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Abstract. The generalised singular perturbation approximation (GSPA) is
considered as a model reduction scheme for bounded real and positive real lin-
ear control systems. The GSPA is a state-space approach to truncation with

the defining property that the transfer function of the approximation interpo-
lates the original transfer function at a prescribed point in the closed right half
complex plane. Both familiar balanced truncation and singular perturbation
approximation are known to be special cases of the GSPA, interpolating at

infinity and at zero, respectively. Suitably modified, we show that the GSPA
preserves classical dissipativity properties of the truncations, and existing a
priori error bounds for these balanced truncation schemes are satisfied as well.

1. Introduction. Model reduction of finite-dimensional, continuous-time, linear4

control systems of the form5

ẋ = Ax+Bu, x(0) = x0 ,

y = Cx+Du ,

}
(1.1)

by the generalised singular perturbation approximation (GSPA) is considered. Here,6

as usual, u, x and y denote the input, state and output, respectively, and A, B,7

C and D are appropriately sized matrices. Model reduction in this context refers8

to approximating the input-output relationship u 7→ y in (1.1) by a simpler one,9

which is ideally both qualitatively and quantitatively close to the original. Model10

reduction is important for both simulation and controller design [39]. There are a11

multitude of different approaches to model reduction in the literature, see [13] and12

in particular [13, Fig. 2.1], including, for example, state-space methods, polynomial13

and rational interpolation and error minimisation methods to name but a few. The14

GSPA is in the spirit of the classic control theoretic model reduction scheme called15

(Lyapunov) balanced truncation, proposed in [31], and its close relation, the singular16

perturbation approximation, first considered in the context of model reduction of17

linear control systems in [11, 12].18
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Lyapunov balanced realisations of stable systems are computed by finding a state-1

space similarity transform under which the solutions P and Q of the controller and2

observer Lyapunov equations, respectively,3

AP + PA∗ +BB∗ = 0 and A∗Q+QA+ C∗C = 0 ,

are equal. States in (1.1) are omitted in a reduced order model, the so-called bal-4

anced truncation, according to the relative size of the square roots of the eigenvalues5

of the product PQ (which are similarity invariants), which are in fact equal to the6

singular values of the Hankel operator associated with (1.1). Lyapunov balanced7

truncations retain stability and minimality of the original model — properties es-8

tablished in [40] — and another appealing property is the a priori error bound9

10

‖G−Gr‖H∞ ≤ 2
n∑

j=r+1

σj , (1.2)

between the transfer function G and its reduced order approximation Gr. Here11

σj denote the distinct Hankel singular values, and the summation on the right12

hand side of (1.2) contains the singular values omitted from the reduced-order sys-13

tem. The error bound (1.2) was derived independently in [10] and [15]. The upper14

bound (1.2) is known to be achieved (that is, equality holds in (1.2)) for certain15

single-input single-output (SISO) systems, see [29], and a lower bound in the multi-16

input multi-output (MIMO) case has recently been derived in [38]. For more infor-17

mation on balanced truncation, the reader is referred to the survey paper [18] or the18

textbooks [3, 13, 17, 36]. The popularity of balanced realisations and balanced trun-19

cation has led to numerous further developments, some of which we discuss further20

below, as well as, for example, to infinite-dimensional systems: [8, 14, 16, 24, 35, 49].21

In the frequency domain, balanced truncation for rational functions is a model22

reduction scheme which yields a rational approximation with the property that it23

interpolates the original function at infinity. Roughly, by applying the same method24

to a rational function now with argument 1/s instead of s, another reduced order25

rational transfer function is obtained, which now interpolates the original at zero.26

Interpolating at zero is a frequency domain property of the so-called singular per-27

turbation approximation (SPA), in particular meaning that the steady-state gains28

are equal. From a dynamical systems perspective, singular perturbation approxi-29

mation decomposes the state variables into those with “fast” and “slow” dynamics,30

and assumes that the “fast” variables are at equilibrium, meaning that differen-31

tial equations simplify to algebraic equations. For linear systems these algebraic32

equations are easily solvable, which leads to a model with fewer differential equa-33

tions, and hence fewer states. The mapping s to 1/s mentioned above is called the34

reciprocal transformation and provides a relationship between SPA and balanced35

truncation. This relationship was exploited in [30] to show that the singular per-36

turbation approximation of a balanced, minimal, linear system admits the same37

H∞ error bound (1.2), as well as retaining minimality and stability of the original.38

To the best of our knowledge, the provenance of the reciprocal transformation in39

systems and control theory is unclear, and it now forms part of the subjects’ “folk-40

lore”. It appears in numerous areas, for instance, when working with the technical41

difficulties which arise in infinite dimensional systems see, for example, [44, Section42

12.4] and [6, 7].43
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The generalised singular perturbation approximation (GSPA) is a generalisation of1

both balanced truncation and singular perturbation approximation as it is a state-2

space truncation scheme with the property that the approximate transfer function3

interpolates the original at a prescribed point in the closed right half complex plane.4

The GSPA was proposed in a control theoretic context in [11], and was the subject of5

a number of papers around that time, see [1, 30, 27, 32]. Both balanced truncation6

and the SPA are special cases of the GSPA.7

Here we demonstrate that when suitably adapted, the GSPA provides a dissipativity8

preserving model reduction scheme with error bounds and the additional interpo-9

lation property. To motivate our study we note that a disadvantage of balanced10

truncation or SPA is that any dissipativity property of the original system need not11

be retained in the truncation. Dissipativity (or passivity) theory as commonly used12

in systems and control theory dates back to the seminal work of [47, 48], where13

the notions of supply rate and storage function were introduced and which capture14

(and generalise) the notion of a system storing and dissipating energy over time.15

Dissipative systems are central to control, in part owing to a plethora of natural and16

important examples such as RLC circuits and mass-spring-damper systems. Much17

attention has been devoted to the situation when the supply rate is quadratic, as18

multiple notions of energy are quadratic in state variables, such as kinetic energy.19

Two classical notions of quadratic dissipative systems which first arose in circuit20

theory go by the names of impedance passive and scattering passive, also known as21

passive and contractive, or bounded real and positive real, respectively, the latter22

term being introduced in [4]. Two famous results, sometimes called the Bounded23

Real Lemma and Positive Real Lemma, provide a complete state-space characteri-24

sation of these two notions of dissipativity, respectively, see, for example, [2]. The25

latter is also known as the Kalman-Yakubovich-Popov (KYP) Lemma in recognition26

of its original contributors. We refer the reader to [25] or [41] and the references27

therein for more background on the KYP Lemma.28

In response, balanced truncation has been extended to bounded real and positive29

real systems in [9] and [37], respectively, and to the infinite-dimensional case in [22].30

Here the truncations do retain the respective dissipativity property and error bounds31

have also been established see, for example, [18] and [23]. We note that there is a32

false bound in [5], see [21]. By using the reciprocal transformation, it was shown33

in [33] that when the SPA is defined in terms of a dissipative balanced realisation,34

then the reduced order system inherits dissipativity from the original system, and35

satisfies corresponding error bounds. There have been other variations in dissi-36

pativity preserving model reduction schemes, including to descriptor systems [42],37

and certain classes of finite-dimensional behavioral systems [23]. To summarise, the38

bounded real and positive real GSPA generalises the results of [9], [37] and [33] and39

provides a truncation scheme which retains the relevant dissipativity property, error40

bounds, and interpolation at a prescribed point.41

The manuscript is organised as follows. After recording notation and terminology,42

Section 2 recalls model reduction by generalised singular perturbation approxima-43

tion. Our main results are contained in Sections 3 and 4, namely, bounded real and44

positive real preserving generalised singular perturbation approximation. Examples45

are contained in Section 5. In an attempt to streamline the presentation, the proofs46

of our main results appear in Section 6 and the Appendix.47
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Notation: Most mathematical notation we use is standard, or defined when in-1

troduced. The set of positive integers is denoted by N, whilst R and C denote the2

fields of real and complex numbers, respectively. For k ∈ N, k := {1, 2, . . . , k} and3

for ξ ∈ C, Re (ξ), Im (ξ), ξ and |ξ| denote its real part, imaginary part, complex4

conjugate and modulus, respectively. We let C0 denote the set of all complex num-5

bers with positive real part. For n ∈ N, Rn and Cn denote the familiar real and6

complex n-dimensional Hilbert spaces, respectively, both equipped with the inner7

product 〈·, ·〉 which induces the usual 2-norm ‖·‖2. For m ∈ N, let Rn×m and Cn×m
8

denote the normed linear spaces of n ×m matrices with real and complex entries,9

respectively, both equipped with the operator norm, also denoted ‖ · ‖2, induced10

by the ‖ · ‖2 norm on Rn or Cn. The superscript ∗ denotes the complex-conjugate11

transpose (and, importantly, the adjoint with respect to the above inner product).12

For M,N ∈ Cn×n, σ(M) denotes the spectrum of M and we write M ≥ N or13

N ≤ M if M −N is positive semi-definite, and M > N or N < M if the difference14

M −N is positive definite. It is well-known that, as Cn is a complex Hilbert space,15

if M � 0, then M = M∗.16

Form, p ∈ N, the space of analytic functions C0 → Cp×m is denoted byH(C0,C
p×m).17

The subset of functions which are additionally bounded with respect to the norm18

‖G‖H∞ = sup
s∈C0

‖G(s)‖2 ,

is denoted by H∞(C0,C
p×m).19

2. The generalised singular perturbation approximation. We gather ele-20

mentary and notational preliminaries before recalling the generalised singular per-21

turbation approximation and describing some properties.22

We consider the linear control system (1.1) where, as usual, u, x and y denote the23

input, state and output and24

(A,B,C,D) ∈ Cn×n × Cn×m × Cp×n × Cp×m ,

for some m,n, p ∈ N1. In practice, the quadruple (A,B,C,D) is real-valued and25

in many situations, the matrix D does not play a role. As such, we use the triple26

(A,B,C) when the choice of D, which need not be zero, is unimportant.27

The triple (A,B,C) is said to be stable if A is Hurwitz, that is, every eigenvalue28

of A has negative real part. The dimension of the triple (A,B,C) is equal to the29

dimension of its A term, and the triple is minimal if the pair (A,B) is controllable30

and the pair (C,A) is observable, see [43, Theorem 27, p.286].31

Naturally, associated to the quadruple (A,B,C,D) is the linear system (1.1). The32

transfer function of the linear system (1.1) or quadruple (A,B,C,D) is the rational33

function34

s 7→ G(s) := D + C(sI −A)−1B , (2.1)

which is certainly defined for all complex s with Re s > α(A), the spectral abscissa35

of A. Conversely, given a proper rational function G defined on a right-half complex36

plane, a quadruple (A,B,C,D) is called a realisation of G if (2.1) holds on that37

half-plane. Realisations are never unique. The McMillan degree of a proper rational38

1The material which follows holds if we assume that A : X → X , B : U → X , C : X → Y and

D : U → Y are bounded linear operators between finite-dimensional complex Hilbert spaces U , X
and Y which, of course, is equivalent to our formulation once bases are chosen for U , X and Y.
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transfer function is the dimension of a minimal state-space realisation, see [43,1

Remark 6.7.4, p.299].2

Recall that the stable triple (A,B,C) is called (internally or Lyapunov) balanced3

if there exists a Σ such that4

AΣ+ ΣA∗ +BB∗ = 0 and A∗Σ+ ΣA+ C∗C = 0 . (2.2)

If Σ satisfies (2.2), then necessarily Σ equals both the controllability and observ-5

ability Gramians of the linear system specified by (A,B,C), that is,6

Σ =

∫

R+

eAtBB∗eA
∗t dt =

∫

R+

eA
∗tC∗CeAt dt ,

(hence the terminology balanced) and is consequently self-adjoint and positive semi-7

definite. It is well-known that it is always possible to construct a balanced realisation8

from a given one via a state-space similarity transformation [3, Lemma 7.3, p.210].9

The triple (A,B,C) is minimal if, and only if, Σ is positive definite. The eigenvalues10

of Σ are precisely the singular values of the Hankel operator corresponding to the11

triple (A,B,C). We shall let (σj)
n
j=1 denote the n distinct Hankel singular values12

of (A,B,C), which we shall assume throughout the paper are simple (that is, each13

has algebraic and geometric multiplicity equal to one). As singular values, the σj14

are ordered so that15

σ1 > σ2 > · · · ≥ 0 . (2.3)

In practical applications, a basis of the state-space is chosen so that Σ is a diagonal16

matrix, with the terms σj on the diagonal.17

Singular perturbation approximations are defined in terms of conformal partitions18

of (A,B,C), denoted by19

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)
, (2.4)

where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r and so on, for some r ∈ n− 1. Of course,20

the partitions in (2.4) depend on both the realisation and r, which are degrees of21

freedom.22

Definition 2.1. Given the quadruple (A,B,C,D), partitioned according to (2.4)23

for some r ∈ n− 1 and ξ ∈ C, Re(ξ) ≥ 0 assume that ξ 6∈ σ(A22). The quadruple24

(Aξ, Bξ, Cξ, Dξ) given by25

Aξ := A11 +A12(ξI −A22)
−1A21 , Bξ := B1 +A12(ξI −A22)

−1B2 ,

Cξ := C1 + C2(ξI −A22)
−1A21 , Dξ := D + C2(ξI −A22)

−1B2 ,

}
(2.5)

is called the generalised singular perturbation approximation of (1.1).26

Remark 2.2. Throughout this remark, we assume that ξ ∈ C, Re(ξ) ≥ 0.27

(a) The generalised singular perturbation approximation may be defined for any28

realisation (A,B,C) and choice of partition in (2.4). In this section we shall assume29

that (A,B,C) is stable and balanced and a partition in (2.4) is chosen with respect30

to two unions of eigenspaces of Σ corresponding to distinct eigenvalues. With31

respect to such a partition, Σ has the block form32

Σ :=

(
Σ1 0
0 Σ2

)
, A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)
. (2.6)
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In light of the ordering (2.3), Σ1 and Σ2 contain the larger and smaller eigenvalues1

of Σ, respectively.2

(b) Given the stable, minimal, balanced quadruple (A,B,C,D) with transfer func-3

tion G, let Gξ
r denote the transfer function of the generalised singular perturbation4

approximation. The motivation and defining property of the generalised singular5

perturbation approximation is that6

Gξ
r(ξ) = G(ξ) , (2.7)

that is, the transfer function interpolates the original at ξ, see [30, Lemma 2.4]. Of7

course, a downside of the GSPA for practical applications is that (Aξ, Bξ, Cξ, Dξ)8

will in general be complex when Im ξ 6= 0, even if (A,B,C,D) is real.9

(c) If the realisation (A,B,C) is stable, minimal, balanced and decomposed as10

in (2.6), then by [40, Theorem 3.2] both A11 and A22 are Hurwitz. Consequently,11

the generalised singular perturbation approximation is well-defined. Furthermore,12

in the limit ξ → ∞, we obtain from (2.5)13

A∞ := A11 , B∞ := B1 , C∞ := C1 , D∞ := D ,

and the linear system specified by the quadruple (A∞, B∞, C∞, D∞) is called the14

balanced truncation of (1.1). The case ξ = 0 in (2.5) leads to15

A0 := A11 −A12A
−1
22 A21 , B0 := B1 −A12A

−1
22 B2 ,

C0 := C1 − C2A
−1
22 A21 , D0 := D − C2A

−1
22 B2 ,

and the linear system specified by the quadruple (A0, B0, C0, D0) is called the sin-16

gular perturbation approximation of (1.1). We see that the balanced truncation17

and singular perturbation approximation are special cases of the generalised sin-18

gular perturbation approximation, hence the terminology. In state-space terms,19

the GSPA assumes that x in (1.1) is partitioned into x1 and x2 and20

ẋ2(t) = ξx2(t). (2.8)

By substituting (2.8) into (1.1) and eliminating x2, the linear system specified21

by (Aξ, Bξ, Cξ, Dξ) is obtained (with state x1). The assumption (2.8) highlights22

the input-output motivation of the GSPA, at least for stable systems. Indeed,23

ẋ2(t) = ξx2(t) and Re (ξ) ≥ 0 implies that ‖x2(t)‖ does not decrease as t → ∞.24

Under the assumption that A is Hurwitz, we would of course expect ‖x2(t)‖ → 025

as t → ∞ in the absence of control, that is, when u = 0. ♦26

We recall two results which shall play a key role in constructing the dissipativity27

preserving GSPA in Sections 3 and 4.28

Theorem 2.3. Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, balanced quadruple29

(A,B,C,D), assume that the Hankel singular values are simple. Then (Aξ, Bξ, Cξ, Dξ),30

the generalised singular perturbation approximation of order r ∈ n− 1, is well-31

defined and the following statements hold.32

(i) Aξ is Hurwitz and (Aξ, Bξ, Cξ) is minimal.33

(ii) If ξ ∈ iR, then (Aξ, Bξ, Cξ) is balanced.34

Statement (i) of Theorem 2.3 appears in the special case that ξ ∈ R, ξ > 0 in [27,35

Theorem 5.4], but does not appear in [30]. It is claimed in [27, Remark 5.5] that36

statement (i) extends to all ξ ∈ C0, but no proof is given there. For completeness,37

we have provided a proof in the Appendix. Statement (ii) is novel.38
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Theorem 2.4. Let G ∈ H∞(C0,C
p×m) be rational with simple Hankel singular1

vales (σj)
n
j=1, ordered as in (2.3), let r ∈ n− 1 and ξ ∈ C with Re(ξ) ≥ 0. Then2

there exists a rational Gξ
r ∈ H∞(C0,C

p×m) of McMillan degree r such that the3

interpolation property (2.7) holds and4

‖G−Gξ
r‖H∞ ≤ 2

n∑

j=r+1

σj . (2.9)

The proof of Theorem 2.4 is constructive — a transfer function Gξ
r which satis-5

fies (2.7) and (2.9) is realised by the generalised singular perturbation approxima-6

tion of a stable, minimal, balanced realisation of G. The error bound (2.9) has7

been established when ξ = 0 or ξ = ∞ as these correspond to the singular pertur-8

bation approximation and balanced truncation, respectively, as well as when ξ ∈ iR9

(see [30, Theorem 3.4]) and when ξ ∈ R, ξ > 0 (see [27, Theorem 5.4]). Again, it is10

claimed in [27, Remark 5.5] that the error bound (2.9) holds for all Re(ξ) ≥ 0, but11

no proof is given. Again for completeness, a proof is provided in the Appendix.12

3. Bounded real generalised singular perturbation approximation. In this13

section we define the bounded real GSPA of a quadruple with bounded real transfer14

function, and show that it gives rise to a bounded real reduced order system, with15

properties including the point interpolation (2.7) and error bounds. Recall that16

G ∈ H∞(C0,C
p×m) is said to be bounded real if ‖G‖H∞ ≤ 1, and strictly bounded17

real if ‖G‖H∞ < 1. Bounded realness is the frequency domain name of the property18

called scattering passive or contractive in the time-domain. From many possible19

references the reader is referred to, for example, [45, 46]. The term ‘real’ in bounded20

real refers to the sometimes-made assumption that G is real on the real axis. It is21

true that many physically motivated systems enjoy such a property, but we do not22

enforce it because there is no mathematical need to. Although we acknowledge that23

the terminology ‘bounded’ or ‘contractive’ would suffice, in keeping with existing24

literature we persevere with the term ‘bounded real’.25

Bounded real balanced truncation, proposed in [37], and bounded real singular26

perturbation approximation, proposed in [33], are morally similar to the (Lyapunov)27

balanced versions. However, instead of balancing the solutions of two Lyapunov28

equations, for the bounded real model reduction schemes certain solutions of the29

so-called primal and dual Bounded Real Lur’e (or Algebraic Riccati) equations30

are balanced. The existence of these solutions is ensured by the Bounded Real31

Lemma. There are numerous treatments of bounded real balanced truncation in32

the literature, examples in addition to [37] and [33] include [3, 18, 19, 22, 23]. For33

brevity, here we describe only the aspects required to define the bounded real GSPA.34

For which purpose, recall that if the stable, minimal quadruple (A,B,C,D) is35

bounded real, then there exist Pm and PM , positive definite solutions of the Bounded36

Real Lur’e equations37

A∗Z + ZA+ C∗C = −K∗K ,

ZB + C∗D = −K∗W ,

I −D∗D = W ∗W ,





(3.1)

(with variable Z), for some K ∈ Cm×n and W ∈ Cm×m, which are extremal in the38

sense that any other positive semi-definite solution P of (3.1) satisfies Pm ≤ P ≤39
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PM . It is straightforward to show that P−1
M is also equal to the minimal solution1

(in the previous sense) of the dual Bounded Real Lur’e equations2

AZ + ZA∗ +BB∗ = −LL∗ ,

ZC∗ +BD∗ = −LX∗ ,

I −DD∗ = XX∗ ,





(3.2)

(also with variable Z) for some L ∈ Cn×p andX ∈ Cp×p. We say that the realisation3

(A,B,C,D) is bounded real balanced if4

Pm = P−1
M =: Σ .

In particular, when (A,B,C,D) is bounded real balanced, then Σ is a solution of5

both (3.1) and (3.2). The bounded real singular values, denoted (σk)
n
k=1, are the6

nonnegative square roots of the eigenvalues of PmP−1
M , and so the eigenvalues of Σ7

in a bounded real balanced realisation. We note that they are called characteristic8

values by some authors, such as in [42]; see [23, Remark 3.6].9

Definition 3.1. The bounded real generalised singular perturbation of stable, min-10

imal quadruple (A,B,C,D), for ξ ∈ C with Re(ξ) ≥ 0, is given by (2.5) when11

(A,B,C,D) is bounded real balanced, provided that it is well-defined.12

Our two main results of this section are stated and proven next. They parallel the13

results in Section 2: the first contains state-space properties of the bounded real14

GSPA and the second contains a frequency domain error bound.15

Theorem 3.2. Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, and bounded real16

balanced quadruple (A,B,C,D), assume that the bounded real singular values are17

simple. Then (Aξ, Bξ, Cξ, Dξ), the bounded real generalised singular perturbation18

approximation of order r ∈ n− 1, is well-defined and the following statements hold.19

(i) (Aξ, Bξ, Cξ, Dξ) is bounded real, and is bounded real balanced if ξ ∈ iR.20

(ii) Aξ is Hurwitz.21

(iii) If (A,B,C,D) is strictly bounded real, then (Aξ, Bξ, Cξ, Dξ) is minimal and22

strictly bounded real.23

Special cases of the above theorem appear in [37, Theorem 2] and [33, Theorem 224

(a)], corresponding to the cases ξ = ∞ (the bounded real balanced truncation) and25

ξ = 0 (the bounded real singular perturbation approximation), respectively. Even26

in these special cases, the claim in statement (iii) above that strict bounded realness27

is preserved in the respective truncations does not appear in [37] or [33].28

Theorem 3.3. Let G ∈ H∞(C0,C
p×m) be rational and bounded real with simple29

bounded real singular vales (σj)
n
j=1, ordered as in (2.3), let r ∈ n− 1 and ξ ∈ C30

with Re(ξ) ≥ 0. Then there exists a rational, bounded real Gξ
r ∈ H∞(C0,C

p×m)31

which has a state-space realisation of dimension r, such that (2.7) holds and32

‖G−Gξ
r‖H∞ ≤ 2

n∑

j=r+1

σj . (3.3)

If ‖G‖H∞ < 1, then Gξ
r may be chosen with the above properties and, additionally,33

to have McMillan degree r and ‖Gξ
r‖H∞ < 1.34
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The next result pertains to existence and approximation of so-called spectral factors,1

and spectral “sub”-factors, particularly of reduced order transfer functions obtained2

by bounded real GSPA. Here H∗ denotes s 7→ (H(s))∗ for matrix-valued rational3

functions H of a complex variable.4

Proposition 3.4. Imposing the notation and assumptions of Theorem 3.3, the5

following statements hold.6

(i) There exist rational R ∈ H∞(C0,C
m×m), S ∈ H∞(C0,C

p×p) such that

I −G∗G = R∗R and I −GG∗ = SS∗ on iR.

(ii) If ξ ∈ iR, then there exist rational Rξ
r ∈ H∞(C0,C

m×m), Sξ
r ∈ H∞(C0,C

p×p)7

such that8

I − (Gξ
r)

∗Gξ
r = (Rξ

r)
∗Rξ

r and I −Gξ
r(G

ξ
r)

∗ = Sξ
r(S

ξ
r)

∗ on iR, (3.4)

and9

max

{∥∥∥∥
(
G−Gξ

r

R−Rξ
r

)∥∥∥∥
H∞

,
∥∥(G−Gξ

r S− Sξ
r

)∥∥
H∞

}
≤ 2

n∑

j=r+1

σj , (3.5)

so that in particular10

‖R−Rξ
r‖H∞ , ‖S− Sξ

r‖H∞ ≤ 2

n∑

j=r+1

σj . (3.6)

The spectral factors Rξ
r and Sξ

r have state-space realisations with the same11

dimension as those for Gξ
r and may be chosen with the interpolation property12

R(ξ) = Rξ
r(ξ) and S(ξ) = Sξ

r(ξ) . (3.7)

(iii) If ξ ∈ C0, then there exist rational Rξ
r ∈ H∞(C0,C

m×m), Sξ
r ∈ H∞(C0,C

p×p),13

such that properties (3.5)–(3.7) from statement (ii) hold, and (3.4) is replaced14

by15

I − (Gξ
r)

∗Gξ
r ≥ (Rξ

r)
∗Rξ

r and I −Gξ
r(G

ξ
r)

∗ ≥ Sξ
r(S

ξ
r)

∗ on iR. (3.8)

4. Positive real generalised SPA. In this section we define the positive real16

GSPA of a quadruple with positive real transfer function, and show that it gives17

rise to a positive real reduced order system, with properties including the point18

interpolation (2.7) and error bounds. Recall that positive realness is a property of19

“square” systems, meaning the input and output spaces have the same dimension,20

m = p, and that a rational, Cm×m-valued function G is said to be positive real if21

ReG(s) = G(s) + [G(s)]∗ ≥ 0, ∀ s ∈ C0 \∆ , (4.1)

where ∆ is the set of poles of G. The assumption that G is rational implies that G22

is analytic on C0\∆, and it is well-known (see [20, Proposition 3.3]) that analyticity23

and the positive realness condition (4.1) together imply that G in fact has no poles24

in C0, and hence G ∈ H(C0,C
m×m). Rational positive real functions may have25

simple imaginary axis poles, such as s 7→ 1/s, and need not be proper, such as26

s 7→ s.27

Positive realness is the frequency domain term for systems which are called impedance28

passive, or sometimes just passive, in the time domain. For scalar, rational func-29

tions, the terms positive and positive real were introduced in [4], with the former30

used for functions which satisfy (4.1), and the latter for functions which satisfy (4.1)31
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and are also real on the real axis. As with bounded realness, although many phys-1

ically motivated transfer functions are real on the real axis, we do not impose this2

assumption simply because it is not required. However, we adopt the convention3

of calling such functions positive real, which agrees with much existing literature4

and as it captures that the real part of the function under consideration is positive5

(non-negative, to be precise). Positive realness and bounded realness are related6

via the mapping which goes by the name of the diagonal transformation, (external)7

Cayley transform or Möbius transform, see [19, Ch. 7], [34, Ch. 5] or [46], which we8

exploit in the present section to make use of the material established previously.9

Positive real balanced truncation, proposed in [9] and further developed in [26], and10

positive real singular perturbation approximation, proposed in [33], are defined in11

the same spirit as their bounded real counterparts, where now extremal solutions12

of the primal and dual Positive Real Lur’e equations (or Riccati equations) are bal-13

anced. The theoretical result underpinning the process is the Positive Real Lemma.14

We note the potential confusion between the original nomenclature ‘balanced sto-15

chastic truncation’ and the more recent ‘positive real balanced truncation’, see [21,16

Remark 1]. As with the bounded real case, there are a myriad of references to these17

model reduction approaches for positive real systems, including those cited above18

and [3, 18, 19, 23, 22]. For brevity, here we describe only the key aspects which we19

shall require to define the positive real GSPA and establish its properties.20

To that end, recall that if the stable, minimal quadruple (A,B,C,D) is positive21

real, then there exist Pm and PM , positive definite solutions of the Positive Real22

Lur’e equations23

A∗Z + ZA = −K∗K ,

ZB − C∗ = −K∗W ,

D +D∗ = W ∗W ,





(4.2)

(with variable Z), for some K ∈ Cm×n and W ∈ Cm×m, which are extremal in the24

sense that any other positive semi-definite solution P of (4.2) satisfies Pm ≤ P ≤25

PM . It is straightforward to show that P−1
M is also equal to the minimal solution26

(in the previous sense) of the dual Positive Real Lur’e equations27

AZ + ZA∗ = −LL∗ ,

ZC∗ −B∗ = −LX∗ ,

D∗ +D = XX∗ ,





(4.3)

(also with variable Z) for some L ∈ Cn×m andX ∈ Cm×m. We say that (A,B,C,D)28

is positive real balanced if29

Pm = P−1
M = Σ .

In particular, when (A,B,C,D) is positive real balanced, then Σ is a solution of30

both (4.2) and (4.3). The positive real singular values, denoted (σk)
n
k=1, are the31

nonnegative square roots of the eigenvalues of PmP−1
M , although like bounded real32

singular values, they are called characteristic values by some authors, see [42].33

Definition 4.1. The positive real generalised singular perturbation of a stable,34

minimal quadruple (A,B,C,D), for ξ ∈ C with Re(ξ) ≥ 0, is given by (2.5) when35

(A,B,C,D) is positive real balanced, provided that it is well-defined.36

Our two main results of this section are stated and proven next. They parallel37

the results in Section 3: the first contains state-space properties of the positive38
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real GSPA and the second contains frequency domain properties and error bounds.1

Adopting the nomenclature convention used in [20], we say that the rational, Cm×m-2

valued function G is strongly positive real if3

ReG(s) = G(s) + [G(s)]∗ ≥ δI, ∀ s ∈ C0 \∆ ,

for some δ > 0, and where ∆ denotes the set of poles of G. Strongly positive real4

functions are clearly positive real.5

Theorem 4.2. Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, and positive real6

balanced quadruple (A,B,C,D), assume that the positive real singular values are7

simple. Then (Aξ, Bξ, Cξ, Dξ), the positive real generalised singular perturbation8

approximation of order r ∈ n− 1, is well-defined and the following statements hold.9

(i) (Aξ, Bξ, Cξ, Dξ) is positive real, and is positive real balanced if ξ ∈ iR.10

(ii) Aξ is Hurwitz.11

(iii) If (A,B,C,D) is strongly positive real, then (Aξ, Bξ, Cξ, Dξ) is minimal and12

strongly positive real.13

Theorem 4.3. Let G ∈ H(C0,C
m×m) be proper, rational, and positive real with14

simple positive real singular vales (σj)
n
j=1, ordered as in (2.3), let r ∈ n− 1 and ξ ∈15

C with Re(ξ) ≥ 0 which is not a pole of G. Then there exists proper, rational, and16

positive real Gξ
r ∈ H(C0,C

m×m) which has a state-space realisation of dimension17

r, such that (2.7) holds and18

δ̂(G,Gξ
r) ≤ 2

n∑

j=r+1

σj , (4.4)

where δ̂ denotes the gap metric [28, p.197, p.201]. If G ∈ H∞(C0,C
m×m), then Gξ

r

with the previous properties may be chosen to be in H∞(C0,C
m×m) as well, and

‖G−Gξ
r‖H∞ ≤ 2min

{
(1 + ‖G‖2H∞)(1 + ‖Gξ

r‖H∞),

(1 + ‖G‖H∞)(1 + ‖Gξ
r‖2H∞)

} n∑

j=r+1

σj , (4.5)

holds. Finally, if G is strongly positive real, then Gξ
r as above may be chosen to19

have McMillan degree r and be strongly positive real as well.20

In certain cases, the error bound (4.5) may be used to derive a more conservative21

(that is, worse), but a priori, bound. The reader is referred to [19, Remark 3.6.11]22

for more details.23

Our final result pertains to existence of so-called spectral factors, now in the pos-24

itive real case, and is the positive real analogue of Proposition 3.4. Although our25

approach is to use the Cayley transform and Proposition 3.4, ‘natural’ error bounds26

in the gap metric for the distance between spectral factors and their approximations27

in the positive real case sadly do not seemingly follow from those in the bounded28

real case. For completeness, we do provide an H∞ error bound in the special29

case that G ∈ H∞ which, in keeping with the GSPA, does depend linearly on the30

sum of omitted singular values. The constant which appears in the bound may be31

somewhat conservative, however.32

Proposition 4.4. Imposing the notation and assumptions of Theorem 4.3, let ∆33

denote the set of poles of G on iR. The following statements hold.34
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(i) There exists a proper, rational, Cm×m-valued function R such that

G+G∗ = R∗R on iR\∆.

(ii) If ξ ∈ iR, then there exists a proper, rational Cm×m-valued function Rξ
r such1

that2

Gξ
r + (Gξ

r)
∗ = (Rξ

r)
∗Rξ

r on iR\∆.

The functions R and Rξ
r may be chosen with the property that R(ξ) = Rξ

r(ξ)3

and, further, Rξ
r and Gξ

r have state-space realisations with the same dimen-4

sion.5

If G ∈ H∞, then R and Rξ
r may be chosen to belong to H∞ as well. In

this case it follows that
∥∥R−Rξ

r

∥∥
H∞

≤ min
{
2a
∥∥R(I +G)−1

∥∥
H∞

+
√
2
∥∥I +Gξ

r

∥∥
H∞

,

2a
∥∥Rξ

r(I +Gξ
r)

−1
∥∥
H∞

+
√
2
∥∥I +G

∥∥
H∞

} n∑

j=r+1

σj ,

where6

a := min
{
(1 +

∥∥G
∥∥2
H∞

)(1 +
∥∥Gξ

r

∥∥
H∞

), (1 +
∥∥G
∥∥
H∞

)(1 +
∥∥Gξ

r

∥∥2
H∞

)
}
.

5. Examples.7

Example 5.1. Let G denote the strictly bounded real transfer function8

s 7→ G(s) =
(s+ 1)(s+ 2)

(s+ 3)(s+ 4)(s+ 5)
,

considered in [37, Section V] and then [33, Example 1]. A minimal realisation of G9

is10

A =



−12 −5.875 −3.75
8 0 0
0 2 0


 , B =



1
0
0


 , C =

(
1 0.375 0.125

)
, D = 0 ,

and the bounded real singular values are11

σ1 = 5.21× 10−2, σ2 = 3.61× 10−2, σ3 = 6.35× 10−4 .

Figures 5.1 and 5.2 plot the combined error12

∥∥∥∥∥

(
G(s)−G

ξj
r (s)

R(s)−R
ξj
r (s)

)∥∥∥∥∥
2

,

against real s > 0 for several ξj > 0, for the cases r = 1 and r = 2, respectively. Here13

R is a spectral factor for I−G∗G and Rξ
r is a sub-spectral factor for I−(G

ξj
r )∗G

ξj
r ,14

in the sense of statement (iii) of Proposition 3.4. We see in the plots the interpolation15

properties (2.7) and (3.7) holding. As expected from inspection of the bounded real16

singular values — the first two are of the same order — the errors are much smaller17

when r = 2, compare the y-axes of Figures 5.1 and 5.2. Figure 5.3 plots the error18

|G(ωi) − G
ξj
r (ωi)| on an interval of the imaginary axis. Recall that the infinity19

norm error ‖G−G
ξj
r ‖H∞ will be achieved at some such ω. Observe that the choice20

of point of interpolation ξj seemingly leads to a trade-off between the error of the21

approximations at ω = 0 (the steady state gain) and ω = ∞ (the feedthrough). �22
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Figure 5.1. Semi-log plot of combined errors on the real axis for
the bounded real GSPA from Example 5.1, with r = 1. The lines
numbered 1–4 correspond to ξ1 = 0.1, ξ2 = 1, ξ3 = 10 and ξ4 = 100,
respectively. Note the interpolation properties (2.7) and (3.7) hold
and are highlighted with vertical dotted lines. The dashed dotted
line is the bound (3.3).
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∥ ∥ ∥ ∥ ∥(
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−
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∥ ∥ ∥ ∥ ∥ 2
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Figure 5.2. Semi-log plot of combined errors on the real axis for
the bounded real GSPA from Example 5.1, with r = 2. The lines
numbered 1–4 correspond to ξ1 = 0.1, ξ2 = 1, ξ3 = 10 and ξ4 = 100,
respectively. Note the interpolation properties (2.7) and (3.7) hold
and are highlighted with vertical dotted lines. The dashed dotted
line is the error bound (3.3).

Example 5.2. The paper [38, Section V] considers model reduction of RC ladder1

circuit arrangements. The first circuit in that paper, which we consider here, has2

two current sources which gives rise to MIMO control system with the state-space3

realisation4

A =




− 3
2RC

1
2RC

0 0
1

RC
− 2

RC

1
RC

0
0 1

RC
− 2

RC

1
RC

0 0 1
RC

− 3
2RC


 , B =




− 1
C

0
0 0
0 0
0 − 1

C


 ,

C = BT , D =

(
R

2 0
0 R

2

)
.





(5.1)
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Figure 5.3. Plots of errors on the imaginary axis for the bounded
real GSPA from Example 5.1, with r = 1 and r = 2 in panels
(a) and (b), respectively. The lines numbered 1–4 correspond to
ξ1 = 0.1, ξ2 = 1, ξ3 = 10 and ξ4 = 100, respectively, and are
symmetric around ω = 0. The dashed dotted lines are the
bounds (3.3).

Here the terms R and C are positive parameters (resistances and capacitances,1

respectively). The inputs are currents at the sources, the outputs are voltages2

at the sources, and the state variables are voltages at the capacitors. We refer the3

reader to [38, Section V] for more details. The quadruple in (5.1) is strongly positive4

real, as A + A∗ ≤ 0, B = C∗ and D +D∗ > 0. With R = C = 1, the positive real5

singular values are (to three significant figures)6

σ1 = 0.153, σ2 = 0.0870 σ3 = 0.0190 σ4 = 0.00190 ,

which, note, are different to the Hankel singular values of (5.1) computed in [38].7

Figure 5.4 plots the error
∥∥G(s)−Gξ

r(s)
∥∥
2
, where Gξ

r now denotes the positive real8

GSPA, against real s > 0 for fixed ξ = 10, for r ∈ {1, 2, 3}.
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2

3‖G
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)
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ξ r
(s
)‖

2

s ∈ R

Figure 5.4. Semi-log plot of combined errors on the real axis for
the positive real GSPA from Example 5.2, with ξ = 10. The lines
numbered 1–3 correspond to r ∈ {1, 2, 3} respectively. Note the
interpolation property (2.7) holds.

9

The circuit in [38, Section V] may be easily be extended by adding identical “rungs”10

of the ladder, with each capacitor adding another state variable. As an illustrative11

example, we chose N = 15 capacitors, giving 15 states, with the same inputs and12

outputs as before. It is readily established from Kirchoff’s laws and elementary13
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circuit theory that the resulting matrix A has the same tri-banded structure as that1

in (5.1). The new B matrix has the same first and last row as that in (5.1), but with2

more rows of zeros in the middle. Further, C = BT still holds and D is unchanged.3

Fixing ξ = 10, we computed the error in the gap metric between G and Gξ
r for4

r ∈ {1, 2, . . . , 13}, as well as the error bounds from (4.4). The results are plotted5

on a semi-log axis in Figure 5.5. Although the errors are larger than the bound for6

r ≥ 10, we expect that this is a consequence of the Matlab’s function gapmetric7

maximal error tolerance of 1× 10−5. �8
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10

−10
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10
−4
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−2

10
0

E
rr
or
s,

b
ou

n
d
s

r

Figure 5.5. Semi-log plot of gap metric error δ̂(G,Gξ
r) (crosses)

and error bounds (4.4) (circles) for extended circuit model from
Example 5.2. Here ξ = 10.

6. Proofs of results in Sections 3 and 4. We divide the section into two sub-9

sections, considering the bounded real and positive real cases separately.10

6.1. The bounded real generalised singular perturbation approximation.11

In order to prove Theorems 3.2 and 3.3, we draw on the material presented in12

Section 2, and also require three technical lemmas, stated and proven first.13

Lemma 6.1. If stable (A,B,C,D) with transfer function G and Σ = Σ∗ ≥ 0 are14

such that15

A∗Σ+ ΣA+ C∗C = −K∗K − P ∗P

ΣB + C∗D = −K∗W − P ∗Q

I −D∗D = W ∗W +Q∗Q





, (6.1)

hold for some K,P ∈ Cm×n and Q,W ∈ Cm×m, then16

(i) (A,B,C,D) is bounded real.17

(ii) R ∈ H∞(C0,C
2m×m) with realisation (A,B, [KP ] ,

[
W
Q

]
) is a spectral factor18

for I −G∗G in the sense that19

I − (G(s))∗G(s) = (R(s))∗R(s) ∀ s ∈ iR .

Further, if the dual equations20

AΣ+ ΣA∗ +BB∗ = −LL∗ −RR∗

ΣC∗ +BD∗ = −LX∗ −RS∗

I −DD∗ = XX∗ + SS∗





, (6.2)

hold for some L,R ∈ Cn×p and X,S ∈ Cp×p, then21
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(iii) S ∈ H∞(C0,C
p×2p) with realisation (A, [B R ] , C, [X S ]) is a spectral factor1

for I −GG∗ in the sense that2

I −G(s)(G(s))∗ = S(s)(S(s))∗ ∀ s ∈ iR .

Observe that in the above lemma, if P = 0 and Q = 0, then (A,B,K,W ) is a3

realisation of a spectral factor R. Similarly, if R = 0 and S = 0, then (A,L,C,X)4

is a realisation of a spectral factor S.5

Proof of Lemma 6.1: To prove statement (i), let x0 ∈ Cn, u be a continuous control
and x = x(·;u, x0) the corresponding differentiable state. From (6.1) we have that
for all τ ≥ 0

d

dτ
〈x(τ),Σx(τ)〉+ ‖y(τ)‖2 − ‖u(τ)‖2

=

〈(
A∗Σ+ ΣA+ C∗C ΣB + C∗D

B∗Σ+D∗C D∗D − I

)(
x(τ)
u(τ)

)
,

(
x(τ)
u(τ)

)〉

≤ −
∥∥∥∥
(
K W

)(x(τ)
u(τ)

)∥∥∥∥
2

−
∥∥∥∥
(
P Q

)(x(τ)
u(τ)

)∥∥∥∥
2

≤ 0 . (6.3)

Integrating both sides of (6.3) between 0 and t ≥ 0 gives6

∫ t

0

d

dτ
〈x(τ),Σx(τ)〉+ ‖y(τ)‖2 − ‖u(τ)‖2 dτ ≤ 0 ∀ t ≥ 0 ,

whence7 ∫ t

0

‖y(τ)‖2 − ‖u(τ)‖2 dτ ≤ 〈x0,Σx0〉 − 〈x(t),Σx(t)〉 ∀ t ≥ 0 . (6.4)

By a continuity and density argument, the inequality (6.4) holds for all u ∈ L2 with8

corresponding continuous state x. With zero initial state x0 = 0, it follows that9

the input u and output y satisfy ‖y‖L2 ≤ ‖u‖L2 , and hence (A,B,C,D) is bounded10

real.11

Statement (ii) follows from an elementary calculation using the equalities in (6.1).
Indeed, let s ∈ iR and consider

I − (G(s))∗G(s) = I − (D + C(sI −A)−1B)∗(D + C(sI −A)−1B)

= I −D∗D −D∗C(sI −A)−1B −B∗(sI −A)−∗C∗D

−B∗(sI −A)−∗C∗C(sI −A)−1B

= W ∗W ∗ +Q∗Q+
(
B∗Σ+W ∗K +Q∗P

)
(sI −A)−1B

+B∗(sI −A)−∗
(
ΣB +K∗W + P ∗Q

)

+B∗(sI −A)−∗
(
A∗Σ+ ΣA+K∗K + P ∗P

)
(sI −A)−1B

= W ∗W ∗ +Q∗Q+
(
W ∗K +Q∗P

)
(sI −A)−1B

+B∗(sI −A)−∗
(
K∗W + P ∗Q

)

+B∗(sI −A)−∗
(
K∗K + P ∗P

)
(sI −A)−1B

=

((
W
Q

)
+

(
K
P

)
(sI −A)−1B

)∗((
W
Q

)
+

(
K
P

)
(sI −A)−1B

)

= (R(s))∗R(s) .
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Statement (iii) is proven similarly, only instead using the equalities in (6.2). The1

details are omitted.2

For ξ ∈ C with Re(ξ) ≥ 0 and stable (A,B,C,D), set3

A := (A− ξI)−1, B := (A− ξI)−1B ,

C := C(A− ξI)−1, D := D − C(A− ξI)−1B ,

}
(6.5)

which are well-defined and based on the reciprocal transformation. For given r ∈4

n− 1, let the decomposition (A11,B1, C1) be analogous to those in (2.4). The next5

lemma describes properties of (A,B, C) and relationships with (Aξ, Bξ, Cξ).6

Lemma 6.2. For ξ ∈ C with Re(ξ) ≥ 0 and stable (A,B,C), assume that (Aξ, Bξ, Cξ)7

given by (2.5) is well-defined and let (A,B, C) be given by (6.5). The following state-8

ments hold.9

(1) If (A,B,C) is controllable or observable, then (A,B, C) has the same respective10

property.11

(2) ξ 6∈ σ(Aξ) so that Aξ − ξI is invertible and12

A11 = (Aξ − ξI)−1, B1 = (Aξ − ξI)−1Bξ, C1 = Cξ(Aξ − ξI)−1 . (6.6)

(3) If M ∈ Cn×n is Hurwitz and ξ ∈ C0, then σ((M − ξI)−1) ⊆ Eξ, where13

Eξ :=
{
s ∈ C : |s+ 1/(2Re(ξ))| < 1/(2Re(ξ))

}
. (6.7)

If ξ ∈ iR, then (M − ξI)−1 is Hurwitz.14

(4) A in (6.5) is Hurwitz.15

Proof. (1): We use the Hautus criterion for observability. Assume that v ∈ Cn is16

such that Av = λv and Cv = 0. Since A is invertible, if λ = 0, then v = 0 and there17

is nothing to prove. If λ 6= 0, then rearranging gives Av = (ξ + 1/λ)v and18

0 = Cv = C(A− ξI)−1v = λCv ,

so that Cv = 0. As the pair (C,A) is observable, it follows that v = 0, and thus19

the pair (C,A) is also observable. The proof of the controllability claim is similar,20

and so the details are omitted.21

(2): We prove that ξ 6∈ σ(Aξ) by contraposition. If v 6= 0 and ξ ∈ C are such that
Aξv = ξv, then

A

(
v

(ξI −A22)
−1A21v

)
=

(
A11 A12

A21 A22

)(
v

(ξI −A22)
−1A21v

)

=

(
Aξv
ξv

)
= ξ

(
v

(ξI −A22)
−1A21v

)
,

and we conclude that ξ ∈ σ(A). The claim now follows as A is assumed Hurwitz,22

but Re(ξ) ≥ 0.23

The equalities in (6.6) follow from block-wise matrix inversion and the definitions24

in (2.5) and (6.5).25
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(3): Let λ ∈ σ((M − ξI)−1) (so that necessarily λ 6= 0). Then ξ + 1/λ ∈ σ(M), so
that

Re(ξ + 1/λ) < 0 ⇒ Re(ξ) < −Re(1/λ) =
−Re(λ)

|λ|2
⇒ Re(λ) < −Re(ξ)|λ|2 . (6.8)

If ξ ∈ C0, then (6.8) gives that λ ∈ Eξ, as required. If Re(ξ) = 0, then (6.8) now1

yields that Re(λ) < 0.2

(4): Follows from (3), upon noticing that Eξ ⊂ C0.3

In the sequel we shall require the simple observation that for ξ ∈ C04

λ ∈ ∂Eξ ⇐⇒ Re (λ) = −Re(ξ)|λ|2 , (6.9)

where ∂Eξ denotes the boundary of Eξ — the circle in the complex plane with5

radius 1/(2Re(ξ)) and centre −1/(2Re(ξ)).6

Lemma 6.3. Given ξ ∈ C with Re(ξ) ≥ 0, suppose that stable (A,B,C,D) has7

transfer function G. Define Gξ
r, H and Hr as the transfer functions with reali-8

sations (Aξ, Bξ, Cξ, Dξ), (A,B,−C,D) and (A11,B1,−C1,D), respectively. Assume9

that σ(A11) ⊆ Eξ if ξ ∈ C0, or A11 is Hurwitz if ξ ∈ iR. Then10

G(z) = H

(
1

z − ξ

)
∀ z ∈ C0, Re(z) ≥ 0, z 6= ξ , (6.10)

and11

Gξ
r(z) = Hr

(
1

z − ξ

)
∀ z ∈ C0, Re(z) ≥ 0, z 6= ξ . (6.11)

Proof. Invoking Lemma 6.2, as A is Hurwitz, either σ(A) ⊆ Eξ or A is Hurwitz,
depending on whether ξ ∈ C0 or ξ ∈ iR, respectively. For z ∈ C, Re(z) ≥ 0 and
z 6= 0, we compute that

G(ξ + 1/z) = D + C ((ξ + 1/z)I −A)
−1

B = D + C (1/zI − (A− ξI))
−1

B

= D − Cz
(
zI − (A− ξI)−1

)−1
(A− ξI)−1B

= D − C(A− ξI)−1B − C(A− ξI)−1
(
zI − (A− ξI)−1

)−1
(A− ξI)−1B

= D − C(zI −A)−1B
= H(z) . (6.12)

Similarly, using the relationships (6.6), we have that

Hr(z) = D − C1(zI −A11)
−1B1

= D − Cξ(Aξ − ξI)−1
(
zI − (Aξ − ξI)−1

)−1
(Aξ − ξI)−1Bξ

= D + Cξ(Aξ − ξI)−1Bξ + Cξ((ξ + 1/z)I −Aξ)
−1Bξ

= Gξ
r(ξ + 1/z) , (6.13)

where we have used (2.7) to infer that

D + Cξ(Aξ − ξI)−1Bξ = D − C(A− ξI)−1B + Cξ(Aξ − ξI)−1Bξ

= G(ξ)− (Gξ
r(ξ)−Dξ)

= Dξ .
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Therefore, combining (6.12) and (6.13) with a change of variables yields (6.10)1

and (6.11), respectively.2

Proof of Theorem 3.2. Let ξ ∈ C with Re(ξ) ≥ 0. An application of [40, Theorem3

3.2] to the first equations in (3.1) and (3.2), both with Z = Σ, shows that A22 is4

Hurwitz, so that (Aξ, Bξ, Cξ, Dξ) is well-defined. Elementary calculations using the5

definitions of (Aξ, Bξ, Cξ, Dξ) in (2.5) and the equalities (3.1) and (3.2) considered6

block wise show that7

A∗
ξΣ1 +Σ1Aξ + C∗

ξCξ = −K∗
ξKξ − 2Re(ξ)A∗

21φ
∗Σ2φA21 ,

Σ1Bξ + C∗
ξDξ = −K∗

ξWξ − 2Re(ξ)A∗
21φ

∗Σ2φB2 ,

I −D∗
ξDξ = W ∗

ξ Wξ + 2Re(ξ)B∗
2φ

∗Σ2φB2 ,





(6.14)

and8

AξΣ1 +Σ1A
∗
ξ +BξB

∗
ξ = −LξL

∗
ξ − 2Re(ξ)A12φΣ2φ

∗A∗
12 ,

Σ1C
∗
ξ +BξD

∗
ξ = −LξX

∗
ξ − 2Re(ξ)A12φΣ2φ

∗C∗
2 ,

I −DξD
∗
ξ = XξX

∗
ξ + 2Re(ξ)C2φΣ2φ

∗C∗
2 ,





(6.15)

where φ := (ξI −A22)
−1 and9

Kξ := K1 +K2φA21, Wξ := W +K2φB2 ,

Lξ := L1 +A12φL2, Xξ := X + C2φL2 .

}
(6.16)

In light of Lemma 6.1 and (6.14), it follows that (Aξ, Bξ, Cξ, Dξ) is bounded real.10

Evidently, if ξ ∈ iR, then the resulting simplification of (6.14) and (6.15) im-11

plies that (Aξ, Bξ, Cξ, Dξ) is bounded real balanced, completing the proof of state-12

ment (i).13

We proceed to prove statements (ii) and (iii), treating the cases ξ ∈ C0 and ξ ∈ iR14

separately. Assume that ξ ∈ C0. The first equation in (6.14) implies that every15

eigenvalue of Aξ has non-positive real part. Suppose that Aξv = ηi v for some η ∈ R16

and v ∈ Cr. Forming the inner product17

〈(A∗
ξΣ1 +Σ1Aξ + C∗

ξCξ)v, v〉 ,

and using (6.14), it follows that18

0 ≤ ‖Cξv‖2 = −‖Kξv‖2 − 2Re(ξ)〈Σ2(ξI −A22)
−1A21v, (ξI −A22)

−1A21v〉 ≤ 0 ,

whence19

〈Σ2(ξI −A22)
−1A21v, (ξI −A22)

−1A21v〉 = 0 ,

as Re (ξ) > 0. Since Σ2 > 0, we infer that20

(ξI −A22)
−1A21v = 0 .

Consequently21

A

(
v
0

)
=

(
A11 A12

A21 A22

)(
v

(ξI −A22)
−1A21v

)
=

(
Aξv

ξ(ξI −A22)
−1A21v

)
= ηi

(
v
0

)
,

and, as A is Hurwitz, we deduce that v = 0. Recalling our supposition that Aξv =22

ηi v, we conclude that Aξ is Hurwitz as well.23

For ξ ∈ C0, and for statement (iii), we shall require (A,B, C,D) defined in (6.5),24

which is stable by statement (3) of Lemma 6.2. Calculations starting from (3.1)25
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and (3.2) respectively show that1

A∗Σ+ ΣA+ C∗C = −K∗K − 2Re(ξ)A∗ΣA
ΣB − C∗D = K∗W − 2Re(ξ)A∗ΣB
I −D∗D = W∗W + 2Re(ξ)B∗ΣB





, (6.17)

and2

AΣ+ ΣA∗ + BB∗ = −LL∗ − 2Re(ξ)AΣA∗

Σ(−C∗) + BD∗ = −LX ∗ − 2Re(ξ)AΣ(−C)∗

I −DD∗ = XX ∗ + 2Re(ξ)CΣC∗





, (6.18)

where3

K := KA, W := W −KB, L := AL, and X := X − CL . (6.19)

The first equations in (6.17) and (6.18) may respectively be rewritten as4

A∗Σ+ ΣA+
(
C∗ K∗

)(C
K

)
= −2Re(ξ)A∗ΣA , (6.20)

and5

AΣ+ ΣA∗ +
(
B L

)(B∗

L∗

)
= −2Re(ξ)AΣA∗ . (6.21)

If ξ ∈ iR, then a consequence of the simplification of (6.21) and (6.20) is that6

(
A,
(
B L

)
,

(
C
K

))
,

is Lyapunov balanced. An application of [40, Theorem 3.2] yields that A11 is7

Hurwitz, again invoking the assumption that the singular values are simple implies8

that the spectra of Σ1 and Σ2 are disjoint. Statement (2) of Lemma 6.2 implies9

that ξ 6∈ σ(Aξ) and that (6.6) holds, from which it is routine to verify that Aξ is10

Hurwitz, since A11 is, and ξ ∈ iR. The proof of statement (ii) is complete.11

To prove statement (iii), we additionally assume that (A,B,C,D) is strictly bounded
real. Suppose first that ξ ∈ C0. To establish minimality, let λ ∈ C and v ∈ Cn be
such that Aξv = λv and Cξv = 0. We compute that

A

(
v

(ξI −A22)
−1A21v

)
=

(
Aξv

ξ(ξI −A22)
−1A21v

)
=

(
λ 0
0 ξ

)(
v

(ξI −A22)
−1A21v

)
,

so that12

Az = Ez ,

where13

E :=

(
λ 0
0 ξ

)
and z :=

(
v

(ξI −A22)
−1A21v

)
.

An application of [40, Theorem 3.1] to the (Lyapunov) balanced realisation14

(
A,
(
B L

)
,

(
C
K

))
,

implies that15

‖eAtz‖2 = ‖eEtz‖2 =

∥∥∥∥
(
eλt 0
0 eξt

)(
z1
z2

)∥∥∥∥
2

< ‖z‖2 ∀ t > 0 ,

whence16

e2Re(ξ)t‖z2‖2 ≤ e2Re(λ)t‖z1‖2 + e2Re(ξ)t‖z2‖2 < ‖z1‖2 + ‖z2‖2 ∀ t > 0 . (6.22)
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Since ξ ∈ C0, the inequality (6.22) yields that1

z2 = (ξI −A22)
−1A21v = 0 ,

from which2

λv = Aξv = A11v +A12(ξI −A22)
−1A21v = A11v ,

and3

0 = Cξv = C1v + C2(ξI −A22)
−1A21v = C1v .

As (A,B,C,D) is bounded real balanced and strictly bounded real, the pair (C1, A11)4

is observable by [37, Theorem 2], and so we deduce that v = 0, proving that (Cξ, Aξ)5

is observable. The proof that the pair (Aξ, Bξ) is controllable is similar, and thus6

is omitted.7

Let G and H be realised by (A,B,C,D) and (A,B,−C,D), respectively. If ξ ∈ iR,8

then the equality (6.12) gives9

‖H‖H∞ = sup
z∈C0

‖H(z)‖2 = sup
z∈C0

‖G(ξ + 1/z)‖2 = ‖G‖H∞ < 1 , (6.23)

so that H is strictly bounded real. It follows from the equalities in (6.17) and (6.18)10

that (A,B,−C,D) is bounded real balanced, and so (A11,B1,−C1,D) is the bounded11

real balanced truncation. Invoking [37, Theorem 2] yields that (A11,B1,−C1) is12

minimal, and hence so is (Aξ, Bξ, Cξ) via the relationships in (6.6), establishing13

minimality.14

To establish the strict bounded realness of (Aξ, Bξ, Cξ, Dξ), again we consider ξ ∈ C015

and ξ ∈ iR separately. In both cases, let the realisation (A11,B1,−C1,D) have16

transfer function denoted Hξ
r. For ξ ∈ C0 we use proof by contraposition; suppose17

that ω0 ∈ R and u0 ∈ Cm with ‖u0‖2 = 1 are such that18

∥∥Gξ
r(iω0)

∥∥
2
=
∥∥Gξ

r(iω0)u0

∥∥
2
= 1 .

It follows from Lemma 6.3, notably (6.11), that19

‖Hξ
r(p0)u0‖2 =

∥∥∥∥H
ξ
r

(
1

iω0 − ξ

)
u0

∥∥∥∥
2

= ‖Gξ
r(iω0)u0‖2 = 1 ,

where p0 := 1/(iω0 − ξ) ∈ ∂Eξ.20

An elementary sequence of calculations using (6.9) and (6.17), which are relegated
to Appendix B, shows that

I−[Hξ
r(p0)]

∗Hξ
r(p0)

= q2(B2 +A21(p0I −A11)
−1B1)

∗Σ2(B2 +A21(p0I −A11)
−1B1)

+ (W −K1(p0I −A11)
−1B1)

∗(W −K1(p0I −A11)
−1B1) , (6.24)

where q :=
√
2Re(ξ) > 0. Since Σ2 > 0, in light of (6.24), it follows that21

(
B2 +A21(p0I −A11)

−1B1

)
u0 = 0 , (6.25)

and22 (
W −K1(p0I −A11)

−1B1

)
u0 = 0 . (6.26)

Setting23

z0 :=

(
(p0I −A11)

−1B1u0

0

)
,
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and appealing to (6.25), we have that

Az0 + Bu0 =

(
A11 A12

A21 A22

)(
(p0I −A11)

−1B1u0

0

)
+

(
B1

B2

)
u0

=

(
p0(p0I −A11)

−1B1u0

0

)

= p0z0 . (6.27)

Since σ(A) ⊆ Eω, p0 6∈ σ(A), and so rearranging (6.27) yields1

z0 = (p0I −A)−1Bu0 .

We conclude that

(W −K(pI −A)−1B)u0 = Wu0 −Kz0 =
(
K1 K2

)((p0I −A11)
−1B1u0

0

)

= Wu0 −K1(p0I −A11)
−1B1u0

= 0 , (6.28)

by (6.26). Another elementary series of calculations using (6.9) and (6.17), relegated2

to Appendix C, shows that3

I − [H(p0)]
∗H(p0) = (W −K(p0I −A)−1B)∗(W −K(p0I −A)−1B) , (6.29)

which, in conjunction with (6.28), implies that4

‖H(p0)u0‖2 = 1 .

Invoking (6.10), we now see that5

‖G(iω0)u‖2 = ‖H(p0)u0‖2 = 1 ,

implying that G is not strictly bounded real. The above proof is easily altered by6

taking p0 = 0 in the case that7

lim
ω∈R
ω→∞

‖Gξ
r(iω)‖2 = 1 ,

as Gξ
r is continuous at infinity.8

It remains to consider ξ ∈ iR. We first establish that (A11,B1,−C1,D) is strictly9

bounded real. For which purpose, the inequality (6.23) implies that ‖D‖2 < 1, and10

hence I − D∗D is invertible. Since (A11,B1,−C1,D) is bounded real balanced, it11

follows from the Bounded Real Lemma and by construction that Σ1 and Σ−1
1 are12

solutions of the bounded real algebraic Riccati equation13

A∗
11Z + ZA11 + C∗

1C1 + (ZB1 − C∗
1D)(I −D∗D)−1(ZB1 − C∗

1D)∗ = 0 , (6.30)

with the property that Σ−1
1 > I > Σ1. For notational convenience, define14

R := I −D∗D = R∗ > 0, S = I −DD∗ = S∗ > 0 ,

and15

AE := A11 + B1R
−1(B∗

1Σ1 −D∗C1) .
In light of [50, Theorem 13.19], it suffices to prove that AE is Hurwitz, that is, that16

Σ1 is a stabilizing solution of (6.30). Elementary manipulation of (6.30) for both17

Z = Σ1 and Z = Σ−1
1 shows that18

A∗
EΣ1 +Σ1AE + C∗

1S−1C1 − Σ1B1R−1B∗
1Σ1 = 0 , (6.31)
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and1

A∗
EΣ

−1
1 +Σ−1

1 AE + C∗
1S−1C1 +ΠB1R−1B∗

1Σ1Π− Σ1B1R−1B∗
1Σ1 = 0 , (6.32)

hold, where Π = Σ−1
1 − Σ1 = Π∗ > 0. Subtracting (6.31) from (6.32) gives2

A∗
EΠ+ΠAE +ΠB1R−1B∗

1Π = 0 ,

from which we see that every eigenvalue of AE has non-positive real part. Now3

suppose that v ∈ Cr and ω ∈ R are such that AEv = iωv. Forming the inner4

product5 〈[
A∗

EΠ+ΠAE +ΠB1R−1B∗
1Π
]
v, v
〉
= 0 ,

it follows that6

B∗
1Πv = 0 . (6.33)

Since7 〈[
A∗

EΠ+ΠAE +ΠB1R−1B∗
1Π
]
x, v
〉
= 0 ∀ x ∈ Cr ,

we see that
〈[
A∗

EΠ+ΠAE

]
x, v
〉
= 0 ∀ x ∈ Cr ⇒ 〈x, [A∗

E + iωI]Πv〉 = 0 ∀ x ∈ Cr

⇒ A∗
EΠv = −iωΠv . (6.34)

Finally, noting that (AE ,B1) is controllable, as (A11,B1) is, we conclude from (6.33)8

and (6.34) that Πv = 0, and so v = 0. Hence, AE is Hurwitz and so (A11,B1,−C1,D)9

is strictly bounded real. Finally, invoking (6.11) and that ξ ∈ iR, we estimate that10

‖Gξ
r‖H∞ = sup

z∈C0

‖Gξ
r(z)‖2 = sup

z∈C0

‖Hξ
r(1/(z − ξ))‖2 = ‖Hξ

r‖H∞ < 1 ,

whence (Aξ, Bξ, Cξ, Dξ) is strictly bounded real.11

Proof of Theorem 3.3. Let (A,B,C,D) denote a minimal, bounded real balanced,12

and stable, realisation of G. For K, W , L, X as in (3.1) and (3.2), it follows that13

the realisation14 (
A,
(
B L

)
,

(
C
K

)
,

(
D X
W 0

))
, (6.35)

with transfer function J, is Lyapunov balanced. Let (Aξ, Bξ, Cξ, Dξ), with transfer15

function Gξ
r, denote the bounded real GSPA of (A,B,C,D), which is well-defined16

for all ξ ∈ C0 ∪ iR by Theorem 3.2. By construction, the realisation17

(
Aξ,

(
Bξ Lξ

)
,

(
Cξ

Kξ

)
,

(
Dξ Xξ

Wξ 0

))
, (6.36)

is the GSPA of that in (6.35), where Kξ, Lξ, Wξ and Xξ are given by (6.16).18

Letting Jξ
r denote the transfer function of (6.36) and invoking Theorem 2.4 yields19

‖J− Jξ
r‖H∞ ≤ 2

n∑

j=r+1

σj , (6.37)

where (σj)
n
j=1 are the Hankel singular values of J, which are equal to the bounded20

real singular values of G. Combining (6.37) with the easily established estimate21

‖G−Gξ
r‖H∞ ≤ ‖J− Jξ

r‖H∞ ,

gives (3.3), as required. The function Gξ
r has the properties claimed.22

The final claim follows from statement (iii) of Theorem 3.2.23
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Proof of Proposition 3.4: The proof builds on that of Theorem 3.3.1

For statement (i), define R ∈ H∞(C0,C
m×m) and S ∈ H∞(C0,C

p×p) by the2

realisations3

(A,B,K,W ) and (A,L,C,X) ,

respectively. In light of (3.1) and (3.2), it follows from statements (ii) and (iii) of4

Lemma 6.1 that R and S are spectral factors of I−G∗G and I−GG∗, respectively,5

as required.6

For statement (ii), let ξ ∈ iR, and letRξ
r ∈ H∞(C0,C

m×m) and Sξ
r ∈ H∞(C0,C

p×p)7

be defined by the realisations8

(Aξ, Bξ,Kξ,Wξ) and (Aξ, Lξ, Cξ, Xξ) , (6.38)

respectively, where Kξ, Lξ, Wξ and Xξ are given by (6.16). Appealing to (6.14),9

(6.15), and invoking statements (ii) and (iii) of Lemma 6.1, it follows that Rξ
r and10

Sξ
r are spectral factors of Gξ

r in the sense of (3.4), as required. By their definitions11

in.12

The error bound (3.5) follows by combining (6.37) with the identity13

(
G−Gξ

r S− Sξ
r

R−Rξ
r ♯

)
= J− Jξ

r ,

(which follows by construction) where ♯ denotes an entry we are not concerned with.14

The error bounds (3.6) are a straightforward consequence of (3.5).15

The interpolation equalities (3.7) hold owing to the definition (6.16) of the realisa-16

tion (6.38) (compare with (2.5)).17

For statement (iii), we define Rξ
r ∈ H∞(C0,C

m×m) and Sξ
r ∈ H∞(C0,C

p×p) as18

above, which, as with the proof of statement (ii), satisfy properties (3.5)–(3.7).19

Appealing to (6.14), an application of statement (ii) of Lemma 6.1, the function20

Uξ
r ∈ H∞(C0,C

2m×m) with realisation21

(
Aξ, Bξ,

(
Kξ

q
√
Σ2φA21

)
,

(
Wξ

q
√
Σ2φB2

))
,

where q :=
√
2Re(ξ) > 0 and φ = (ξI−A22)

−1, is a spectral factor of I− (Gξ
r)

∗Gξ
r.22

A straightforward calculation shows that23

(Uξ
r)

∗Uξ
r ≥ (Rξ

r)
∗Rξ

r on iR,

establishing the first inequality in (3.8). The dual case is proven similarly, us-24

ing (6.15), and invoking statement (iii) of Lemma 6.1 with Vξ
r ∈ H∞(C0,C

p×2p)25

defined by the realisation26

(
Aξ,

(
Lξ qA12φ

√
Σ2

)
, Cξ,

(
Xξ qC2φ

√
Σ2

))
.

27

6.2. The positive real generalised singular perturbation approximation.28

The proof of the next lemma is very similar to that of Lemma 6.1, and is thus29

omitted. We have also omitted the corresponding statements pertaining to the dual30

positive real equations as, although they do hold, we shall not require them.31
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Lemma 6.4. If (A,B,C,D) with transfer function G and Σ ≥ 0 are such that1

A∗Σ+ ΣA = −K∗K − P ∗P ,

ΣB − C∗ = −K∗W − P ∗Q ,

D∗ +D = W ∗W +Q∗Q ,

for some appropriately sized K, P , Q and W , then the following statements hold.2

(i) (A,B,C,D) is positive real.3

(ii) R with realisation (A,B, [KP ] ,
[
W
Q

]
) is a spectral factor for G∗ + G in the4

sense that5

(G(s))∗ +G(s) = (R(s))∗R(s) ∀ s ∈ iR \∆ ,

where ∆ denotes the set of poles of G.6

We shall employ the so-called Cayley Transform S : H(C0,C
m×m) ⊇ D(S) →7

H(C0,C
m×m), which is given by8

S(G)(s) = (I −G(s))(I +G(s))−1 s ∈ C0 .

Here D(S) contains all G ∈ H(C0,C
m×m) where the above formula makes sense (at9

least) for all s ∈ C0. Further, it is well-known (see, instance, [19, Lemma 7.1.8]) that10

if G is positive real, then G ∈ D(S) and S(G) is bounded real, and so in particular,11

belongs to H∞(C0,C
m×m). It is evident that the Cayley transform maps rational12

functions to rational functions.13

If (A,B,C,D) is a minimal realisation of G ∈ D(S), then (Ã, B̃, C̃, D̃) given by14

Ã := A−B(I +D)−1C B̃ :=
√
2B(I +D)−1

C̃ := −
√
2(I +D)−1C D̃ := (I −D)(I +D)−1

}
, (6.39)

is well-defined and a minimal realisation of S(G). Since S : D(S) → D(S) and15

S2 = id, the identity function, meaning that S is self-inverse, it follows that16

( ˜̃A, ˜̃B, ˜̃C, ˜̃D) is well-defined and ( ˜̃A, ˜̃B, ˜̃C, ˜̃D) = (A,B,C,D) .

The next lemma shows that the following diagram17

(A,B,C,D) (Aξ, Bξ, Cξ, Dξ)

(Ã, B̃, C̃, D̃) ((Ã)ξ, (B̃)ξ, (C̃)ξ, (D̃)ξ)

GSPA

Cayley Cayley

GSPA





(6.40)

commutes. The proof is a tedious series of elementary calculations, and is relegated18

to Appendix D.19

Lemma 6.5. Given ξ ∈ C with Re(ξ) ≥ 0 and (A,B,C,D), assume that each of20

the quadruples in (6.40) are well-defined. Then21

((̃Aξ), (̃Bξ), (̃Cξ), (̃Dξ)) = ((Ã)ξ, (B̃)ξ, (C̃)ξ, (D̃)ξ) ,

and so the diagram (6.40) commutes.22

Proof of Theorem 4.2. Let ξ ∈ C with Re(ξ) ≥ 0. An application of [40, Theorem23

3.2] to the first two equations in (4.2) and (4.3) shows that A22 is Hurwitz, so that24



26 CHRIS GUIVER

(Aξ, Bξ, Cξ, Dξ) is well-defined. Elementary calculations using the definitions of1

(Aξ, Bξ, Cξ, Dξ) in (2.5) and the equalities (4.2) considered block wise show that2

A∗
ξΣ1 +Σ1Aξ = −K∗

ξKξ − 2Re(ξ)A∗
21φ

∗Σ2φA21

Σ1Bξ − C∗
ξ = −K∗

ξWξ − 2Re(ξ)A∗
21φ

∗Σ2φB2

D∗
ξ +Dξ = W ∗

ξ Wξ + 2Re(ξ)B∗
2φ

∗Σ2φB2





, (6.41)

and3

AξΣ1 +Σ1A
∗
ξ = −LξL

∗
ξ − 2Re(ξ)A12φΣ2φ

∗A∗
12

Σ1C
∗
ξ −Bξ = −LξX

∗
ξ − 2Re(ξ)A12φΣ2φ

∗C∗
2

Dξ +D∗
ξ = XξX

∗
ξ + 2Re(ξ)C2φΣ2φ

∗C∗
2





, (6.42)

where φ = (ξI −A22)
−1 and Kξ, Wξ, Lξ, Xξ are given by (6.16).4

In light of (6.41), an application of statement (i) of Lemma 6.4 yields that (Aξ, Bξ, Cξ, Dξ)5

is positive real. Evidently, if ξ ∈ iR, then the resulting simplification of (6.41)6

and (6.42) implies that (Aξ, Bξ, Cξ, Dξ) is positive real balanced, completing the7

proof of statement (i).8

The proof that Aξ is Hurwitz when ξ ∈ C0 is the same as that in the proof of9

Theorem 3.2, only using the first equation in (6.41), instead of (6.14). The details10

are therefore omitted.11

Next, define (A,B, C,D) as in (6.5) and note that A = (A − ξI)−1 is Hurwitz by12

statement (3) of Lemma 6.2. Calculations starting from (4.2) and (4.3) respectively13

show that14

A∗Σ+ ΣA = −K∗K − 2Re(ξ)A∗ΣA
ΣB − (−C)∗ = K∗W − 2Re(ξ)A∗ΣB

D∗ +D = W∗W + 2Re(ξ)B∗ΣB





, (6.43)

and15

AΣ+ ΣA∗ = −LL∗ − 2Re(ξ)AΣA∗

Σ(−C)∗ − B = −LX ∗ − 2Re(ξ)AΣ(−C)∗

D +D∗ = XX ∗ + 2Re(ξ)CΣC∗





, (6.44)

where K, W, L and X are given by (6.19).16

When ξ ∈ iR, then a consequence of the first equations in (6.43) and (6.44) is17

that the realisation (A,L,K) is Lyapunov balanced. Thus A11 is Hurwitz by [40,18

Theorem 3.2], again invoking the assumption that the singular values are simple19

implies that the spectra of Σ1 and Σ2 are disjoint. Statement (2) of Lemma 6.220

yields that ξ 6∈ σ(Aξ). Consequently, Aξ − ξI is invertible, and thus from (6.6) we21

see that A11 = (Aξ − ξI)−1. It is now routine to verify that Aξ is Hurwitz, since22

A11 is, and ξ ∈ iR. We have proven statement (ii).23

To prove statement (iii), assume that (A,B,C,D) is strongly positive real, so that24

(Ã, B̃, C̃, D̃) is well-defined and strictly bounded real. Further, Ã is Hurwitz, since25

the realisation (Ã, B̃, C̃, D̃) is minimal, and the transfer function is strictly bounded26

real (and hence belongs to H∞).27

As (A,B,C,D) is assumed positive real balanced, it follows that (Ã, B̃, C̃, D̃) is28

bounded real balanced (by [37, Lemma 5]). Invoking statement (iii) of Theorem 3.2,29

it follows that30

((Ã)ξ, (B̃)ξ, (C̃)ξ, (D̃)ξ) ,
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is minimal and strictly bounded real, and so is1

((̃Aξ), (̃Bξ), (̃Cξ), (̃Dξ)) ,

by Lemma 6.5. Since the Cayley transform is self-inverse, preserves minimality and2

maps strictly bounded real systems to strongly positive real systems [19, Lemma3

7.1.8, p.159], it follows that (Aξ, Bξ, Cξ, Dξ) is minimal and strongly positive real,4

proving statement (iii).5

Proof of Theorem 4.3. Let (A,B,C,D) denote a minimal, positive real balanced6

realisation of G and ξ ∈ C with Re(ξ) ≥ 0 which is not a pole of G. Therefore, ξ7

is not an eigenvalue of A, as (A,B,C) is minimal. Arguing as in the proof of [40,8

Theorem 3.2] from the first equations in (4.2) and (4.3) shows that ξ 6∈ σ(A22), and9

so (Aξ, Bξ, Cξ, Dξ) is well defined.10

Let Gξ
r and H be defined by the realisations11

(Aξ, Bξ, Cξ, Dξ) and (Ã, B̃, C̃, D̃) ,

respectively. In light of (6.41), an application of statement (i) of Lemma 6.412

yields that Gξ
r is positive real. Therefore, Gξ

r ∈ D(S), in particular meaning that13

((̃Aξ), (̃Bξ), (̃Cξ), (̃Dξ)) is well-defined. Next, note that (Ã, B̃, C̃, D̃) is minimal,14

stable, bounded real, and bounded real balanced, whence Ã22 is Hurwitz and so15

((Ã)ξ, (B̃)ξ, (C̃)ξ, (D̃)ξ) is well-defined; we denote its transfer function by Hξ
r.16

A consequence of Lemma 6.5 is that S(Gξ
r) = Hξ

r. An application of Theorem 3.317

shows that18

‖H−Hξ
r‖H∞ ≤ 2

n∑

j=r+1

σj ,

since the positive real singular values of G are precisely the bounded real singular19

values of H, see [23, Corollary 9.6]. The remainder of the proof of (4.4) follows using20

the arguments given in [19, Theorem 7.2.12] or [22, Theorem 1.2]. The bound (4.5)21

follows from (4.4) and the equivalence of the gap metric restricted to bounded,22

linear operators and the operator norm, see [19, Corollary 3.6.9].23

If G ∈ H∞(C0,C
m×m), then, in addition to its other properties, the realisation24

(A,B,C,D) may be chosen to be stable. It follows from statement (ii) of Theo-25

rem 4.2 that Aξ is Hurwitz and so Gξ
r ∈ H∞(C0,C

m×m) as well. If G is strongly26

positive real, then, by construction of Gξ
r, statement (iii) of Theorem 4.2 implies27

that Gξ
r is strongly positive real as well.28

Proof of Proposition 4.4. (i) Since G is positive real, G ∈ D(S) and H := S(G) is29

bounded real. Applying statement (i) of Proposition 3.4 to H ∈ H∞ yields T ∈ H∞
30

such that31

I −H∗H = T∗T on iR. (6.45)

Since H ∈ D(S) and S is self-inverse, we have that G = S(H) and a straightforward
calculation invoking (6.45) shows that

G+G∗ = S(H) + [S(H)]∗ = (I −H)(I +H)−1 +
[
(I −H)(I +H)−1

]∗

= 2(I +H)−∗
[
I −H∗H

]
(I +H)−1

= (R)∗R ∀ s ∈ iR \∆ ,
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where R :=
√
2T(I+H)−1, which is evidently rational. Moreover, upon calculating1

(I +H)−1 = (I + S(G))−1 =
1

2
(I +G) ,

it follows that R is proper.2

(ii) The proof mimics that of statement (i), only replacing G by Gξ
r from Theo-3

rem 4.3 and Hξ
r := S(Gξ

r). Then (6.45) becomes4

I − (Hξ
r)

∗Hξ
r = (Tξ

r)
∗Tξ

r on iR, (6.46)

for some Tξ
r ∈ H∞. The desired proper, rational spectral factor Rξ

r is given by5

Rξ
r :=

√
2Tξ

r(I +Hξ
r)

−1 = (
√
2/2)T(I +Gξ

r). Note that since G(ξ) = Gξ
r, we have6

that7

H(ξ) = (I −G(ξ))(I +G(ξ))−1 = (I −Gξ
r(ξ))(I +Gξ

r(ξ))
−1 = Hξ

r(ξ) .

Therefore, we verify that8

R(ξ) =
√
2T(ξ)(I +H(ξ))−1 =

√
2Tξ

r(ξ)(I +Hξ
r(ξ))

−1 = Rξ
r(ξ) ,

where we have used T(ξ) = Tξ
r(ξ), which follows from (3.7).9

By Theorem 4.3, if G ∈ H∞, then Gξ
r ∈ H∞ as well, whence so are R,Rξ

r.10

Finally, using the definitions of R and Rξ
r, we estimate

1√
2

∥∥R−Rξ
r

∥∥
H∞

=
∥∥T(I +H)−1 −Tξ

r(I +Hξ
r)

−1
∥∥
H∞

(6.47)

≤
∥∥T
(
(I +H)−1 − (I +Hξ

r)
−1
)∥∥

H∞
+
∥∥(T−Tξ

r)(I +Hξ
r)

−1
∥∥
H∞

≤ 1

2

∥∥T
∥∥
H∞

∥∥G−Gξ
r

∥∥
H∞

+
∥∥T−Tξ

r

∥∥
H∞

∥∥(I +Hξ
r)

−1
∥∥
H∞

≤
(
a
∥∥T
∥∥
H∞

+ 2
∥∥(I +Hξ

r)
−1
∥∥
H∞

) n∑

j=r+1

σj ,

where we have invoked (4.5) and (3.6) in the final inequality above. Using expres-
sions for T and (I +Hξ

r)
−1 yields that

∥∥R−Rξ
r

∥∥
H∞

≤
(
2a
∥∥R(I +G)−1

∥∥
H∞

+
√
2
∥∥I +Gξ

r

∥∥
H∞

) n∑

j=r+1

σj . (6.48)

If in (6.47) we add and subtract Tξ
r(I+H)−1 (instead of T(I+Hξ

r)
−1) and perform

the analogous steps, mutatis mutandis, we arrive at the bound

∥∥R−Rξ
r

∥∥
H∞

≤
(
2a
∥∥Rξ

r(I +Gξ
r)

−1
∥∥
H∞

+
√
2
∥∥I +G

∥∥
H∞

) n∑

j=r+1

σj . (6.49)

Combining (6.48) and (6.49) gives the required bound.11

Appendix A. Proofs of Theorems 2.3 and 2.4. We need the following lemma.12

Lemma A.1. Given ξ ∈ C0, suppose that (A,B,−C,D) with transfer function H13

satisfies14

AΣ+ ΣA∗ +BB∗ ≤ −2Re(ξ)AΣA∗ , (A.1)

and15

A∗Σ+ ΣA+ C∗C ≤ −2Re(ξ)A∗ΣA . (A.2)
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Further assume that Σ = Σ∗ > 0 has simple eigenvalues (σj)
n
j=1, ordered according1

to (2.3), and that for each k ∈ {r, . . . , n} the truncation A
(k)
11 ∈ Ck×k satisfies2

σ(A
(k)
11 ) ⊆ Eξ , (A.3)

where A
(r)
11 = A11 and A

(n)
11 = A. Let Hr have realisation (A11, B1,−C1, D). Then3

‖H(s)−Hr(s)‖2 ≤ 2
n∑

j=r+1

σj ∀ s ∈ ∂Eξ . (A.4)

If ξ ∈ iR, (A.1) and (A.2) hold, and (A.3) is replaced by4

A
(k)
11 is Hurwitz for all k ∈ {r, . . . , n} ,

then5

‖H(s)−Hr(s)‖2 ≤ 2
n∑

j=r+1

σj ∀ s ∈ iR . (A.5)

Proof. First let ξ ∈ C0. For s ∈ ∂Eξ, let6

As := A22 +A21(sI −A11)
−1A12

Bs := B2 +A21(sI −A11)
−1B1

Cs := C2 + C1(sI −A11)
−1A12

,

which are well-defined by assumption (A.3).7

Block wise inspection of the two inequalities (A.1) and (A.2) yields the relationships:

A11Σ1 +Σ1A
∗
11 +B1B

∗
1 ≤ −2Re(ξ) (A11Σ1A

∗
11 +A12Σ2A

∗
12) , (A.6)

A12Σ2 +Σ1A
∗
21 +B1B

∗
2 ≤ −2Re(ξ) (A11Σ1A

∗
21 +A12Σ2A

∗
22) ,

A22Σ2 +Σ2A
∗
22 +B2B

∗
2 ≤ −2Re(ξ) (A21Σ1A

∗
21 +A22Σ2A

∗
22) ,

and

A∗
11Σ1 +Σ1A11 + C∗

1C1 ≤ −2Re(ξ) (A∗
11Σ1A11 +A∗

21Σ2A21) , (A.7)

A∗
21Σ2 +Σ1A12 + C∗

1C2 ≤ −2Re(ξ) (A∗
11Σ1A12 +A∗

21Σ2A22) ,

A∗
22Σ2 +Σ2A22 + C∗

2C2 ≤ −2Re(ξ) (A∗
12Σ1A12 +A∗

22Σ2A22) .

An elementary sequence of calculations, using the definitions of As, Bs and Cs and8

the above inequalities, gives9

AsΣ2 +Σ2A
∗
s +BsB

∗
s ≤ −2Re(ξ)AsΣ2A

∗
s , (A.8)

and10

A∗
sΣ2 +Σ2As + C∗

sCs ≤ −2Re(ξ)A∗
sΣ2As . (A.9)

We claim that for all s ∈ ∂Eξ, s 6∈ σ(As) so that sI −As is invertible. To establish
the claim, if v ∈ Cn−r is such that Asv = sv, then

Az =

(
A11 A12

A21 A22

)(
(sI −A11)

−1A12v
v

)
=

(
A11(sI −A11)

−1A12v +A12v
Asv

)

= s

(
(sI −A11)

−1A12v
v

)
= sz . (A.10)

Since s 6∈ σ(A) (indeed, σ(A) ⊆ Eξ), it follows from (A.10) that z = 0 and thus11

v = 0, proving that s 6∈ σ(As).12
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Moreover, since ‖Csv‖2 ≥ 0 for all v ∈ Cn−r, by considering any eigenvalue λ of As1

with corresponding eigenvector v and the inequality2

〈(A∗
sΣ2 +Σ2As + C∗

sCs)v, v〉 ≤ −2Re(ξ)〈A∗
sΣ2Asv, v〉 ,

it follows that3

2Re(λ)〈Σ2v, v〉 ≤ 2Re(λ)〈Σ2v, v〉+ ‖Csv‖2 ≤ −2Re(ξ)|λ|2〈Σ2v, v〉 .
Hence,4

σ(As) ⊆ Eξ ∪ ∂Eξ , (A.11)

see (6.9). The arguments which follow are, in part, in the spirit of those used5

in [10] — deriving the H∞ error bound for Lyapunov balanced truncation. Setting6

∆ = ∆(s) := sI −As, straightforward calculations show that7

H(s)−Hr(s) = Cs∆
−1Bs ∀ s ∈ ∂Eξ ,

where we have used that s 6∈ σ(As), and so

‖H(s)−Hr(s)‖22 = λm

(
Cs∆

−1Bs(Cs∆
−1Bs)

∗
)
= λm

(
Cs∆

−1BsB
∗
s∆

−∗C∗
s

)

= λm

(
∆−1BsB

∗
s∆

−∗C∗
sCs

)
∀ s ∈ ∂Eξ . (A.12)

Here we have used that for square matrices M,N and λ 6= 0, λ ∈ σ(MN) if, and8

only if, λ ∈ σ(NM), and9

‖M‖22 = λm(M
∗M) =: max

{
λ : λ ∈ σ(M∗M)

}
,

that is, the 2-norm of M is equal to the non-negative squareroot of the largest10

eigenvalue of M∗M .11

For notational convenience in the following arguments set ζ = Re(ξ) > 0. Rear-
ranging (A.8) yields that

BsB
∗
s ≤ −

(
2ζAsΣ2A

∗
s +AsΣ2 +Σ2A

∗
s

)
,

whence

∆−1BsB
∗
s∆

−∗ ≤ −(sI −As)
−1 [2ζAsΣ2A

∗
s +AsΣ2 +Σ2A

∗
s] (sI −As)

−∗ ,

= −2ζ
(
(sI −As)− sI

)
Σ2

(
(sI −As)− sI

)∗

+ (sI −As)Σ2 +Σ2(sI −As)
∗ − 2Re(s)Σ2 ,

= −2ζΣ2 + p∆−1Σ2 + pΣ2∆
−∗ , (A.13)

where p := 1 + 2ζs and we have used (6.9). Similarly, from (A.9), we see that

C∗
sCs ≤ −2

(
ζA∗

sΣ2As +A∗
sΣ2 +Σ2As

)

= −2ζ
(
(sI −As)− sI

)∗
Σ2

(
(sI −As)− sI

)
+ (sI −As)

∗Σ2 +Σ2(sI −As)

− 2Re(s)Σ2 ,

= −2ζ∆∗Σ2∆+ pΣ2∆+ p∆∗Σ2 , (A.14)

where again we have used (6.9). Combining (A.13) and (A.14) gives

λm(∆
−1BsB

∗
s∆

−∗C∗
sCs)

≤ λm

(
(−2ζΣ2 + p∆−1Σ2 + pΣ2∆

−∗)(−2ζ∆∗Σ2∆+ pΣ2∆+ p∆∗Σ2)
)

= λm

(
(−2ζ∆Σ2∆

∗ + pΣ2∆
∗ + p∆Σ2)(−2ζΣ2 + p∆−∗Σ2 + pΣ2∆

−1)
)
.
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Now assume that just one singular value is omitted in the reduced order system,
so that Σ2 = σnI. Invoking the assumption that the singular values are simple, it
follows that the reduced order system has a scalar state. Then

λm(∆
−1BsB

∗
s∆

−∗C∗
sCs)

≤ σ2
n(−2ζ∆∆∗ + p∆∗ + p∆)(−2ζ + p∆−∗ + p∆−1)

= σ2
n

(
4ζ2∆∆∗ − 4ζp∆∗ − 4ζp∆+ |p|2 + p2∆∆−∗ + p2∆∗∆−1 + |p|2

)

= σ2
n

(
(1 + p2∆∆−∗)(1 + p2∆∗∆−1) + 4[(ζ∆∗ − p)(ζ∆− p)− 1]

)
, (A.15)

where we have used that |p| = |p| = 1 and that ∆ and ∆∗ = ∆ are scalar quantities.1

We investigate the second term in (A.15) and estimate that

(ζ∆∗ − p)(ζ∆− p) = |ζ∆− p|2 = |ζ(sI −As)− (1 + 2ζs)|2

= |(−1− ζs)− ζAs|2 ≤ 1 ,

by geometric considerations and in light of (A.11). Thus the second term in (A.15)
is non-positive, and so

λm(∆
−1BsB

∗
s∆

−∗C∗
sCs) ≤ σ2

n(1 + p2∆∆−∗)(1 + p2∆∗∆−1) ∀ s ∈ ∂Eξ .

Writing f(s) = p2∆(s)∆−∗(s), it follows that2

|f(s)| =
∣∣∣p2∆(s)/∆(s)

∣∣∣ = 1 ∀ s ∈ ∂Eξ ,

therefore3

λm(∆
−1BsB

∗
s∆

−∗C∗
sCs) ≤ σ2

n|1 + f(s)|2 ≤ σ2
n(1 + |f(s)|)2 = 4σ2

n ,

which, when combined with (A.12), proves the one-step bound4

‖Hn(s)−Hn−1(s)‖2 ≤ 2σn ∀ s ∈ ∂Eξ ,

where Hk for k ∈ {1, 2, . . . , n} denotes the reduced order system with k singular5

values retained so that, in particular, Hn = H. To establish the intermediate6

one-step bounds7

‖Hj(s)−Hj−1(s)‖2 ≤ 2σn ∀ s ∈ ∂Eξ ∀ j ∈ {r + 1, . . . , n− 1} ,
we repeat the above arguments with (A,B,−C) and (A11, B1,−C1) replaced by8

(A11, B1,−C1) and ((A11)11, (B1)1, (−C1)1) ,

respectively. As such, we see Hj−1 as the one-step truncation of Hj . Note that9

by (A.6) and (A.7), (A11, B1,−C1) satisfy the inequalities10

A11Σ1 +Σ1A
∗
11 +B1B

∗
1 ≤ −2Re(ξ)A11Σ1A

∗
11 ,

and11

A∗
11Σ1 +Σ1A11 + C∗

1C1 ≤ −2Re(ξ)A∗
11Σ1A11 ,

which are of the form (A.1) and (A.2), respectively.12

We now use a telescoping series and the triangle inequality to show that

‖H(s)−Hr(s)‖2 =

∥∥∥∥∥∥

n∑

j=r+1

[
Hj(s)−Hj−1(s)

]
∥∥∥∥∥∥
2

≤
n∑

j=r+1

‖Hj(s)−Hj−1(s)‖2

≤ 2

n∑

j=r+1

σj ∀ s ∈ ∂Eξ ,
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which is (A.4), as required.1

The proof of (A.5) in the case that ξ ∈ iR follows via the same argument used2

in [10], the only difference being that the Lyapunov equations (2.2) are replaced by3

Lyapunov inequalities (A.1) and (A.2).4

Proof of Theorem 2.3. Since (A,B,C,D) is a minimal, balanced and stable, it fol-5

lows from [40, Theorem 3.2] that A22 is Hurwitz, yielding that (Aξ, Bξ, Cξ, Dξ)6

is well-defined for all ξ ∈ C0 ∪ iR. Suppose first that ξ ∈ C0. Straightforward7

algebraic manipulation using the definition of (Aξ, Bξ, Cξ, Dξ) in (2.5), the decom-8

position (2.6) and the equations (2.2) shows that the following Lyapunov inequalities9

10

AξΣ1 +Σ1A
∗
ξ +BξB

∗
ξ = −2Re(ξ)A12(ξI −A22)

−1Σ2(ξI −A22)
−∗A∗

12 ≤ 0 , (A.16)

and11

A∗
ξΣ1 +Σ1Aξ +C∗

ξCξ = −2Re(ξ)A∗
21(ξI −A22)

−∗Σ2(ξI −A22)
−1A21 ≤ 0 . (A.17)

hold. If ξ ∈ iR, then it follows immediately from inspection of (A.16) and (A.17)12

that (Aξ, Bξ, Cξ) is balanced, proving statement (ii).13

We prove statement (i) first assuming that ξ ∈ C0. Inequality (A.17) implies that14

every eigenvalue of Aξ has non-positive real part. Suppose that Aξv = ηi v for some15

η ∈ R and v ∈ Cr. Forming the inner product16

〈(A∗
ξΣ1 +Σ1Aξ + C∗

ξCξ)v, v〉 ,
and using (A.17), it follows that17

0 ≤ ‖Cξv‖2 = −2Re(ξ)〈Σ2(ξI −A22)
−1A21v, (ξI −A22)

−1A21v〉 ≤ 0 ,

whence18

〈Σ2(ξI −A22)
−1A21v, (ξI −A22)

−1A21v〉 = 0 ,

as Re (ξ) > 0. Since Σ2 > 0, we infer that19

(ξI −A22)
−1A21v = 0 .

Consequently20

A

(
v
0

)
=

(
A11 A12

A21 A22

)(
v

(ξI −A22)
−1A21v

)
=

(
Aξv

ξ(ξI −A22)
−1A21v

)
= ηi

(
v
0

)
,

and, as A is Hurwitz, we deduce that v = 0. Recalling our supposition that Aξv =21

ηi v, we conclude that Aξ is Hurwitz as well.22

For observability, let λ ∈ C and v ∈ Cn be such that Aξv = λv and Cξv = 0. Note
that

A

(
v

(ξI −A22)
−1A21v

)
=

(
A11 A12

A21 A22

)(
v

(ξI −A22)
−1A21v

)

=

(
Aξv

ξ(ξI −A22)
−1A21v

)
=

(
λ 0
0 ξ

)(
v

(ξI −A22)
−1A21v

)
,

so that23

Az = Ez ,

where24

E :=

(
λ 0
0 ξ

)
and z :=

(
v

(ξI −A22)
−1A21v

)
.
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We conclude that1

‖eAtz‖2 = ‖eEtz‖2 =

∥∥∥∥
(
eλt 0
0 eξt

)(
z1
z2

)∥∥∥∥
2

< ‖z‖2 ∀ t > 0 ,

by [40, Theorem 3.1] applied to the balanced realisation (A,B,C), so that2

e2Re(λ)t‖z1‖2 + e2Re(ξ)t‖z2‖2 < ‖z1‖2 + ‖z2‖2 ∀ t > 0 .

Since ξ ∈ C0, it follows that3

z2 = (ξI −A22)
−1A21v = 0 ,

from which4

λv = Aξv = A11v +A12(ξI −A22)
−1A21v = A11v

and5

0 = Cξv = C1v + C2(ξI −A22)
−1A21v = C1v .

The pair (C1, A11) is observable, and so we deduce that v = 0, proving that (Cξ, Aξ)6

is observable. The proof that (Aξ, Bξ) is controllable is similar, using instead that7

(A11, B1) is controllable, and so is omitted.8

We now consider the situation wherein ξ ∈ iR. Statement (1) of Lemma 6.2 yields9

that (A,B, C) is minimal and it is easily shown that (A,B, C) satisfies the Lyapunov10

inequalities11

AΣ+ ΣA∗ + BB∗ = −2Re(ξ)AΣA∗ ≤ 0 , (A.18)

and12

A∗Σ+ ΣA+ C∗C = −2Re(ξ)A∗ΣA ≤ 0 . (A.19)

Since Re(ξ) = 0, these simplify to the Lyapunov equations13

AΣ+ ΣA∗ + BB∗ = 0 and A∗Σ+ ΣA+ C∗C = 0 . (A.20)

Note that (A.20) implies that A is Hurwitz and (A,B, C) is balanced. From usual14

balanced truncation theory [40, Theorem 3.2, Corollary 2], we see that A11 is Hur-15

witz and (A11,B1, C1) is minimal. In particular, it is here where we have used that16

the singular values are simple, implying that the spectra of Σ1 and Σ2 are disjoint.17

Next, by statement (2) of Lemma 6.2, ξ 6∈ σ(Aξ), as A is Hurwitz and the equal-18

ities in (6.6) hold. From these and the minimality of (A11,B1, C1) it follows that19

(Aξ, Bξ, Cξ) is minimal. The Lyapunov equation (A.17) now shows that Aξ is Hur-20

witz.21

Proof of Theorem 2.4: Let (A,B,C,D) denote a minimal, balanced, stable, reali-22

sation of G which, by Theorem 2.3, implies that (Aξ, Bξ, Cξ, Dξ) is well-defined23

for all ξ ∈ C0 ∪ iR. Further, Aξ is Hurwitz. Let Gξ
r, H and Hr be defined as in24

Lemma 6.3. With these choices, we first assume that ξ ∈ C0.25

Invoking statement (3) of Lemma 6.2 to A and the first equality in (6.6) implies26

that27

σ(A), σ(A11) ⊆ Eξ . (A.21)

The error bound (2.9) now follows from subtracting (6.11) from (6.10) in Lemma 6.328

and an application of Lemma A.1. In the former result we are using that the map29

iR ∪ {∞} ∋ z 7→ 1

z − w
,

a bijection onto ∂Eξ, where Eξ is given by (6.7) and we see from (A.21) that H and30

Hr are well-defined on ∂Eξ, respectively. In the latter result we take (A,B,C,D)31
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equal to (A,B, C,D). Note that the equalities in (A.18) and (A.19) imply that the1

inequalities (A.1) and (A.2) respectively hold. That assumption (A.3) holds follows2

from (6.6), as every partition in (2.6) gives rise to a Hurwitz Aξ, by Theorem 2.3.3

If ξ ∈ iR, then the result follows from the error bound (A.5), also in Lemma A.1.4

Here we have applied statement (3) of Lemma 6.2 to the first equality in (6.6) to5

infer that A11 is Hurwitz.6

Appendix B. Derivation of (6.24). Considering (6.17) block wise, we have that7

A∗
11Σ1 +Σ1A11 + C∗

1C1 = −K∗
1K1 − q2(A∗

11Σ1A11 +A∗
21Σ2A21) , (B.1)

and8

Σ1B1 − C∗
1D = K∗

1W − q2(A∗
11Σ1B1 +A∗

21Σ2B2) (B.2)

Given p ∈ ∂Eξ, for notational convenience set Γ := (pI −A11) and let9

I1 = A∗
11Σ1A11 +A∗

21Σ2A21, I2 := A∗
11Σ1B1 +A∗

21Σ2B2 .

Using (B.1) and (B.2), we compute that

I − [Hξ
r(p)]

∗Hξ
r(p) = I − (D − C1(pI −A11)

−1B1)
∗(D − C1(pI −A11)

−1B1)

= I − (D − C1Γ−1B1)
∗(D − C1Γ−1B1)

= I −D∗D + B∗
1Γ

−∗C∗
1D +D∗C1Γ−1B1 − B∗

1Γ
−∗C∗

1C1Γ−1B1

= W∗W + q2B∗
1Σ1B1 + q2B∗

2Σ2B2

+ B∗
1Γ

−∗(Σ1B1 −K∗
1W + q2I2)

+ (B∗
1Σ1 −W∗K1 + q2I∗

2 )Γ
−1B1

+ B∗
1Γ

−∗(A∗
11Σ1 +Σ1A11 +K∗

1K1 + q2I1)Γ−1B1

= (W −K1Γ
−1B1)

∗(W −K1Γ
−1B1) +R , (B.3)

where

R := q2B∗
2Σ2B2 + q2B∗

1Γ
−∗I2 + q2I∗

2Γ
−1B1

+ B∗
1Γ

−∗(q2Γ∗Σ1Γ + Σ1Γ + Γ∗Σ1 +A∗
11Σ1 +Σ1A11 + q2I1)Γ−1B1

= q2
[
B∗
2Σ2B2 + B∗

1Γ
−∗(A∗

11Σ1B1 +A∗
21Σ2B2)

+ (B∗
1Σ1A11 + B∗

2Σ2A21)Γ
−1B1

]

+ B∗
1Γ

−∗(q2Γ∗Σ1Γ + 2Re(p)Σ1 + q2(A∗
11Σ1A11 +A∗

21Σ2A21))Γ
−1B1

= q2(B2 +A21Γ
−1B1)

∗Σ2(B2 +A21ΓB1)

+ B∗
1Γ

−∗(q2(Γ∗Σ1Γ +A∗
11Σ1A11 + Γ∗Σ1A11 +A∗

11Σ1Γ) + 2Re(p)Σ1)Γ
−1B1

= q2(B2 +A21Γ
−1B1)

∗Σ2(B2 +A21ΓB1)

+ 2B∗
1Γ

−∗(Re(p) + Re(ξ)|p|2)Σ1Γ
−1B1

= q2(B2 +A21Γ
−1B1)

∗Σ2(B2 +A21ΓB1) . (B.4)

In the final equality above we have used that p ∈ ∂Eξ and (6.9). Combining (B.3)10

and (B.4) gives (6.24), as required.11
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Appendix C. Derivation of (6.29). The arguments are identical in spirit to those
used in Appendix B. Given p ∈ ∂Eξ, for notational convenience set Θ := (pI −A).
Using (6.17), we compute that

I − [H(p)]∗H(p) = I − (D − C(pI −A)−1B)∗(D − C(pI −A)−1B)
= I − (D − CΘ−1B)∗(D − CΘ−1B)
= I −D∗D + B∗Θ−∗C∗D +D∗CΘ−1B − B∗Θ−∗C∗CΘ−1B
= W∗W + q2B∗ΣB + B∗Θ−∗(ΣB − K∗W + q2A∗ΣB)
+ (B∗Σ−W∗K + q2B∗ΣA)Θ−1B
+ B∗Θ−∗(A∗Σ+ ΣA+K∗K + q2A∗ΣA)Θ−1B

= (W −KΘ−1B)∗(W −KΘ−1B) + S . (C.1)

Here

S : = B∗Θ−∗(q2(Θ∗ΣΘ+A∗ΣA+A∗ΣΘ+Θ∗ΣA) + 2Re(p)Σ)Θ−1B
= 2B∗Θ−∗(Re(p) + Re(ξ)|p|2)ΣΘ−1B
= 0 . (C.2)

In the final equality above we have used that p ∈ ∂Eξ and (6.9). Combining (C.1)1

and (C.2) gives (6.29), as required.2

Appendix D. Proof of Lemma 6.5. The proof is by direct calculation. For3

notation convenience, set Ψ := (ξI −A22)
−1, Φ := (I +D)−1 and4

XB := B2Φ, XC := C2Ψ, N := (I+XCXB)
−1, M := (I+XBXC)

−1 . (D.1)

Note that M and N are well-defined by our assumption that all the terms which5

appear in the commuting diagram are. Straightforward calculations show that6

N = I −XCXBN, XBN = MXB , and XCM = NXC . (D.2)

Using the definitions in (2.5), (6.39) and (D.1) and the properties (D.2), we have
that

(̃Aξ) = Aξ −Bξ(I +Dξ)
−1Cξ

= Aξ − (B1 +A12ΨB2)(I +D + C2ΨB2)
−1(C1 + C2ΨA21)

= Aξ − (B1Φ+A12ΨB2Φ)(I + C2ΨB2Φ)
−1(C1 + C2ΨA21)

= Aξ − (B1Φ+A12ΨXB)N(C1 +XCA21)

= Aξ − (B1Φ+A12ΨXB)(I −XCXBN)(C1 +XCA21) . (D.3)

Similarly

(Ã)ξ = (Ã)11 + (Ã)12(ξI − (Ã)22)(Ã)21

= (A−BΦC)11 + (A−BΦC)12(ξI − (A−BΦC)22)
−1(A−BΦC)21

= A11 −B1ΦC1 + (A12 −B1ΦC2)(ξI −A22 +B2ΦC2)
−1(A21 −B2ΦC1)

= A11 −B1ΦC1 + (A12Ψ−B1ΦC2Ψ)(I +B2ΦC2Ψ)−1(A21 −B2ΦC1)

= A11 −B1ΦC1 + (A12Ψ−B1ΦXC)M(A21 −XBC1) . (D.4)
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Inspection of (D.3) and (D.4) reveals that they are equal. Next, we compute that

1√
2
(̃Bξ) = Bξ(I +Dξ)

−1 = (B1 +A12ΨB2)(I +D + C2ΨB2)
−1

= (B1Φ+A12ΨB2Φ)(I + C2ΨB2Φ)
−1 = (B1Φ+A12ΨXB)N

= B1Φ+ (A12Ψ−B1ΦXC)MXB

= B1Φ+ (A12Ψ−B1ΦC2Ψ)(I +B2ΦC2Ψ)−1XB

= B1Φ+ (A12 −B1ΦC2)(ξI −A22 +B2ΦC2)
−1B2Φ

=
1√
2

(
(B̃)1 + (Ã)12(ξI − (Ã)22)

−1(B̃)2
)
=

1√
2
(B̃)ξ .

Further,

− 1√
2
(̃Cξ) = (I +Dξ)

−1Cξ = (I +D + C2ΨB2)
−1(C1 + C2ΨA21)

= Φ(I + C2ΨB2Φ)
−1(C1 + C2ΨA21) = ΦN(C1 +XCA21)

= ΦC1 +ΦXCM(A21 −XBC1)

= ΦC1 +ΦC2Ψ(I +B2ΦC2Ψ)−1(A21 −B2ΦC1)

= ΦC1 +ΦC2(ξI −A22 +B2ΦC2)
−1(A21 −B2ΦC1)

= − 1√
2

(
(C̃)1 + (C̃)2(ξI − (Ã)22)

−1(Ã)21
)
= − 1√

2
(C̃)ξ .

Finally,

(̃Dξ) = (I −Dξ)(I +Dξ)
−1 = (I −D − C2ΨB2)(I +D + C2ΨB2)

−1

= ((I −D)Φ− C2ΨB2Φ)(I + C2ΨB2Φ)
−1 = (D̃ −XCXB)N

= D̃ − 2ΦXCMXB (D.5)

= D̃ − 2ΦC2Ψ(I +B2ΦC2Ψ)−1B2Φ

= D̃ − 2ΦC2(ξI −A22 +B2ΦC2)
−1B2Φ = D̃ + (C̃)2(ξI − (Ã)22)

−1(B̃)2

= (D̃)ξ .

To establish (D.5) we used that1

D̃ − D̃N +XCXBN − 2ΦXCMXB = 0 .

The proof is complete. �2
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