of small-gain and exponential weighting
arguments. Since Σ is stabilisable and detectable, it follows that ΣK is as well. Moreover,
since GK ∈ H∞(L(U, Y )), it follows that AK is exponentially stable, with exponential growth
constant µ ∈ (0, 1). Let α ∈ (µ, 1) so that GK ∈ H∞

α (L(U, Y )) and consider GK on the closed
annulus A := {z ∈ C : β ≤ |z| ≤ 1}, where β ∈ (α, 1). Owing to the continuity of GK on Eα,
GK is uniformly continuous on A. Thus, there exists γ ∈ (0, 1− β) such that for all s1, s2 ∈ A
with |s1 − s2| < γ, we have

‖GK(s1)−GK(s2)‖ <
1

r − δ/2
− 1

r
.

Invoking Lemma 2.1, we have that ‖GK‖H∞ ≤ 1/r. Thus, for all s ∈ C with 1− γ < |s| ≤ 1,

‖GK(s)‖ ≤ ‖GK(s)−GK(s∗)‖+ ‖GK(s∗)‖

<
1

r − δ/2
− 1

r
+

1

r
=

1

r − δ/2
,

where s∗ = s/|s|. Hence, for γ∗ ∈ (1− γ, 1)

sup
s∈Eγ∗

‖GK(s)‖ ≤ 1

r − δ/2
<

1

r − δ
.

To prove statement (i), set ω := 1/γ∗ > 1 and let ρ ∈ [1, ω]. Define H(s) := GK(s/ρ) to obtain

‖H‖H∞ = sup
s∈E

‖H(s)‖ ≤ sup
s∈Eγ∗

‖GK(s)‖ < 1

r − δ
. (3.8)

By the choice of ρ, we have that

ρµ <
µ

1− γ
<
µ

β
< 1 ,

and thus ρAK is exponentially stable.

Let (v1, w1, x1, y1) ∈ BS1 and (v2, w2, x2, y2) ∈ BS2 . By Lemma 2.2, it follows that, for i ∈ {1, 2},

x+i = AKxi +BK
(

f(yi + wi)−Kyi
)

+ (Be +BKKDe)vi ,

yi = CKxi +DK
(

f(yi + wi)−Kyi
)

+ (I −DK)−1Devi .

Forming the differences gives

(x1 − x2)
+ = AK(x1 − x2) +BK

(

f(y1 + w1)− f(y2 + w2)

−K(y1 + w1 − y2 − w2)
)

+ η , (3.9)

y1 − y2 = CK(x1 − x2) +DK
(

f(y1 + w1)− f(y2 + w2)

−K(y1 + w1 − y2 − w2)
)

+ ν , (3.10)

where

η := (Be +BKKDe)(v1 − v2) +BKK(w1 − w2) and

ν := (I −DK)−1De(v1 − v2) +DKK(w1 − w2) .

As all the operators involved are bounded, there exists κ > 0 such that

∥

∥

∥

∥

(

ρη(t)
ν(t)

)
∥

∥

∥

∥

X×Y

≤ κ

∥

∥

∥

∥

(

(v1 − v2)(t)
(w1 − w2)(t)

)
∥

∥

∥

∥

V×Y

, ∀ t ∈ Z+ . (3.11)
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Defining ũρ(t) = ρtũ(t), for all t ∈ Z+ and all sequences ũ, then (3.9) and (3.10) yield that

(x1 − x2)
+
ρ = ρAK(x1 − x2)ρ + ρBKgρ + ρηρ ,

(y1 − y2)ρ = CK(x1 − x2)ρ +DKgρ + νρ ,

}

(3.12)

where

g(t) := f(y1(t) + w1(t))− f(y2(t) + w2(t))−K(y1(t) + w1(t)− y2(t)− w2(t)), ∀ t ∈ Z+ .

We thus have that
(

gρ,

(

ρηρ
νρ

)

, (x1 − x2)ρ, (y1 − y2)ρ

)

is in the behaviour of the linear system
(

ρAK , ρBK ,
(

I 0
)

, CK , DK ,
(

0 I
))

∈ L where V = X×
Y . Therefore, since ρAK is exponentially stable, an application of Lemma 2.3 to system (3.12)
yields that, for all t ∈ Z+,

‖πt(y1 − y2)ρ‖ℓ2 ≤ c1‖(x1 − x2)ρ(0)‖X + ‖H‖H∞‖πtgρ‖ℓ2 + c3

∥

∥

∥

∥

πt

(

ρηρ
νρ

)∥

∥

∥

∥

ℓ2
, (3.13)

where c1 and c3 are constants independent of (v1, w1, x1, y1) and (v2, w2, x2, y2). By definition
of g and assumption (3.3), we have, for all t ∈ Z+,

‖gρ(t)‖U = ρt‖f(y1(t) + w1(t))− f(y2(t) + w2(t))−K(y1(t) + w1(t)− y2(t)− w2(t))‖U
≤ (r − δ)ρt‖(y1 + w1 − y2 − w2)(t)‖Y
= (r − δ)‖(y1 + w1 − y2 − w2)ρ(t)‖Y ,

therefore

‖πtgρ‖ℓ2 ≤ (r − δ)‖πt(y1 − y2)ρ‖ℓ2 + (r − δ)‖πt(w1 − w2)ρ‖ℓ2 , ∀ t ∈ Z+ . (3.14)

Substituting (3.8), (3.11) and (3.14) into (3.13) and rearranging yields

‖πt(y1 − y2)‖ℓ2ρ = ‖πt(y1 − y2)ρ‖ℓ2

≤ c4‖(x1 − x2)ρ(0)‖X + c5

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓ2
, ∀ t ∈ Z+ . (3.15)

where

c4 :=
c1

1− (r − δ)‖H‖H∞

, c5 :=
κc3 + (r − δ)‖H‖H∞

1− (r − δ)‖H‖H∞

.

Inequality (3.5) now follows from (3.15) with b := max{c4, c5}. Similarly, by another application
of Lemma 2.3 to (3.12), we obtain that

‖πt(x1 − x2)ρ‖ℓ2 ≤ c1‖(x1 − x2)(0)‖X + c2‖πt−1gρ‖ℓ2 + c3

∥

∥

∥

∥

πt−1

(

ρηρ
νρ

)
∥

∥

∥

∥

ℓ2
, ∀ t ∈ N.

Substituting (3.14) and (3.15) into the above, we see that, for all t ∈ N,

‖πt(x1 − x2)‖ℓ2ρ = ‖πt(x1 − x2)ρ‖ℓ2

≤ c1‖(x1 − x2)(0)‖X + c2(r − δ) (‖πt−1(y1 − y2)ρ‖ℓ2 + ‖πt−1(w1 − w2)ρ‖ℓ2) + c3

∥

∥

∥

∥

πt−1

(

ρηρ
νρ

)
∥

∥

∥

∥

ℓ2

≤ c6‖(x1 − x2)(0)‖X + c7

∥

∥

∥

∥

πt−1

(

(v1 − v2)ρ
(w1 − w2)ρ

)
∥

∥

∥

∥

ℓ2
,
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where c6 := c1 + c2(r − δ)c4 and c7 := c3κ + c2(r − δ)(c5 + 1). Setting a := max{c6, c7} in the
above inequality gives (3.4), proving statement (i).

We proceed to prove statement (ii). Since ρAK is exponentially stable, we have that

c8 := sup
t∈Z+

‖(ρAK)t‖ <∞ .

Applying the variation-of-parameters formula to (3.12) gives

(x1 − x2)ρ(t) = (ρAK)t(x1 − x2)(0) +
t−1
∑

k=0

(ρAK)t−1−kρBKgρ(k)

+
t−1
∑

k=0

(ρAK)t−1−kρηρ(k), ∀ t ∈ N .

An application of the triangle and Hölder’s inequalities yield, for all t ∈ N,

‖(x1 − x2)ρ(t)‖X ≤ c8‖(x1 − x2)(0)‖X + ‖ρBK‖
t−1
∑

k=0

‖(ρAK)t−1−k‖‖gρ(k)‖U

+ ρ

t−1
∑

k=0

‖(ρAK)t−1−k‖‖ηρ(k)‖U

≤ c8‖(x1 − x2)(0)‖X + ‖ρBK‖
(

t−1
∑

k=0

‖(ρAK)k‖2
)1/2

‖πt−1gρ‖ℓ2

+ ρ

(

t−1
∑

k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖ℓ2 .

Substituting (3.14), and then (3.15) and (3.11), into the above estimate gives

‖(x1 − x2)ρ(t)‖X ≤ c8‖(x1 − x2)(0)‖X + ρ

(

t−1
∑

k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖ℓ2

+ (r − δ)‖ρBK‖
(

t−1
∑

k=0

‖(ρAK)k‖2
)1/2

(‖πt−1(y1 − y2)ρ‖ℓ2 + ‖πt(w1 − w2)ρ‖ℓ2)

≤ c9‖(x1 − x2)(0)‖X + c10

∥

∥

∥

∥

πt−1

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓ2
, ∀ t ∈ N, (3.16)

where

c9 := c8 + c4(r − δ)‖ρBK‖
(

∞
∑

k=0

‖(ρAK)k‖2
)1/2

,

and

c10 := κ

(

∞
∑

k=0

‖(ρAK)k‖2
)1/2

+ (c5 + 1)(r − δ)‖ρBK‖
(

∞
∑

k=0

‖(ρAK)k‖2
)1/2

.

Estimate (3.16) can be written as

‖(x1 − x2)(t)‖X ≤ c9ρ
−t‖(x1 − x2)(0)‖X + c10ρ

−t

∥

∥

∥

∥

πt−1

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓ2
, ∀ t ∈ N . (3.17)
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If q ∈ (2,∞), then there exists p ∈ (1,∞) such that 2/q+1/p = 1 and, using Hölder’s inequality
again,

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)
∥

∥

∥

∥

2

ℓ2
=

t
∑

k=0

ρ2k
∥

∥

∥

∥

(

(v1 − v2)(k)
(w1 − w2)(k)

)
∥

∥

∥

∥

2

V×Y

≤
(

t
∑

k=0

ρ2kp

)1/p
∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

2

ℓq

=

(

ρ2p(t+1) − 1

ρ2p − 1

)1/p ∥
∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

2

ℓq

≤ ρ2t
(

ρ2

(ρ2p − 1)1/p

)
∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

2

ℓq
, ∀ t ∈ Z+ .

If q = 2, then since ρ > 1,

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)
∥

∥

∥

∥

ℓ2
=

(

t
∑

k=0

ρ2k
∥

∥

∥

∥

(

(v1 − v2)(k)
(w1 − w2)(k)

)
∥

∥

∥

∥

2

V×Y

)1/2

≤ ρt
∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

ℓ2
, ∀ t ∈ Z+ .

Finally, if q = ∞,

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)
∥

∥

∥

∥

ℓ2
=

(

t
∑

k=0

ρ2k
∥

∥

∥

∥

(

(v1 − v2)(k)
(w1 − w2)(k)

)
∥

∥

∥

∥

2

V×Y

)1/2

≤
(

t
∑

k=0

ρ2k

)1/2

max
s∈t

∥

∥

∥

∥

(

(v1 − v2)(s)
(w1 − w2)(s)

)∥

∥

∥

∥

V×Y

=

(

ρ2(t+1) − 1

ρ2 − 1

)1/2

max
s∈t

∥

∥

∥

∥

(

(v1 − v2)(s)
(w1 − w2)(s)

)
∥

∥

∥

∥

V×Y

≤ ρt
(

ρ

(ρ2 − 1)1/2

)∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ∞
, ∀ t ∈ Z+ .

Therefore, for every q ∈ [2,∞], there exists a positive constant c11 such that
∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓ2
≤ ρtc11

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓq
, ∀ t ∈ Z+ ,

which, when substituted into (3.17) gives that, for any q ∈ [2,∞],

‖(x1 − x2)(t)‖X ≤ c9ρ
−t‖(x1 − x2)(0)‖X + c10ρ

−1c11

∥

∥

∥

∥

πt−1

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓq

≤ c9ρ
−t‖(x1 − x2)(0)‖X + c10c11

∥

∥

∥

∥

πt−1

(

(v1 − v2)ρ
(w1 − w2)ρ

)∥

∥

∥

∥

ℓq
, ∀ t ∈ N.

Setting c := max{c9, c10c11} and θ = ρ−1 gives (3.6).

It remains to establish (3.7). We note that,

‖DK‖ ≤ ‖GK‖H∞ ≤ 1

r
<

1

r − δ
, (3.18)

whence, appealing to (3.3) and (3.10),

‖(y1 − y2)(t)‖Y ≤ ‖CK‖‖(x1 − x2)(t)‖X + ‖DK‖(r − δ)(‖(y1 − y2)(t)‖Y + ‖(w1 − w2)(t)‖Y )
+ ‖ν(t)‖Y ∀ t ∈ Z+ . (3.19)
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Define

d1 :=
1

1− (r − δ)‖DK‖ ,

which is positive by (3.18). Substituting (3.6) into (3.19) and setting d2 := d1‖CK‖c and
d3 := d1

(

‖CK‖c+ κ+ (r − δ)‖DK‖
)

, we see that

‖(y1 − y2)(t)‖Y ≤ d2θ
t‖(x1 − x2)(0)‖X + d3

∥

∥

∥

∥

πt

(

(v1 − v2)ρ
(w1 − w2)ρ

)
∥

∥

∥

∥

ℓq
∀ t ∈ Z+ .

Setting d := max{d2, d3} completes the proof.

Remark 3.4. (a) By inspecting the above proof, we are able to see that Theorem 3.2 holds
true if X and V are real Banach spaces and Y and U are real Hilbert spaces, pro-
vided that the complex ball condition Bc(K, r) ⊆ Sc(G) holds, with Bc(K, r) := {M ∈
L(Yc, Uc) : ‖M−K‖ < r} and Sc(G) := {M ∈ L(Yc, Uc) : I−DM is invertible and GM ∈
H∞(L(Uc, Yc))}, where Yc and Uc denote the complexifications of Y and U , respectively.
The same can be said of the rest of the results in sections 3, 4, 6 and 5.

(b) For later purposes, it will be useful to consider Theorem 3.2 in the (rather degenerate)
situation wherein G = 0. If G = 0, then GK = 0 for all K ∈ L(Y, U) and by Lemma 2.1,
it follows that B(K, r) ⊆ S(G) for all r > 0. Consequently, in the case wherein G = 0, the
conclusions of Theorem 3.2 hold, provided that there exists K ∈ L(Y, U) such that

sup
(ξ,ζ)∈S1×S2, ξ 6=ζ

‖f(ξ)− f(ζ)−K(ξ − ζ)‖U
‖ξ − ζ‖Y

<∞. (3.20)

♦

We next present a corollary to Theorem 3.2 which is reminiscent of the circle criterion. To this
end, for α ∈ (0, 1], we denote by H∗

α(L(U, Y )) the set of functions H : Eα → L(U, Y ) which
are holomorphic on Eα, with the exception of isolated singularities, that is, poles and essential
singularities. We always assume that removable singularities have been removed via holomorphic
extension. For convenience, we set H∗(L(U, Y )) := H∗

1 (L(U, Y )).

Let H ∈ H∗
α(L(U)). We define ΣH ⊆ Eα to be the set of isolated singularities of H. The

function H is said to be positive real if

Re 〈H(z)u, u〉U ≥ 0, ∀ u ∈ U, ∀ z ∈ E\ΣH .

The following lemma is an analogue to [15, Proposition 3.3], which concerns positive real func-
tions on the right-half complex plane, for positive real functions on the exterior of the unit disc.
We relegate the proof to Appendix A.

Lemma 3.5. Let H ∈ H∗(L(U)) be positive real. Then H does not have any singularities in
E ∪ {∞}.

We shall also require the following technical lemma, the proof of which is identical, mutatis
mutandis, to that of [15, Corollary 2.3].

Lemma 3.6. Let H ∈ H∗(L(U)) be positive real. Then, I +H(z) is invertible for every z ∈ E

and
‖(I −H)(I +H)−1‖H∞ ≤ 1 .
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Corollary 3.7. Let Σ ∈ L be stabilisable and detectable, S ⊆ Y non-empty and K1,K2 ∈
L(Y, U) with K1 ∈ A(D). If (I −K2G)(I −K1G)−1 is positive real and there exists ε > 0 such
that

Re
〈

f(ζ + ξ)− f(ξ)−K1ζ, f(ζ + ξ)− f(ξ)−K2ζ
〉

U
≤ −ε‖ζ‖2Y , ∀ ζ ∈ Y, ∀ ξ ∈ S , (3.21)

then statements (i) and (ii) of Theorem 3.2 with S1 = Y , S2 = S hold.

The following proof is in part inspired by a method outlined in the proof of [15, Theorem 6.8].

Proof. We define
L := (K1 −K2)/2, M := (K1 +K2)/2 ,

and rewrite (3.21) so that

−ε‖ζ‖2Y ≥ Re
〈

f(ζ + ξ)− f(ξ)− (L+M)ζ, f(ζ + ξ)− f(ξ) + (L−M)ζ
〉

= −‖Lζ‖2U + ‖f(ζ + ξ)− f(ξ)−Mζ‖2U , ∀ ζ ∈ Y, ∀ ξ ∈ S . (3.22)

We deduce from (3.22) that ‖Lζ‖U ≥ √
ε‖ζ‖Y , for all ζ ∈ Y , which in turn implies that

‖L∗Lζ‖Y ‖ζ‖Y ≥ |
〈

L∗Lζ, ζ
〉

| = ‖Lζ‖2U ≥ ε‖ζ‖2Y ∀ ζ ∈ Y.

Hence L∗L is bounded away from 0 and, by combining this with the self-adjointness of L∗L, we
have that L∗L is invertible. We define L# := (L∗L)−1L∗ and let Q := LL#. It is clear that
Q2 = LL#LL# = Q and, since L has a left inverse, imL is closed. Thus,

imL = (kerL∗)⊥ = (kerL#)⊥.

Therefore, Q is the orthogonal projection onto (kerL#)⊥ along kerL#. Utilising this with (3.22)
gives that

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)−ML#ζ‖2U ≤ ‖Qζ‖2U − ε‖L#ζ‖2Y
≤ ‖ζ‖2Y − ε‖L#ζ‖2Y , ∀ ζ ∈ Y, ∀ ξ ∈ S . (3.23)

Moreover, since L# is bounded away from 0 on imL, there exists ν > 0 such that

‖L#ζ‖Y ≥ ν‖ζ‖Y , ∀ ζ ∈ imL .

Hence, combining this with (3.23) yields

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)−ML#ζ‖2U = ‖(f ◦ L#)(Qζ +Qξ)− (f ◦ L#)(Qξ)−ML#Qζ‖2U
≤ ‖Qζ‖2U − εν2‖Qζ‖2U , ∀ ζ ∈ Y, ∀ ξ ∈ S ,

and so

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)−ML#ζ‖U ≤
√

1− εν2‖ζ‖Y , ∀ ζ ∈ Y, ∀ ξ ∈ S . (3.24)

Next, on the one hand we compute that

(I −K2G)(I −K1G)−1 = (I −K1G+ 2LG)(I −K1G)−1 = I + 2LG(I −K1G)−1 , (3.25)

and, on the other, that

(I −K2G)(I −K1G)−1 = (I − 2MG+K1G)(I −K1G)−1 . (3.26)
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Invoking the positive realness of (I −K2G)(I −K1G)−1 along with Lemma 3.6, employing the
expressions (3.25) and (3.26) yields that

1 ≥
∥

∥

∥
2LG(I −K1G)−1

(

I + (I − 2MG+K1G)(I −K1G)−1
)−1
∥

∥

∥

= ‖2LG(2I − 2MG)−1‖
= ‖LG(I −MG)−1‖ .

In addition, evidently

LG(I −MG)−1 = LG(I −ML#LG)−1 = (LG)ML#

,

and thus, by Lemma 2.1, we see that

B(ML#, 1) ⊆ S(LG) . (3.27)

Finally, let (v, w, x, y) ∈ B and note that, since I = L#L,

x+ = Ax+B(f ◦ L#)(Ly + Lw) +Bev,

Ly = LCx+ LD(f ◦ L#)(Ly + Lw) + LDev,

which shows that (v, Lw, x, Ly) satisfies (2.3) with non-linearity f ◦ L# and linear component
given by (A,B,Be, LC, LD,LDe). Moreover, since Σ is stabilisable and detectable, it is clear,
by the left invertibility of L, that (A,B,Be, LC, LD,LDe) is also stabilisable and detectable.
Combining this with (3.24) and (3.27), we see that the hypotheses of Theorem 3.2 are satisfied,
and so the left-invertibility of L completes the proof.

Remark 3.8. An inspection of the proof of Corollary 3.7 shows that if the estimate given in
(3.21) instead holds for all ζ ∈ S1 and for all ξ ∈ S, where S1 is a non-empty subset of Y , then
the conclusions of Corollary 3.7 remain valid, provided that K1 −K2 is left invertible. ♦

4 Convergence properties

In this section we use Theorem 3.2 to establish convergence properties of the state x and output
y of the Lur’e system (2.3) when subject to converging or periodic inputs v and w.

4.1 The converging-input converging-state property

Here we give conditions under which the Lur’e system exhibits the so-called converging-input
converging-state property. We say that, for Σ ∈ L and f : Y → U , the discrete-time Lur’e
system (2.3) has the converging-input converging-state (CICS) property if, for every v∞ ∈ V
and w∞ ∈ Y, there exists x∞ ∈ X such that, for every (v, w, x, y) ∈ B with limt→∞ v(t) = v∞

and limt→∞w(t) = w∞, we have that limt→∞ x(t) = x∞. We note that some authors (see, for
example, [47]) use the term CICS for the special case wherein v∞ = 0, w∞ = 0 and x∞ = 0.

Our main result of this section is Theorem 4.3, from which we obtain sufficient conditions for
the CICS property in Corollary 4.6. We comment that if w in (2.3) is perceived to be an output
disturbance to the system, then convergence of w is not an assumption which will be generically
satisfied. Hence, in addition to considering the CICS property, we also develop a result for
bounded but not necessarily convergent w, see Corollary 4.7.

Let K ∈ S(G) and define the map

FK : Y → Y, ξ 7→ ξ −GK(1)(f(ξ)−Kξ) . (4.1)
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For ease of notation in the sequel, for given ξ ∈ Y , we write F−1
K (ξ) to denote the inverse image

of the singleton {ξ} under FK , instead of the more cumbersome F−1
K ({ξ}). Moreover, we denote

the cardinality of F−1
K (ξ) by #F−1

K (ξ).

To facilitate the proofs of the main results in this section, it is useful to state two lemmas, the
proofs of which may be found in Appendix A.

Lemma 4.1. Let Σ ∈ L, S ⊆ Y be non-empty, K ∈ S(G), FK be given by (4.1), and assume
that γ := 1/‖GK‖H∞ <∞ and

‖f(ζ + ξ)− f(ξ)−Kζ‖U < γ‖ζ‖Y , ∀ ζ ∈ Y \{0}, ∀ ξ ∈ S . (4.2)

Then the following statements hold.

(i) #F−1
K (ξ) = 1, for all ξ ∈ Y such that F−1

K (ξ) ∩ S 6= ∅.

If there exists δ > 0 such that f and K satisfy (3.3) with r = γ and S1 = S2 = Y , then

(ii) FK is globally Lipschitz and bijective;

(iii) the inverse F−1
K is globally Lipschitz.

Although we assume that γ < ∞ in Lemma 4.1, if actually ‖GK‖H∞ = 0, then FK is the
identity map which is trivially globally Lipschitz and bijective.

Lemma 4.2. Let Σ ∈ L be stabilisable and detectable, v∞ ∈ V and w∞ ∈ Y. Assume that
K ∈ S(G) and

TK := F−1
K

(

CK(I −AK)−1
(

Be+B
KKDe

)

v∞+(I −DK)−1Dev
∞+

(

I +GK(1)K
)

w∞
)

(4.3)

is nonempty. Let z∞ ∈ TK and define y∞ := z∞ − w∞ and

x∞ := (I −AK)−1
(

BK(f(z∞)−K(y∞)) + (Be +BKKDe)v
∞
)

. (4.4)

Then
y∞ = CKx∞ +DK(f(z∞)−K(y∞)) + (I −DK)−1Dev

∞ , (4.5)

and (v∞, w∞, x∞, y∞) is an equilibrium quadruple of the Lur’e system (2.3).

The formulae in (4.3), (4.4) and (4.5) are motivated by the desire to solve the steady-state
equations

x∞ = Ax∞ +Bf(y∞ + w∞) +Bev
∞ and y∞ = Cx∞ +Df(y∞ + w∞) +Dev

∞ ,

where v∞ and w∞ are given, for x∞ and y∞ to yield an equilibrium quadruple (v∞, w∞, x∞, y∞).
However, I −A need not be invertible, and so G(1) not well defined, hence the inclusion of the
loop-shifting term K. In the simple case wherein U = V , Be = B, De = D, K = 0 and w∞ = 0,
the condition that F−1

K (G(1)v∞) is nonempty is equivalent to the existence of y∞ ∈ Y such that

y∞ −G(1)f(y∞) = G(1)v∞ ,

and, in this case, (4.4) and (4.5) respectively read

x∞ := (I −A)−1B(f(y∞) + v∞) and y∞ = Cx∞ +Df(y∞) +Dv∞ .

We now state the main theorem in this section.
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Theorem 4.3. Let Σ ∈ L be stabilisable and detectable, S ⊆ Y be non-empty, K ∈ S(G),
v∞ ∈ V and w∞ ∈ Y . Furthermore, assume that TK ∩ S 6= ∅, where TK is given by (4.3). If
γ := 1/‖GK‖H∞ < ∞ and there exists δ ∈ (0, γ) such that (3.3) holds with r = γ, S1 = Y and
S2 = S, then #TK = 1 and writing y∞ := z∞ − w∞, where z∞ ∈ TK , there exist c > 0 and
a ∈ (0, 1) such that for all (v, w, x, y) ∈ B and all t ∈ Z+, we have

‖x(t)− x∞‖X + ‖y(t)− y∞‖Y ≤ c

(

at‖x(0)− x∞‖X + a⌈t/2⌉ max
s∈⌊t/2⌋

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

+ max
s∈⌈t/2⌉

∥

∥

∥

∥

(

(Λ⌊t/2⌋v)(s)

(Λ⌊t/2⌋w)(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

)

. (4.6)

Here x∞ is as in (4.4) and (v∞, w∞, x∞, y∞) is an equilibrium quadruple of (2.3). In particular,
for all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞, we have limt→∞ x(t) =
x∞ and limt→∞ y(t) = y∞.

Before proving Theorem 4.3, we provide some commentary.

Remark 4.4. (a) Under the hypotheses of Theorem 4.3, we note that x∞ and y∞ given
by (4.4) and (4.5) do not depend on the choice of K. Indeed, if K1,K2 ∈ S(G), v∞ ∈ V,
w∞ ∈ Y, Σ is stabilisable and detectable and (3.3) holds for each Kl and γl := 1/‖GKl‖H∞ ,
where l ∈ {1, 2}, then Theorem 4.3 guarantees that x∞1 = x∞2 and y∞1 = y∞2 , where

x∞l := (I −AKl)−1
(

BKl(f(y∞l + w∞)−Kly
∞
l ) + (Be +BKlKlDe)v

∞
)

,

y∞l = CKlx∞ +DKl(f(y∞l + w∞)−Kly
∞
l ) + (I −DKl)

−1Dev
∞,

for l ∈ {1, 2}.

(b) Assumption (3.3) with r = γ and S1 = S2 = Y may be rewritten as

sup
ζ,ξ∈Y
ζ 6=0

‖f(ζ + ξ)− f(ξ)−Kζ‖U
‖ζ‖Y

< γ , (4.7)

which trivially implies (4.2) with S = Y , and is itself equivalent to the function ξ 7→ f(ξ)−Kξ
being globally Lipschitz with Lipschitz constant smaller than γ. In this case, arguments similar
to those used in the proof of Lemma 4.1 show that the map I−DK(f−K) is bijective and hence,
by using Lemma 2.2, for all x0 ∈ X, v ∈ V Z+ and all w ∈ Y Z+ , the initial-value problem (2.5)
has a unique solution.

(c) Under the assumptions of Theorem 4.3, a consequence of Lemma 4.1 is that the “steady
state gain maps” (v∞ , w∞) 7→ x∞ and (v∞ , w∞) 7→ y∞ are globally Lipschitz.

(d) We recall that a subset V ⊆ V Z+ ×Y Z+ is said to be equi-convergent to (v∞ , w∞) ∈ V ×Y
if, for all ε > 0, there exists τ ∈ Z+ such that, for all (v , w) ∈ V

∥

∥

∥

∥

(

(Λτv)(t)
(Λτw)(t)

)

−
(

v∞

w∞

)
∥

∥

∥

∥

V×Y

≤ ε, ∀ t ∈ Z+ .

The convergence property provided by Theorem 4.3 is uniform in the following sense: given
a set of inputs V ⊆ V Z+ × Y Z+ which is equi-convergent to (v∞ , w∞) and κ > 0, the set of
solutions
{

(

x
y

)

∈ XZ+ × Y Z+ : ∃
(

v
w

)

∈ V s.t. (v, w, x, y) ∈ B and ‖x(0)‖X +max
t∈Z+

∥

∥

∥

∥

(

v(t)
w(t)

)∥

∥

∥

∥

V×Y

≤ κ

}

,

is equi-convergent to (x∞ , y∞). ♦
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Proof of Theorem 4.3. First, statement (i) of Lemma 4.1 yields that #TK = 1. Using Lemma 4.2
gives that (v∞, w∞, x∞, y∞) is an equilibrium quadruple of (2.3) and since y∞ + w∞ ∈ S, we
have that (v∞, w∞, x∞, y∞) ∈ BS . We invoke statement (ii) of Theorem 3.2, with q = ∞, to
obtain c, d > 0 and a ∈ (0, 1) such that for all (v, w, x, y) ∈ B and all t ∈ Z+, we have

‖x(t)− x∞‖X ≤ cat‖x(0)− x∞‖X + cmax
s∈t

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

v∞

w∞

)
∥

∥

∥

∥

V×Y

, (4.8)

and

‖y(t)− y∞‖Y ≤ dat‖x(0)− x∞‖X + dmax
s∈t

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

. (4.9)

Let (v, w, x, y) ∈ B and fix t ∈ Z+. Note that (4.8) and (4.9) hold for

(Λ⌊t/2⌋v,Λ⌊t/2⌋w,Λ⌊t/2⌋x,Λ⌊t/2⌋y) ∈ B ,

from the time-invariance property (2.4). In light of the identity ⌈t/2⌉+ ⌊t/2⌋ = t, it follows that

‖x(t)− x∞‖X = ‖(Λ⌊t/2⌋x)(⌈t/2⌉)− x∞‖X

≤ ca⌈t/2⌉‖x(⌊t/2⌋)− x∞‖X + c max
s∈⌈t/2⌉

∥

∥

∥

∥

(

Λ⌊t/2⌋v(s)

Λ⌊t/2⌋w(s)

)

−
(

v∞

w∞

)
∥

∥

∥

∥

V×Y

.

Appealing to (4.8) again yields

‖x(t)− x∞‖X ≤ c2a⌈t/2⌉a⌊t/2⌋‖x(0)− x∞‖X + c2a⌈t/2⌉ max
s∈⌊t/2⌋

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

+ c max
s∈⌈t/2⌉

∥

∥

∥

∥

(

Λ⌊t/2⌋v(s)

Λ⌊t/2⌋w(s)

)

−
(

v∞

w∞

)
∥

∥

∥

∥

V×Y

.

Finally, using the properties of the ceiling and floor functions we arrive at

‖x(t)− x∞‖X ≤ c2at‖x(0)− x∞‖X + c2a⌈t/2⌉ max
s∈⌊t/2⌋

∥

∥

∥

∥

(

v(s)
w(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

+ c max
s∈⌈t/2⌉

∥

∥

∥

∥

(

Λ⌊t/2⌋v(s)

Λ⌊t/2⌋w(s)

)

−
(

v∞

w∞

)∥

∥

∥

∥

V×Y

.

Starting instead from (4.9) and proceeding in the same manner, we obtain a similar estimate for
‖y(t)− y∞‖. Thus, we obtain (4.6) after estimating and relabelling the constants appropriately.

Remark 4.5. By inspecting the above proof we see that in the situation where γ = ∞ and (3.20)
holds with S1 = Y and S2 = S, then the conclusions of Theorem 4.3 remain valid (see Re-
mark 3.4(b)). ♦

As a corollary to Theorem 4.3 (with S = Y ), we see that condition (4.7) is sufficient for the
CICS property.

Corollary 4.6. Let Σ ∈ L be stabilisable and detectable, K ∈ S(G) and γ := 1/‖GK‖H∞ (where
γ := ∞ if ‖GK‖H∞ = 0). If either:

(i) γ <∞ and there exists δ ∈ (0, γ) such that (3.3) holds with r = γ and S1 = S2 = Y , or;

(ii) γ = ∞ and (3.20) holds with S1 = S2 = Y ,

then the Lur’e system (2.3) has the CICS property.

18



As previously mentioned at the start of this section, if w in (2.3) is considered to be an output
disturbance, then it may be unreasonable to expect convergence of w. The next result is an
immediate corollary to Theorem 4.3 and yields that asymptotic ‘closeness’ of the state and
output of (2.3) to the equilibrium components x∞ and y∞, respectively, is linearly bounded by
‖w‖ℓ∞ .

Corollary 4.7. Under the assumptions of Theorem 4.3 with w∞ = 0, for all (v, w, x, y) ∈ B
with limt→∞ v(t) = v∞

lim sup
t→∞

(

‖x(t)− x∞‖X + ‖y(t)− y∞‖Y
)

≤ c lim sup
t→∞

‖w(t)‖ ,

where c > 0 is as in (4.6).

Proof. The claim follows from (4.6), the time-invariance property (2.4), and a standard time-
invariance argument.

4.2 Periodic inputs

For given τ ∈ N and normed space W , we say that v ∈ WZ+ is τ -periodic if Λτv = v. We say
that (v, w, x, y) ∈ B is τ -periodic if each of the functions v, w, x and y is τ -periodic.

Theorem 4.8. Let τ ∈ N and let vp ∈ V Z+ and wp ∈ Y Z+ be τ -periodic. If the assump-
tions of Theorem 3.2 hold with S1 = S2 = Y , then there exist a unique τ -periodic trajectory
(vp, wp, xp, yp) ∈ B and κ > 1 such that

lim
t→∞

‖(x− xp)(t)κt‖X = 0 = lim
t→∞

‖(y − yp)(t)κt‖Y , ∀ (vp, wp, x, y) ∈ B. (4.10)

Proof. The proof is in part inspired by that of [1, Proposition 4.4]. The hypotheses of Theo-
rem 3.2 hold and so by statement (ii) of that result with q = ∞, it follows that there exist c > 0
and θ ∈ (0, 1) such that (3.6) holds for all (v1, w1, x1, y1), (v2, w2, x2, y2) ∈ B. An application
of statement (ii) of Lemma 4.1 gives that FK is bijective and so, see Remark 4.4 (b), for each
ve ∈ V and we ∈ Y, there exist (unique) xe ∈ X and ye ∈ Y such that (ve, we, xe, ye) is an
equilibrium quadruple of the Lur’e system (2.3). Let (vp, wp, x, y) ∈ B. Invoking (3.6) with
(vp, wp, x, y) and (ve, we, xe, ye), we see that there exists µ > 0 such that

‖x(t)‖X + ‖y(t)‖Y ≤ µ , ∀ t ∈ Z+,

hence showing that x and y are bounded. Moreover, since (Λσv
p,Λσw

p,Λσx,Λσy) ∈ B for every
σ ∈ Z+ and Λσv

p = Λσ+kτv
p and Λσw

p = Λσ+kτw
p for every k, σ ∈ Z+, statement (ii) of

Theorem 3.2 ensures that there exist c > 0 and θ ∈ (0, 1) such that

‖(Λσx− Λσ+kτx)(t)‖X + ‖(Λσy − Λσ+kτy)(t)‖Y ≤ cθt‖x(σ)− x(σ + kτ)‖X , ∀ σ, k, t ∈ Z+ .

Thus, for all t, n,m ∈ Z+ with m ≥ n, we have

‖(Λnτx− Λmτx)(t)‖X + ‖(Λnτy − Λmτy)(t)‖Y = ‖(Λtx− Λt+(m−n)τx)(nτ)‖X
+ ‖(Λty − Λt+(m−n)τy)(nτ)‖Y

≤ 2µcθnτ .

Therefore, (Λnτx)n∈Z+
and (Λnτy)n∈Z+

are Cauchy sequences in ℓ∞(X) and ℓ∞(Y ), respectively.
We denote their respective limits by xp and yp. The calculation

xp(t) = lim
n→∞

(Λnτx)(t) = lim
n→∞

(Λ(n+1)τx)(t) = lim
n→∞

(Λnτx)(t+ τ) = xp(t+ τ), ∀ t ∈ Z+ ,
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shows that xp is τ -periodic. The τ -periodicity of yp is proven similarly. We proceed to show
that (vp, wp, xp, yp) ∈ B. Indeed, for all n ∈ Z+, we have that

(Λnτx)
+ = A(Λnτx) +Bf(Λnτy + wp) +Bev

p (4.11)

(Λnτy) = C(Λnτx) +Df(Λnτy + wp) +Dev
p . (4.12)

The estimate (3.3) gives that f is continuous and hence, by taking the limit as n→ ∞ in (4.11)
and (4.12), we yield that

(xp)+ = Axp +Bf(yp + wp) +Bev
p

yp = Cxp +Df(yp + wp) +Dev
p ,

whence (vp, wp, xp, yp) ∈ B.
Moreover, let κ ∈ (1, 1/θ) and invoke (3.6) to obtain

lim
t→∞

(

(‖(x− xp)(t)‖X + ‖(y − yp)(t)‖Y )κt
)

≤ lim
t→∞

cκtθt‖(x− xp)(0)‖X = 0.

Finally, to establish uniqueness of (vp, wp, xp, yp), assume that (vp, wp, x̃p, ỹp) ∈ B is also τ -
periodic. Then (4.10) implies that xp = x̃p and yp = ỹp, hence completing the proof.

5 Application to four-block Lur’e systems

In the following, we demonstrate how the results of earlier sections apply to the related class
of so-called “four-block” Lur’e systems which are informally described by the block diagram
arrangement in Figure 5.1, where Σ = (A,B,Be, C,D,De) ∈ L and the signal y is given by

y =

(

y1

y2

)

.

In this section we use superscripts to denote decompositions of signals, as opposed to subscripts
which have been used to distinguish trajectories in the context of incremental stability. The
motivation for studying the four-block setting is that there may be outputs which are of interest,
but not used for feedback (denoted y1 in Figure 5.1).

Σ
u

yv y
1

y
2

f + w

Figure 5.1: Block diagram of a four-block forced Lur’e system: the feedback interconnection of
a linear system specified by Σ and the static nonlinearity f , with output disturbance w.

Throughout this section, we assume that the output space Y is of the form Y = Y 1×Y 2, where
Y 1 and Y 2 are complex Hilbert spaces, and we define the maps

P j : Y → Y j ,

(

y1

y2

)

7→ yj , j = 1, 2 .

To fix notation, we assume that (only) the component y2 := P 2y of (2.3) is used for feedback
purposes, giving rise to the Lur’e system

x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

u = f(y2 + w) ,











(5.1)
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where Σ := (A,B,Be, C,D,De) ∈ L, v ∈ V Z+ , w ∈ (Y 2)Z+ and f : Y 2 → U . The forced nonlin-
ear difference equation (5.1) provides the formal description of the feedback system illustrated
in Figure 5.1.

The decomposition of the output space Y = Y 1 × Y 2 induces two linear systems, viz.

(A,B,Be, C
j , Dj , Dj

e), j = 1, 2,

where
Cj := P jC, Dj := P jD, Dj

e = P jDe .

In this section, we set Σj := (A,B,Be, P
jC,P jD,P jDe) and we denote the behaviour of (5.1)

by B̃, that is,

B̃ :=
{

(v, w, x, y) ∈ V Z+ × (Y 2)Z+ ×XZ+ × Y Z+ : (v, w, x, y) satisfies (5.1)
}

.

For S ⊆ Y 2, we set

B̃S := {(v, w, x, y) ∈ B̃ : y2(t) + w(t) ∈ S, ∀ t ∈ Z+} .

As before, we write G(z) = C(zI −A)−1B +D.

Our main result of this section states that the conclusions of Theorem 3.2 apply to (5.1) provided
the linear system Σ2 and f satisfy the assumptions of Theorem 3.2.

Corollary 5.1. Let Σ ∈ L, let S1, S2 ⊆ Y 2 be non-empty. Assume that Σ2 is stabilisable and
detectable, r > 0 and K2 ∈ L(Y 2, U) satisfy B(K2, r) ⊆ S(P 2G) and that there exists δ ∈ (0, r)
such that (3.3) holds with K and Y replaced by K2 and Y 2, respectively. Then the conclusions
of Theorem 3.2 hold for the Lur’e system (5.1).

Proof. In the following, we shall only prove that statement (i) of Theorem 3.2 holds for (5.1),
since the proof of statement (ii) for (5.1) is similar. We shall consider the Lur’e system

x+ = Ax+Bf(y2 + w) +Bev ,

y2 = C2x+D2f(y2 + w) +D2
ev ,

}

(5.2)

which is obtained from (5.1) by applying P 2 to the output equation. Note that the Lur’e
system (5.2) is of the form (2.3) with Y , C, D, De and y replaced by Y 2, C2, D2, D2

e and y2,
respectively.

By hypothesis, the conclusions of Theorem 3.2 apply to (5.2) and so there exist constants a > 0,
b > 0 and ω > 1 such that, for all (v1, w1, x1, y1) ∈ B̃S1 , (v2, w2, x2, y2) ∈ B̃S2 , and all ρ ∈ [1, ω],
we have

‖πt(x1 − x2)‖ℓ2ρ ≤ a

(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt−1

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

)

, ∀ t ∈ N , (5.3)

and

‖πt(y21 − y22)‖ℓ2ρ ≤ b

(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

ℓ2ρ

)

, ∀ t ∈ Z+ . (5.4)

It remains to establish that an estimate of the form (5.4) holds for the difference y1 − y2. For
which purpose, fix (v1, w1, x1, y1) ∈ B̃S1 and (v2, w2, x2, y2) ∈ B̃S2 . Since K2 ∈ A(P 2D), it is
easily seen that K := K2P 2 ∈ A(D). Hence, by using Lemma 2.2 and (5.1), we have that the
difference y1 − y2 satisfies

y1 − y2 = CK(x1 − x2) +DK
(

f(y21 + w1)− f(y22 + w2)−K2(y21 − y22)
)

+ (I −DK)−1De(v1 − v2) . (5.5)
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Estimating (5.5) by invoking (3.3), (5.3) and (5.4) gives

‖πt(y1 − y2)‖ℓ2ρ ≤ ‖CK‖‖πt(x1 − x2)‖ℓ2ρ + (r − δ)‖DK‖‖πt(y21 − y22 + w1 − w2)‖ℓ2ρ
+ ‖(I −DK)−1De‖‖πt(v1 − v2)‖ℓ2ρ + ‖DKK2‖‖πt(w1 − w2)‖ℓ2ρ

≤ a‖CK‖
(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

)

+ b(r − δ)‖DK‖
(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)
∥

∥

∥

∥

ℓ2ρ

)

+ ζ

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

,

for some ζ > 0. Thus, setting b̃ := a‖CK‖+ b(r − δ)‖DK‖+ ζ, it follows that

‖πt(y1 − y2)‖ℓ2ρ ≤ b̃
(

‖x1(0)− x2(0)‖X +

∥

∥

∥

∥

πt

(

v1 − v2
w1 − w2

)∥

∥

∥

∥

ℓ2ρ

)

, ∀ t ∈ Z+ ,

completing the proof.

We close the current section by remarking that the various results presented in Sections 3
and 4 for the forced Lur’e system (2.3) also have obvious extensions to the four-block settings
considered here, namely system (5.1). For brevity and to avoid repetition, we do not give formal
statements of these results.

6 Application to sampled-data systems

In this section we provide an application of Theorem 3.2 in the form of an ISS result for a class
of forced, infinite-dimensional sampled-data control systems.

Let A be the generator of a strongly continuous semigroup on X, denoted by (T(t))t≥0, B ∈
L(U,X) and C ∈ L(X,Y ), and consider the following continuous-time, infinite-dimensional
linear system

ẋ = Ax+Bu+ v, x(0) = x0 ∈ X,

y = Cx .

}

(6.1)

As usual, x and y in (6.1) denote the state and output, and u and v are inputs, with the former
being available for feedback purposes.

Throughout this section, we assume that

• X, U and Y are Hilbert spaces, with U and Y finite-dimensional;

• the pair (A,B) is (exponentially) stabilisable, that is, there exists F ∈ L(X,U) such that
the strongly continuous semigroup generated by A+BF is exponentially stable;

• the pair (C,A) is (exponentially) detectable, that is, there exists H ∈ L(Y,X) such that
the strongly continuous semigroup generated by A+HC is exponentially stable.

Let ω(T) be the exponential growth constant of T, that is,

ω(T) := lim
t→∞

1

t
ln ‖T(t)‖,
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and we let H denote the transfer function of (6.1), that is, H(s) = C(sI−A)−1B. Furthermore,
for K ∈ L(Y, U), we define HK := H(I − KH)−1. We denote the set of stabilising feedback
operators by

S
c(H) := {K ∈ L(Y, U) : HK is bounded and holomorphic function on C0},

where the superscript ‘c’ indicates the continuous-time setting.

For a fixed sampling period τ > 0, we define the sampling operator S : C(R+, Y ) → Y Z+ as

(Sy)(k) := y(kτ), ∀ y ∈ C(R+, Y ), ∀ k ∈ Z+ ,

and the (zero order) hold operator H as

(Hu)(t) := u(k), ∀ u ∈ UZ+ , ∀ t ∈ [kτ, (k + 1)τ) ,

which maps UZ+ into the set of step-functions mapping [0,∞) to U . We shall consider the forced
sampled-data Lur’e system arising from the feedback interconnection of (6.1) and the nonlinear
sampled-data output feedback control

u = H(f(S(y) + w)) , (6.2)

where w ∈ Y Z+ is an output disturbance and f : Y → U with f(0) = 0. Thus, for given x0 ∈ X,
v ∈ L∞

loc(R+, X) and w ∈ Y Z+ , we consider the initial-value problem

ẋ = Ax+BH(f(S(Cx) + w)) + v, x(0) = x0 ∈ X , (6.3)

see Figure 6.1.

(A,B,C)
y

v

u

S

f

H
+ w

Figure 6.1: Block diagram illustrating the sampled-data Lur’e system (6.3).

We say that x ∈ C(R+, X) is a (mild) solution to (6.3) if x satisfies x(0) = x0 and

x(kτ + t) = T(t)x(kτ) +

∫ t

0
T(t− s)Bf(Cx(kτ) + w(k))ds

+

∫ t

0
T(t− s)v(kτ + s)ds, ∀ t ∈ (0, τ ], ∀ k ∈ Z+ .















(6.4)

It is clear that, for all x0 ∈ X, v ∈ L∞
loc(R+, X) and w ∈ Y Z+ , there exists a unique solution of

(6.3). Note that if x0 = 0, v = 0 and w = 0, then 0 is a solution of (6.3), as f(0) = 0.

The sampled-data Lur’e system (6.3) is said to be exponentially input-to-state stable (ISS) if
there exist constants c, γ > 0 such that, for all initial states x0 ∈ X, all inputs v ∈ L∞

loc(R+, X)
and all output disturbances w ∈ Y Z+ , the solution x of (6.3) satisfies

‖x(kτ + t)‖ ≤ c
(

e−γ(kτ+t)‖x0‖+ ‖v‖L∞([0,kτ+t]) + ‖πkw‖l∞
)

, ∀ t ∈ (0, τ ], ∀ k ∈ Z+ .

The following theorem gives a sufficient condition for exponential ISS of (6.3).
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Theorem 6.1. Assume that K ∈ S
c(H) and

‖f(ξ)−Kξ‖ ≤ r‖ξ‖, ∀ ξ ∈ Y, (6.5)

where r < 1/ sups∈C0
‖HK(s)‖. Then there exists τ∗ > 0 such that (6.3) is exponentially ISS

for all τ ∈ (0, τ∗).

We note that under the assumptions of Theorem 6.1, it follows from [16, Theorem 4.1] that the
continuous-time Lur’e system

ẋ = Ax+Bf(Cx) + v, x(0) = x0 ∈ X , (6.6)

is exponentially ISS. Theorem 6.1 shows that exponential ISS is inherited by the sample-hold dis-
cretization (6.2) of the continuous-time system (6.6), provided the sampling period is sufficiently
small.

To facilitate the proof of Theorem 6.1, we state a technical lemma. To this end, for τ > 0, we
set

Aτ := T(τ), Bτ :=

∫ τ

0
T(s)Bds and AK

τ = (Aτ )
K = Aτ +BτKC

and, for L ∈ L(Y, U) and r > 0, we let

B
cl(L, r) :=

{

M ∈ L(Y, U) : ‖M − L‖ ≤ r
}

denote the closed ball of radius r, centred at L.

Lemma 6.2. Let r > 0 and K ∈ L(Y, U) and assume that Bcl(K, r) ⊆ S
c(H). Then there exists

τ∗ > 0 such that for all L ∈ B
cl(K, r) and every τ ∈ (0, τ∗), the operator AL

τ is exponentially
stable.

To avoid disruption of the flow of the presentation, the proof of the lemma is placed at the end
of this section.

Proof of Theorem 6.1. Let x0 ∈ X, v ∈ L∞
loc(R+, X), w ∈ Y Z+ and let x be a solution of (6.3).

Then, for every k ∈ Z+ and all t ∈ (0, τ ], x satisfies (6.4). Letting t = τ in (6.4) and changing
variables, it follows that, for every k ∈ Z+,

x((k + 1)τ) = T(τ)x(kτ) +

∫ τ

0
T(s)Bdsf(Cx(kτ) + w(k)) +

∫ τ

0
T(s)v((k + 1)τ − s)ds.

Setting xk := x(kτ), wk := w(k) and vk :=
∫ τ
0 T(s)v((k + 1)τ − s)ds for all k ∈ Z+, we see that

(vk, wk, xk) satisfies the following discrete-time system

xk+1 = Aτxk +Bτf(Cxk + wk) + vk, x(0) = x0 ∈ X,

yk = Cxk.

Let ρ ∈ R be such that r < ρ < 1/ sups∈C0
‖HK(s)‖. Then, by [15, Proposition 5.6], Bcl(K, ρ) ⊆

S
c(H). Consequently, by Lemma 6.2, there exists τ∗ > 0 such that for all L ∈ B

cl(K, ρ) and every
τ ∈ (0, τ∗), the operator AL

τ is exponentially stable. Therefore, statement (ii) of Theorem 3.2
yields the existence of constants c1 > 0 and θ ∈ (0, 1) such that, for all k ∈ N,

‖xk‖X ≤ c1

(

θk‖x0‖X + max
σ∈k−1

∥

∥

∥

∥

(

vσ
wσ

)∥

∥

∥

∥

X×Y

)

. (6.7)

Let
µ := τ sup

s∈[0,τ ]
‖T(s)‖
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and note that, for all k ∈ Z+,

‖vk‖X ≤ µ ‖v‖L∞([kτ,(k+1)τ ]) .

Hence, there exists c2 > 0 such that

‖xk‖X ≤ c2

(

θk‖x0‖X + µ ‖v‖L∞([0,kτ ]) + ‖πk−1w‖l∞
)

, ∀ k ∈ Z+ . (6.8)

It remains to use the discrete-time estimate (6.8) to bound the state x over all times. To this
end, note that for all k ∈ Z+ and all t ∈ (0, τ ],

x(kτ + t) = T(t)xk +

∫ t

0
T(s)Bdsf(Cx(kτ) + w(k)) +

∫ t

0
T(t− s)v(kτ + s)ds . (6.9)

Appealing to (6.5), we estimate

∥

∥

∥

∥

∫ t

0
T(s)dsBf(Cx(kτ) + w(k))

∥

∥

∥

∥

≤ µ‖B‖(r + ‖K‖)(‖C‖‖xk‖+ ‖wk‖), ∀ t ∈ (0, τ ] . (6.10)

Moreover,

∥

∥

∥

∥

∫ t

0
T(t− s)Bv(kτ + s)ds

∥

∥

∥

∥

≤ µ‖v‖L∞([kτ,kτ+t]), ∀ k ∈ Z+, ∀ t ∈ (0, τ ] . (6.11)

Taking norms in (6.9) and substituting in (6.10) and (6.11) yields that, for all k ∈ Z+ and all
t ∈ (0, τ ],

‖x(kτ + t)‖ ≤
(

‖T(t)‖+ µ‖B‖(r + ‖K‖)‖C‖
)

‖xk‖+ µ ‖v‖L∞([kτ,kτ+t]) + µ‖B‖(r + ‖K‖)‖wk‖.

The claim now follows in light of the above inequality and (6.8).

Proof of Lemma 6.2. The proof is a refinement of that of [29, Theorem 3.1]. For F ∈ L(Y, U),
we let TF denote the strongly continuous semigroup generated by A + BFC. By hypothesis,
B
cl(K, r) ⊆ S

c(H), (A,B) is stabilisable and (C,A) is detectable, and so, by [7, Theorem 7.32],
for each F ∈ B

cl(K, r), there exist ωF < 0 and MF ≥ 1 such that ‖TF (t)‖ ≤ MF e
ωF t for all

t ≥ 0. We seek to show that there exists ω < 0 and 1 ≤M <∞ such that

‖TF (t)‖ ≤Meωt, ∀ t ≥ 0, ∀ F ∈ B
cl(K, r) . (6.12)

To this end, note that for each F ∈ B
cl(K, r), there exists εF > 0 such that

ωF +MF ‖B(L− F )C‖ ≤ ωF

2
, ∀L ∈ B(F, εF )

and thus, by [36, Theorem 1.1, Chapter 3],

‖TL(t)‖ ≤MF e
(ωF /2)t, ∀ t ≥ 0, ∀L ∈ B(F, εF ).

The balls B(F, εF ) form an open cover of Bcl(K, r) and, since U and Y are finite dimensional,
B
cl(K, r) is compact. Hence, there exist finitely many F1, . . . , Fn ∈ B

cl(K, r), ε1, . . . , εn ∈ (0,∞)
and ω1, . . . , ωn ∈ (−∞, 0) such that Bcl(K, r) ⊆ ∪n

i=1B(Fi, εi) and

‖TL(t)‖ ≤MFi
eωit, ∀ t ≥ 0, ∀L ∈ B(Fi, εi), ∀ i ∈ {1, . . . , n}.

By setting M := max{MF1
, . . . ,MFn} and ω := max{ω1, . . . , ωn}, it follows that (6.12) holds.
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Next, we claim that for all ε > 0, there exists T > 0 such that

‖FC(I −TF (t))‖ < ε, ∀ F ∈ B
cl(K, r), ∀ t ∈ [0, T ] . (6.13)

To prove (6.13), we will show that for all ε > 0 and all F ∈ B
cl(K, r), there exist rF > 0 and

TF > 0 such that
‖LC(I −TL(t))‖ < ε, ∀ t ≤ TF , ∀ L ∈ B(F, rF )

and then use another compactness argument. To this end, fix ε > 0 and let F ∈ B
cl(K, r). Since

U and Y are finite dimensional and C is bounded, it follows that FC ∈ L(X,U) is a compact
operator. Furthermore, as X is a Hilbert space, [36, Corollary 10.6, Chapter 1] yields that T∗

F

is a strongly continuous semigroup, and thus

lim
t→0

(I −TF (t))
∗x = 0 ∀ x ∈ X .

Therefore, we invoke [29, Lemma 2.1] to yield that

lim
t→0

‖FC(I −TF (t))‖ = 0 .

Choose rF > 0 such that

‖L− F‖‖C‖M <
ε

6
, ∀L ∈ B(F, rF )

and let T̃F > 0 be such that

‖FC(I −TF (t))‖ <
ε

3
∀ t ∈ [0, T̃F ] .

We invoke [36, Corollary 1.3, Chapter 3] to obtain

‖TL(t)−TF (t)‖ ≤Meωt(eM‖B‖‖L−F‖‖C‖t − 1) ≤Meωt(erFM‖B‖‖C‖t − 1) , ∀L ∈ B(F, rF ) ,

whence

‖LC‖‖TL(t)−TF (t)‖ ≤ (‖F‖+ rF )‖C‖Meωt(erFM‖B‖‖C‖t − 1) , ∀L ∈ B(F, rF ) .

Let T̂F > 0 be such that

‖LC‖‖TL(t)−TF (t)‖ <
ε

6
∀ t ∈ [0, T̂F ] , ∀L ∈ B(F, rF ) .

Setting TF := min{T̃F , T̂F }, it follows that, for all t ∈ [0, TF ] and all L ∈ B(F, rF ),

‖LC(I −TL(t))‖ ≤ ‖LC − FC‖+ ‖LCTL(t)− FCTF (t)‖+ ‖FC(I −TF (t))‖
<
ε

6
+ ‖LC‖‖TL(t)−TF (t)‖+ ‖L− F‖‖C‖‖TF (t)‖+

ε

3
< ε.

Hence, for all ε > 0 and for all F ∈ B
cl(K, r), there exists rF > 0 and TF > 0 such that

‖LC(I −TL(t))‖ < ε, ∀ t ∈ [0, TF ], ∀ L ∈ B(F, rF ).

A compactness argument similar to that establishing (6.12) can now be used to prove that for
all ε > 0, there exists T > 0 such that (6.13) holds.

Finally, we seek to use (6.12) and (6.13) to yield the existence of τ∗ > 0 such that AL
τ is

discrete-time exponentially stable for all L ∈ B
cl(K, r) and every τ ∈ (0, τ∗). To that end,
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fix L ∈ B
cl(K, r). The variation-of-parameters formula for perturbed semigroups [36, equation

(1.2), page 77] gives, for all τ ≥ 0 and all x ∈ X,

Aτx+BτLCx = T(τ)x+

∫ τ

0
T(s)BdsLCx

= T(τ)x+

∫ τ

0
T(τ − s)BLC(I −TL(s))xds+

∫ τ

0
T(τ − s)BLCTL(s)xds

= TL(τ)x+ Pτx, (6.14)

where Pτx :=
∫ τ
0 T(τ − s)BLC(I −TL(s))xds for all x ∈ X.

As in [29, Theorem 3.1], let us introduce a new norm on X given by

|x| := sup
t≥0

‖TL(t)x‖e−ωt, ∀ x ∈ X,

where ω < 0 is as in (6.12). Note that

‖x‖ ≤ |x| ≤M‖x‖, ∀ x ∈ X, (6.15)

where M ≥ 1 is as in (6.12). For all x ∈ X and all t ≥ 0, we have

|TL(t)x| = sup
s≥0

‖TL(s)TL(t)x‖e−ωs = sup
s≥0

‖TL(s+ t)x‖e−ω(s+t)eωt ≤ sup
s≥0

‖TL(s)x‖e−ωseωt.

Therefore,
|TL(t)x| ≤ eωt|x|, ∀ t ≥ 0, ∀ x ∈ X. (6.16)

For G ∈ L(X), let |G| denote the operator norm of G induced by the new norm, that is,

|G| = sup
x∈X
x 6=0

|Gx|
|x| .

Combining (6.14) with (6.15), (6.16) and the inequality

eωτ ≤ 1 + ωτeωτ , ∀ τ ∈ R+,

we obtain that

|Aτ +BτLC| ≤ eωτ +M‖Pτ‖
≤ 1 + ωτ + (ω(−1 + eωτ ) + h(τ)) τ, ∀ τ ∈ R+ ,

where
h(τ) :=M sup

s∈[0,τ ]
‖T(τ − s)BLC(I −TL(s))‖ .

Combining this with (6.13) shows that, for fixed δ ∈ (0,−ω), there exists τ∗ > 0 (independent
of L ∈ B

cl(K, r)) such that

|Aτ +BτLC| < 1 + (ω + δ)τ < 1, ∀ τ ∈ (0, τ∗). (6.17)

Finally, invoking (6.15), we obtain that, for all τ ∈ (0, τ∗) and all n ∈ Z+,

‖(Aτ +BτLC)
nx‖ ≤ |(Aτ +BτLC)

nx| ≤ |Aτ +BτLC|n|x| ≤M |Aτ +BτLC|n‖x‖, ∀ x ∈ X .

In light of (6.17), the above inequality yields the exponential stability of AL
τ for all L ∈ B

cl(K, r)
and all τ ∈ (0, τ∗), completing the proof.
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7 Examples

We conclude the paper with a detailed discussion of two examples.

Example 7.1. Consider the following controlled and observed heat equation describing the
temperature evolution in a unit rod

zt(ξ, t) = zξξ(ξ, t) + 2χ[1/2,1](ξ)u(t) + be(ξ)v(t),

zξ(0, t) = zξ(1, t) = 0, z(ξ, 0) = z0,

y(t) = 2

∫

1
2

0
z(t, ζ) dζ,























ξ ∈ (0, 1), t > 0 . (7.1)

Here z(ξ, t) denotes the temperature of the rod at position ξ and time t, z0 ∈ L2(0, 1) is the
initial temperature distribution, χ[1/2,1] is the indicator function of the interval [1/2, 1] and
be ∈ L2(0, 1). Further, u and v are inputs and y is the output (or observation). It is shown
in [7, Example 4.3.11] that (7.1) (with v = 0) may be written in the form (6.1), with state-space
X = L2(0, 1), A the Laplacian with zero Neumann boundary conditions, and bounded B and
C operators. Furthermore, (A,B) is stabilisable and (C,A) is detectable by [7, Example 5.2.8].
The transfer function H from u to y is given by

H(s) =
2 tanh(

√
s/2)

s
√
s

,

which has a simple pole at s = 0 and so (7.1) is neither exponentially nor input-output stable. To
illustrate the sampled-data control results of Section 6, we consider the following problem: find
conditions which are sufficient for the sampled-data system given by (7.1) and the feedback (6.2)
to be exponentially ISS.

Writing L(s) := sH(s) enables us to exploit the results of [31] to compute stabilising gains for
H. For which purpose, we note that L(0) = 1 > 0 and that L is bounded and holomorphic on
{s ∈ C : Re (s) > α} for every α > −π2. Setting

λ := 2 sup
ω∈R

∣

∣

∣

∣

Re
L(iω)− L(0)

iω

∣

∣

∣

∣

> 0 ,

an application of [31, Lemma 3.1 and Corollary 3.4] yields that

sup
s∈C

|H−k(s)| = 1/k, ∀ k ∈ (0, 1/λ) .

In light of [15, Proposition 5.6], it follows that

B(−k, k) ⊆ S
c(H), ∀ k ∈ (0, 1/λ) ,

whence, for all ρ ∈ (0, 1),

B
cl(−k, ρk) ⊆ B(−k, k) ⊆ S

c(H), ∀ k ∈ (0, 1/λ) . (7.2)

Consequently, Theorem 6.1 ensures that, for all k ∈ (0, 1/λ) and all ρ ∈ (0, 1), if f : R → R is
such that

|f(θ) + kθ| ≤ ρk|θ|, ∀ θ ∈ R , (7.3)

then there exists τ∗ > 0 such that the sampled-data feedback interconnection of (7.1) and (6.2)
is exponentially ISS for all sampling/hold periods τ ∈ (0, τ∗).
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Figure 7.1: Graph of f(θ) + θ against θ, for f in (7.4). The dashed lines have gradient ±0.95.

For a numerical illustration, we first compute numerically that λ ≈ 0.3707, so that 5/2 < 1/λ.
We take k = 1, ρ = 0.95 and

f : R → R, f(θ) = −θ + 0.95
(

1− e−|θ|
)

sin(3θ) , (7.4)

so that (7.2) and (7.3) both hold. Note that f is Lipschitz, but has Lipschitz constant bigger
than one. Figure 7.1 illustrates the sector condition (7.3).

We set be = χ[1/4,1/2], and define the constant and periodic input v1 = 3 and v2(t) = 3 sin(2t)
for all t ≥ 0, respectively. Certain simulations use the initial temperature distribution z0(ξ) =
e−|ξ−1/2|2 . We simulate the closed-loop feedback system (7.1) and (6.2) by performing a semi-
discretization in space using a finite-element method with 31 elements, the details of which
are given in Appendix B. Figures 7.3(a)–7.3(d) show plots of ‖x(t)‖ against t in the following
situations described in Table 7.2. Simulation data are also listed in Table 7.2.

Figure Initial condition z(·, 0) Input v Sampling/hold period τ

7.3(a) j2z0 0 0.25

7.3(b) 0 jv1 0.25

7.3(c) 0 jv2 0.25

7.3(d) z0 0 1, 2, 2.5

Table 7.2: Model parameters used in the numerical simulations in Example 7.1. Here j ∈
{1, 2, 3}.

In Figure 7.3(a), we see the exponential stability property of the unforced (v = 0) sampled-data
feedback system — a consequence of exponential ISS. In Figures 7.3(a) and 7.3(c), we see the ISS
property — the state is bounded in the presence of persistent inputs and, as might be expected,
‖x(t)‖ increases as ‖v‖L∞(0,t) increases.

To conclude the example, we comment that although taking τ = 0.25 appears to “work”, in the
sense that the numerical results agree with what the theory predicts, in fact the constant τ∗,
the existence of which is guaranteed by Theorem 6.1, could be either smaller or larger than 0.25.
Determining the maximal τ∗ analytically or numerically is a difficult open problem. It seems
that Figure 7.3(d) shows divergence when τ = 2.5, indicating that τ∗ < 2.5. ♦

Example 7.2. We consider a forced Integral Projection Model (IPM) for the monocarpic plant
Platte thistle (Cirsium canescens), based on the model presented in [5, 39]. For a recent overview
of IPMs we refer the reader to [33]. Platte thistle is a perennial plant native to central North
America. The IPM describes the distribution of plant size, according to the natural logarithm
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Figure 7.3: Numerical simulation of the sampled-data feedback interconnection of (7.1) and (6.2)
from Example 7.1.

of the crown diameter in mm. Following [5], we assume that the continuous variable of natural
logarithm of crown diameter takes minimum and maximum values given by m1 = −0.5 and
m2 = 3.5 (so that roughly em1 = 0.6mm and em2 = 33mm), respectively, and that the time-
steps correspond to years. Incorporating an additive input, the model is

η(t+ 1, ξ) =

∫ m2

m1

p(ξ, ζ)η(t, ζ) dζ + b(ξ)h(c∗η(t, ξ))c∗η(t, ξ)

+ be(ξ)v(t),

η(0, ξ) = η0(ξ)



















∀ t ∈ Z+

a.e. ξ ∈ [m1,m2] ,
(7.5)

where η(t, ·) denotes the distribution of plant size at time-step t, with initial distribution
η0 ∈ L1([m1,m2]). In the following, our aim is to write (7.5) in the form of a forced, infinite-
dimensional Lur’e system (2.3) with the natural state space X = L1(Ω), where Ω := [m1,m2].
Before doing this, we provide some commentary on the model (7.5).

The first term on the right hand side of the difference equation in (7.5) models survival and
growth of existing plants. Here p(ξ, ζ) denotes the probability of an individual of size ζ surviving
to one of size ξ in one time-step, and is assumed in [5, 39] to have the structure

p(ξ, ζ) = s(ζ)(1− fp(ζ))g(ξ, ζ), ∀ ξ, ζ ∈ Ω , (7.6)

where s(ζ) is the survival probability of an individual of size ζ, fp(ζ) is the probability that an
individual of size ζ flowers, and g(ξ, ζ) is the probability of an individual of size ζ growing to
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size ξ, each over one time-step. We take s, fp and g as in [5, Table 2]. The term 1− fp appears
on the right-hand side of (7.6) as flowering is fatal to Platte thistle, that is, it is monocarpic.

The second term on the right hand side of the difference equation in (7.5) models reproduc-
tion and recruitment into the population. In particular, b ∈ X denotes the distribution of
offspring plant size, c∗x equals the total number of new seeds recruited into the population by
the distribution z ∈ X in one time-step, and is given by

c∗z =

∫

Ω
s(θ)fp(θ)S(θ)z(θ)dθ, ∀ z ∈ X .

In addition to the terms in (7.6), S(θ) denotes the number of seeds produced on average by
a plant of size θ. We take b = J , where J is as in [5, Table 2], and the function S is given
in [5, Table 2]. We have c∗ ∈ X∗ as θ 7→ s(θ)fp(θ)S(θ) ∈ L∞(Ω). The function h in (7.5)
denotes the probability of seed germination, and is a nonlinear function of the total number of
seeds produced, and so seeks to model density-dependence in the seed germination probability.
As such, it is assumed to be non-increasing, representing competition or crowding affects at
higher seed abundances. Two situations are explored in [5]: first, h is constant with value 0.067,
and; second, h is defined by h(s) = s−0.33. We note that there is uncertainty in modelling
nonlinear terms for Platte thistle, see [11], and in order to demonstrate different settings where
the incremental condition (3.3) holds, we shall choose a different h below.

The third term term on the right hand side of the difference equation in (7.5) is an additive
input, which may be the arrival of new plants via planned replanting schemes, or accidental
movement. We assume that be ∈ X and v ∈ (R+)

Z+ , which capture the distribution and
magnitude, respectively.

We define the integral operator A : X → X by

(Ax)(·) =
∫

Ω
p(·, ζ)x(ζ)dζ, ∀ x ∈ X ,

and impose the ecologically reasonable assumption

sup
ζ∈Ω

∫

Ω
p(ξ, ζ) dξ < 1 ,

which corresponds to some positive level of mortality in the population at all sizes. An applica-
tion of [26, Theorem 1, p. 173] yields that ‖A‖ < 1.

Combining the above, and setting x(t) = η(t, ·) for all t ∈ Z+, we see that (7.5) may be written
as a forced Lur’e system,

x+ = Ax+ bf(c∗x) + bev , (7.7)

on the state-space X = L1(Ω), and with U = V = Y = R. Here f(s) := h(s)s for s ≥ 0 and
we extend h and f to all of R by setting h(s) = f(s) = 0 for s ∈ (−∞, 0). The extension is to
ensure that f is defined on the whole of Y , so that the results of the paper are applicable.

We seek to apply Theorems 3.2, 4.3 and 4.8 to (7.7) to infer various (incremental) stability and
convergence notions. To simulate (7.7) we use a finite-element approximation, the details of
which are given in Appendix C.

The property ‖A‖ < 1 implies that B(0, r) ⊆ S(G) for all r ∈ (0, 1/‖G‖H∞), where G(z) =
c∗(zI−A)−1b. Moreover, by [14, Proposition 3.1], we have that ‖G‖H∞ = G(1), and we compute
numerically that G(1) ≈ 43.8. We propose a negative sigmoid type function for h : R → R+,
namely

h(s) =







0 s < 0 ,
ρ1

1 + eρ2(s−ρ3)
s ≥ 0 ,

(7.8)
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where ρ1, ρ2 and ρ3 are positive parameters. Broadly, ρ1 captures the probability of germination
at low abundance, ρ2 determines the rate of transition and ρ3 the value at which the transition
occurs. Figure 7.4 contains plots of h for several parameter values.
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1
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h
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)

Figure 7.4: Graph of function h in (7.8) for nonnegative arguments. Here ρ1 = 1 and ρ3 = 10,
and ρ2 varies.

Since h is nonnegative-valued and nonincreasing, it follows that there exists δ > 0 such that
s 7→ f(s) = h(s)s satisfies (3.3) with K = 0, S1 = R, S2 = {0} and r = 1/G(1) whenever

h(0) =
ρ1

1 + e−ρ2ρ3
<

1

G(1)
. (7.9)

If (7.9) holds, then Theorem 3.2 yields that (7.7) is exponentially ISS. If the inequality

sup
s>0

|f ′(s)| < 1

G(1)
, (7.10)

holds, then f satisfies (3.3) with K = 0, S1 = S2 = R, and hence Theorem 3.2 yields that (7.7)
is exponentially δISS. In this case, it also follows from Theorem 4.3 that (7.7) has the CICS
property. Moreover, the inequality (7.10) is sufficient for the hypotheses of Theorem 4.8 to
hold, which ensures that (7.7) admits a periodic trajectory when subject to periodic inputs, and
that all other trajectories generated by the same periodic input asymptotically approach this
trajectory.

Numerical simulations are plotted in Figure 7.6. Throughout we take

ρ1 =
0.9

G(1)
, ρ2 = 2, ρ3 = 20 ,

and with these parameter values it can be shown that f satisfies (7.10). Additional simula-
tion data are recorded in Table 7.5. Panels (a)–(d) respectively show: the 0-GES property;
ISS; incremental stability; and asymptotically periodic response to periodic forcing. Note that
panel (d) shows that, asymptotically, the responses to the same input are identical and do not
depend on the initial conditions, thereby illustrating a typical aspect of ISS. ♦

32



Figure Initial condition x(0) Input v

7.6(a) Random with ‖x(0)‖ = 4j2 0
7.6(b) 0 v(t) small random perturbation of 4j2

7.6(c) Random with ‖x(0)‖ = 4j2 v1(t) and v2(t) convergent to 4j2

7.6(d) Random with ‖x(0)‖ = 4j2 v(t) = 4 sin(2πt/12)

Table 7.5: Model parameters used in the numerical simulations in Example 7.2, where j ∈
{1, 2, 3}.
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Figure 7.6: Numerical simulation of the IPM (7.5) from Example 7.2. In each panel the solid,
dashed and dashed-dotted lines correspond to j = 1, 2, 3, respectively.

Appendices

A Proofs of technical lemmas

We give the proofs of several technical lemmas not provided in the main text.

Proof of Lemma 2.2. Let (u, v, x, y) ∈ Blin. Then (I −DL)y = Cx+D(u− Ly) +Dev and so,

y = CLx+DL(u− Ly) + (I −DL)−1Dev. (A.1)
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Furthermore, noting that BL = B(I − LD)−1 = B +BLDL and invoking (A.1),

x+ = ALx+Bu+Bev −BL(I −DL)−1Cx

= ALx+Bu+Bev −BLy +BLDL(u− Ly) +BL(I −DL)−1Dev

= ALx+ (B +BLDL)(u− Ly) +Bev +BLLDev

= ALx+BL(u− Ly) + (Be +BLLDe)v,

as required. The converse can be proven by reversing the previous argument and therefore we
omit the proof.

Proof of Lemma 3.5. We begin by showing that ΣH ∩ E = ∅. Seeking a contradiction, suppose
that ΣH ∩ E 6= ∅ and let z0 ∈ ΣH ∩ E. Then, there exists a punctured open disc ∆ := {z ∈ C :
|z − z0| < ε, z 6= z0} centred at z0 and of radius ε > 0 such that

H(z) =
∞
∑

−∞

Hj(z − z0)
j , ∀ z ∈ ∆,

where Hj ∈ L(U) for all j ∈ Z. For u ∈ U, define

Ju := {j > 0 : 〈H−ju, u〉 6= 0}.

Let v ∈ U be such that Jv 6= ∅. Such a v ∈ U does exist, because otherwise Lemma 2.1 in [15]
would yield that H−j = 0 for every j > 1 and so z0 would not be a singularity, thus yielding
a contradiction. Define h ∈ H∗(C) by h(z) = 〈H(z)v, v〉 for all z ∈ E. If Jv is infinite, then h
has an essential singularity at z0 and so, using the Casorati-Weierstrass theorem ([41, Theorem
10.21]), there exists z∗ ∈ ∆ such that

Re〈H(z∗)u, u〉 = Reh(z∗) < 0,

contradicting the positive realness of H.

Now, assume that Jv is finite and set k := max Jv. In this case, h has a pole of order k at z0
and so h can be written as

h(z) =
h0 + g(z)

(z − z0)k
, ∀ z ∈ ∆,

where h0 6= 0, g is holomorphic on ∆∪ {z0} and g(z0) = 0. For sufficiently small r > 0, we have

h(z0 + reiθ) = r−ke−ikθ(h0 + g(z0 + reiθ)), ∀ θ ∈ (−π, π].

Let θ0 ∈ (−π, π] be such that Re(e−ikθ0h0) < 0. Note that, using that g(z0) = 0, we obtain, for
sufficiently small r > 0,

〈ReH(z0 + reiθ0)v, v〉 = Reh(z0 + reiθ0) < 0,

Contradicting the positive realness of H. Consequently H does not have any singularities in E.

Finally, we show that H is holomorphic at infinity. We define H̃ : D\{0} → L(U, Y ) by

H̃(z) := H(1/z), ∀ z ∈ D\{0}

and note that Re〈H̃(z)u, u〉 ≥ 0 for all u ∈ U and z ∈ D, z 6= 0. Thus, by supposing that
0 ∈ Σ

H̃
and by following the same method as above, we obtain a contradiction, completing the

proof.
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Proof of Lemma 4.1. (i) Let ξ ∈ Y be such that F−1
K (ξ) ∩ S 6= ∅. Let ξ1 ∈ F−1

K (ξ) ∩ S and
ξ2 ∈ F−1

K (ξ). We seek to show ξ1 = ξ2. Note that

‖ξ2 − ξ1‖Y = ‖FK(ξ2) +GK(1)(f(ξ2)−Kξ2)− FK(ξ1)−GK(1)(f(ξ1)−Kξ1)‖Y
≤ ‖GK‖H∞‖f(ξ2)− f(ξ1)−K(ξ2 − ξ1)‖U .

Seeking a contradiction, suppose that ξ1 6= ξ2. Then, by (4.2), we obtain that

‖ξ2 − ξ1‖Y < γ‖GK‖H∞‖ξ2 − ξ1‖Y = ‖ξ2 − ξ1‖Y ,

which is a contradiction. Hence, ξ1 = ξ2 and #F−1
K (ξ) = 1.

(ii) By (4.7), there exists λ < γ such that ‖f(ζ + ξ) − f(ξ) −Kζ‖U ≤ λ‖ζ‖Y for all ζ, ξ ∈ Y ,
and so ξ 7→ f(ξ)−Kξ is globally Lipschitz with Lipschitz constant λ. Thus, it is clear that FK

is globally Lipschitz with Lipschitz constant 1 + ‖GK‖H∞λ.

To show injectivity, assume that FK(ξ) = FK(ζ), where ξ, ζ ∈ Y . Seeking a contradiction,
suppose that ξ 6= ζ. Then, by definition of FK , we obtain

‖ξ − ζ‖Y = ‖GK(1)(f(ξ)−Kξ)−GK(1)(f(ζ)−Kζ)‖Y
≤ ‖GK‖H∞‖f(ξ)− f(ζ)−K(ξ − ζ)‖U
< ‖GK‖H∞γ‖ξ − ζ‖Y
= ‖ξ − ζ‖Y ,

yielding a contradiction. It now follows that ξ = ζ and FK is injective.

We proceed to show surjectivity. To that end, observe that the map Y → Y, ξ 7→ GK(1)(f(ξ)−
Kξ) is a contraction. Indeed, by (4.7),

‖GK(1)(f(ξ)−Kξ)−GK(1)(f(ζ)−Kζ)‖Y ≤ ‖GK‖H∞λ‖ξ − ζ‖Y , ∀ ζ, ξ ∈ Y ,

and, furthermore, ‖GK‖H∞λ < ‖GK‖H∞γ = 1.

Fix y ∈ Y and define the map hy : Y → Y by

hy(z) := z − FK(z) + y ∀ z ∈ Y .

We note that hy is also a contraction since,

‖hy(ξ)− hy(ζ)‖Y = ‖GK(1)(f(ξ)−Kξ)−GK(1)(f(ζ)−Kζ)‖Y
≤ ‖GK‖H∞λ‖ξ − ζ‖Y , ∀ ξ, ζ ∈ Y.

Hence, by the contraction mapping theorem, there exists a (unique) fixed point of hy, that is,
there exists x∗ ∈ Y such that hy(x

∗) = x∗. This is equivalent to

x∗ − FK(x∗) + y = x∗,

and so FK(x∗) = y, showing that FK is surjective.

(iii) Let ξ, ζ ∈ Y. Since FK is surjective, there exist η1, η2 ∈ Y such that

FK(η1) = ξ, FK(η2) = ζ.

Now, by definition of FK and using (4.7),

‖η1 − η2‖Y = ‖FK(η1) +GK(1)(f(η1)−Kη1)− FK(η2)−GK(1)(f(η2)−Kη2)‖Y
≤ ‖ξ − ζ‖Y + ‖GK‖H∞‖f(η1)− f(η2)−K(η1 − η2)‖Y
≤ ‖ξ − ζ‖Y + ‖GK‖H∞λ‖η1 − η2‖Y .
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Now F−1
K (ξ) = η1, F

−1
K (ζ) = η2, λ‖GK‖H∞ < 1 and we conclude that

‖F−1
K (ξ)− F−1

K (ζ)‖Y ≤ 1

1− λ‖GK‖H∞

‖ξ − ζ‖Y ,

completing the proof.

Proof of Lemma 4.2. Setting fK(ξ) := f(ξ)−K(ξ) and invoking definitions of x∞ and y∞, we
obtain

CKx∞ = CK(I −AK)−1
(

BK(f(z∞)−K(z∞ − w∞)) + (Be +BKKDe)v
∞
)

= GK(1)fK(z∞)−DKfK(z∞) + CK(I −AK)−1
(

(Be +BKKDe)v
∞ +BKKw∞

)

= z∞ − FK(z∞)−DKfK(z∞) + CK(I −AK)−1
(

(Be +BKKDe)v
∞ +BKKw∞

)

.

Noting that FK(z∞) = CK(I−AK)−1
(

Be+B
KKDe

)

v∞+(I−DK)−1Dev
∞+

(

I+GK(1)K
)

w∞,
it is easily seen that

y∞ = CKx∞ +DK(f(y∞ + w∞)−Ky∞) + (I −DK)−1Dev
∞,

as required. To prove that (v∞, w∞, x∞, y∞) is an equilibrium quadruple, we note that

x∞ = AKx∞ +BK(f(y∞ + w∞)−Ky∞) + (Be +BKKDe)v
∞ .

Invoking Lemma 2.2 completes the proof.

B Sampled-data example: further details

We provide details on the numerical approximation used in Example 7.1. We first derive the
weak form of (7.1), from which the finite-element approximation is computed. Given z0 ∈ X
and v ∈ L∞

loc(R+), let z denote a solution of (7.1). Multiplying both sides of the PDE in (7.1)
by ψ ∈ H1(0, 1), integrating over the spatial domain and integrating by parts gives

∫ 1

0
zt(ξ)ψ(ξ) dξ = −

∫ 1

0
zξ(ξ)ψξ(ξ) dξ +

(

2

∫ 1

1/2
ψ(ξ)dξ

)

u+

(
∫ 1

0
be(ξ)ψ(ξ)dξ

)

v . (B.1)

Observe that we do not need to impose any boundary conditions on the space of test functions,
so we take H1(0, 1) as the test function space. We seek an approximate solution to (B.1) of the
form

zN (t, ξ) =
N
∑

j=0

aj(t)φj(ξ), ∀ t > 0, ∀ ξ ∈ (0, 1) ,

where N ∈ N and φj ∈ H1(0, 1) are the usual (piecewise linear) hat or tent functions over the
uniform mesh on [0, 1], and the ai(t) are scalar coefficients. Therefore, setting

x :=
(

a1 a2 . . . aN
)T

,

and taking ψ = φi for all i ∈ {0, 1, . . . , N} in (B.1) yields

Mẋ = −Dx+ Fu+ Jv .
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Here (M,D,F, J) ∈ R
(N+1)×(N+1) × R

(N+1)×(N+1) × R
(N+1) × R

(N+1) have components

Mij :=

∫ 1

0
φi(ξ)φj(ξ) dξ, Dij :=

∫ 1

0
φ′i(ξ)φ

′
j(ξ) dξ

Fi := 2

∫ 1

1/2
φi(ξ) dξ, Ji :=

∫ 1

0
be(ξ)φi(ξ) dξ



















∀ i, j ∈ {0, 1, . . . , N} .

The matrices M , D and F may be found analytically, whilst J may have to be computed
numerically. It is straightforward to show that M = MT > 0, and so we obtain the controlled
linear system

ẋ = −M−1Dx+M−1Fu+M−1Jw ,

with output

y = Lx, where Li := 2

∫ 1/2

0
φi(ξ) dξ ∀ i ∈ {0, 1, . . . , N} .

In our numerical simulations we take N = 30. The resulting sampled-data ordinary differential
equation is solved numerically using the Mathwork’s MATLAB [32] command ode45, over each
sampling period.

C IPM example: further details

We provide details on the numerical approximation used in Example 7.2. For notational con-
venience in this section we set N := {1, 2, . . . , N} for each N ∈ N. To derive a finite element
approximation of the forced IPM (7.7), we first derive a weak form. For which purpose, we
multiply both sides of (7.7) by ψ ∈ L1(Ω) and integrate over Ω to give

∫

Ω
ψ(ξ)x(t+ 1, ξ) dξ =

∫

Ω
ψ(ξ) [(Ax)(ξ) + b(ξ)f(c∗x) + be(ξ)v(t)] dξ

=

∫

Ω
ψ(ξ)

(
∫

Ω
p(ξ, ζ)x(t, ζ) dζ

)

dξ +

(
∫

Ω
ψ(ξ)b(ξ) dξ

)

f(c∗x)

+

(
∫

Ω
ψ(ξ)be(ξ) dξ

)

v(t) . (C.1)

We seek an approximate solution to (C.1) of the form

xN (t, ξ) =
N
∑

j=1

aj(t)φj(ξ), ∀ t ∈ Z+, ∀ ξ ∈ Ω , (C.2)

where N ∈ N, φj are given L1 functions and aj(t) are scalar coefficients. Substituting (C.2)
into (C.1), and testing against ψ = φi for each i ∈ N gives

N
∑

j=0

(
∫

Ω
φi(ξ)φj(ξ) dξ

)

aj(t+ 1) =

N
∑

j=0

(
∫

Ω
φi(ξ)

∫

Ω
p(ξ, ζ)φj(ξ) dξ

)

aj(t)

+

(
∫

Ω
φi(ξ)b(ξ) dξ

)

f(c∗xN )

+

(
∫

Ω
φi(ξ)be(ξ) dξ

)

v(t) . (C.3)

Noting that

c∗xN (t, ·) =
N
∑

j=0

(
∫

Ω
c(ξ)φj(ξ) dξ

)

aj(t), ∀ t ∈ Z+ ,
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and setting

z(t) :=
(

a1(t) . . . aN (t)
)T ∈ R

N ∀ t ∈ Z+ ,

we see that (C.3) may be expressed in matrix form as

z+ =M−1Dz +M−1Ff(Lz) +M−1Jv . (C.4)

Here (M,D, J, F, LT ) ∈ R
N×N × R

N×N × R
N × R

N × R
N are given componentwise by

Mij :=

∫

Ω
φi(ξ)φj(ξ) dξ, Fi :=

∫

Ω
φi(ξ)b(ξ) dξ

Ji :=

∫

Ω
φi(ξ)be(ξ) dξ, Li :=

∫

Ω
φi(ξ)c(ξ) dξ















∀ i, j ∈ N , (C.5)

and

Dij :=

∫

Ω
φi(ξ)

(
∫

Ω
p(ξ, ζ)φj(ζ) dζ

)

dξ, ∀ i, j ∈ N . (C.6)

Since we are seeking to approximate the L1(Ω) functions x(t, ·) in L1(Ω) (that is, we are not
approximating any derivatives), we choose as finite-dimensional approximation spaces the linear
span of N piecewise constant functions. Specifically, for fixed N ∈ N, we define ξj := m1 +
j(m2 −m1)/N for j ∈ {0, 1, . . . , N}, ∆ := (m2 −m1)/N and

φi : Ω → R+, φi(ξ) :=







1√
∆

ξi−1 ≤ ξ ≤ ξi

0 else,

∀ i ∈ N.

An advantage of such a choice is that, as readily seen, M = I, because Mij = 0 if i 6= j and

Mii =

∫ m2

m1

φ2i (ξ) dξ =
1

∆

∫ ξi

ξi−1

1 dξ = 1, ∀ i ∈ N .

Consequently, (C.4) becomes
z+ = Dz + Ff(Lz) + Jv . (C.7)

Moreover, by inspection of (C.5) and (C.6), it follows that with the above choice of piecewise
constant φj , the matrices D, L, F and J in (C.6) are componentwise nonnegative.

For the simulations in Example 7.2 we use (C.7) with N = 30, and the matrices D, L, J and F
are computed numerically.

References

[1] D. Angeli. A Lyapunov approach to incremental stability properties, IEEE Trans. Automatic
Control, 47(3):410–421, 2002.

[2] M. Arcak & A. Teel. Input-to-state stability for a class of Lurie systems, Automatica,
38(11):1945–1949, 2002.

[3] A. Bill, C. Guiver, H. Logemann & S. Townley. Stability of nonnegative Lur’e systems. SIAM
J. Control Optimiz., 54(3):1176–1211, 2016.

[4] A. Bill, C. Guiver, H. Logemann & S. Townley. The converging-input converging-
state property for Lur’e systems. Math. Control Signals Systems, 29:4, 2017.
https://doi.org/10.1007/s00498-016-0184-3

[5] J. Briggs, K. Dabbs, M. Holm, J. Lubben, R. Rebarber, B. Tenhumberg & D. Riser-Espinoza.
Structured population dynamics: an introduction to integral modeling. Mathematics Maga-
zine, 83(4):243–257, 2010.

38



[6] D. Z. Childs, M. Rees, K. E. Rose, P. J. Grubb & S. P. Ellner. Evolution of complex flowering
strategies: an age- and size-structured integral projection model. Proc. R. Soc. B-Bio. Sci.,
270(1526):1829–1838, 2003.

[7] R. F. Curtain & H. Zwart. An introduction to infinite-dimensional linear systems theory,
Springer-Verlag, New York, 1995.

[8] S. N. Dashkovskiy, D. V. Efimov & E. D. Sontag. Input-to-state stability and related prop-
erties of systems. Avtomat. i Telemekh., 72(8):3–40, 2011.

[9] S. N. Dashkovskiy & A. Mironchenko. Input-to-state stability of infinite-dimensional control
systems, Math. Control Signals Systems, 25(1):1–35, 2013.
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