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Abstract: The Sea Surface Temperature (SST) is one of the key factors affecting ocean climate change.
Hence, Sea Surface Temperature Prediction (SSTP) is of great significance to the study of navigation and
meteorology. However, SST data is well-known to suffer from high levels of redundant information,
which makes it very difficult to realize accurate predictions, for instance when using time-series
regression. This paper constructs a simple yet effective SSTP model, dubbed DSL (given its origination
from methods known as DTW, SVM and LSPSO). DSL is based on time-series similarity measure,
multiple pattern learning and parameter optimization. It consists of three parts: (1) using Dynamic
Time Warping (DTW) to mine the similarities in historical SST series; (2) training a Support Vector
Machine (SVM) using the top-k similar patterns, deriving a robust SSTP model that offers a 5-day
prediction window based on multiple SST input sequences; and (3) developing an improved Particle
Swarm Optimization (PSO) method, dubbed LSPSO, which uses a local search strategy to achieve the
combined requirement of prediction accuracy and efficiency. Our method strives for optimal model
parameters (pattern length and interval step) and is suited for long-term series, leading to significant
improvements in SST trend predictions. Our experimental validation shows a 16.7% reduction in
prediction error, at a 76% gain in operating efficiency. We also achieve a significant improvement in
prediction accuracy of non-stationary SST time series, compared to DTW, SVM, DS (i.e., DTW + SVM),
and a recent deep learning method dubbed Long-Short Term Memory (LSTM).

Keywords: sea surface temperature; sea surface temperature prediction; similarity measure; support
vector machine; particle swarm optimization; local search

1. Introduction

Sea Surface Temperature (SST) is one of the crucial factors affecting the ocean climate.
The occurrence of events such as El Niño, storm surges and red tides are closely related to SST.
Therefore, in recent years, Sea Surface Temperature Prediction (SSTP) has attracted more and more
attention in various marine-related fields such as marine meteorology, navigation, marine disaster
prevention and mitigation, and marine fisheries. So far, researchers across the world have proposed
many methods to predict SST, which can be divided into three categories: statistical forecasting [1],
numerical forecasting [2], and empirical forecasting [3].

SST data are long-term data sequences and typically involve large data volumes. Many scholars
regard SSTP as a time-series regression problem, and derive prediction models by fitting the curve
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of historical data [4]. However, SST data is well-known to suffer from high levels of redundant
information, which makes it very difficult to realize accurate predictions through time-series regression,
nor to capture the complex dynamics of SST trends. In 2013, Lins et al., provided a prominent study
showing how classic Support Vector Machine (SVM) could be used to predict SST in terms of raw
data, slope and curvature [5]. Yet, they showed that SVM exhibited very similar performance when
using raw data and curvature features, and was more effective than using slope. Better prediction
accuracy was achieved with the more recent Long Short-Term Memory (LSTM) method [6]. This type
of neural network has been widely used in diverse areas, thanks to its suitability for processing time
series. In fact, Zhang et al. [7] were the first to use LSTM to predict SST. First, the SST sequence features
were learned by LSTM layers. Then, a fully-connected layer was used to map the output of the LSTM
layers to the final prediction result. Both SVM and LSTM tackle prediction accuracy. Yet, neither
method is sufficiently efficient. Even more critically, marine operational forecasting requires significant
improvements in SST trend predictions. Typically, empirical methods are used, of which the Analog
Complexing (AC) algorithm [8] is a representative example. Nevertheless, AC has not shown sufficient
accuracy in practical applications [9].

In this paper, our aim is to propose a new SSTP method, which not only can predict SST rapidly
and accurately, but also can better model the SST trend. The main idea of our method is to use similarity
measure to mine historical SSTs in order to extract sequences having similar trends, and then feed these
into a suitable prediction method to infer future SSTs.

When using this method to perform SSTP, we need to consider two important issues.
First, time-series mining is critically sensitive to the accuracy of the similarity measure method;
thus, any unexpected error in the mined data will dominate the prediction result. We solve this problem
by a combination of similarity measure and multiple time-series regression.

Another criticality is introduced by the choice the regression model parameters, which have a
dramatic impact on the performance of the prediction model. We tackled this issue as a bi-objective
optimization problem. In fact, our solution is dubbed DSL, since it is evolved from three building blocks:
Dynamic Time Warping (DTW) [10], SVM [11], and Local-search enabled parameters optimization [12].
It consists of three parts:

1. Using Dynamic Time Warping (DTW) to mine the similarities in historical SST series. DTW
has been chosen as the result of an experimental, comparative analysis of three representative
time-series SST similarity methods. It led to the highest prediction accuracy, it better modeled the
SST trends, and was found to be suitable to mining SST long-term time series.

2. Training a Support Vector Machine (SVM) using the top-k similar patterns, deriving a robust SSTP
model that offers a 5-day prediction window based on multiple SST input sequences. Learning
from multiple time-series sequences was instrumental to facilitating consistency enhancement
and noise cancellation, thus achieving high prediction accuracy.

3. Developing an improved Particle Swarm Optimization (PSO) method, dubbed LSPSO, which
uses a local search strategy to achieve the combined requirement of prediction accuracy and
efficiency. We were striving for optimal model parameters, to pursue SST prediction efficiency,
providing a new way for marine operational forecasting.

Overall, our work provides a new SSTP method that not only improves prediction accuracy and
speed, but also better models the trend of SST changes. An important element was to find a suitable
method to optimize the parameters of the combined DTW + SVM prediction method (dubbed DS
hereafter). We achieved this goal by developing an improved Particle Swarm Optimization (PSO)
method, which was responsible for a 16.7% improvement in prediction accuracy, in terms of reducing
the Root Mean Square Error (RMSE), and for a 76% reduction in prediction time. We also achieved
a significant improvement in prediction accuracy of non-stationary SST time series, compared to
DTW, SVM, DS (i.e., DTW + SVM), and a recent deep learning method dubbed LSTM (Long-Short
Term Memory).
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The rest of this paper is organized as follows. In Section 2, we describe related work on
SSTP, similarity measures, and optimization methods. The main idea of DSL is introduced in
Section 3. Experimental results and performance evaluation are shown in Section 4. Section 5 presents
our conclusions.

2. Related Work

SST data is typically long-time-sequence data, hence many researchers have regarded SSTP as a
time-series regression problem, thus applying time-series prediction methods to SSTP. The traditional
time-series prediction methods such as Autoregressive (AR) [13], Moving Average (MA) [14] and
Autoregressive Moving Average (ARMA) [15] are linear. Yet, SST has non-stationary and nonlinear
characteristics, thus these linear methods are not well-suited to the practical application of SSTP.

Therefore, researchers have proposed some nonlinear methods to predict SST. Li et al. [16] have
used SVM to predict SST and achieved good results. AC is often used for hydrological forecasting,
and can also be used for time-series prediction. It can better mine the hidden information in the
sequence, yet the method is sensitive to factors such as Pattern Length (PL), Interval Step (IS), and
similarity measure.

In the process of time-series data mining, the similarity measure is the basis of clustering,
association rules and prediction. Euclidean distance [17] is a commonly used time-series similarity
measure. It is simple to calculate, but can only process time series of equal length. It cannot handle the
sequence stretching and bending on the time axis.

DTW is based on the idea of Dynamic Programming (DP) [18], which was originally applied in
isolate word speech recognition [19]. It was then introduced into the study of similarity measures of
time series by Berndt et al. [20], achieving good results. DTW overcomes the shortcomings of Euclidean
distance. It will not only measure the similarity of time series of different lengths, but also supports
the stretching and bending of sequences on the time axis. It has a good measurement accuracy and
robustness, which is why it is widely used.

Cosine similarity [21] uses the cosine of the angles of two vectors in the vector space to measure the
similarity between them. The closer the cosine value is to 1, the closer the angle is to 0, the more similar
they are. Therefore, the method can better distinguish the difference in the direction of differentiation,
and is not sensitive to the cosine value.

By comparing the evaluation index of the different similarity measures, one that is suitable for
measuring the similarity of SST sequences can be selected, and the multi-objective optimization method
can be used as a solution to select the appropriate values for PL and IS.

Many scholars have studied the theory and application of multi-optimization algorithms.
Differential Evolution (DE) [22] is a simple but efficient parallel search algorithm proposed by
R. Storn in 1997, whose principle is similar to genetic algorithms. Zitzler et al. [23] compared the
Non-dominated Sorting Genetic Algorithm (NSGA) [24] with the Niche Pareto Genetic Algorithm
(NPGA) [25], and the Vector-Evaluated Genetic Algorithm (VEGA) [26], finding that NSGA has the
best performance. Yet, the computational complexity of NSGA is higher.

Aiming at the shortcomings of NSGA, Deb et al. [27] proposed the Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II), which reduces the time complexity of Pareto dominating sorting [28].
It is suitable for dealing with low-dimensional, multi-objective optimization problems. However, when
dealing with high-dimensional, multi-objective problems, the crowding distance [29] is not applicable
in high-dimensional space, and the computational complexity is also high.

Inspired by the predatory behavior of natural bird populations, Kennedy [30] proposed Particle
Swarm Optimization (PSO). PSO is an evolutionary computation method based on individual
improvement, population cooperation and competition mechanisms. It has the important characteristics
of being simple and easy to implement, which makes it suited to single-objective optimization.
When optimizing multiple targets (as in MOPSO [31]), M. Reyes et al. proposed OMOPSO (Optimal
Multi-Objective Particle Swarm Optimization) [32], which uses the crowding factor to select the leaders,
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based on Pareto dominance. Other researchers proposed hybrid optimization strategies that combine
two or more heuristic optimization techniques [33,34], which could integrate the merits of different
algorithms or achieve a near optimal solution quickly.

Considering that DS will fall into local optimum when optimizing the SSTP model, we propose
LSPSO (Particle Swarm Optimization algorithm combined with Local Search strategy), which uses the
Pareto dominance relationship to measure the advantages and disadvantages of the solution, and uses
local search for non-dominated solution sets to enhance the local search ability. LSPSO has a strong
ability to explore and can approach the true Pareto frontier.

3. The Proposed DSL Method

Our method involves three main algorithms, DTW, SVM, and LSPSO, and we have dubbed it
DSL for short. Given an SST sequence F = F1, F2, . . . , F|F| (whereby |F| is the length of the sequence F),
our aim is to predict the SST for the subsequent five days. Figure 1 shows the flow chart of our SSTP
algorithm based on the similarity measure.
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The main steps of DSL are as follows: (1) Read the SST sequence F, generating a reference pattern
and n analog patterns, and storing the information in the tuples T. (2) Calculate the DTW distances of
the reference pattern and each analog pattern separately, and sort them in ascending order according to
the DTW distance; the first k modes can be regarded as analog patterns similar to the reference pattern.
(3) The obtained analog patterns are used as the input of the SVM model, and the corresponding SST
of the following five days in the sequence F are used as the output of the SVM model; an SVM model
with predictive ability is obtained through training. (4) The reference pattern is used as the input to the
SVM model, generating a 5-day prediction of the SST. Materials and Methods should be described
with sufficient details to allow others to replicate and build on published results. Please note that
publication of your manuscript implicates that you must make all materials, data, computer code, and
protocols associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols should be
described in detail while well-established methods can be briefly described and appropriately cited.
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The reference pattern represents the current SST trend, while the analog pattern is the historical
SST trend. In the process of generating the reference and the analog patterns, the PL and IS are
uncertain; so before using DSL to predict SST, it is necessary to use LSPSO to optimize the model
parameters and obtain the appropriate PL and IS.

3.1. Generation and Trend Prediction

In order to mine the similar trend to the current SST from the historical SST, we need to generate
the reference and the analog patterns. The reference pattern represents the recent trend, whereas the
analog pattern represents the historical trend. Based on the persistence and similarity of SST, we can
calculate the similarity between reference pattern and analog pattern to mine the historical trends that
are close to the current trends, and then use historical trends to predict current trends.

Algorithm 1 specifies the process of generating the reference and the analog patterns. Step 2 takes
out the last five days of F for evaluating the prediction model; step 3 generates the reference pattern C;
steps 4–9 generate the analog pattern A and save the reference and the analog patterns in the tuples T.

Algorithm 1. Generating the reference pattern C and the analog pattern A.

Input:
SST sequence: F; PL: m; IS: step;
Output:

Tuples: T;
1: T←Φ; A←Φ; C←Φ; D←Φ; Q←Φ;
2: Take the last five days of F as the true value, and remove the last five days of F to obtain the sequence D;
3: Take the SST of the last m days of D as the reference pattern C, and remove the SST of the m days to obtain
the sequence Q;
4: t = 1; // t record the starting position of each analog pattern
5: while ((t + m − 1)<(|F| −m − 5)) do
6: Take the SST of the sequence Q from t to t + m - 1 as the analog pattern A;
7: Save the generated reference and analog modes in the tuples T;
8: t = t + step;
9: End While

The similarity of the SST sequence is measured by the DTW distance, which can be performed
in two steps: firstly, calculate the distance matrix by calculating the distance between the SST points
of A and C; then, find an optimal path in the matching distance matrix. C = c1, c2, . . . , cm and
A = a1, a2, . . . , am define a matrix of m rows and m columns, with elements d(ai, ci) =

∣∣∣ai − ci
∣∣∣. W is the

distance matrix between A and C, and can be expressed as per Equation (1).

W =


d(a1, c1) · · · d(a1, cm)

d(a2, c1) · · · d(a2, cm)
...

. . .
...

d(am, c1) · · · d(am, cm)

 (1)

In the distance matrix W, the similarity relationship between A and C is represented by a set of
consecutive matrix elements, which is referred to as a curved path L, L = (w1, w2, . . .wK), where m ≤
K ≤ 2m − 1.

Path selection needs to meet the following constraints: (1) The start and end points of A and C are
aligned, whereby the starting point of the path is (a1, c1), and the ending point is (am, cm). (2) Any
point on the path can only move along the adjacent elements of the matrix each time. That is, if
w1 = (a1, c1) then next point w2 = (a, c) for the path, to satisfy a− a1 ≤ 1 and c − c1 ≤ 1. (3) Any point
on the path can only move one way along the time axis each time. That is, if w1 = (a1, c1) then next
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point w2 = (a, c) for the path to satisfy a− a1 ≥ 0 and c − c1 ≥ 1. The shortest path distance that satisfies
the above constraints is the DTW distance, which can be expressed by Equation (2).

DTW(A, C) = min

 K∑
k=1

wk

 (2)

Through the above steps, the DTW distance between each analog pattern and the reference pattern
can be calculated. The smaller the DTW distance, the more similar the two patterns are. So far, we
have obtained analog patterns similar to reference patterns from F, showing how to use these analog
patterns to predict the SST for the next five days. AC is calculating the average of the SST for the
next five days that corresponds to these analog patterns in F as the SST prediction value for the next
five days.

Yet, this method does not make full use of the information obtained through data mining, which
leads to low prediction accuracy. In response to this problem, this paper uses these analog patterns to
establish prediction modes. Because these analog patterns have a small sample size, they can only
be modeled using small sample prediction methods to maximize information utilization. Although
Back Propagation (BP) neural networks [35] can be used for small-sample prediction, model training is
difficult and prone to failing during the training process. SVM is suitable for processing small samples
and nonlinear problems, and has good robustness and high prediction accuracy. Considering that SST
has nonlinear features, this paper combines SVM with DTW to construct a predictive model. In this
paper, the analog patterns similar to the reference patterns are the input of the SVM, and the SST of the
next five days corresponding to these analog patterns in F is used as the output of the SVM. Through
training, we obtain a predictive SVM model and then use the reference model as the model input to get
the SST for the next five days.

The training samples of the SVM are (Xi, Yi), i = 1, 2, ..., k, where Xi ∈ Rm is the input, Yi ∈ Rn is
the output, and m and n are the dimensions of the variable, and k is the number of samples. The goal
of the SVM is to build the following regression function:

f (X) = Wϕ(X) + b =


W1ϕ(X) + b1

...
Wnϕ(X) + bn

 (3)

ϕ(X) can map data from the original space to the high-dimensional space, which can transform
the nonlinear problem in the original space into a problem that can be solved in high-dimensional
space. W and b are weights and offsets, respectively. To determine W and b we proceed with the
minimization (4).

min
1
2

n∑
j=1

‖W‖
2

+ C
n∑

j=1

k∑
i=1

L j( f j(Xi), Y j
i ) (4)

where C is the balance factor,Lj() is the loss function, and j is the dimension of the output variable. The
loss function is usually defined as follows:

L j( f j(Xi), Y j
i ) =

 0, f j(Xi) −Y j
i < ε j, ε j>0,

f j(Xi) −Y j
i − ε j, otherwise.

(5)

The multivariate nonlinear regression SVM model can be finally expressed by the Lagrangian
method as:

f j(X) =
k∑

i=1

(a j
i − a j∗

i )K(Xi, X) + b j (6)
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where a j
i , a j∗

i are Lagrangian multipliers, and K(Xi, X) is a kernel function. RBF is the most widely used
kernel function, which not only can implement nonlinear mapping, but also has fewer parameters.
Therefore, this paper uses RBF as the kernel function of SVM. By training the above model, an SVM
with predictive ability can be obtained, and then, inputting the reference pattern into the model, we
can predict the SST for the next five days.

Although SSTP can be implemented in this way, the PL and IS may dramatically affect the accuracy
and efficiency of the DS. In order to determine the appropriate PL and IS, this paper proposes LSPSO
and applies it to model parameter optimization.

3.2. Parameter Optimization Using LSPSO

The basic operations of a standard PSO are particle speed and position updates:

vk+1
i,d = wvk

i,d + c1r1(pk
Pbest,d − xk

i,d) + c2r2(pk
Gbest,d − xk

i,d) (7)

xk+1
i,d = xk

i,d + vk
i,d (8)

where w is the inertia weight, c1, c2 are learning factors, r1, r2 are mutually independent random
numbers in the interval [0, 1], k is the number of evolutions, d is the search space dimension. Pbest is
the optimal location for each particle search, and Gbest is the optimal location for the entire particle
swarm search.

When PSO optimizes the parameters of the SST model, the search ability is weak in the late search,
and it is easy to fall into local optimum, which is not conducive to optimize the model parameter.
Therefore, we proposed LSPSO, which differs from the PSO as summarized below:

(1) PSO adopts a random method in population initialization, which leads to each particle appearing
in a random distribution state in space, lacking the guidance of prior knowledge, which is not
conducive to the particle close to the optimal solution. In this paper, the Beta distribution strategy
is used to initialize the population, which is beneficial to the rapid formation of the surrounding
situation by the particles to the optimal solution.

(2) The global and local search capabilities of PSO are mutually constrained and tend to fall into
local optimum in the later stages of search. This paper uses local search strategy to enhance
the local search ability of PSO, so that the improved PSO has independent global and local
search capabilities.

(3) Particles tend to cross out of bounds during flight. Particles flying faster than the bound range
will mutate; flying speeds that exceed half of the constraint range and below the constraint range
decelerate to prevent particles from crossing the boundary.

When LSPSO optimizes the parameters of DS, it can be expressed as follows:

min RMSE = G1(PL, IS)
min RT = G2(PL, IS)

s.t
PS = {x|1 ≤ x ≤ 360, x ∈ Z}
IS =

{
y
∣∣∣1 ≤ y ≤ 30, y ∈ Z

} (9)

where RMSE gives the accuracy of the DS; RT is the running time of the DS; PL represents the pattern
length; and IS represents the interval step. Figure 2 depicts the flow chart of LSPSO, including the
following steps:

Step 1: Randomly initialize the population using the Beta strategy; each particle has two attributes:
the pattern length and the interval step;

Step 2: Calculate the RMSE and RT of each particle, and then filter out the non-dominated solution
according to the non-dominated relationship, and store it in the external population, S;
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Step 3: Local search of the external population, S by local search, to enhance the local search ability of
the particle, and obtain the population S’;

Step 4: Control the population in population D by crowding distance;
Step 5: Update Pbest and Gbest;
Step 6: Update the velocity and position of the particle according to Formulas (7) and (8);
Step 7: Determine whether the termination condition is met. If it does, output the optimal solution set

and select the appropriate parameters for predicting SST; otherwise, add G to 1, and return to
step 2.
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The traditional particle swarm optimization algorithm typically uses random initialization to
generate the initial solution. Due to the lack of guidance of prior information, it is not conducive to the
initial particle to move closer to the optimal solution. In this paper, the Beta distribution initialization
strategy is used to initialize the population, which is beneficial to the particle to form the enclosing
situation to the optimal solution. The shape of the Beta function is a symmetric U-shape, and the
candidate set is most likely to be located near the boundary of the search space. At this time, the global
optimal solution is better enclosed within the initial particle population. The Beta distribution function
is defined as:

β(x; m, n) =
xm−1(1− x)n−1

B(m, n)
, 0 < x < 1. (10)
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The denominator is defined as follows:

B(m, n) =
∫ 1

0
tm−1(1− t)n−1dt (11)

Pareto dominance relationships are used in many optimization algorithms to measure the pros
and cons of a solution, usually defined as follows:

Definition 1. (non-dominated relationship). Let x, y be the two decision variables in equation (12), if x
dominates y, then if and only if:

∀i ∈ {1, 2, . . . , n},∃ j ∈ {1, 2, . . . n}; fi(x) ≤ fi(y)∩ f j(x) < f j(y). (12)

Definition 2. (non-dominated solution). Assuming that there is a solution set P, where individual q is not
dominated by any other individual, then q is a non-dominated individual in P. The subset of non-dominated
individuals of P is called the non-dominated set (NDset) of P.

NDset =
{
q
∣∣∣q ∈ P and does not exist p ∈ P, make p dominate q

}
Since only the non-dominated solution in the population P needs to be selected, in the process of

comparing different particles, once the particles are dominated by other particles, they are not compared
with other particles, which reduces the complexity of the algorithm. Through the non-dominated
relationship, a non-dominated solution set S can be obtained. The solutions contained in the set are
non-dominated solutions, and some better solutions can be found around the non- dominated solution.

The local search ability of the algorithm is enhanced by the local search strategy, which is beneficial
to improve the local search ability of the algorithm. For the non-dominated solution set S, one of
the individuals is xi,k = (x1,i,k, x2,i,k, . . . xn,i,k)

T, i represents the i-th individual in S, k is the number of
evolutions, and n represents the dimension of the variable. The search for the m-th variable of the
individual xi,k in two directions can be expressed below as Lm,i,t and Rm,i,t.

Lm,i,t = xm,i,t − c×
∣∣∣Pm,i,t −Gm,i,t

∣∣∣ (13)

Rm,i,t = xm,i,t + c×
∣∣∣Pm,i,t −Gm,i,t

∣∣∣ (14)

where P and G are randomly selected from the non-dominated solution set S, and c is the interference
coefficient. New individuals can be generated by Equations (13) and (14). Algorithm 2 expresses the
complete process of local search.

The non-dominated solution set S obtained from each evolution, the local searched population S’
and the external archive D, are merged into a new external archive D. The non-dominated solutions in
D are used as external archives to ensure the diversity of the population.

As the number of iterations increases, the size of the external archive will gradually increase
too. It is unrealistic to include all non-dominated solutions in D. At this time, it is feasible to obtain a
finite non-dominated subset that can represent the solution space. In order to obtain a more uniform
non-dominated solution set, this paper uses the crowded distance to remove redundant individuals
and controls the number of non-dominated solutions in D.

After updating Gbest and Pbest, we use Formulas (7) and (8) to update the velocity and position
of the particle. Since the particles will cross the boundary when flying, the particles will be mutated for
the particles whose particle velocity exceeds the constraint range. The formula is as follows:

Mn,i,t = En,i,t × (1 − rand (−0.2, 0.2)) (15)
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where E is randomly selected from the external archive D, and M is the mutated particle. When the
flying speed of the particle exceeds half of the constraint range, but is still below the constraint range,
the particle velocity is set to half of the constraint range to prevent the particles from crossing the
boundary. Through iteration, if the termination condition is met, the optimal solution set can be output
finally, and a reasonable parameter combination is selected from the solution set as a parameter of the
prediction model for predicting the SST for the next five days.

Algorithm 2. Local Search.

Input:
The non-dominated solution set: S;
Number of non-dominated solutions: |S|;
The dimension of the search space: n;

Output:
External population: S’;

1: S’←Φ;
2: For I = 1 to |S| do
3: Randomly select two individuals P and G from S
4: For j = 1 to n do
5: Generate individual L and R by Equations (13) and (14)
6: End For
7: Keep better individuals in both L and R in S’
8: End For

4. Results and Discussion

4.1. Experimental Environment and Data

The experimental environment of this paper has the following specifications: Windows 10
operating system; Intel Core i5 CPU; 2.6 GHz clock; and 8Gbyte RAM. The algorithms MODE, NSGA-II,
and OMOPSO are implemented using Matlab, while the other components have been done in Python.
The experimental data includes 9 SST sequences provided by the Second Institute of Oceanography,
including SSTs from 1 January 2004 to 31 December 2016.

4.2. Evaluation Indicators and Test Functions

In this paper, we used three indicators to evaluate our model performance. We used Root Mean
Square Error (RMSE) [36] to assess the overall accuracy of the SSTP models. To evaluate the convergence
and uniformity of the parameter optimization algorithm, we used Generational Distance (GD) [37] and
Spacing (SP) [38] as the indicators, and introduced three test functions. The details of these indicators
and test functions are described in the following.

RMSE is a measure of the deviation between the observed value and the true value. The smaller
the value, the more accurate the prediction. The formula of RMSE is as follows:

RMSE =

√∑n
i=1 (Y_reali −Y_predi)

2

n
(16)

where Y_real is the true value, Y_pred is the predicted value, and n is the number of days to predict.
The Pareto optimal solution set obtained by the multi-objective optimization algorithm should

maintain the convergence of the solution and the uniformity of the distribution. In order to evaluate
the convergence and uniformity of the Pareto frontier obtained by the multi-objective optimization
algorithm, to obtain as many Pareto optimal solutions as possible, and to approach the true Pareto
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frontier as best as possible, GD was used as the solution convergence performance evaluation.
The smaller the value of GD, the better the convergence of the solution set. Secondly, the Pareto optimal
solution should be evenly distributed along the Pareto frontier as much as possible, and SP was used
as the index of uniform distribution performance evaluation. The smaller the SP, the more uniform the
solution set distribution. GD is defined as:

GD =

√√
n∑

i=1

d2
i

n
(17)

where n is the optimal number of Pareto solutions, and di is the distance of the i-th Pareto optimal
solution in the objective space from the nearest individual of the Pareto frontier. SP is defined as:

SP =

√√√
1

n−1

n∑
i=1

(d− di)

2

(18)

where n is the optimal solution number of Pareto, di is the distance of the i-th Pareto optimal solution
from other individuals in the objective space, and d is the average value of di.

LSPSO was applied to the bi-objective optimization of accuracy and efficiency of the SSTP. In
order to verify the feasibility of LSPSO in the bi-objective optimization problem, three commonly used
bi-objective test functions were selected for testing: BNH [39], SRN [40] and TNK [41]. We compared the
GD and SP indicators of the optimal frontier obtained by MODE, NSGA-II, and OMOPSO, respectively.
Table 1 lists the characteristics of these three test functions.

Table 1. Bi-objective optimization problems.

Function Number of Variables Number of Objectives Analytical Pareto Frontier

BNH 2 2 Connected/Convex
SRN 2 2 Disconnected/Convex
TNK 2 2 Disconnected/Nonconvex

4.3. Analysis of Experimental Results

In this work we designed three sets of experiments: (1) to compare the advantages and
disadvantages of the similarity measures in SSTP and choose the best method; (2) to verify the
effectiveness of LSPSO by comparing it with the MODE, NSGA-II, and OMOPSO algorithms; (3) to
compare the performance of DSL with other SSTP methods.

Experiment 1: Comparison of similarity measures. Applying AC to SSTP requires choosing a suitable
similarity measure method to measure the similarity of SST sequences. Therefore, we first computed the Euclidean
distance, the cosine distance, and the DTW distance to measure the similarity of SSTs. Then, we chose the
optimal similarity measure based on this principle: the better the similarity is measured, the smaller the SSTP
error is. The error of SSTP was measured by Root Mean Square Error (RMSE).

Table 2 shows the achieved RMSE in relation to SST predictions based, respectively, on Euclidean
distance, Cosine distance, and DTW distance similarity measures. The first nine rows provide RMSE
values for nine different SST sequences, with the average values given in the last row. When using
the Euclidean distance to predict SST, the average RMSE is 0.4949, which is slightly higher than (at
times comparable to) DTW, but much better than Cosine. The reason for this is that the number of
days in which the SST changes regularly is not fixed, and the Euclidean distance does not support
scaling. However, the DTW distance can better overcome this deficiency, so DTW can better reflect the
similarity of SST changes.
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Table 2. RMSE obtained by predicting SST with three similarity measures.

Station Euclidean Cosine DTW

1 0.5289 1.3223 0.4866
2 0.5525 1.2907 0.5136
3 0.4813 0.8982 0.4606
4 0.4641 0.6669 0.4637
5 0.4788 1.4734 0.4544
6 0.5247 0.6666 0.4630
7 0.5364 0.5549 0.5204
8 0.4437 1.3070 0.4429
9 0.4439 1.4096 0.4161

Avg 0.4949 1.0655 0.4690

The average RMSE when using the cosine distance to predict SST is 1.0655. This is much higher
than the other two indexes, leading to a much worse prediction ability. This happens because the cosine
distance uses the cosine of the angle of the SST vector to measure its similarity, which only reflects
the trend of SST changes, and is not sensitive to the value of the SST itself. The DTW and Euclidean
distances are based on the SST values. In summary, DTW has the highest prediction accuracy among
the three. Therefore, we use only DTW in the remaining experiments, below.

Experiment 2: Verification of LSPSO. An LSPSO algorithm was proposed in this paper. To verify its
effectiveness, three classical bi-objective test functions (BNH, SRN and TNK) were selected. GD and SP were
used as evaluation indicators. The number of populations, N was set to 100, and the number of iterations G
= 250 was compared with MODE, NSGA-II and OMOPSO, respectively. Each algorithm ran independently
30 times for each test function, computing the mean and variance of GD and SP values. Analysis of Variance
(ANOVA) [42] was used to test the significant difference of the GD and SP indicators between LSPSO and the
other models (MODE, NSGA-II, and OMOPSO). In general, P values smaller than 0.05 indicate that there is a
significant difference.

Figures 3–5 show the solution obtained by LSPSO for BNH, SRN and TNK functions and the true
Pareto frontier. The red circle is the optimal solution obtained by LSPSO, and the black line is the true
Pareto front. The optimal solution sets of LSPSO are convergent and evenly distributed on the true
Pareto front.Energies 2020, 13, x FOR PEER REVIEW 13 of 18 
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Table 3 shows the GD and SP of MODE, NSGA-II, OMOPSO, and LSPSO in solving BNH, SRN,
and TNK, respectively. Overall, our LSPSO is better than the other three methods according to the
mean and std values of GD and SP.

Table 3. The GD and SP obtained by MODE, NSGA-II, OMOPSO and LSPSO in solving BNH, SRN
and TNK.

Function
MODE NSGA-II OMOPSO LSPSO

GD SP GD SP GD SP GD SP

BNH
Mean 0.5498 1.9369 0.1386 1.1174 0.1405 0.9745 0.1350 0.7127

Std 8.77 × 10−2 0.5502 1.56e × 10−2 6.50 × 10−2 1.46 × 10−2 7.94 × 10−2 1.36 × 10−2 6.95 × 10−2

SRN
Mean 2.8408 4.1774 0.6819 1.8991 0.5876 1.3269 0.4644 1.5033

Std 0.4715 0.5601 9.02×10−2 0.1593 6.58×10−2 0.1020 3.77×10−2 0.1149

TNK
Mean 4.96 × 10−3 4.34 × 10−2 2.45 × 10−3 3.73 × 10−2 2.68 × 10−3 3.39 × 10−2 2.41 × 10−3 3.39 × 10−2

Std 6.91 × 10−4 2.37 × 10−3 2.24 × 10−4 7.84 × 10−4 2.44 × 10−4 7.25 × 10−4 1.46 × 10−4 6.90 × 10−4

When dealing with the BNH function, our LSPSO method outperforms the other three methods
in the uniformity of the solution set, achieving a statistical significance of SP (p < 0.001). This can be
observed from Figure 3, where the solution set of LSPSO is uniformly distributed on the Pareto front
for BNH. The convergence of LSPSO is much better than that of MODE in term of GD (p < 0.001), but it
is not significantly better than NSGA-II and OMOPSO (p = 0.37 and p = 0.15, respectively).
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For the SRN function, the GD of LSPSO is significantly better than those on the other three methods
(p < 0.001), indicating a good convergence. Regarding the uniformity of the solution set distribution
(SP), although LSPSO is significantly better than MODE and NSGA-II (p < 0.001), it is worse than
OMOPSO (p < 0.001). This maybe because the true Pareto frontier of the SRN function shows linearly
distributed and global search has advantages when dealing with such problems, but when the true
Pareto frontier of the test function is non-linear, our method can achieve much better results.

For the TNK function, the average and std of the GD and SP obtained by LSPSO are better than
those on the other methods, indicating that LSPSO handles TNK well. According to the significance
test, our LSPSO has similar performance with NSGA-II in terms of GD (p = 0.48), and with OMOPSO
in terms of SP (p = 0.95).

In summary, LSPSO can better handle the bi-objective test functions, and provide effective
support for the parameter optimization of DS. MODE, NSGA-II and OMPSO have strong global search
capabilities and insufficient local search capabilities, so the solution sets obtained are not uniform
and easily fall into a local optimum. The global and local search capabilities of PSO are mutually
constrained and tend to fall into local optimum in the later stages of search. In this paper, a local
search strategy is used to enhance the local search capability of the PSO, so that the improved PSO
has independent global and local search capabilities. Therefore, the obtained solution set has better
convergence and more uniform distribution.

Experiment 3: Comparison of DSL performance with other SSTP methods. DSL is a combination of
DTW + SVM (DS) and LSPSO. Define the space composed of the PL and the IS as the search space of the particle,
and the prediction accuracy and efficiency set as the optimization objectives, LSPSO can compute the appropriate
PL and IS that are set to the parameter of DS to predict SST. Here, we compare the performance of DSL with
DTW, SVM, DS, LSTM in SSTP. In the situation of predicting 5-day SST with a given t-day of SST data, the
DTW method is to find the most similar series of SST from historical data and take its following 5 days as the
prediction. The SVM and LSTM both are trained by fitting nonlinear changes in SST. DS is to train a SVM by
top-k similar series selected according to DTW.

The comparison results are shown in Table 4. The average value of RMSE obtained by DS in
predicting SST is 0.4468, which is lower than the average RMSE of the DTW. This indicates that the
combination of DTW and SVM can effectively utilize the information after DTW mining. Secondly, the
prediction results of the DS algorithm are better than those of SVM. This is because the SST sequence
contains a lot of redundant information, which will interfere with the model during prediction, making
the SVM prediction accuracy low.

Table 4. RMSE obtained when predicting SST by DTW, SVM, DS, LSTM and DSL.

Station DTW SVM DS LSTM DSL

1 0.4866 0.7403 0.4640 0.5093 0.3255
2 0.5136 0.7117 0.4979 0.5075 0.4056
3 0.4606 0.7338 0.4387 0.4839 0.3334
4 0.4637 0.8383 0.4569 0.5458 0.3454
5 0.4544 0.6208 0.4259 0.4534 0.3862
6 0.4630 0.8694 0.4414 0.5710 0.4300
7 0.5204 0.8532 0.5121 0.5781 0.4816
8 0.4429 0.7840 0.3936 0.5154 0.2924
9 0.4161 0.7660 0.3911 0.5259 0.3534

Avg 0.4690 0.7686 0.4468 0.5211 0.3726

LSTM gains the average RMSE of 0.5211, which is worse than DTW, DS and DSL. Although
LSTM is developed for dealing with long and short-term prediction problem, it does not work well in
predicting SST. This is probably due to the non-stationarity of SST.
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DSL obtains the optimal parameters of PL and IS by LSPSO, and uses them in DS to predict
SST. Comparing the RMSE values between DS and DSL, it can be found that the performance of DSL
prediction of SST is better than DS, indicating that the parameters of DS can be effectively optimized by
LSPSO, which was responsible for a 16.7% improvement in prediction accuracy, in terms of reducing
the RMSE. In summary, the overall effect of DSL prediction of SST is optimal, indicating that the
method can effectively predict SST and verify the effectiveness of the proposed method.

We demonstrated the predicted results by different SSTP methods. Figure 6 shows a sample,
randomly selected from the results. The black line represents the true values; the blue line represents the
predicted results by using DTW; the red and yellow lines correspond to SVM and LSTM, respectively;
the predicted results by using DSL are shown in green. It is clear that the results predicted by our
method (green) are the closest ones to ground truth (black), including also the trend changes. On the
other hand, the change trend of the other methods fluctuates significantly.
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Finally, Figure 7 shows the operating efficiency of DS at predicting SST, before and after LSPSO
optimization. RT represents the running time in seconds. The first nine columns provide RT for nine
different SST sequences, with the average values given in the last column. The red histogram is the RT
of the DS before optimization, and the blue histogram is the RT of DS after optimization. It can be
clearly seen that, for each SST series, the RT before optimization is much longer, with an average 76%
acceleration. Our results verify the effectiveness of the proposed method.Energies 2020, 13, x FOR PEER REVIEW 16 of 18 

 

 
Figure 7. Comparison of RT before and after optimization. 

5. Conclusions 

This paper constructs a simple yet effective SSTP model, dubbed DSL, based on time-series 
similarity measure, multiple pattern learning and parameter optimization. We approach this complex 
issue through three stratagems: (1) Using Dynamic Time Warping (DTW) to mine the similarities in 
historical SST series. This can extract similar patterns of historical SST series simply and accurately. 
(2) Training an SVM using the top-k similar patterns, deriving a robust SSTP model that offers a 5-
day prediction window based on multiple SST input sequences. Learning from multiple time-series 
sequences was instrumental to facilitating consistency enhancement and noise cancellation, thus 
achieving high prediction accuracy. (3) Developing an improved PSO method, dubbed LSPSO, to 
find the optimal parameters of the SSTP model, which uses a local search strategy to achieve the 
combined requirement of prediction accuracy and efficiency. 

Our method strives for optimal model parameters (pattern length and interval step) and is suited 
for long-term series, leading also to significant improvements in SST trend predictions. The efficiency 
LSPSO was verified to have better convergence and more uniform distribution by comparing with 
different optimization methods such as MODE, NSGA-Ⅱ and OMOPSO. With the LSPSO, the SST 
prediction using SVM and DTW achieved a 16.7% reduction in prediction error, at a 76% gain in 
operating efficiency. We also achieved a significant improvement in prediction accuracy of non-
stationary SST time series compared to the more recent LSTM deep learning method. In general, our 
method provides a new way for marine operational forecasting. 

In the work carried out so far, we have assumed that SST changes were affected only by internal 
factors. As a future extension, we shall strive to take into account also other external factors (such as 
air temperature, air pressure, etc.). This will require considering the correlations between SST and 
these factors. We plan to use association rules to analyze impact on SST, and then use multi-factor 
prediction models to predict SST, striving for more comprehensive and robust predictions. 

Author Contributions: Conceptualization, Q.H. and W.S.; methodology, C.Z., W.S., C.P. and A.L.; software, C.Z.; 
investigation, Y.D.; resources, Z.H.; writing—original draft preparation, Q.H. and C.Z.; writing—review and 
editing, W.S., C.P. and A.L.; supervision, Q.H. and W.S. All authors have read and agreed to the published 
version of the manuscript. 

Funding: The work is supported by the National Key R&D Program of China (2016YFC1401902), the National 
Natural Science Foundation of China (41671431), the Program for the Capacity Development for Shang Local 
Colleges (17050501900), the National Oceanic Administration Digital Ocean Science and Technology Key 
Laboratory Open Fund (B201801029) and the open fund of State Key Laboratory of Satellite Ocean Environment 
Dynamics, Second Institute of Oceanography, MNR (QNHX1913). 

Figure 7. Comparison of RT before and after optimization.



Energies 2020, 13, 1369 16 of 18

5. Conclusions

This paper constructs a simple yet effective SSTP model, dubbed DSL, based on time-series
similarity measure, multiple pattern learning and parameter optimization. We approach this complex
issue through three stratagems: (1) Using Dynamic Time Warping (DTW) to mine the similarities in
historical SST series. This can extract similar patterns of historical SST series simply and accurately.
(2) Training an SVM using the top-k similar patterns, deriving a robust SSTP model that offers a
5-day prediction window based on multiple SST input sequences. Learning from multiple time-series
sequences was instrumental to facilitating consistency enhancement and noise cancellation, thus
achieving high prediction accuracy. (3) Developing an improved PSO method, dubbed LSPSO, to find
the optimal parameters of the SSTP model, which uses a local search strategy to achieve the combined
requirement of prediction accuracy and efficiency.

Our method strives for optimal model parameters (pattern length and interval step) and is suited
for long-term series, leading also to significant improvements in SST trend predictions. The efficiency
LSPSO was verified to have better convergence and more uniform distribution by comparing with
different optimization methods such as MODE, NSGA-II and OMOPSO. With the LSPSO, the SST
prediction using SVM and DTW achieved a 16.7% reduction in prediction error, at a 76% gain in operating
efficiency. We also achieved a significant improvement in prediction accuracy of non-stationary SST
time series compared to the more recent LSTM deep learning method. In general, our method provides
a new way for marine operational forecasting.

In the work carried out so far, we have assumed that SST changes were affected only by internal
factors. As a future extension, we shall strive to take into account also other external factors (such as
air temperature, air pressure, etc.). This will require considering the correlations between SST and
these factors. We plan to use association rules to analyze impact on SST, and then use multi-factor
prediction models to predict SST, striving for more comprehensive and robust predictions.
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