
HYPOTHESIS AND THEORY
published: 03 March 2020

doi: 10.3389/fncom.2020.00016

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 16

Edited by:

Liang Feng,

Chongqing University, China

Reviewed by:

Jinghui Zhong,

South China University of

Technology, China

Yaqing Hou,

Dalian University of Technology, China

*Correspondence:

Newton Howard

nhmit@me.com

Received: 11 November 2019

Accepted: 10 February 2020

Published: 03 March 2020

Citation:

Howard N, Chouikhi N, Adeel A,

Dial K, Howard A and Hussain A

(2020) BrainOS: A Novel Artificial

Brain-Alike Automatic Machine

Learning Framework.

Front. Comput. Neurosci. 14:16.

doi: 10.3389/fncom.2020.00016

BrainOS: A Novel Artificial
Brain-Alike Automatic Machine
Learning Framework

Newton Howard 1*, Naima Chouikhi 2, Ahsan Adeel 3,4, Katelyn Dial 5, Adam Howard 5 and

Amir Hussain 6

1 Etats-Unis, Department of Neurosurgery, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford,

United Kingdom, 2 REGIM-Lab: REsearch Groups in Intelligent Machines, National Engineering School of Sfax (ENIS),

University of Sfax, Sfax, Tunisia, 3 School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth,

United Kingdom, 4 School of Mathematics and Computer Science, University of Wolverhampton, Wolverhampton,

United Kingdom, 5Howard Brain Sciences Foundation, Providence, RI, United States, 6 School of Computing, Edinburgh

Napier University, Edinburgh, United Kingdom

Human intelligence is constituted by a multitude of cognitive functions activated either

directly or indirectly by external stimuli of various kinds. Computational approaches

to the cognitive sciences and to neuroscience are partly premised on the idea that

computational simulations of such cognitive functions and brain operations suspected

to correspond to them can help to further uncover knowledge about those functions

and operations, specifically, how they might work together. These approaches are also

partly premised on the idea that empirical neuroscience research, whether following on

from such a simulation (as indeed simulation and empirical research are complementary)

or otherwise, could help us build better artificially intelligent systems. This is based on

the assumption that principles by which the brain seemingly operate, to the extent that

it can be understood as computational, should at least be tested as principles for the

operation of artificial systems. This paper explores some of the principles of the brain

that seem to be responsible for its autonomous, problem-adaptive nature. The brain

operating system (BrainOS) explicated here is an introduction to ongoing work aiming

to create a robust, integrated model, combining the connectionist paradigm underlying

neural networks and the symbolic paradigm underlying much else of AI. BrainOS is an

automatic approach that selects the most appropriate model based on the (a) input at

hand, (b) prior experience (a history of results of prior problem solving attempts), and (c)

world knowledge (represented in the symbolic way and used as a means to explain its

approach). It is able to accept diverse and mixed input data types, process histories and

objectives, extract knowledge and infer a situational context. BrainOS is designed to be

efficient through its ability to not only choose the most suitable learning model but to

effectively calibrate it based on the task at hand.

Keywords: human brain, artificial intelligence, architecture design, hyperparameters, automatic machine learning,

BrainOS

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00016
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00016&domain=pdf&date_stamp=2020-03-03
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nhmit@me.com
https://doi.org/10.3389/fncom.2020.00016
https://www.frontiersin.org/articles/10.3389/fncom.2020.00016/full
http://loop.frontiersin.org/people/102670/overview
http://loop.frontiersin.org/people/835186/overview
http://loop.frontiersin.org/people/666617/overview
http://loop.frontiersin.org/people/841245/overview
http://loop.frontiersin.org/people/913508/overview

Howard et al. BrainOS

1. INTRODUCTION

As humans are constantly surrounded by data, their survival
depends on their capability to understand and evaluate their
observations of the external environment. They formulate and
extract knowledge from received information by transforming
the data into specific patterns and models. To this end, a number
of biological processes and aspects of the brain are involved
(Hernandez et al., 2010). Once established, brain agents create
and refer to these models with each observation.

Both researchers and theorists specializing in neuroscience
agree that these brain agents support the task of analyzing
external data, processing them and making decisions using
fundamental units of thought. Howard and Hussain (2018)
describe this process of the fundamental code unit as cognitive
minimums of thought where n to N information exchange is
expressed in an assembly-like language at the neuronal cellular
level. The Fundamental Code Unit addresses the question of
whether input signals feed to the brain in their analogical
form or if they are transformed beforehand. Bierdman’s theory
of components recognition and Yin’s review of theories of
geometry of perception supports the FCU model where an
infinite combination of patterns are created from a fixed number
of components (Yin, 2008). The conclusions regarding brain
processes derived from the field of neuroscience are applied
in parallel to the field of artificial intelligence (AI) (Wang
et al., 2016). The finest example of this is Machine Learning
(ML), which is inspired by the brain’s methods of processing
external signals (input data) (Wang et al., 2016). ML can mimic
human brain behavior (Louridas and Ebert, 2016) by providing
a set of appropriate and intelligent techniques to perform
data analysis (Howard and Lieberman, 2014). ML automates
data manipulation by extracting sophisticated analytical models.
Within this branch of AI, systems are capable of learning
from data and distributions, distinguishing patterns and making
autonomous decisions, which considerably decreases the need for
human intervention.

The appeal of ML is considerably rising due to factors, such as
the growing demands of data mining tools (Bredeche et al., 2006).
Indeed, in a world replete with data, intelligent computation is
gainful in terms of expense and performance (Wang and Yan,
2015). Automated data handling has yielded valuable systems
able to solve increasingly complex problems and provide more
accurate outcomes.

The three big challenges that ML still face are (1) that
it requires a great deal of training data and is domain-
dependent, (2) it can produce inconsistent results for different
types of training or parameter tweaking, and (3) it produces
results that may be difficult to interpret when such black-
box algorithms are used. Here, we propose a novel automatic
approach to address such shortcomings in a multidisciplinary
approach that aims to bridge the gap between statistical Natural
Language Processing (NLP) (Cambria et al., 2014) and the many
other disciplines necessary for understanding human language,
such as linguistics, common sense reasoning and computing.
Our proposed approach, “Brain OS” is an intelligent adaptive
system that combines input data types, processes history and

objectives, researches knowledge and situational context to
determine what is the most appropriate mathematical model,
chooses the most appropriate computing infrastructure on which
to perform learning, and proposes the best solution for a
given problem. BrainOS has the capability to capture data
on different input channels, perform data enhancement, use
existing AI models, create others and fine-tune, validate and
combine models to create more powerful collection of models.
To guarantee efficient processing, BrainOS can automatically
calibrate the most suitable mathematical model and choose the
most appropriate computing learning tool based on the task to
handle. Thus, it arrives at “optimal” or pre-optimal solutions.
BrainOS leverages both symbolic and sub-symbolic methods
as it uses models, such as semantic networks and conceptual
dependency representations to encode meaning but it also uses
deep neural networks and multiple kernel learning to infer
syntactic patterns from data. The architecture of BrainOS uses
concepts from the critic-selector model of mind and from brain
pathology treatment approaches.

Herein, a thorough evaluation of the state of the art of
Automatic ML is discussed, and specifically the proposed
automatic BrainOS is presented in detail. The advantages of
BrainOS over state of the art models are enumerated, and
an empirical study is presented in order to validate the
proposed framework.

2. STATE-OF-THE-ART: AUTOMATIC ML
FRAMEWORKS

ML has several models, which apply one or more techniques to
one or more applications. ML models include support vector
machine (SVM) (Mountrakis et al., 2011), bayesian networks
(BNs) (Bielza and Larranaga, 2014), deep learning (DL) (Bengio
et al., 2013), decision trees (DTs) (Kotsiantis, 2013), clustering
(Saxena et al., 2017), artificial neural networks (ANNs) (Dias
et al., 2004), etc.

Each ML model is an intelligent computing mean that is
trained to perform a well-defined task according to a set of
observations. These intelligent models require a set of related
data to extract knowledge about the problem at hand. The
construction of these data is a crucial factor by which the
performance of themodel is judged. Themore the data, the better
the performance becomes.

All ML models undergo three principle steps: (1) receiving
input data (signals), (2) processing these data, and finally (3)
deriving outputs according to the handled task. To check if
the system achieves a good learning level, an evaluation metric
is computed. It is then tested on a number of patterns not
previously observed and is then judged whether it has acquired
a good generalization capability or not.

For any given application, there are a number of specific
models that can perform better than the others. The choice of the
best model for a well-determined task does not obey to any rule.
Rather, there are only instructions on how these models proceed.
Thus, there is no way to understand how to choose the best model
for a problem.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 1 | H2O’s standard architecture. H2O is designed mainly on Java language with some blocks based on Python, JavaScript, R, and Flow. The software stack

is composed of the top and bottom sections, divided by the network cloud. The top part highlights some of REST API customers, while the bottom illustrates the

constituents undergoing the Java virtual machine (image courtesy of H2O.ai).

While classic ML focuses on developing new models and
techniques without regard to the resulting increase in complexity,
automatic ML (AML), affirms that these tools can be employed
in an easier manner. AML platforms computerize the majority
of ML tasks in less time and implementation costs. Therefore,
automatic ML has become a hot topic not only for industrial
users, but also for academic purposes.

Fine-tuning or optimization is a key component to provide
suitable models Hutter et al. (2019). AML framework addresses
issues, such as the best ML model for different problems,
model tuning or hyper-parameters optimization, etc. (Yao et al.,
2019). Simple classical methods, Bayesian optimization and
metaheuristics are among the most used tools of optimization
in AML.

To develop such automated frameworks, researchers
have developed and proposed several solutions e.g., H2O,
Google Cloud AutoML, and Auto-sklearn depicted in
Figures 1–3, respectively. These frameworks have certainly
solved several problems but are still far from the strategy
behind the human brain. What can be noticed throughout

the enumerated techniques is that developers are using
sophisticated ML models without reasoning; hence, no
explainable AI.

• H2O

H2O (Landry, 2018) is an open source machine learning
platform for the enterprise. The platform contains a module
that employs a set of well-defined algorithms to form
a pipeline. It provides a specific graphical interface to
set the appropriate model, the stopping criteria and the
training dataset.

It supports several linear and complex ML models, such as
Deep Neural Networks (DNN), gradient boosting machines,
etc. It also supports the Cartesian and random grid searches
optimization techniques. It is designed based mainly on Java
developing language with some blocks on Python, Javascript,
R and Flow. The standard H2O architecture is visualized in
Figure 1 (Landry, 2018).

The H2O software stack depicted in Figure 1 is composed
of numerous components that can be divided into two parts

Frontiers in Computational Neuroscience | www.frontiersin.org 3 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 2 | Google Cloud AutoML’s standard architecture. Cloud AML offers a simple interface for inexperienced users to exploit models according to their needs.

Using DNNs and genetic algorithms, Cloud AutoML trains machine learning models, deploys models based on user data, and stores trained data in cloud storage.

The framework generates predictions with a REST API (image courtesy of Google Cloud).

FIGURE 3 | Auto-sklearns’s standard architecture. Auto-sklearn employs Bayesian fine-tuning for hyperparameter settings. The program utilizes 15 classification

approaches, 14 pre-processing techniques, and four feature engineering methods.

(top and bottom). The top part highlights some of REST API
customers, while the bottom part illustrates the constituents
undergoing the Java virtual machine.

In spite of its ease of use especially for ML beginners and
non-specialists, H2O still suffers from a lack of background
in data science. Another drawback concerns the huge amount
of employed resources. In fact, failures during complex
executions are very likely to occur.

• Google’s Cloud AutoML

Cloud AutoML (Vinson, 2018) presents a series of
products permitting inexperienced users to exploit well-
qualified models obeying their business queries. It employs
sophisticated capabilities of Google, such as transfer learning.
It provides users with a simple interface so that they are able

to learn, assess, improve, and unfold techniques according
to their data. The products offered by this framework
include AutoML Vision and video-intelligence, AutoML
natural language and translation and AutoML Tables, etc.
The standard Cloud AutoML’s architecture is visualized in
Figure 2 (Vinson, 2018).

This framework is mainly based on deep neural networks
(DNN) and genetic algorithms. It also asks users to respect a
limit of training data size. For AutoML, tables data size should
not surpass 100 Go.

• Auto-sklearn

Auto-sklearn, proposed by Feurer et al. (2015), employs
Bayesian fine-tuning for hyperparameter settings. It is an
improved version of the scikit-learn system (a preceding

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

automatic ML). The standard Auto-sklearn’s architecture is
visualized in Figure 3.

There are 15 classification approaches, 14 pre-processing
techniques and four feature engineering methods.
Although its structure is advanced, this toolkit’s package
does not support natural language inputs. Therefore, it
can not distinguish categorical data from digital data
(Feurer et al., 2015).

Although the majority of preexisting ML frameworks have
efficiently solved several problems, such as object recognition and
image understanding, they are still far from simulating human
brain processes. ML has attempted to mimic the brain as a
model for computation, for instance neural networks algorithms,
however ML is still not able to perform as well as the human
brain. We propose a novel automatic ML framework called
“BrainOS.” The proposed system architecture and operation is
biologically inspired by neuron cells, designed at a very low level
of abstraction.

3. BRAINOS: A NOVEL AUTOMATIC ML
FRAMEWORK

Attracted by the strength of the human brain’s ability to reason
and analyze objects and ideas, we propose a novel automatic
ML framework called “BrainOS.” The system’s architecture and
operation is inspired by the behavior of neuronal cells.

Since existing ML models have many challenges related to
over-sized task-dependent training data and uninterpretable
results, BrainOS addresses these shortcomings. Indeed, it
provides a multidisciplinary approach able to deal with natural
language processing (NLP) so that the gap between statistical
NLP and many other disciplines necessary for understanding

human language is minimized. Linguistics, commonsense
reasoning, and affective computing are essential to analyze
the human language. BrainOS involves symbolic as well as
sub-symbolic techniques by employing models like semantic
networks and conceptual dependency representations to encode
meaning. Furthermore, it uses DNNs to deduce syntactic aspects
from data.

3.1. High-Level BrainOS Model
Thanks to its anthropomorphic and data-adaptive power,
BrainOS can be of great use in various types of applications,
because it has the capability to react differently according to the
user’s profile and preferences. Data adaptation signifies the ability
to pick out themost adequatemathematical model in terms of the
received input data.

The high-level BrainOS architecture is presented in Figure 4.
The Input Data Layer is composed of data points coming from
various source channels (sensors, videos, images, etc). When
fed through this layer, the data undergo numerous stages of
data retrieval and handling. For example, input points can
be identified, typified, and pre-processed. Sampling techniques
can also be employed at this level. The Data Processing Layer
identifies a number of intelligent approaches according to the
following stages:

• Critic-Selector Mechanism: combines input data types,
processes history and objectives, researches knowledge and
situational context to determine the most appropriate ML
model for existing data and how the system should manage
the processing resources.

• Data handling using ML pipelines: A series of vertical and
horizontal pipelines to spread out the data can help prepare
the data more quickly and efficiently.

FIGURE 4 | High-level Brain OS architecture. Input data information is received from various mixed input data channels. Real world context is retrieved from the

meta-world container. The objective presents the aim of the processing problem and the desired outputs. The most appropriate model is then created and stored in

the model repository for future use or chosen from a preexisting model within the repository. The output data contains the results and findings achieved after

undergoing data processing.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 5 | Detailed BrainOS architecture.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

• Model training and/or transfer learning: Not isolating
algorithms and utilizing knowledge from a previous task to
solve related ones increases efficiency and accuracy.

The Output Data Layer contains the results and the findings
achieved after undergoing the Data Processing Layer.

BrainOS is adaptive to various data channels. It employs
several data processing techniques and model selector
components. Similar to the human brain, BrainOS uses an
archive of data, knowledge and ML models. BrainOS is boosted
by a complex qualifier-orchestrator meta-component. The
critic-model selector is located within the orchestrator to give
an answer to the question “What is the best tool to chose for a
given problem?”.

Based on the human brain, which uses different neuronal
areas to process input data, depending on the receptor type, the
proposed infrastructure is founded on an ensemble of resources
that are managed by the critic-selector (turned on and off), much
in the manner the biological mind operates.

3.2. BrainOS Fundamental Architecture
The key concept of BrainOS is its adaptability to the problem at
hand. It selects the appropriate models for the nature of the input
data. Figure 5 visualizes a more thorough overview about the
architecture of the whole infrastructure. As shown in Figure 5,
BrainOS topology is characterized by a number of components.
In the next section, every component is detailed.

3.3. Problem Formalization Component
Problem formalization is the principle entry point of the system.
It houses three sub-components: data, meta-world information,
and task objective. These three components contain all the
necessary related information associated with the data and
the task to be processed. The input data is held within the
data container while general and real world context data is
held in the meta-world container. The task objective represents
the primary aim of the problem to be processed and the
desired outputs.

For consistency, the input data points should comply to a
specific schema. This can be done using an API to connect
BrainOS to other ML packages to maintain the task’s integrity
and consistency. Figure 6 presents an example of the problem
formalization component.

3.4. The Critic Component
The critic (qualifier) component utilizes the problem formulation
and the BrainOS history (meta-world knowledge) to enhance
the dataset fed to the system. It improves the data with
antedate datasets, which complement the current input features
in a module called the data enhancer. Furthermore, it applies
qualifications, imposes constraints and builds requirements to
achieve an intermediate. Figure 7 shows the architecture of the
critic component.

3.5. History Database
Proposing an adaptive learning system in a non-static space
looks like the human’s reasoning aspect. In fact, humans exploit
their knowledge and experiences to find solutions to any kind

FIGURE 6 | Problem formalization component. The problem formalization

component includes mixed input data, general real-world data context

contained within the meta-world container, and the major objective of the

processing problem, as well as the desired outcomes.

FIGURE 7 | The qualifier (critic) component. The qualifier component

enhances the datasets fed to the system and applies qualifications, imposes

constraints, and builds requirements to achieve an intermediate.

of problem. Inspired by this extraordinary capability, BrainOS
blends at least two memory sub-components: world knowledge
and history. Figure 8 shows the architecture of the history
database component.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 8 | History database component. The history database component is comprised of world knowledge as well as the Brain OS history. The world knowledge

sub-component contains the domain knowledge package of crawling NLP and ontologies as well as research experience comprised of stored models and more

abstract research knowledge.

1. The BrainOS history: includes the experience acquired over
the system life cycle in terms of encountered data sets,
previously employed models and achieved outcomes. Such
a quick memory access resource is of great value especially
in situations where the platform encounters problems already
resolved. In this case, the system uses a “reflex response.”

2. The world knowledge: holds the “common sense” world
knowledge, overlaying from general to domain-specific
concepts. The domain knowledge package contains numerous
fields within which the infrastructure requires a knowledge
expert. The integrated research experience is comprised of
models and inferences drawn from real world knowledge
encompassing the following two components:

• Stored models: include non-constrained previously
discovered resources.

• More abstract research knowledge: a big information
field. It can be carried out on specific problem
formulations, distinct problem solutions, or
precise datasets.

3.6. The Planner Component
The Planner is based essentially on the processed problem and

the history of used models. It is able to set the most adequate

processing flow for the tackled problem according to the world

knowledge, objective, and the similarity of the present task with

those treated in the past.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 9 | The planner architecture. The planner sets the most adequate

processing flow for the problem according to world knowledge. Within the

planner, special heuristic search algorithms can be run for the detection of the

proper node sequences for a given task.

As an example, for a problem of intent extraction from an
image, the planner might prescribe the following steps:

• Run captioning algorithms on the image to obtain a
narrativization of the image.

• Run object detection and activity recognition on the image.
• Run an algorithm to obtain an ontology for the previously

extracted concepts.
• Infer intent using all the previously obtained entities

and ontologies.

The planner plays the role of large bidirectional graph
knowledge within which special heuristic search algorithms
can be run for the detection of the proper node sequences
for a given task. The architecture of the planner is visualized
in Figure 9.

3.7. The Parallel Executor
The parallel executor plays the role of task scheduler.
This component builds models, stores solution modules,
and selects infrastructure. It manages when, what and
how threads will be executed once they come from
the selector.

The parallel executor triggers a number of threads for
convenient structures. Based on the models provided by the
selector, the executor creates new models or combines existing
ones. It partitions the corresponding tasks in parallel threads
processing simultaneously. The architecture of the parallel
executor is visualized in Figure 10.

3.8. The Module Scheduler
The module scheduler receives threads sent by the parallel
executor and plans a schedule for the solution’s execution. This
gives the ability of parallel execution using different resources.

3.9. The Selector Component
The Selector, the key component of BrainOS, picks out the
adequate model according to the Problem Formulation. With the
intention to provide suitable models, the Selector proceeds with
the following steps in parallel:

1. Searching for an adequate model in BrainOS history. If a good
fit is found, then the corresponding tool is optimized, trained,
and evaluated.

2. Else, searching in the Research Knowledge including
published papers and source codes. If a suitable candidate is
found, then it is tuned, learned, and evaluated.

3. Building a tool from scratch after type and topology are
defined. Thereafter, the model is tuned, trained, and assessed.

4. Performing an ensemble learning by combining several
models which may give better findings than a higher
accuracy model.

Therefore, before the Selector adopts the solution model for
the given Problem Formulation, it analyses whether there is a
combination of models that can outperform the selected model.
If the Selector finds such a model combination, then the model
solution is an ensemble ofmodels. The architecture of themodule
selector is visualized in Figure 11.

The selected ensemble of models, the problem formulation
and the given precision are then archived in the BrainOS history.
The four approaches are executed in parallel where every module
records the best model within the online model repository.

The criterion determines whether the retrieval is a fitted
enough approach according to the predetermined objectives, or
when one of the modules should be excluded from the search.
For each part of BrainOS processing plan, appropriate models are
selected. It is advisable to furnish different specialized Domain
Specific Instances of the selector, each one optimized for a
specific domain knowledge or problem context. For instance,
for classification purposes, SVM, K-means clustering, ANNs and
other tools can be employed. For time-dependant problems,
recurrent architectures, such as recurrent neural networks
(RNNs) (Chouikhi et al., 2017) are highly recommended.
To deal with feature engineering problems, independent
component analysis (ICA) (Henriquez and Kristjanpoller, 2019),
independent component analysis (PCA) (Kacha et al., 2020),
autoencoders (AEs) (Xu et al., 2016), matrix factorization, and
various forms of clustering.

Concerning optimization tasks, there are many useful
techniques, such as evolutionary computation (Chouikhi et al.,
2016), global optimization, naive optimization, etc.

3.10. The Orchestrator Component
From a high level of abstraction, the BrainOS plays the role
of an orchestrator-centered infrastructure as it monitors overall
models. It is arranged in a graph to pick out the processing
paths. The proposed framework seems to be powerful as it can
employ any approach from supervised to unsupervised learning,
reinforcement learning, search algorithms, or any combination
of those.

The orchestrator is a meta-component which merges input
data, processes history and objectives, and researches knowledge
and situational context to determine the most appropriate

Frontiers in Computational Neuroscience | www.frontiersin.org 9 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 10 | The parallel executor. The parallel executor creates new models or combines existing ones. It partitions corresponding tasks in parallel threads

processing simultaneously.

ML model for a given problem formulation. The orchestrator
is comprised of four components: models selector, problem
qualifier, planner and parallel executor.

4. INTERPRETATIONS

Our evaluation of BrainOS focuses on the following questions:
Question 1 Flexibility and adaptability: Is BrainOS capable

enough to deal with a large variety of application areas?
Question 2 Fast convergence: When dealing with a certain

task, does BrainOS proceed quickly or it takes much time
to converge?

Question 3 Accuracy: How does BrainOS ensure the
achievement of accurate results?

4.1. Flexibility and Adaptability
One of the most important characteristics of the BrainOS
is its flexibility to handle several issues. BrainOS can be
adapted for a large array of existing problems, and also
extended for new approaches. Here, we provide just a small
subset of possible application areas for the BrainOS. It
can be applied to Anthropomorphism in Human/Machine
Interaction problems including personality emulation and
emotional intelligence. Moreover, BrainOS is relevant in dealing
with brain disease diagnostics and treatment (e.g., Alzheimer,

Parkinson Disease, etc.), automated manufacturing systems,
energy management, etc.

In fact, the inner memory modules, incubated within the
BrainOS architecture, store previous experiences and knowledge.
This gives our platform the possibility to solve any kind
of application, even those with a high-level of abstraction.
What specifies the proposed paradigm over the state of the
art, is the consistency with conceptual data, such as NLP.
Indeed, it addresses the shortcomings of the existing models
in solving many contextual tasks. Additionally, it provides
a plenty of ML models, each of which performs in a
specific field.

4.2. Fast Convergence
BrainOS can decrease the execution time. If a problem was
previously tackled and another problem in the same context
is about to feed to BrainOS, the model previously employed
can be directly found in the BrainOS history and used to solve
the new task. In this case, there is no need to proceed to the
selector and the subsequent components. Furthermore, one of
the common challenges of automatic ML systems is to quickly
decide how to choose the model that best fits the given task.
BrainOS encompasses a selector component which automatically
and directly chooses better models according to the task at
hand. This can be gainful in terms of run time. Furthermore,

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 11 | The selector. The selector runs the history model selector, the researched-based builder, the model ensembler, and the model designer in parallel. The

history model selector searches for an adequate model in BrainOS history. The Research-Based Builder searches published papers and source code to find a suitable

model. The model ensembler combines several models, which may give better findings than a higher accuracy model. The model designer builds tools from scratch.

The model processor evaluates and trains the selected models.

BrainOS supports parallel execution by launching several threads
simultaneously through the parallel executor component. This
can save much time and hasten data processing.

4.3. Accuracy
BrainOS holds many components, which constitute levels
through which the data circulates. At the majority of these
levels, there is a storage of historical processing and models and
knowledge from world experience. Recording previous models
and their findings gives a priori indications about what model
to use. Furthermore, BrainOS provides several optimization
techniques as well as ML models capable of affording high
generalization capability. It is also possible to carry out an
ensemble learning by executing many models at the same time
and taking the best one.

4.4. Availability and Scalability
Data Processing Service is responsible for collecting data from
different input channels, decompressing it, and storing it for later
usage. There is a large number of data channels which can send
data to the BrainOS. Thus, on the Cloud, there is a need for high
scalability in recording this data, and there will also be a demand
to store a large amount of it. There are different technologies
which can support this, but the most suitable ones that can enable
the constant increase of inputs and high parallelism of incoming
data are those based on the Publish/Subscribe Paradigm. In
this specific case of data processing, the inputs will act as
data publishers while the BrainOS which processes the data, as
a subscriber.

5. EMPIRICAL RESULTS

Currently the implementation of AML models, such as Google’s
AI solution is likely to be susceptible to high latency,
computational cost and power consumption. This is due to
the huge data flow presented by larger data sets. The big
issue, which the industry will not overcome easily, is that
it is using digital arithmetic units and Boolean gates, which
themselves are a mismatch with how neurons and synapses work.
This represents, therefore, a poor approach to implementing
deep neural architectures. To continue solving more complex
problems, using increasingly more hardware is mandatory yet
unsustainable. The proposed BrainOS is under the way of
implementation. We are designing and testing some BrainOS
modules, and we will gather all the modules into one framework.
For example, we are working with a completely new architecture
for Deep Neural Networks (DNN), which we call Deep Cognitive
Neural Network (DCNN) (Howard et al., 2019).

5.1. Deep Cognitive Neural Network
(DCNN)
DCNN is one of the new ML models exhibiting characteristics
similar to the human brain, such as perception and reasoning
and is a much better fit for building Neural Networks. The
value of this new architecture is that big data analysis can
be run near real-time on small devices, such as mobile
phones and IoT devices. The proposed DCNN architecture,
shown in Figure 12, is comprised of one million neurons and
2.5 billion synapses. DCNN has a remarkable property of

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 12 | DCNN architecture (1,000 hidden layers, 1 million neurons, and 2.5 billion synapses).

FIGURE 13 | Decision making speed: for very large scale DNN processing, simulation results of DCNN has shown 300× faster decision-making as compared to the

state-of-the-art Multi-Layer Perceptron (MLP) based deep neural network comprising one million neurons and 2.5 billion synapses.

concurrently acquiring highly energy-efficient implementation,
fast decision-making, and excellent generalization (long-term
learning). DCNN is highly energy-efficient in computing with

ultra-low energy requirements that can easily be implemented in
both hardware and software, as its neurons can be represented
by simple equations consisting of addition, subtraction, and

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

FIGURE 14 | DCNN based optimized decision-making. (A) DCNN based real-time optimal adaptation. (B) Optimized dataset extraction: the data is first collected for

learning which helped GA based reasoning process to build optimized dataset.

division operations. A highly energy-efficient implementation
of shallow neural networks using complementary metal-oxide
semiconductor (CMOS) or Probabilistic CMOS (PCMOS)

technology has revealed that they are up to 300× times more
efficient in terms of energy performance product (EPP). The
substantial gain per-operation is proportional, which depends on

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2020 | Volume 14 | Article 16

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

the entire application, where large gains are expected with deep
structures for large scale processing.

5.2. DCNN Fast Decision-Making
DCNN was trained and tested using the state-of-the-art MNIST
dataset (LeCun et al., 1998). The decision making results are
depicted in Figure 13. It can be seen that for very large scale
processing, DCNN has shown up to 300× faster decision-making
as compared to the state-of-the-art Multi-Layer Perceptron
(MLP) based deep neural network.

5.3. DCNN Integration With the Reasoning
Algorithm
Another unique property of the developed DCNN is its quick
adaptability and convergence behavior when integrated with
reasoning algorithms to acquire human-like computing (both
perception and reasoning simultaneously) in real-time. Large
scale simulation reported up to 80× faster decision-making. The
simulated reasoning/optimization framework is demonstrated
in Figure 14. Figure 14A shows the DCNN based sensing and
adaptation procedure, trained on an optimized dataset produced
by the optimization framework. The optimization framework
is shown in Figure 14B, which is responsible for analysis
and reasoning. In this framework, the learning module assists
the reasoning process in deciding the best configurations to
be used in new upcoming situation. Whereas, the reasoning
module [e.g., genetic algorithm (GA)] uses learning module to
maximize the utility function. The proposed framework is used
for an optimized and autonomous power control in wireless
uplink systems. Simulation results demonstrated significant
performance improvement of DCNN + GA framework as
compared to DNN+GA, in terms of real-time decision making.
Specifically, in an offline optimization mode, DCNN took 0.28
s/decision as compared to DNN’s 2 min/decision. Nevertheless,
once the DCNN is trained on an optimized dataset, it performed
300× time faster than DNN as shown in Figure 14. More details
on the optimization framework and dataset are comprehensively
presented in Adeel et al. (2016).

We believe that our proposed DCNN is an optimal choice for
future ultra-low power and energy efficient devices capable of
handlingmassive arrays ofmathematical calculations in real-time
for both generalized learning and optimization applications. To
acquire more flexibility for dealing with a variety of applications,
we are currently implementing the DCNN regression model

along with the designing and testing of other BrainOS modules.
Lately, we will gather all the modules in one framework.

6. CONCLUSION

Our work was motivated both by the intellectual goal of creating
a model of human intelligence that better resembles how the
brain and cognition works as well as the related practical
goal of building a more effective machine learning approach;
an automatic-ML approach in particular. While ML and AI
approaches have generally been premised on duplicating brain
and cognitive functions, their varied suitability for different
kinds of problems means that no one model is adequate for all
problems. The way forward as many have supposed long ago,
is to figure out how to select an approach (which might be one
or a system of models), in an automatic, rational/explainable
manner, for any particular problem at hand, to elicit optimal
solutions to that problem. This means the selection and
calibration (i.e., parameter selection) of a system/architecture
of models. The BrainOS system described in this paper differs
from existing automatic ML tools in what it automates and
how it does so. It proceeds from existing taxonomies of
approaches in the automatic ML literature, to develop its own
architecture. Preliminary studies have convinced us that BrainOS
can deal with complex high-level problems, such as natural
language processing.

AUTHOR CONTRIBUTIONS

NH contributed to the design of the proposed approach. NC was
responsible for the state-of-the-art review and the paper write-
up. AA conceived and co-developed the original idea of DCNN
and DCNN based optimized decision-making. KD contributed
substantially to the writing and revising of the manuscript.
AHo co-designed the proposed architectural model. AHu was
responsible for the overall planning and direction of the proposed
approach, including the DCNN framework.

ACKNOWLEDGMENTS

The authors would like to greatly acknowledge Mandar Gogate
from Edinburgh Napier University and Hadi Larijani from
Glasgow Caledonian University for their contributions in DCNN
and optimization framework, which are cited here for reference.

REFERENCES

Adeel, A., Larijani, H., and Ahmadinia, A. (2016). Random neural network

based novel decision making framework for optimized and autonomous

power control in LTE uplink system. Phys. Commun. 19, 106–117.

doi: 10.1016/j.phycom.2015.11.004

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review

and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.

doi: 10.1109/TPAMI.2013.50

Bielza, C., and Larranaga, P. (2014). Bayesian networks in neuroscience: a survey.

Front. Comput. Neurosci. 8:131. doi: 10.3389/fncom.2014.00131

Bredeche, N., Shi, Z., and Zucker, J. D. (2006). Perceptual learning and abstraction

in machine learning: an application to autonomous robotics. IEEE Trans.

Syst. Man Cybern. C Appl. Rev. 36, 172–181. doi: 10.1109/TSMCC.2006.

871139

Cambria, E., White, B., Durrani, T., and Howard, N. (2014). Computational

intelligence for natural language processing. IEEE Comput. Intell. Mag. 9,

19–63. doi: 10.1109/MCI.2013.2291686

Chouikhi, N., Ammar, B., Rokbani, N., and Alimi, A. M. (2017). PSO-

based analysis of echo state network parameters for time series

forecasting. Appl. Soft Comput. 55, 211–225. doi: 10.1016/j.asoc.2017.

01.049

Frontiers in Computational Neuroscience | www.frontiersin.org 14 March 2020 | Volume 14 | Article 16

https://doi.org/10.1016/j.phycom.2015.11.004
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.3389/fncom.2014.00131
https://doi.org/10.1109/TSMCC.2006.871139
https://doi.org/10.1109/MCI.2013.2291686
https://doi.org/10.1016/j.asoc.2017.01.049
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Howard et al. BrainOS

Chouikhi, N., Fdhila, R., Ammar, B., Rokbani, N., and Alimi, A. M. (2016).

“Single- and multi-objective particle swarm optimization of reservoir structure

in echo state network,” in International Joint Conference on Neural Networks

(IJCNN) (Vancouver, BC), 440–447.

Dias, F. M., Antunes, A., and Mota, A. M. (2004). Artificial neural networks:

a review of commercial hardware. Eng. Appl. Artif. Intell. 17, 945–952.

doi: 10.1016/j.engappai.2004.08.011

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and

Hutter, F. (2015). “Efficient and robust automated machine learning,” inNeural

Information Processing Sytstem, eds F. Hutter, L. Kothoff, and J. Vanschoren

(Cham: Springer), 113–114.

Henriquez, J., and Kristjanpoller, W. (2019). A combined independent component

analysis–neural network model for forecasting exchange rate variation. Appl.

Soft Comput. 83:105654. doi: 10.1016/j.asoc.2019.105654

Hernandez, C., Sanz, R., Ramirez, J. G., Smith, L. S., Hussain, A., Chella, A., et al.

(2010). “From brains to systems,” in Brain-Inspired Cognitive Systems, eds C.

Hernandez, R. Sans, J. Gomez Ramirez, L. S. Smith, A. Hussain, A. Chella, and

I. Aleksander (New York, NY: Springer-Verlag), 1–250.

Howard, N., Adeel, A., Gogate, M., and Hussain, A. (2019). Deep Cognitive Neural

Network (DCNN). US Patent App. 16/194,721. Washington, DC: U.S. Patent

and Trademark Office.

Howard, N., and Hussain, A. (2018). The fundamental code unit of the brain:

towards a new model for cognitive geometry. Cogn. Comput. 10, 426–436.

doi: 10.1007/s12559-017-9538-5

Howard, N., and Lieberman, H. (2014). Brainspace: relating neuroscience

to knowledge about everyday life. Cogn. Comput. 6, 35–44.

doi: 10.1007/s12559-012-9171-2

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated Machine Learning.

Cham: Springer.

Kacha, A., Grenez, F., Rafael, J., Arroyave, O., and Schoentgen, J. (2020). Principal

component analysis of the spectrogram of the speech signal: interpretation

and application to dysarthric speech. Comput. Speech Lang. 59, 114–122.

doi: 10.1016/j.csl.2019.07.001

Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artif. Intell. Rev. 39,

261–283. doi: 10.1007/s10462-011-9272-4

Landry, M. (2018). Machine Learning With R and H2O. Mountainview, CA:

H2O.ai, Inc.

LeCun, Y., Cortes, C., and Burges, C. (1998). Mnist Dataset. Available online at:

http://yann.lecun.com/exdb/mnist

Louridas, P., and Ebert, C. (2016). Machine learning. IEEE Softw. 33, 110–115.

doi: 10.1109/MS.2016.114

Mountrakis, G., Im, J., and Ogole, C. (2011). Support vector machines

in remote sensing: a review. J. Photogramm. Rem. Sens. 66, 247–259.

doi: 10.1016/j.isprsjprs.2010.11.001

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A.,

et al. (2017). A review of clustering techniques and developments.

Neurocomputing 267, 664–681. doi: 10.1016/j.neucom.2017.

06.053

Vinson, B. (2018). Machine Learning With Google Cloud Platform. Technical

report, Google Cloud.

Wang, H., and Yan, X. (2015). Optimizing the echo state network with a

binary particle swarm optimization algorithm. Knowl. Based Syst. 96, 182–193.

doi: 10.1016/j.knosys.2015.06.003

Wang, Y., Widrow, B., Zadeh, L. A., Howard, N., Wood, S., Bhavsar, V. C.,

et al. (2016). Cognitive intelligence: deep learning, thinking, and reasoning

by brain-inspired systems. Int. J. Cogn. Inform. Natural Intell. 10, 1–20.

doi: 10.4018/IJCINI.2016100101

Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., et al. (2016).

Stacked sparse autoencoder (SSAE) for nuclei detection on breast

cancer histopathology images. IEEE Trans. Med. Imaging 35, 119–130.

doi: 10.1109/TMI.2015.2458702

Yao, Q., Wang, M., Chen, Y., Dai, W., Hu, Y. Q., Li, Y. F., et al. (2019). Taking

the Human Out of Learning Applications: A Survey on Automated Machine

Learning. Technical Report, arXiv:1810.13306 [cs.AI], ArXiV.

Yin, P.-Y. (2008). Theory of Cognitive Pattern Recognition, Chapter Pattern

Recognition Techniques. Vienna: I-tech.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Howard, Chouikhi, Adeel, Dial, Howard and Hussain. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 March 2020 | Volume 14 | Article 16

https://doi.org/10.1016/j.engappai.2004.08.011
https://doi.org/10.1016/j.asoc.2019.105654
https://doi.org/10.1007/s12559-017-9538-5
https://doi.org/10.1007/s12559-012-9171-2
https://doi.org/10.1016/j.csl.2019.07.001
https://doi.org/10.1007/s10462-011-9272-4
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1109/MS.2016.114
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.neucom.2017.06.053
https://doi.org/10.1016/j.knosys.2015.06.003
https://doi.org/10.4018/IJCINI.2016100101
https://doi.org/10.1109/TMI.2015.2458702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	BrainOS: A Novel Artificial Brain-Alike Automatic Machine Learning Framework
	1. Introduction
	2. State-of-the-Art: Automatic ML Frameworks
	3. BrainOS: A Novel Automatic ML Framework
	3.1. High-Level BrainOS Model
	3.2. BrainOS Fundamental Architecture
	3.3. Problem Formalization Component
	3.4. The Critic Component
	3.5. History Database
	3.6. The Planner Component
	3.7. The Parallel Executor
	3.8. The Module Scheduler
	3.9. The Selector Component
	3.10. The Orchestrator Component

	4. Interpretations
	4.1. Flexibility and Adaptability
	4.2. Fast Convergence
	4.3. Accuracy
	4.4. Availability and Scalability

	5. Empirical Results
	5.1. Deep Cognitive Neural Network (DCNN)
	5.2. DCNN Fast Decision-Making
	5.3. DCNN Integration With the Reasoning Algorithm

	6. Conclusion
	Author Contributions
	Acknowledgments
	References

