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ABSTRACT 

This study seeks to identify and analyze variations in the effect of contributing factors on injury 

severities of single-vehicle accidents across various lighting and weather conditions.  To that 

end, injury-severity data from single-vehicle, injury accidents occurred in Scotland, United 

Kingdom in 2016 and 2017 are statistically modeled.  Upon the conduct of likelihood ratio 

tests, separate models of accident injury severities are estimated for various combinations of 

weather and lighting conditions taking also into account the presence and operation of roadside 

lighting infrastructure.  To account for the possibility of unobserved regimes underpinning the 

injury-severity mechanism, the zero-inflated hierarchical ordered probit approach with 

correlated disturbances is employed.  The approach also relaxes the fixed threshold restriction 

of the traditional ordered probability models and captures systematic unobserved variations 

between the underlying regimes.  The model estimation results show that a wide range of 

accident, vehicle, driver, trip and location characteristics have varying impacts on injury 

severities when different weather and lighting conditions are jointly considered.  Even though 

several factors are identified to have overall consistent effects on injury severities, the 

simultaneous impact of unfavorable weather and lighting conditions is found to introduce 

significant variations, especially in the effect of vehicle- and driver-specific characteristics.  

The findings of this study can be leveraged in vehicle-to-infrastructure or in-vehicle 

communication technologies that can assist drivers in their responses against hazardous 

environmental conditions.  
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INTRODUCTION 1 

 In modern accident research, lighting characteristics have long been recognized as a 2 

major class of environmental factors with critical effect on the likelihood of accident 3 

occurrence as well as on the resulting injury severity of the accidents.  The impact of such 4 

characteristics on the accident generation mechanism is primarily determined by the ambient 5 

lighting conditions (e.g., daylight or darkness) at the time of the accident.  The presence and 6 

operation of roadway lighting systems constitutes an infrastructure-specific dimension, which 7 

can effectively mitigate the unfavorable effects of natural illumination.  The degree of driver’s 8 

visibility and perception significantly varies when driving in dark conditions with street lights 9 

in operation and when driving in dark conditions with no street lights at all or with limited 10 

street lighting.  The variations of lighting conditions interact with drivers’ behavioral and 11 

cognitive responses, traffic conditions, and vehicle-related safety and operational features in 12 

determining the driving style and so the insurgence of risky behaviour.  In general, driving 13 

under dark conditions may result in impairments on drivers’ hazard perception, visual 14 

performance and reaction time (Plainis and Murray, 2002; Jägerbrand and Sjöbergh, 2016; 15 

Fylan et al., 2018), whereas the ample visibility observed during daylight may result in risk-16 

compensating adjustments of driving behavior (Jägerbrand and Sjöbergh, 2016).  Despite the 17 

restricted visibility induced by dark conditions, the low traffic patterns at night time in 18 

conjunction with the inherent characteristics of the drivers traveling during such times may 19 

lead to risk-taking driving patterns such as speeding or traffic light violations (de Bellis et al., 20 

2018; Jensupakarn and Kanitpong, 2018).  21 

 The effect of lighting characteristics on driving behavior depends on other environmental 22 

factors, in particular weather conditions.  Adverse weather conditions decrease the available 23 

visibility to the driver and distort driving-related cognitive functions, thus increasing the 24 

probability of driving errors and hazardous driving actions (Peng et al., 2018; Almawmasi and 25 
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Mannering, 2019).  These errors are far more evident when driving under the joint impact of 26 

inclement weather and restricted lighting conditions, with the occurrence of high-severity 27 

accidents being a likely outcome of such driving errors (Wali et al., 2018).   28 

 A number of studies have investigated the effect of lighting or weather conditions on 29 

accident injury severities (Abdel-Aty, 2003; Golob and Recker, 2003; Wanvik, 2009; Naik et 30 

al., 2016; Shaheed et al., 2016; Uddin and Huynh, 2017; Ariannezhad and Wu, 2018; Li et al., 31 

2018).  Quite a few of these studies analyzed the effect of weather or lighting characteristics 32 

through the inclusion of indicator variables capturing the individual or joint effects of such 33 

environmental conditions.  Acknowledging the aggregate nature of indicator variables and their 34 

limitations in capturing human factor-driven variations (Islam and Mannering, 2006; Morgan 35 

and Mannering, 2011), a growing stream of recent studies (to name a few, Behnood et al., 2014; 36 

Almawmasi and Mannering, 2019; Behnood and Mannering, 2019; Guo et al., 2020) account 37 

for variations in the determinants of accident injury-severities by estimating separate statistical 38 

models per homogeneous groups of accident population or driving population with distinct 39 

characteristics. Focusing on the effect of lighting characteristics, Anarkooli and Hosseinlou 40 

(2016), Uddin and Huynh (2017) and Islam and Burton (2019) estimated separate models of 41 

injury severities for accidents occurred under various lighting conditions (e.g., daylight, dark 42 

conditions or dark conditions with street lights in operation).  Following a similar approach, 43 

but with special focus on the impact of weather conditions, a set of previous studies (Shaheed 44 

et al., 2016; Hao and Daniel, 2016; Naik et al., 2016; Hao et al., 2017) developed separate 45 

injury-severity models by considering groups of accidents occurred under various weather 46 

conditions (e.g., rain, snow, fog and so on).   47 

 Even though the individual impacts of lighting or weather characteristics on accident 48 

injury-severities have been extensively studied, the mechanism underpinning the simultaneous 49 

effect of both environmental factors has not been fully understood to date.  In this context, 50 
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Ariannezhad and Wu (2018) have recently investigated the injury severities of accidents 51 

occurred during a specific period of the year with unique weather characteristics (monsoon 52 

period in Arizona, US) considering combinations of lighting (day-time versus night-time) and 53 

weather (rainfall versus clear) characteristics.  The results of the statistical analysis showed that 54 

the interactions of weather and lighting conditions at the time of the accident induce significant 55 

variations in the effect of the influential factors on accident injury-severities.  56 

 This study aims at investigating the interactive effect of weather and lighting 57 

characteristics on accident injury severities at a more disaggregate level.  In this context, the 58 

analysis is focused on single-vehicle accidents that have resulted in an injury or fatal outcome.  59 

To control for various interactions of the weather and lighting characteristics, which may not 60 

be limited to the ambient conditions of the physical environment, three dimensions are jointly 61 

considered for the analysis of accident injury severities: (i) natural lighting conditions at the 62 

time of the accident; (ii) presence and operation of lighting infrastructure at the time of the 63 

accident; and (iii) weather conditions at the time of the accident.  On the basis of these 64 

dimensions, this study seeks to identify the specific sets of determinants of accident injury-65 

severities for various interactions of weather and lighting characteristics as well as the 66 

variations in the effect of injury-severity determinants due to such interactions.  67 

 In single-vehicle accidents, human error typically constitutes one of the major factors 68 

leading to accident occurrence (Alnawmasi and Mannering, 2019).  Given that the joint 69 

consideration can control for the effect of various weather and lighting characteristics on 70 

accident injury severities, the identified determinants are primarily subject to variations arising 71 

from human factor elements as well as from unobserved, accident-specific circumstances.  The 72 

latter factors may have a particular effect on the generation mechanism of slight-injury 73 

accidents, which may interact with the underlying sources of these accidents.  Specifically, 74 

Fountas and Rye (2019) identified two regimes of slight-injury accidents: a portion of slight-75 
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injury outcomes may reflect very minor accident circumstances with limited potential to result 76 

in more severe injuries, whereas other slight-injury accidents may have a potential for greater 77 

injury-severity risk under more unfavorable accident circumstances.  As such, to capture the 78 

effect of injury-severity determinants to a more disaggregate extent while accounting for the 79 

possible presence of underlying injury-severity states, the zero-inflated hierarchical ordered 80 

probit model with correlated disturbances is employed for the statistical analysis of the injury-81 

severity data.  Therefore, the employed methodological framework incorporates two top-down 82 

and interrelated layers of accident segmentation in the statistical analysis of injury data: (i) 83 

through the identification of observed sub-groups of accident population corresponding to 84 

various weather and lighting combinations; and (ii) through the identification of unobserved 85 

regimes of accidents within each of the aforementioned sub-groups of accident population. 86 

 87 

EMPIRICAL SETTING 88 

 To identify the determinants of accident injury severities under different weather and 89 

lighting conditions, accident data from Scotland, UK were used.  The specific area is associated 90 

with significant weather and lighting fluctuations observed across short time intervals; such 91 

fluctuations are expected to have a considerable effect on drivers’ behavioral responses, thus 92 

increasing the likelihood of hazardous driving incidents (Stradling, 2007).  93 

 Specifically, information about single-vehicle accidents occurred in various roadway 94 

types of Scotland, UK between 2016 and 2017 was drawn from the STATS19 dataset.  The 95 

latter is a publicly available database compiling various accident-related characteristics, as 96 

derived from standardized police crash reports (Department for Transport, 2018).  A limitation 97 

of the STATS19 dataset is that includes information only for injury-involved accidents 98 

(Imprialou and Quddus, 2019), whereas the accidents resulting in a no-injury outcome are not 99 

reported.  Following the STATS19 injury classification, three injury-severity outcomes are 100 
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considered in this study: slight injury, serious injury and fatal injury1.  Apart from the injury-101 

severity outcomes, the accident dataset encompasses various layers of accident-related 102 

information.  More specifically, the latter consists of: (i) accident characteristics (such as 103 

accident date and location, accident type, vehicle action before and after the accident, point of 104 

impact during the accident); (ii) drivers’ and casualties’ attributes (age, gender, type of 105 

household location); (iii) roadway and geometric design characteristics (roadway type and 106 

class, roadway surface conditions at the time of the accident,  presence, type and location of 107 

intersection; presence and type of pedestrian crossing); (iv) vehicle characteristics (vehicle age 108 

and type, engine capacity, vehicle condition immediately after the accident); and (v) 109 

environmental factors (weather and lighting conditions).   110 

 The dataset used for model estimation includes 5,525 observations of single-vehicle 111 

accidents.  With respect to their injury-severity outcomes, slight injuries were reported in 112 

73.45% of the accidents, serious injuries were in 24.10% of cases, whereas the remaining 113 

2.45% of the records were associated with a fatal injury outcome2.  As shown in Figure 1, 114 

which provides the distribution of injury outcomes for various combinations of weather and 115 

lighting conditions, the accident observations show a consistent clustering at the slight-injury 116 

level.  This distributional characteristic of accident observations may imply the existence of 117 

underlying injury-severity regimes affecting the accident generation mechanism. 118 

 The accident dataset used for the statistical analysis includes a plethora of potential 119 

explanatory variables, as such, Table 1 provides the descriptive statistics of the explanatory 120 

variables that were identified as statistically significant factors of accident injury severities in 121 

the estimated models. 122 

                                                           
1 Note that the reported injury-severity outcomes are counterparts of the following outcomes included in the 

KABCO scale (Savolainen et al., 2011): non-incapacitating injury, incapacitating injury and fatal injury.  
2 In line with previous injury-severity analyses (Anastasopoulos and Mannering, 2011; Fountas and 

Anastasopoulos, 2017; Fountas and Anastasopoulos, 2018a; Fountas and Anastasopoulos 2018b; Fountas and 
Rye, 2019; Behnood and Mannering, 2019), the injury-severity outcome of an accident is drawn from the vehicle 
occupant(s) observed to sustain the most severe injury in the accident.  
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INSERT FIGURE 1 123 

 124 

INSERT TABLE 1 125 

 126 

METHODOLOGICAL APPROACH 127 

 From a methodological perspective, a number of studies focusing on the impact of 128 

lighting or weather characteristics have adopted the ordered probit/logit framework for the 129 

statistical analysis of the accident injury severities (Russo et al., 2014; Naik et al., 2016; 130 

Anarkooli and Hosseinlou, 2016; Ghasemzadeh and Ahmed, 2018; Osman et al., 2018; 131 

Bhowmik et al., 2019).  Although the conventional ordered probability models can tackle the 132 

inherent ordering of the injury-severity data, they exhibit limitations in accommodating 133 

underlying variations that may be present in datasets exhibit clustering of accidents with low-134 

severity outcomes (Jiang et al., 2013; Fountas and Anastasopoulos, 2018; Fountas and Rye, 135 

2019).  These limitations primarily arise from the consideration of a homogeneous source 136 

related to the generation process of the injury–severity outcomes.  In datasets consisting only 137 

of accidents that resulted in an injury outcome, the observations of low-severity injuries are 138 

typically preponderant.  Such a preponderance may imply that the mechanism underpinning 139 

the outcomes of the injury accidents is not uniform and there may be underlying characteristics 140 

interacting with latent sub-groups of this accident type. 141 

 Unlike the conventional ordered probability models, the zero-inflated ordered probit 142 

models can account for the aforementioned limitation, as their “double-hurdle” structure 143 

enables the consideration of two underlying states for low-severity accidents.  Focusing on the 144 

injury accidents, the first state, namely the minor-injury state, may be formed by very minor 145 

accidents with low energy dissipation leading to minor injuries or outcomes of even lower 146 

severity (e.g., possible injuries) that have been reported as slight injuries (Fountas and Rye, 147 
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2019). The second state, the ordered injury state concerns slight-injury accidents, which – 148 

under the impact of more adverse accident circumstances – could lead to more severe injuries.  149 

The ordered injury state also accounts for serious or fatal injuries, with their underlying 150 

generation mechanism sharing a lot of similarities with the aforementioned group of slight-151 

injury accidents (Fountas and Rye, 2019).   152 

 The zero-inflated ordered probit model consists of a binary probit component and an 153 

ordered probit component, which are simultaneously estimated through a maximum likelihood 154 

estimation approach.  The binary probit component serves as a splitting function between the 155 

injury-severity states, with its explanatory variables determining whether an accident is 156 

associated with the minor-injury state or not.  The binary probit component can be defined as 157 

(Harris and Zhao, 2007; Fountas and Anastasopoulos, 2018; Fountas and Rye, 2019): 158 

 *i i wω = +λΓ           (1)  159 

and 160 

{0, * 0
1, * 0

if i
i if i

ω ≤
ω = ω >          (2) 161 

where, ωi* is a latent variable reflecting the propensity of an accident i to be associated with 162 

the minor-injury state, ωi is derived from the latent variable ωi* and indicates whether the 163 

accident i belongs to the minor-injury state (ωi=1) or not (ωi=0), Γ represents a vector of 164 

independent variables, λ denotes a vector of estimable parameters, and w denotes a disturbance 165 

term following the standard normal distribution.  166 

To identify the factors affecting the injury severity outcome of the accidents belonging 167 

to the ordered injury state (i.e., ωi=0 according to Equation 2), the ordered probit component is 168 

defined as (Washington et al., 2011; Fountas et al., 2018a; Fountas et al., 2018b; Pantangi et 169 

al., 2020): 170 

* , * * , | 01y y k if y ii i i i i ik kε ω= + = µ < < µ ∀ =+Xβ      (3) 171 
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Where, yi
* represents a latent variable defining the injury severity outcome k of the accident 172 

observation i, with the severity ranging between slight injury (k=0), serious injury (k=1) and 173 

fatal injury (k=2), X denotes a vector of independent variables affecting the injury-severity 174 

outcome, β denotes a vector of estimable parameters corresponding to X, μ represent the 175 

ordered thresholds defining the probability range for each injury-severity outcome and εi is a 176 

normally distributed disturbance term.  177 

 An inherent assumption of the traditional ordered probit model is that the threshold 178 

parameters are specified as constant values.  Given that the threshold parameters may be 179 

affected by unobserved heterogeneity (Eluru et al., 2008; Fountas and Anastasopoulos, 2017; 180 

Fountas and Anastasopoulos, 2018), we employ a more flexible model formulation by defining 181 

these parameters as a function of exogenous variables.  To that end, a hierarchical ordered 182 

probit model is specified as (Greene, 2016; Fountas and Anastasopoulos, 2018; Fountas and 183 

Rye, 2019)3: 184 

 , exp( )i y k icµ = + vZ    (4) 185 

where, c is a constant, Z is a vector of explanatory variables defining the ordered thresholds 186 

and v denotes a vector of estimable parameters corresponding to Z.  Note that, without loss of 187 

generality, the first threshold (μ0) of the ordered process is defined as zero. In this case, K-2 188 

thresholds will be estimated (Washington et al., 2011), where K is the number of injury-severity 189 

outcomes considered in the statistical analysis.  190 

 To identify the magnitude of the effect of the injury-severity determinants, marginal 191 

effects are also computed.  Marginal effects show how much the probability of an accident to 192 

result in a specific injury-severity outcome will be affected by a unit change in the value of an 193 

independent variable and can be defined as (Harris and Zhao, 2007): 194 

                                                           
3 The hierarchical ordered probit model has the same formulation as the generalized ordered response models: in 

both cases thresholds can vary as a function of exogenous variables (see also Eluru et al., 2008; Yasmin et al., 
2015; Bhowmik et al., 2019). 
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 2 2 1( ) [ ( , , ) ( , , )]i i k i i k iP kME λ µ ρ λ µ ρ−∂ ∂ Φ − − −Φ − −
= =

∂ ∂X
X X

X X
Γ β Γ β

   (5) 195 

where, P(k)i  is the probability of an accident i to result in a specific injury-severity outcome k, 196 

Φ2 represents the cumulative bivariate standard normal distribution, and ρ is the coefficient 197 

capturing the correlation of disturbance terms between the binary probit and ordered probit 198 

components.  Unlike previous zero-inflated ordered probit applications, herein we employ a 199 

bivariate standard normal distribution for the disturbance terms, which enables the latter to be 200 

freely correlated (Eker et al., 2019; Eker et al., 2020).  This is important because the correlation 201 

of disturbance terms may capture unobserved variations commonly shared between the minor-202 

injury state and the ordered injury state (Fountas and Anastasopoulos, 2018).  203 

 204 

ANALYSIS AND RESULTS 205 

 To statistically identify whether the factors affecting the accident injury severities vary 206 

across different weather and lighting conditions, a likelihood ratio test was conducted.  This 207 

test can demonstrate whether the parameters of a statistical model based on a comprehensive 208 

accident dataset are transferable to various sub-groups of the accident population, which exhibit 209 

variations among each other with respect to various qualitative characteristics (Washington et 210 

al., 2011; Behnood et al., 2014; Fountas et al., 2019).  To capture possible variations in the 211 

determinants of injury severities of single-vehicle accidents, 6 combinations of weather and 212 

lighting conditions were considered, by additionally taking into account variations in the 213 

presence and operation of the roadway lighting infrastructure.  These combinations are: (i) 214 

daylight and fine weather conditions; (ii) daylight and poor weather conditions; (iii) darkness 215 

and fine weather conditions on lighted roadways; (iv) darkness and poor weather conditions on 216 

lighted roadways; (v) darkness and fine weather conditions on unlighted roadways; and (vi) 217 

darkness and poor weather conditions on unlighted roadways.  According to the description 218 

provided by the STATS19 reporting system, fine weather reflects weather conditions that do 219 
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not impede driving performance, whereas poor weather refers to adverse weather conditions 220 

with anticipated impact on driving performance, such as rainfall, snowfall, fog or high winds.  221 

With regard to the lighting infrastructure, unlighted roadways refer either to roadways without 222 

lighting infrastructure or to roadways with lighting infrastructure not being in operation at the 223 

time of the accident.  The likelihood ratio test statistic can be formulated as (Washington et al., 224 

2011): 225 

DRLTF DRLTP DRN
2

F DF DP LF DRNLP2[ ( ) ( ) ( ) ( ) ( ) ( ) ( )]X LL LL LL LL LL LL LL= − − − − − − −β β β β β β β    (6) 226 

where LL(βF) is the log-likelihood at convergence of the model estimated using the full dataset 227 

(full model), whereas the LL(βDF), LL(βDP), LL(βDRLTF), LL(βDRLTP), LL(βDRNLF) and 228 

LL(βDRNLP) denote the log-likelihood at convergence of the models estimated using subsets 229 

corresponding to weather and lighting combinations (subset data models).4  The likelihood 230 

ratio test is chi-square distributed, with its degrees of freedom being determined by the 231 

difference between the summation of parameters included in the subset data models and the 232 

number of parameters in the full model.  For the calculation of the test statistic, the zero-inflated 233 

hierarchical ordered probit model with correlated disturbances estimated by Fountas and Rye 234 

(2019) served as the full model5.  In the specific study, the same dataset (including all the 235 

single-vehicle accidents occurred in Scotland in 2016 and 2017) was used for the statistical 236 

analysis of accident injury-severities.  The calculated test statistic is equal to 182.75 and, 237 

considering 80 degrees of freedom, the critical chi-squared value is equal to 112.33 at a 99% 238 

level of confidence.  These results show that the factors affecting the accident injury severities 239 

may vary across different combinations of weather and lighting conditions with greater than 240 

                                                           
4 For the definitions of the notations included as subscripts of the LL(β)s, see Table 1.  
5 In addition to the model estimated by Fountas and Rye (2019), several other model specifications were tested 

through likelihood ratio tests to identify whether the determinants of accident injury severities are transferable 
across different weather and lighting conditions.  These specifications also included interactive variables that 
capture interactions of vehicle, roadway and driver characteristics with weather and lighting conditions.  In all 
cases, the results of the likelihood ratio tests showed that the estimated models are non-transferable across 
different combinations of weather and lighting conditions, thus substantiating the estimation of separate models. 
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99% level of confidence. Thus, the estimation of separate models for the aforementioned 241 

combinations is statistically warranted.  242 

Tables 2-4 present the model estimation results of the injury-severity models along with 243 

their corresponding marginal effects.  Note that numerous variable combinations have been 244 

extensively investigated as potential explanatory variables in the presented model 245 

specifications.  Overall, significant variations have been identified in the effect of the injury-246 

severity determinants across the considered sub-groups of the accident population, in terms of 247 

statistical significance, magnitude and sign.  To highlight such differences, the model 248 

estimation results are discussed per category of contributing factors. 249 

INSERT TABLE 2 250 

INSERT TABLE 3 251 

INSERT TABLE 4 252 

Accident-specific contributing factors 253 

Various accident-specific factors are found to affect the minor and ordered injury 254 

severity states among the considered weather and lighting combinations.  For example, under 255 

daylight and poor weather conditions, accidents involving skidding vehicles are more likely  to 256 

result in slight injuries (by 0.0176 as shown by the corresponding marginal effect in Table 2) 257 

and less likely to result in serious and fatal injuries (by -0.0175 and -0.0001, respectively, as 258 

shown by the marginal effects in Table 2).  A similar effect is observed in accidents occurred 259 

on unlighted roadways under dark and fine weather conditions, when the skidding is 260 

accompanied by overturning of the vehicle.  Skidding vehicles are also found to increase the 261 

threshold between the serious and fatal injuries in the model reflecting daylight and fine 262 

weather conditions.  Such an increase entails a higher probability of a serious injury outcome 263 

relative to a fatal injury outcome (see also the discussion provided in Fountas and 264 
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Anastasopoulos, 2017 regarding the implications of threshold variations on the probabilities of 265 

high-severity outcomes).  Skidding incidents typically occur on a slippery pavement surface, 266 

which is perceived by drivers as a roadway hazard that can lead to loss of steering control.  As 267 

in similar cases of evident roadway hazards, drivers may compensate for the high accident risk 268 

by exhibiting greater driving caution (for a more detailed discussion on the implications of risk 269 

perception in driving task, see also Mannering and Bhat, 2014 and Mannering et al., 2020).  270 

 Accidents involving collisions with trees are consistently found to increase the 271 

likelihood of serious or fatal injuries in the models for daylight and fine weather, daylight and 272 

poor weather as well as for darkness and fine weather on unlighted roadways.  Specifically, 273 

tree-related collisions are found to have the strongest effect on serious injuries under daylight 274 

and poor weather (the corresponding marginal effect is 0.1355) and the strongest effect on fatal 275 

injuries under daylight and fine weather (the corresponding marginal effect is 0.1107).  Given 276 

the high amount of energy dissipated in tree-related accidents, their correlation with high-277 

severity outcomes is intuitive and in line with several previous studies (e.g., Holdridge et al., 278 

2005; Van Treese et al., 2019).  Similarly, in accidents occurred under daylight and fine 279 

weather conditions, collisions with roadside curbs are found to increase the threshold between 280 

the serious and fatal injuries, thus leading to a higher likelihood of fatal injuries.  This finding 281 

may reflect accidents occurred on high-speed roadways, where the curb-related accidents are 282 

typically associated with more severe injuries (Plaxico, 2005).  In accidents observed under 283 

such favorable environmental conditions, the curb-related accidents may imply more 284 

dangerous collisions with the roadside infrastructure increasing the probability of fatal injuries.  285 

 The pedestrian involvement in the accident is repeatedly found to increase the 286 

likelihood of severe injury outcomes (serious and fatal injury) in all models but those reflecting 287 

darkness and fine or poor weather on lighted roadways.  Also, this result is in line with a stream 288 

of previous studies (e.g., Behnood and Mannering, 2015; Fountas and Anastasopoulos, 2017), 289 
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which show that the injury-severity mechanism of the accidents involving pedestrians may not 290 

significantly vary across different environmental conditions.  It should be noted that the most 291 

pronounced effect of the pedestrian involvement indicator on serious and fatal injuries is 292 

identified in the model reflecting darkness and poor weather on unlighted roadways (the 293 

corresponding marginal effects are 0.1 and 0.2852, respectively), whereas the least pronounced 294 

effect is observed in the model reflecting daylight and poor weather (the corresponding 295 

marginal effects are 0.0214 and 0.0005, respectively).  Even though better lighting conditions 296 

can reduce the risk for pedestrian-involved accidents, their effect in the resulting injury severity 297 

may not be as critical as the vulnerability of pedestrians in such high-impact collisions. 298 

In contrast, vehicles that ran off the roadway are associated with varying effects on 299 

injury severity outcomes across different lighting and weather conditions.  In daylight and fine 300 

weather conditions, the accidents involving run-off-the-road vehicles are more likely to result 301 

in serious or fatal injuries (by 0.0092 and 0.0346, respectively), as shown by the marginal 302 

effects in Table 2; the difference in the magnitude of marginal effects for serious and fatal 303 

outcomes underscores the significant correlation of run-off-the-road vehicles with fatal injuries 304 

under normal driving conditions.  When the same type of accidents occurs at lighted roadways 305 

at night, their injury severity is found to be affected by the prevailing weather conditions.  306 

Specifically, under fine weather, these accidents are more likely to result in slight injuries, 307 

whereas in poor weather, they are found to be associated with the minor-injury state, hence, 308 

with accidents of very low severity.  Overall, the identified disparities in the effect of the run-309 

off-the-road-vehicles on injury-severities show that the combination of unfavorable lighting 310 

and weather conditions may induce risk-compensating elements in driving behavior resulting 311 

in less severe injuries.  312 

Vehicles reversing at the time of the accident are found to favor slight injury accidents 313 

under daylight regardless of the weather conditions.  The strongest – in  magnitude – impact of 314 
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the reversing maneuver is observed under fine weather conditions where the likelihood of a 315 

slight injury increases by 0.0571, whereas, under poor weather conditions, the same likelihood 316 

increases by 0.0151. 317 

Roadway-specific contributing factors 318 

Speed limit was identified to affect the likelihood of minor-injury state in most injury-319 

severity models.  Higher speed limits are found to decrease the likelihood of minor-injury state 320 

(increasing, hence, the likelihood of ordered injury state) for accidents occurred in daylight and 321 

fine weather.  Similarly, accidents on lighted and unlighted roadways with speed limit greater 322 

than 30 mph under dark and fine weather conditions are more likely to belong to the ordered 323 

injury state.  The same variable is also found to increase the threshold between serious and fatal 324 

injuries in the model reflecting daylight and poor weather implicating, thus, an increase in the 325 

likelihood of fatal injuries.  The most pronounced effect of speed limit is identified under 326 

darkness and fine weather on unlighted roadways, where the likelihood of serious and fatal 327 

injuries increases by 0.1381 and 0.0239, respectively.  Overall, accidents at high-speed 328 

roadways are consistently found to be correlated with more severe injuries, verifying the well-329 

established relationship between speed and injury risk (Richards, 2010).   330 

With regard to the roadway type, Table 2 shows that accidents on dual carriageways in 331 

daylight and poor weather are more likely to result in more severe injuries.  The opposite effect 332 

is observed in unlighted dual carriageways located in urban areas; in dark and fine weather 333 

conditions, the likelihood of serious and fatal injuries is found to decrease by -0.1298 and -334 

0.0262, respectively (see Table 4).  The latter finding may capture the joint effect of urban 335 

traffic patterns and higher driver’s alertness in response to dark conditions.  Such a combination 336 

may decrease the running speed, and subsequently, the risk for severe accidents.  Accidents in 337 

rural single carriageways are found to be associated with slight injuries in the models 338 

representing darkness and inclement weather conditions on lighted and unlighted roadways.  339 
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However, the effect of rural single carriageways is identified to be stronger under dark and 340 

poor weather conditions on unlighted roadways, as the likelihood of the slight injury outcome 341 

increases by 0.1378; the corresponding effect is found to be subtler under dark and poor 342 

weather conditions on lighted roadways, as the same likelihood increases by 0.0549.  The 343 

difference in the magnitude of the marginal effects may indicate that drivers are more cautious 344 

in the absence or non-operation of roadway lighting infrastructure.  It should be noted that 345 

single carriageways are undivided highways with typically lower speed limits compared to the 346 

dual carriageways where the opposing directions are divided through medians.  Even though 347 

dual carriageways are considered safer than the single carriageways (Gray, 2008), the 348 

combined effect of inclement weather and dark conditions may encourage drivers to exercise 349 

greater driving caution as a kind of compensation for the lack of separation and the closer 350 

distances kept between the opposing directions in single carriageways. 351 

Accidents on dry pavements in daylight and poor weather as well as accidents under 352 

darkness and fine weather conditions on lighted roadways are associated with the minor-injury 353 

state.  The effect of dry pavements on the likelihood of a slight injury is stronger in magnitude 354 

under darkness with fine weather on lighted roadways rather than in daylight and poor weather 355 

(the corresponding marginal effect are 0.0377 and 0.015 respectively).  In contrast, on 356 

unlighted roadways at night with fine weather conditions, the presence of a dry pavement is 357 

correlated with the ordered injury state, i.e. it is linked to more severe outcomes. 358 

Driver-specific contributing factors 359 

Driver’s age was identified to have a multifaceted effect on accident injury severities.  360 

Focusing on accidents occurred in daylight, the involvement of novice and very young drivers 361 

in an accident is found to increase the probability of slight injuries either related to the minor-362 

injury state (as in the model for daylight and poor weather) or to the ordered injury state (as in 363 

the model for daylight and fine weather).  However, the presence of dark conditions seems to 364 
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increase the propensity of young drivers to be involved in accidents with severe injuries.  Table 365 

3 shows that the lower the age of the driver, the higher the probability of a more severe injury 366 

outcome under darkness and fine weather on lighted roadways.  When consideration is given 367 

to the same weather conditions but with focus on unlighted roadways, relatively young, yet 368 

possibly experienced drivers (between 23 and 37 years old) are found to be more vulnerable to 369 

serious or fatal injuries.  These findings possibly capture the behavioral patterns of “over-370 

confident” drivers, who are aware of their experience but, due to their age, may be more prone 371 

to risk-taking maneuvers.  Such maneuvers in conjunction with the restricted visibility 372 

observed under darkness, can result in high-impact collisions, and hence, in higher injury 373 

severities.  Another source of risk-taking behavior may be derived from the driver’s gender.  374 

Interestingly, Table 2 demonstrates that male drivers are more likely to be involved in serious 375 

or fatal injury accidents (by 0.01 and 0.0232, respectively, as shown by the corresponding 376 

marginal effects) under favorable ambient conditions, such as daylight and fine weather.  The 377 

latter conditions may provide the ideal ground for aggressive driving, which is generally more 378 

likely to be exhibited by male drivers (Fountas et al., 2019).  In contrast, male drivers located 379 

in rural areas are more likely to be involved in slight-injury accidents (by 0.051, as shown by 380 

the corresponding marginal effect) occurred on lighted roadways under darkness and poor 381 

weather.  These drivers are typically more familiar with roadways of lower design standards, 382 

as such, they may adjust their driving behavior accordingly in order to account for possible 383 

hazards stemming from inclement environmental conditions.  384 

Vehicle-specific contributing factors 385 

 The involvement of a private passenger car in a single-vehicle accident in daylight and 386 

poor weather increases the probability of slight injuries (by 0.0627, as shown in Table 2), and 387 

consequently, decreases the probability of serious and fatal injuries (by -0.0614 and -0.0013, 388 

respectively).  The involvement of a private passenger car or a taxi/hired car reduces the 389 
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probability of high-severity injuries on unlighted roadways under darkness, regardless of the 390 

weather conditions.  However, the effect is stronger in poor weather rather than in fine weather 391 

(the likelihood of slight injuries increases by 0.1282 in the former case, by 0.0995 in the latter).  392 

In contrast, the private passenger car indicator has a negative impact on accidents on lighted 393 

roadways: by decreasing the threshold between serious and fatal injuries in the model 394 

representing darkness and fine weather conditions, the involvement of passenger car increases 395 

the probability of a fatal injury (by 0.0878, as shown by the corresponding marginal effect in 396 

Table 3). This is consistent with previous studies that have acknowledged the heterogeneous 397 

effect of passenger cars on injury severities (e.g., Behnood and Mannering, 2015; Fountas et 398 

al., 2018b). The observed difference in the effect of passenger cars on accident injury severities 399 

may capture variations in behavioral responses to different lighting conditions.  The presence 400 

of artificial lighting, ensuring better visibility, can result in more aggressive patterns, especially 401 

for passenger car drivers, who may also indulge in risk-taking behaviors. Focusing on other 402 

vehicle types, accidents involving motorcycles tend to have high-severity outcomes, especially 403 

in daylight and fine weather. Such relationship is intuitive and can be explained by the 404 

significant vulnerability of the motorcyclists when involved in single-vehicle accidents 405 

(Savolainen and Mannering, 2007; Huang et al., 2008; Shaheed and Gkritza, 2014; Waseem et 406 

al., 2019). 407 

 Vehicle age was also found to induce mixed effects on accident injury severities across 408 

different lighting and weather conditions.  The involvement of an older vehicle in an accident 409 

occurred in daylight is found to result in an injury outcome of higher severity.  Table 2 shows 410 

that the specific impact is consistent, regardless of the weather conditions.  In contrast, very 411 

old vehicles (older than 15 years) increase the probability of a low severity outcome for 412 

accidents occurred in darkness and fine weather conditions on lighted roadways.  This finding 413 

may capture the risk-compensating behavior of drivers who acknowledge the safety risks 414 
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arising from the dark conditions and the lower safety performance of an old vehicle; as noted 415 

previously, such a behavior might be reflected through greater caution from the driver’s side.  416 

Similarly, newer vehicles (with vehicle age less than 8 years) are also found to increase the 417 

probability of a slight injury (by 0.0713, as shown by the corresponding marginal effect in 418 

Table 4) in accidents occurred on unlighted roadways under darkness and fine weather.  The 419 

advanced light and driver assistance systems of newer vehicles may be particularly effective in 420 

low-visibility conditions, thus mitigating the risk of severe injuries (Scanlon et al., 2017).  421 

 With regard to the impact of engine capacity, the involvement of vehicles with high-422 

capacity engines (1800cc or more) is found to increase the probability of serious and fatal 423 

injuries for accidents occurred in daylight and fine weather conditions.  This could be attributed 424 

to risk-taking driving typically exhibited by drivers of sports cars or powerful premium cars 425 

(Horswill and Coster, 2002) as well as to the difficulty to steer these vehicles, especially under 426 

extenuating driving circumstances.  Previous research has identified significant heterogeneity 427 

in the effect of engine capacity in injury-severity outcomes (see, for example, the discussion 428 

provided in Seraneeprakam et al., 2017).  Hence, this finding may be worth further 429 

investigation, especially from the perspective of manufacturing companies. 430 

Trip-specific contributing factors 431 

 The trip purpose was identified as one of the major trip characteristics with influence 432 

on accident injury severities.  Specifically, Table 3 shows that accidents occurred during work-433 

related trips (i.e., when the trip is considered as an integral part of work) are associated with 434 

slight-injury outcomes under darkness and poor weather on lighted roadways.  This relationship 435 

may pick up the effect of greater experience and familiarity with unfavorable environmental 436 

conditions, particularly for individuals who frequently drive for business-related purposes.  In 437 

contrast, the work-related trips are found to decrease the threshold between serious and fatal 438 

injuries for accidents occurred in darkness and fine weather on lighted roadways causing a 439 
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subsequent increase (by 0.096, as shown by the corresponding marginal effect) of the 440 

probability of fatal injuries.  The specific effect could be attributed to personality-specific 441 

unobserved characteristics, which are captured – to some extent – by the variable representing 442 

the work-related trips.  Such characteristics could possibly include work-generated pressure, 443 

rush to the destination or driver’s fatigue, with all of them likely having a negative impact on 444 

driving behavior (Fountas et al., 2019).  The conflicting impacts of work-related trips on injury 445 

severities constitute an indicative example of how the relaxation of the fixed ordered thresholds 446 

can shed light on unobserved variations that cannot be identified through the vectors of 447 

exogenous variables (Xs) in the ordered probability function.  Similar unobserved effects may 448 

also determine the negative effect of the commuting trips on the threshold between serious and 449 

fatal injuries in the model for accidents on lighted roadways under darkness and poor weather. 450 

 Accidents occurred in the morning slot are more likely to belong in the minor-injury 451 

state when ambient daylight conditions are present; it should be noted that the variables 452 

representing a morning slot were found statistically significant for either fine or poor weather.  453 

The opposite applies for accidents occurred in late night (between midnight and 6.00 am) on 454 

unlighted roadways, which are more likely to result in severe injuries under the impact of 455 

darkness and fine weather conditions.  This constitutes another indication of risk-taking 456 

patterns of drivers, either due to low traffic volumes or due to their impaired cognitive functions 457 

in late night.  The threshold between serious and fatal injuries is higher for accidents occurred 458 

during the weekend under daylight and poor weather conditions leading to a slight increase in 459 

the probability of serious injuries (by 0.0001, as shown by the corresponding marginal effect 460 

in Table 2).  A similar effect is also observed in the model developed for dark and poor weather 461 

conditions on lighted roadways, where the weekend indicator increases the probability of a 462 

serious injury (by 0.0655, as shown in Table 3).  When darkness and fine weather conditions 463 

are present on unlighted roadways, the variable representing accidents occurred on Sundays is 464 



22 
 

found to increase the probability of serious and fatal injuries (by 0.123 and 0.061, respectively, 465 

as shown by the marginal effects in Table 4).  The overall propensity of weekend-related 466 

accidents to severe injuries is in line with previous research findings (see, for example, Gray 467 

et al., 2008; Yu et al., 2019) and could be attributed to drug- or alcohol-impaired driving, which 468 

is much more evident during the weekends in the UK (Department for Transport, 2017).  In 469 

addition, the traffic conditions that are typically observed in weekends are more conducive to 470 

committing aggressive driving violations, which can in turn cause high-severity accidents. 471 

Location-specific factors 472 

Various location-specific indicators were also investigated and found to affect accident 473 

injury severities.  Accidents occurred within the city of Edinburgh were found more likely to 474 

result in slight injuries in the model for darkness and poor weather conditions on lighted 475 

roadways as well as in the model for daylight and fine weather conditions.  Edinburgh is a city 476 

with intense traffic flows, especially during the commuting hours, and generally low speed 477 

limits.  Over the last few years, a 20 mph speed limit has been implemented in the central 478 

network of the city, made up of local, collector and minor arterial roads.  The identified 479 

propensity for low-severity accidents could be substantiated by the low-speed traffic patterns 480 

typically observed in the city.  The variable indicating unlighted locations in the county of 481 

Highlands and Islands or in the county of Moray is found to decrease the threshold in the model 482 

representing darkness and fine weather, and in turn, to increase the probability of fatal injuries 483 

by 0.0412 (as shown by the corresponding marginal effect in Table 4).  These counties are 484 

located in North Scotland where various discrepancies in safety, maintenance, and quality of 485 

the local roadway infrastructure have been identified over the last decades (Scottish 486 

Government, 2009; Audit Scotland, 2016).  The specific finding could be also associated with 487 

the persistent trends of alcohol-impaired driving, which are largely observed in these areas.  488 

 489 
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MODEL EVALUATION 490 

To statistically determine whether the zero-inflated hierarchical ordered probit model 491 

can better account for the preponderance of slight-injury observations compared to lower-order 492 

model counterparts (i.e., ordered probit model and hierarchical ordered probit model), a Vuong 493 

test was conducted.  The specific test (Vuong, 1989) is extensively employed in cases of 494 

comparisons between non-nested modeling approaches.  The test is performed in two stages; 495 

firstly, we calculated the m statistic for each accident observation as follows (Vuong, 1989; 496 

Washington et al., 2011; Anastasopoulos, 2016): 497 

[ ( | ) / ( | )]i mc i i zio i im LN k kϕ ϕ= X X        (7) 498 

Where, φmc(ki|Xi) and φzio(ki|Xi) represent the probability density functions of the considered 499 

model counterpart and of the zero-inflated hierarchical ordered probit model, respectively.  500 

Then, possible statistically significant differences in the predictions provided by the two 501 

models are identified through the calculation of the Vuong’s statistic (Vuong, 1989; 502 

Anastasopoulos, 2016): 503 

m

m NV
σ

=           (8) 504 

Where m  and σm denote the mean and the standard deviation of the distribution of the m 505 

statistic, whereas N represents the number of observations.  Considering a 95% level of 506 

confidence (for which, Vcritical=1.96), large negative values (lower than -1.96) substantiate the 507 

appropriateness of the zero-inflated approach over the compared counterpart (Fountas and 508 

Anastasopoulos, 2018).  To conduct the test, we estimated the ordered probit and hierarchical 509 

ordered probit counteparts using the same independent variables included in the zero-inflated 510 

hierarchical ordered probit models.  Tables 2-4 provide the calculated values of the Vuong test 511 



24 
 

for all the estimated models.  Across all combinations of weather and lighting conditions, the 512 

Vuong test results substantiate the appropriateness of the zero-inflated models. 513 

 To further compare the statistical performance of the zero-inflated hierarchical ordered 514 

probit model with correlated disturbances (ZIHOPITCD) with the ordered probit (OP) and the 515 

hierarchical ordered probit (HOPIT) models, various goodness-of-fit measures were computed, 516 

namely the log-likelihood at convergence, AIC and BIC.  These values are provided in the 517 

lower sections of Tables 2-4. Overall, the comparative evaluation of the goodness-of-fit metrics 518 

reaffirms the statistical superiority of the chosen approach, as, in almost all cases, the zero-519 

inflated hierarchical ordered probit model with correlated disturbances yields the lowest metric 520 

values.6 521 

 The correlation between the disturbance terms of the binary probit and ordered probit 522 

components was found to be statistically significant and strong in magnitude in all models.  523 

This demonstrates the appropriateness of the employed bivariate normal distribution of 524 

disturbance terms to capture systematic variations of unobserved characteristics between the 525 

minor and ordered injury states.  These variations may reflect similarities in the drivers’ 526 

responses against various environmental conditions, especially in cases of low-severity 527 

accidents.  Note that such driver-specific behavioral traits cannot be explicitly observed 528 

through the employed dataset, but they definitely have a pronounced effect on the accident 529 

generation mechanism (Mannering et al., 2016).  530 

 531 

SUMMARY AND CONCLUSIONS 532 

This study aimed at identifying the joint effect of weather and lighting conditions on 533 

the generation mechanism of single-vehicle accidents.  Owing to the visibility- and roadway 534 

                                                           
6 Note that lower values of the log-likelihood at convergence, AIC and BIC imply better statistical performance 

of the model under consideration (Washington et al., 2011). 
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condition-related challenges induced by various combinations of these characteristics, the 535 

determinants of injury severities are likely to vary.  To identify these variations, we estimated 536 

several injury-severity models for various combinations of weather and lighting conditions by 537 

employing a zero-inflated hierarchical ordered probit approach with correlated disturbances.  538 

This approach allows accounting for two regimes of the injury-severity mechanism (i.e., the 539 

minor-injury state and the ordered injury state) and for capturing the effect of commonly shared 540 

unobserved characteristics among these regimes, through the correlated structure of the 541 

disturbance terms.  The incorporation of the hierarchical ordered structure relaxed the fixed 542 

threshold restriction enabling the identification of – typically unobserved – exogenous 543 

variables that determine the ordered thresholds. 544 

Using data from injury accidents occurred in Scotland from 2016 through 2017, and 545 

considering three injury severity outcomes (slight injury, serious injury and fatal injury), the 546 

effects of various accident-, vehicle-, driver-, roadway-, trip-, and location-specific 547 

characteristics were investigated.  The results of various likelihood ratio tests showed that the 548 

effects of these characteristics on accident injury severities are statistically different across 549 

various combinations of natural lighting (daylight vs darkness), weather (fine vs poor), and 550 

roadway lighting (lighted roadways vs unlighted roadways) conditions.  Overall, skidding 551 

vehicles, high-speed roadways, high engine capacities of vehicles, tree-related collisions, and 552 

pedestrian involvement constitute influential factors that were found to have consistent effects 553 

on accident injury severities across all lighting and weather combinations.  In contrast, 554 

passenger vehicles, vehicle age, run-off-the-road vehicles, driver age and gender, pavement 555 

surface condition, and work-related trips were found to have varying effects across such 556 

combinations, in terms of sign and magnitude.  The correlation coefficient of the disturbance 557 

terms corresponding to the two injury-severity states was found to be statistically significant in 558 
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all models, thus implying the strong interdependence of the unobserved variations that may 559 

affect both states.   560 

It is acknowledged that the empirical findings of the analysis may be subject to possible 561 

data-specific biases, primarily arising from limitations of the accident reporting system (as, for 562 

example, the omission of no-injury accidents).  Despite this possibility, the identified variations 563 

in the effect of injury-severity determinants across different lighting and weather conditions 564 

can provide useful input for communication technologies seeking to optimize driver’s response 565 

to external stimuli with high accident risk.  Such technologies may refer to driver assistance 566 

systems as well as to vehicle-to-infrastructure or inter-vehicle communication systems that can 567 

be leveraged in conditionally or fully autonomous vehicles. The safety implications of such 568 

technologies may be more evident when driving in areas typically encountering significant 569 

fluctuations of weather and lighting conditions.  Hence, future research could be devoted to the 570 

incorporation of more disaggregate spatial effects; this will shed more light on an additional 571 

aspects of unobserved heterogeneity that could not be explicitly explored through the employed 572 

methodological framework. 573 
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Table 1. Descriptive statistics of key variables 

Variable description Mean or 
% of 1 Min Max 

Accident location indicator (1 if the accident occurred in the 
county of Highlands and Islands or in the county of Moray, 0 
otherwise) [DRNLF] 9.79% 0 1 

Accident location indicator (1 if the accident occurred within the 
city of Aberdeen, 0 otherwise) [DRLTF] 4.74% 0 1 

Accident location indicator (1 if the accident occurred within the 
city of Edinburgh, 0 otherwise) [DF] 15.67% 0 1 

Accident location indicator (1 if the accident occurred within the 
city of Edinburgh, 0 otherwise) [DRLTP] 13.88% 0 1 

Animal indicator (1 if an animal was involved in the accident, 0 
otherwise) [DF] 1.20% 0 1 

Day-of-the-accident indicator (1 if the accident occurred during 
the weekend, 0 otherwise) [DP] 31.51% 0 1 

Day-of-the-accident indicator (1 if the accident occurred during 
the weekend, 0 otherwise) [DRLTP] 37.85% 0 1 

Day-of-the-accident indicator (1 if the accident occurred on 
Sunday, 0 otherwise) [DRNLF] 18.41% 0 1 

Driver's age indicator (1 if the driver was older than 23 years old 
but younger than 37 years old, 0 otherwise) [DRNLF] 29.60% 0 1 

Driver's age indicator (1 if the driver was older than 45 years 
old, 0 otherwise) [DRLTP] 35.65% 0 1 

Driver's age indicator (1 if the driver was younger than 23 years 
old, 0 otherwise) [DF] 19.24% 0 1 

Driver's age indicator (1 if the driver was younger than 27 years 
old, 0 otherwise) [DP] 30.73% 0 1 

Driver's gender and home area indicator (1 if female driver 
whose residence is located in an urban area, 0 otherwise) 
[DRNLF] 7.93% 0 1 

Driver's gender indicator (1 if male, 0 otherwise) [DF] 64.79% 0 1 
Driver's home area indicator (1 if the driver's home area is rural, 

0 otherwise) [DF] 17.95% 0 1 
Engine capacity indicator (1 if capacity of vehicle engine is 

1800cc or greater, 0 otherwise) [DF] 28.72% 0 1 
Intersection indicator (1 if the accident occurred on a T-junction 

or crossroads, 0 otherwise) [DRNLF] 6.99% 0 1 
Intersection indicator (1 if the accident occurred on an 

intersection or an intersection was present within 20 metres 
from the accident location, 0 otherwise) [DRLTP] 44.16% 0 1 

Inverse of the driver's age (1/years) [DRLTF] 0.0300 0.0110 0.0625 
Inverse of the vehicle's engine capacity (cc-1) [DRNLP] 0.001 0.0001 0.0081 
Off-the-road object indicator (1 if the vehicle hit a permanent 

object off the roadway, 0 otherwise) [DP] 4.80% 0 1 
Off-the-road object indicator (1 if the vehicle struck a tree off 

the roadway, 0 otherwise) [DF] 4.18% 0 1 
Off-the-road object indicator (1 if the vehicle struck a tree off 

the roadway, 0 otherwise) [DP] 7.62% 0 1 
Off-the-road object indicator (1 if the vehicle struck a tree off 

the roadway, 0 otherwise) [DRNLF] 12.12% 0 1 
On-road object indicator (1 if the vehicle hit a curb within the 

roadway, 0 otherwise) [DF] 10.06% 0 1 
Pavement surface condition (1 if the pavement was dry at the 

time of the accident, 0 otherwise) [DP] 7.80% 0 1 
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Pavement surface condition (1 if the pavement was dry at the 
time of the accident, 0 otherwise) [DRLTF] 63.16% 0 1 

Pavement surface condition (1 if the pavement was dry at the 
time of the accident, 0 otherwise) [DRNLF] 50.58% 0 1 

Pavement surface condition (1 if the pavement was wet at the 
time of the accident, 0 otherwise) [DRNLP] 69.58% 0 1 

Pedestrian indicator (1 if a pedestrian was involved in the 
accident, 0 otherwise) [DF] 54.66% 0 1 

Pedestrian indicator (1 if a pedestrian was involved in the 
accident, 0 otherwise) [DP] 49.63% 0 1 

Pedestrian indicator (1 if a pedestrian was involved in the 
accident, 0 otherwise) [DRNLP] 8.75% 0 1 

Pedestrian indicator (1 if a pedestrian was involved in the 
accident, 0 otherwise) [DRNLF] 14.22% 0 1 

Point-of-impact indicator (1 if the first point of impact was on 
the front of the vehicle, 0 otherwise) [DRLTF] 59.21% 0 1 

Point-of-impact indicator (1 if the first point of impact was on 
the front of the vehicle, 0 otherwise) [DRNLF] 12.12% 0 1 

Roadway type indicator (1 if the accident occurred on a dual 
carriageway, 0 otherwise) [DP] 11.71% 0 1 

Roadway type indicator (1 if the accident occurred on a one-
way road, 0 otherwise) [DRLTF] 4.74% 0 1 

Roadway type indicator (1 if the accident occurred on a rural 
single carriageway, 0 otherwise) [DF] 33.24% 0 1 

Roadway type indicator (1 if the accident occurred on a rural 
single carriageway, 0 otherwise) [DRNLP] 76.05% 0 1 

Roadway type indicator (1 if the accident occurred on a single 
carriageway, 0 otherwise) [DRLTP] 75.39% 0 1 

Roadway type indicator (1 if the accident occurred on an urban 
dual carriageway, 0 otherwise)  [DRNLF] 3.03% 0 1 

Roadway type indicator (1 if the accident occurred on an urban 
single carriageway, 0 otherwise) [DRNLF] 7.93% 0 1 

Rural area indicator (1 if the accident occurred in a rural area, 0 
otherwise) [DRNLF] 88.81% 0 1 

Skidding and overturning indicator (1 if the vehicle skidded and 
overturned during the accident, 0 otherwise) [DRNLF] 20.51% 0 1 

Skidding indicator (1 if the vehicle skidded during the accident, 
0 otherwise) [DF] 82.90% 0 1 

Skidding indicator (1 if the vehicle skidded during the accident, 
0 otherwise) [DP] 13.10% 0 1 

Speed limit (in mph) [DF]     38.16    20      70 
Speed limit indicator (1 if speed limit greater than 30 mph, 0 

otherwise) [DP] 38.66% 0 1 
Speed limit indicator (1 if speed limit greater than 30 mph, 0 

otherwise) [DRLTF] 11.58% 0 1 
Speed limit indicator (1 if speed limit greater than 30 mph, 0 

otherwise) [DRLTP] 11.99% 0 1 
Speed limit indicator (1 if speed limit greater than 40 mph, 0 

otherwise) [DRNLP] 85.93% 0 1 
Speed limit indicator (1 if speed limit greater than 30 mph, 0 

otherwise) [DRNLF] 90.44% 0 1 
Time-of-the-day indicator (1 if the accident occurred between 6 

and 9.30 am, 0 otherwise) [DP] 14.75% 0 1 
Time-of-the-day indicator (1 if the accident occurred between 

8.30 and 9.30 am, 0 otherwise) [DF] 9.59% 0 1 
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Time-of-the-day indicator (1 if the accident occurred between 
midnight and 6.00 am, 0 otherwise) [DRNLF] 30.30% 0 1 

Trip purpose indicator (1 if the accident occurred during a 
commute-related trip, 0 otherwise) [DRLTP] 18.61% 0 1 

Trip purpose indicator (1 if the accident occurred during a work-
related trip, 0 otherwise) [DRLTF] 20.79% 0 1 

Trip purpose indicator (1 if the accident occurred during a work-
related trip, 0 otherwise) [DRLTP] 22.40% 0 1 

Vehicle age indicator (1 if the vehicle is less than 8 years old, 0 
otherwise) [DRNLF] 53.61% 0 1 

Vehicle age indicator (1 if the vehicle is older than 15 years, 0 
otherwise) [DRLTF] 3.68% 0 1 

Vehicle age indicator (1 if the vehicle is older than 12 years, 0 
otherwise) [DP] 13.34% 0 1 

Vehicle age indicator (1 if the vehicle is older than 9 years, 0 
otherwise) [DF] 25.80% 0 1 

Vehicle location indicator (1 if the vehicle was clearing an 
intersection or was waiting at an intersection exit at the time 
of the accident, 0 otherwise) [DRLTF] 11.18% 0 1 

Vehicle maneuver indicator (1 if the vehicle was going straight 
ahead at the time of the accident, 0 otherwise) [DRLTF] 58.42% 0 1 

Vehicle maneuver indicator (1 if the vehicle was reversing at the 
time of the accident, 0 otherwise) [DF] 5.44% 0 1 

Vehicle maneuver indicator (1 if the vehicle was reversing at the 
time of the accident, 0 otherwise) [DP] 4.16% 0 1 

Vehicle position indicator (1 if the vehicle left the roadway 
nearside at the time of the accident, 0 otherwise) [DP] 17.25% 0 1 

Vehicle position indicator (1 if the vehicle left the roadway 
offside at the time of the accident, 0 otherwise) [DF] 10.67% 0 1 

Vehicle position indicator (1 if the vehicle left the roadway 
offside at the time of the accident, 0 otherwise) [DRLTF] 7.37% 0 1 

Vehicle position indicator (1 if the vehicle left the roadway 
offside at the time of the accident, 0 otherwise) [DRLTP] 5.05% 0 1 

Vehicle type indicator (1 if  motorcycle, 0 otherwise) [DF] 9.65% 0 1 
Vehicle type indicator (1 if bus or mini-bus, 0 otherwise) [DP] 6.41% 0 1 
Vehicle type indicator (1 if private passenger car, 0 otherwise) 

[DP] 70.86% 0 1 
Vehicle type indicator (1 if pedal cycle, 0 otherwise) [DF] 1.73% 0 1 
Vehicle type indicator (1 if private passenger car or taxi/hired 

car, 0 otherwise) [DRNLP] 83.65% 0 1 
Vehicle type indicator (1 if private passenger car or taxi/hired 

car, 0 otherwise) [DRNLF] 82.52% 0 1 
Vehicle type indicator (1 if private passenger car, 0 otherwise) 

[DRLTF] 75.53% 0 1 
[DF]: Daylight and fine weather  [DRLTF]: Darkness and fine weather on lighted roadways 
[DP]: Daylight and poor weather  [DRLTP]: Darkness and poor weather on lighted roadways 
[DRNLF]: Darkness and fine weather on unlighted roadways 
[DRNLP]: Darkness and poor weather on unlighted roadways 
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Table 2. Model estimation results and marginal effects of accident injury severities under daylight and fine weather and under daylight and poor 
weather.  

Variable description 

Daylight and fine weather Daylight and poor weather 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Ordered injury state           
Constant -0.767 -5.54 - - - - - - - - 
Vehicle type indicator (1 if  motorcycle, 0 

otherwise) 0.841 7.53 -0.1873 -0.0365 0.2238 - - - - - 

Vehicle type indicator (1 if pedal cycle, 0 
otherwise) 1.001 4.54 -0.1941 -0.0891 0.2832 - - - - - 

Vehicle type indicator (1 if private passenger 
car, 0 otherwise) - - - - - -1.116 -9.13 0.0627 -0.0614 -0.0013 

Vehicle age indicator (1 if the vehicle is older 
than 9 years, 0 otherwise) 0.145 2.43 -0.0407 0.0099 0.0308 - - - - - 

Vehicle age indicator (1 if the vehicle is older 
than 12 years, 0 otherwise) - - - - - 0.432 2.76 -0.0167 0.0165 0.0001 

Pedestrian indicator (1 if a pedestrian was 
involved in the accident, 0 otherwise) 0.466 7.04 -0.1358 0.0432 0.0925 0.613 3.68 -0.0219 0.0214 0.0005 

Off-the-road object indicator (1 if the vehicle 
struck a tree off the roadway, 0 otherwise) 0.454 3.66 -0.1126 0.0020 0.1107 1.537 7.45 -0.1382 0.1355 0.0027 

Roadway type indicator (1 if the accident 
occurred on a dual carriageway, 0 otherwise) - - - - - 0.377 2.25 -0.0149 0.0148 0.0001 

Accident location indicator (1 if the accident 
occurred within the city of Edinburgh, 0 
otherwise) 

-0.161 -2.01 0.0476 -0.0162 -0.0314 - - - - - 

Driver's gender indicator (1 if male, 0 otherwise) 0.115 1.91 -0.0332 0.0100 0.0232 - - - - - 
Driver's age indicator (1 if the driver was 

younger than 23 years old, 0 otherwise) -0.168 -2.45 0.0497 -0.0167 -0.0329 - - - - - 

Skidding indicator (1 if the vehicle skidded 
during the accident, 0 otherwise) - - - - - -0.717 -5.04 0.0176 -0.0175 -0.0001 
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Variable description 

Daylight and fine weather Daylight and poor weather 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Vehicle position indicator (1 if the vehicle left 
the roadway offside at the time of the accident, 
0 otherwise) 

0.159 1.78 -0.0438 0.0092 0.0346 - - - - - 

Minor-injury state           
Driver's age indicator (1 if the driver was 

younger than 27 years old, 0 otherwise) - - - - - 0.618 6.01 0.0180 -0.0180 0.0000 

Time-of-the-day indicator (if the accident 
occurred between 8.30 and 9.30 am, 0 
otherwise) 

0.590 2.83 0.0805 -0.0731 -0.0074 - - - - - 

Time-of-the-day indicator (if the accident 
occurred between 6 and 9.30 am, 0 otherwise) - - - - - 0.763 6.36 0.0173 -0.0173 0.0000 

Engine capacity indicator (1 if the capacity of 
the vehicle's engine is 1800cc or greater, 0 
otherwise) 

-0.470 -2.23 -0.0412 0.0383 0.0029 - - - - - 

Off-the-road object indicator (1 if the vehicle hit 
a permanent object off the roadway, 0 
otherwise) 

- - - - - 1.109 3.85 0.0147 -0.0147 0.0000 

Animal indicator (1 if an animal was involved in 
the accident, 0 otherwise) 1.115 1.74 0.1984 -0.1744 -0.0240 - - - - - 

Speed limit (in mph) -0.029 -2.92 -0.0075 0.0063 0.0012 - - - - - 
Vehicle maneuver indicator (1 if the vehicle was 

reversing at the time of the accident, 0 
otherwise) 

0.442 2.16 0.0571 -0.0520 -0.0051 0.851 2.49 0.0151 -0.0151 0.0000 

Vehicle type indicator (1 if bus or mini-bus, 0 
otherwise) - - - - - 0.694 2.23 0.0173 -0.0173 0.0000 

Pavement surface condition (1 if the pavement 
was dry at the time of the accident, 0 
otherwise) 

- - - - - 0.773 4.53 0.0150 -0.0150 0.0000 

Threshold-specific variables           
Driver's home area indicator (1 if the driver's 

home area is rural, 0 otherwise) -0.164 -1.75 - -0.0524 0.0524 - - - - - 
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Variable description 

Daylight and fine weather Daylight and poor weather 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Skidding indicator (1 if the vehicle skidded 
during the accident, 0 otherwise) 0.376 3.17 - 0.1007 -0.1007 - - - - - 

On-road object indicator (1 if the vehicle hit a 
curb within the roadway, 0 otherwise) -0.517 -2.72 - -0.1635 0.1635 - - - - - 

Roadway type indicator (1 if the accident 
occurred on a rural single carriageway, 0 
otherwise) 

-0.245 -2.73 - -0.0782 0.0782 - - - - - 

Speed limit indicator (1 if speed limit greater 
than 30 mph, 0 otherwise) - - - - - -0.594 -3.81 - -0.0001 0.0001 

Vehicle position indicator (1 if the vehicle left 
the roadway nearside at the time of the 
accident, 0 otherwise) 

- - - - - 0.447 2.74 - 0.0001 -0.0001 

Day-of-the-accident indicator (1 if the accident 
occurred during the weekend, 0 otherwise) - - - - - 0.452 1.95 - 0.0001 -0.0001 

Intercept for μ1 0.520 5.99 - - - 0.805 7.13 - - - 
Correlation of disturbance terms -0.566 -3.44 - - - 0.999 42.41 - - - 
Model Evaluation        
Goodness-of-fit metrics OP HOPIT ZIHOPITCD OP HOPIT ZIHOPITCD 
Number of observations (Ν) 2892 2892 2892 814 814 814 
Number of estimable parameters (K)     11     15      21     7   10    17 
Restricted log-likelihood, LL(0) -1913.731 -1913.731 -1913.731 -493.610 -493.610 -493.610 
Log-likelihood at convergence, LL(β) -1823.710 -1807.930 -1781.756 -485.959 -480.451 -428.054 
AIC [AIC=2K-2LL(β)]  3669.420   3645.860 3605.512 985.918 980.902 890.108 
BIC [BIC = − 2LL(β) + Kln(N)]  3735.087   3735.406 3730.876 1018.832 1027.922 970.0413 
Vuong test statistic    
ZIOPITCD vs OP 4.638 -4.332 
ZIOPITCD vs HOPIT -3.655 -4.018 

OP: Ordered Probit; HOPIT: Hierarchical Ordered Probit; ZIHOPITCD: Zero-inflated hierarchical ordered probit with correlated disturbances 
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Table 3. Model estimation results and marginal effects of accident injury severities under darkness and fine weather on lighted roadways and 
under darkness and poor weather on lighted roadways. 

Variable description 

Darkness and fine weather on lighted roadways Darkness and poor weather on lighted roadways 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Ordered injury state           
Constant 0.746 6.21 - - - -0.628 -4.00 - - - 
Roadway type indicator (1 if the accident 

occurred on a one-way road, 0 otherwise) -0.424 -2.46 0.1403 -0.0972 -0.0431 - - - - - 

Roadway type indicator (1 if the accident 
occurred on a rural single carriageway, 0 
otherwise) 

- - - - - -1.033 -2.57 0.0549 -0.0549 0.0000 

Intersection indicator (1 if the accident 
occurred on an intersection or an intersection 
was present within 20 metres from the 
accident location, 0 otherwise) 

- - - - - -0.474 -2.64 0.0718 -0.0717 -0.0001 

Inverse of the driver's age (1/years) 0.335 1.92 -0.0278 -0.0293 0.0571 - - - - - 
Driver's age indicator (1 if the driver was older 

than 45 years old, 0 otherwise) - - - - - -0.469 -2.37 0.0606 -0.0606 0.0000 

Driver's gender and residence area indicator (1 
if male driver whose residence is located in a 
rural area, 0 otherwise) 

- - - - - -0.668 -1.72 0.0510 -0.0509 -0.0001 

Vehicle age indicator (1 if the vehicle is older 
than 15 years, 0 otherwise) -0.713 -2.48 0.2379 -0.1786 -0.0592 - - - - - 

Vehicle location indicator (1 if the vehicle was 
clearing an intersection or was waiting at an 
intersection exit at the time of the accident, 0 
otherwise) 

-0.375 -2.71 0.1223 -0.0823 -0.0400 - - - - - 

Vehicle maneuver indicator (1 if the vehicle 
was going straight ahead at the time of the 
accident, 0 otherwise) 

0.205 2.23 -0.0271 -0.0035 0.0306 - - - - - 
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Variable description 

Darkness and fine weather on lighted roadways Darkness and poor weather on lighted roadways 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Vehicle position indicator (1 if the vehicle left 
the roadway offside at the time of the 
accident, 0 otherwise) 

-0.378 -2.40 0.1234 -0.0835 -0.0399 - - - - - 

Trip purpose indicator (1 if the accident 
occurred during a work-related trip, 0 
otherwise) 

- - - - - -0.513 -2.20 0.0556 -0.0555 -0.0001 

Day-of-the-accident indicator (1 if the accident 
occurred during the weekend, 0 otherwise) - - - - - 0.411 2.06 -0.0655 0.0655 0.0000 

Minor-injury state           
Speed limit indicator (1 if speed limit greater 

than 30 mph, 0 otherwise) -0.210 -1.78 -0.0207 0.0207 0.0000 - - - - - 

Point-of-impact indicator (1 if the first point of 
impact was on the front of the vehicle, 0 
otherwise) 

-0.265 -3.18 -0.0265 0.0265 0.0000 - - - - - 

Vehicle position indicator (1 if the vehicle left 
the roadway offside at the time of the 
accident, 0 otherwise) 

- - - - - 1.451 2.86 0.0551 -0.0551 0.0000 

Pavement surface condition (1 if the pavement 
was dry at the time of the accident, 0 
otherwise) 

0.152 1.91 0.0377 -0.0376 -0.0001 - - - - - 

Accident location indicator (1 if the accident 
occurred within the city of Aberdeen, 0 
otherwise) 

-0.434 -1.82 -0.0230 0.02308 0.0000 - - - - - 

Accident location indicator (1 if the accident 
occurred within the city of Edinburgh, 0 
otherwise) 

- - - - - 1.192 4.54 0.0598 -0.0598 0.0000 

Threshold-specific variables           
Vehicle type indicator (1 if private passenger 

car, 0 otherwise) -0.405 -1.80 - -0.0878 0.0878 - - - - - 
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Variable description 

Darkness and fine weather on lighted roadways Darkness and poor weather on lighted roadways 

Parameter 
Estimate t-stat 

Marginal effects Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Trip purpose indicator (1 if the accident 
occurred during a work-related trip, 0 
otherwise) 

-0.436 -2.36 - -0.0960 0.0960 - - - - - 

Trip purpose indicator (1 if the accident 
occurred during a commuting trip, 0 
otherwise) 

- - - - - -0.741 -2.13 - -0.0001 0.0001 

Intercept for μ1 0.483 1.77 - - - 0.810 5.55 - - - 
Correlation of disturbance terms -0.992 -51.20 - - - 0.999 6.69 - - - 
Model Evaluation       
Goodness-of-fit metrics OP HOPIT ZIHOPITCD OP HOPIT ZIHOPITCD 
Number of observations (Ν) 752 752 752 317 317 317 
Number of estimable parameters (K)     8   10   15    8    9   12 
Restricted log-likelihood, LL(0) -514.886 -514.886 -514.886 -189.054 -189.054 -189.054 
Log-likelihood at convergence, LL(β) -501.902 -495.560 -478.321 -180.400 -179.014 -171.867 
AIC [AIC=2K-2LL(β)] 1019.804 1011.120 986.642  382.800   376.028  367.734 
BIC [BIC = − 2LL(β) + Kln(N)] 1056.786 1057.347 1055.983  412.871   409.858*  412.841* 
Vuong test statistic       
ZIOPITCD vs OP -3.227 -2.586 
ZIOPITCD vs HOPIT -3.009 -1.860** 

 OP: Ordered Probit; HOPIT: Hierarchical Ordered Probit; ZIHOPITCD: Zero-inflated hierarchical ordered probit with correlated disturbances 
*To further compare the statistical performance of the hierarchical ordered probit (HOPIT)  and the zero-inflated hierarchical ordered probit model with correlated disturbances 

(ZIHOPITCD), the corrected AIC [AICC = AIC + 2 K(K + 1)/(N-K-1] was also calculated.  Corrected AIC can account for the impact of estimable parameters as it penalizes 
models with higher number of estimable parameters (Anastasopoulos, 2016; Fountas and Anastasopoulos, 2018). Corrected AIC for HOPIT model is equal to 376.614, while 
corrected AIC for the ZIHOPITCD model is equal to 368.7603; the lower value of the corrected AIC for the ZIHOPITCD model indicates its better statistical performance 
relative to the HOPIT model.  

**The specific Vuong test statistic is statistically significant at a 0.90 level of confidence. 
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Table 4. Model estimation results and marginal effects of accident injury severities under darkness and fine weather on unlighted roadways and under 
darkness and poor weather on unlighted roadways.  

Variable description 

Darkness and fine weather on unlighted 
roadways 

Darkness and poor weather on unlighted 
roadways 

Parameter 
Estimate t-stat 

Marginal effects 
Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Ordered injury state            
Roadway type indicator (1 if the accident 

occurred on an urban dual carriageway, 0 
otherwise) 

-1.665 -1.78 0.1560 -0.1298 -0.0262 - - - - - 
 

Roadway type indicator (1 if the accident 
occurred on a rural single carriageway, 0 
otherwise) 

- - - - - -0.419 -2.65 0.1378 -0.1148 -0.0229 
 

Pedestrian indicator (1 if a pedestrian was 
involved in the accident, 0 otherwise) 1.286 3.63 -0.2040 0.1210 0.0830 1.067 3.30 -0.3852 0.2852 0.1000  

Driver's age indicator (1 if the driver was older 
than 23 years old but younger than 37 years old, 
0 otherwise) 

0.643 2.77 -0.0978 0.0694 0.0284 - - - - - 
 

Vehicle age indicator (1 if the vehicle is less than 
8 years old, 0 otherwise) -0.490 -2.67 0.0713 -0.0523 -0.0190 - - - - -  

Vehicle type indicator (1 if private passenger car 
or taxi/hired car, 0 otherwise) -0.660 -3.29 0.0995 -0.0677 -0.0318 -0.392 -2.53 0.1282 -0.1047 -0.0235  

Inverse of the vehicle's engine capacity (cc-1) - - - - - 0.563 1.73 -0.1954 0.1499 0.0455  
Off-the-road object indicator (1 if the vehicle 

struck a tree off the roadway, 0 otherwise) 0.708 2.28 -0.1097 0.0723 0.0374 - - - - -  

Skidding and overturning indicator (1 if the 
vehicle skidded and overturned during the 
accident, 0 otherwise) 

-0.570 -2.07 0.0779 -0.0615 -0.0164 - - - - - 
 

Day-of-the-accident indicator (1 if the accident 
occurred on Sunday, 0 otherwise) 1.133 3.43 -0.1844 0.1233 0.0611 - - - - -  

Time-of-the-day indicator (1 if the accident 
occurred between midnight and 6.00 am, 0 
otherwise) 

0.663 2.71 -0.1033 0.0759 0.0274 - - - - - 
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Variable description 

Darkness and fine weather on unlighted 
roadways 

Darkness and poor weather on unlighted 
roadways 

Parameter 
Estimate t-stat 

Marginal effects 
Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Minor-injury state            
Speed limit indicator (1 if speed limit greater than 

30 mph, 0 otherwise) -1.510 -2.69 -0.1621 0.1381 0.0239 - - - - -  

Speed limit indicator (1 if speed limit greater than 
40 mph, 0 otherwise) - - - - - -1.312 -3.66 -0.0042 0.0042 0.0000  

Rural area indicator (1 if the accident occurred in 
a rural area, 0 otherwise) 1.705 3.00 0.2448 -0.1891 -0.0557 - - - - -  

Driver's gender and residence area indicator (1 if 
female driver whose residence is located in an 
urban area, 0 otherwise) 

1.192 2.35 0.1453 -0.1241 -0.0212 - - - - - 
 

Pavement surface condition (1 if the pavement 
was dry at the time of the accident, 0 otherwise) -0.551 -2.39 -0.0936 0.0771 0.0165 - - - - -  

Pavement surface condition (1 if the pavement 
was wet at the time of the accident, 0 otherwise) - - - - - -1.470 -2.71 -0.0140 0.0140 0.0000  

Threshold-specific variables            
Roadway type indicator (1 if the accident 

occurred on an urban single carriageway, 0 
otherwise) 

0.404 1.96 - 0.0194 -0.0194 - - - - - 
 

Point-of-impact indicator (1 if the first point of 
impact was on the front of the vehicle, 0 
otherwise) 

0.614 2.36 - 0.0233 -0.0233 - - - - - 
 

Intersection indicator (1 if the accident occurred 
on a T-junction or crossroads, 0 otherwise) 0.410 1.85 - 0.0188 -0.0188 - - - - -  

Accident location indicator (1 if the accident 
occurred in the county of Highlands and Islands 
or in the county of Moray, 0 otherwise) 

-0.596 -1.80 - -0.0412 0.0412 - - - - - 
 

Accident location indicator (1 if the accident 
occurred in the Angus county, 0 otherwise) - - - - - -1.712 -1.84 - -0.1780 0.1780  

Intercept for μ1 0.427 2.99 - - - 0.529 2.96 - - -  
Correlation of disturbance terms 0.624 2.02 - - - -0.999 -3.95 - - -  
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Variable description 

Darkness and fine weather on unlighted 
roadways 

Darkness and poor weather on unlighted 
roadways 

Parameter 
Estimate t-stat 

Marginal effects 
Parameter 
Estimate t-stat 

Marginal effects 
Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Slight 
Injury 

Serious 
Injury 

Fatal 
injury 

Model Evaluation       
 OP HOPIT ZIHOPITCD OP HOPIT ZIHOPITCD 
Number of observations 429 429 429 249 249 249 
Number of estimable parameters (K)   10  14   19    5    6     9 
Restricted log-likelihood, LL(0) -336.746 -336.746 -336.746 -148.436 -148.436 -148.436 
Log-likelihood at convergence, LL(β) -311.723 -300.957 -284.062 -142.129 -135.955 -130.947 
AIC [AIC=2K-2LL(β)]  643.446  629.914  606.124 294.258 283.91 279.894 
BIC [BIC = − 2LL(β) + Kln(N)] 684.0606 686.7744 683.2917 311.8453 305.0147*** 311.5511*** 
Vuong test statistic       
ZIOPITCD vs OP -3.545 -2.280 
ZIOPITCD vs HOPIT -2.844 -2.084 

OP: Ordered Probit; HOPIT: Hierarchical Ordered Probit; ZIHOPITCD: Zero-inflated hierarchical ordered probit with correlated disturbances 
*** To further compare the statistical performance of the hierarchical ordered probit (HOPIT)  and the zero-inflated hierarchical ordered probit model with correlated 

disturbances (ZIHOPITCD), the corrected AIC [AICC = AIC + 2 K(K + 1)/(N-K-1] was also calculated.  Corrected AIC can account for the impact of estimable parameters 
as it penalizes models with higher number of estimable parameters (Anastasopoulos, 2016; Fountas and Anastasopoulos, 2018). Corrected AIC for HOPIT model is equal 
to 284.2571, while corrected AIC for the ZIHOPITCD model is equal to 280.6471; the lower value of the corrected AIC for the ZIHOPITCD model indicates its better 
statistical performance relative to the HOPIT model. 
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Figure 1. Histograms of accident injury severities for various weather and lighting 
combinations 
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