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Abstract—Bluetooth is a short-range wireless technology
that provides audio and data links between personal smart-
phones and playback devices, such as speakers, headsets and
car entertainment systems. Since its introduction in 2001,
security researchers have suggested that the protocol is weak,
and prone to a variety of attacks against its authentication,
link management and encryption schemes. Key researchers
in the field have suggested that reliable passive sniffing
of Bluetooth traffic would enable the practical application
of a range of currently hypothesised attacks. Restricting
Bluetooth’s frequency hopping behaviour by manipulation
of the available channels, in order to make brute force attacks
more effective has been a frequently proposed avenue of
future research from the literature. This paper has evaluated
the proposed approach in a series of experiments using the
software defined radio tools and custom hardware devel-
oped by the Ubertooth project. The work concludes that
the mechanism suggested by previous researchers may not
deliver the proposed improvements, but describes an as-
yet undocumented interaction between Bluetooth and Wi-Fi
technologies which may provide a Denial of Service attack
mechanism.

I. INTRODUCTION

Bluetooth describes a communications environment
consisting of radio hardware, protocol stack, and service
implementation in a similar usage as the term Web
describing the entire Internet ecosystem.

Originally developed as an internal project by Dr Jaap
Haartsen of Ericsson Mobile [1], Bluetooth was offered
to industry through the Bluetooth Special Interest Group
(SIG) in 1998.

The SIG published the Bluetooth specification in 1999,
and within two years theoretical weaknesses had been
described by researchers. Jacobsson and Wetzell [2] sug-
gested that a potential attack against the pairing mech-
anism might allow link keys to be recovered, and in
a second weakness, poor choice of keys reduced the
effective strength of the cipher. Despite these potential
weaknesses, the standard was widely adopted by mobile
phone manufacturers, as a means of connecting to audio
headsets and emerging data devices.

The near ubiquity of Bluetooth support for mobile
phone applications prompted automobile manufacturers
to implement support for the standard [3]. Current im-
plementations of Bluetooth in an automotive environ-

ment provide deep integration between in-car informa-
tion and entertainment systems, vehicle systems and the
driver’s smartphone [4].

This integration provides considerable utility; how-
ever,recent work has highlighted a variety of possible
attacks, and Bluetooth based attacks feature heavily in
this research [5]. Because it uses a radio medium with
authentication and encryption schemes with identified
weaknesses, Bluetooth networks are perceived to be
weak.

Three broad classes of attack have been described:
1) Attacks against Bluetooth services and applica-

tions, making use of weaknesses in the authenti-
cation and authorisation processes;

2) Attacks using information transmitted by the de-
vice for unauthorised tracking of the user’s location
or behaviour; and

3) Attacks which seek to intercept traffic to gain access
to voice calls and other, private information.

This paper focuses on the third class of proposed
attacks. Taking this further, the focus is on passive
sniffing – eavesdropping traffic without connecting to
the devices in question. Passive sniffing in this way has
been frequently hypothesised [6] and researchers have
described potential mechanisms [7], [8]. The remainder
of this paper details the approaches that have been taken,
the progress made towards the goal of passive sniffing,
and seeks to experimentally evaluate the extent to which
reducing available bandwidth through active manipula-
tion of Adaptive Frequency Hopping (AFH), can be used
to reduce the time required for brute force attacks, and
therefore support passive sniffing of Bluetooth.

II. LITERATURE REVIEW

Dunning [9] provides a taxonomy and classification of
Bluetooth attacks as a series of hierarchies of classifica-
tion, threat level and party responsible for mitigation –
vendor, or end user. Of the 45 attacks identified in the
survey only three target the PHY, MAC or LLC Layers
(Table I).

This pattern is repeated in the attacks against Blue-
tooth described by Haines [10] – of the seven attacks
he describes, only one is not included in Dunning’s



TABLE I
DUNNING’S CLASSIFICATION SCHEME (ADAPTED FROM [9])

Classification Tools Attacks
Surveillance btaudit, sdptool, Bluescanner, BTScanner RedFang, BlueFish, Blueprinting, War-nibbling
Range Extension Vera-NG BlueSniping, bluetooone
Obfuscation Hciconfig, bdaddr Spooftooph
Fuzzer BluePass, Bluetooth Stack Smasher, BlueSmack, Tanya, BlueStab
Sniffing BlueSniff, HCIDump, Wireshark, Kismet FTS4BT, Merlin
Denial of Service Battery exhaustion, signal jamming, BlueSYN, Blueper, BlueJacking, vCardBlaster
Malware BlueBag, Caribe, CommWarrior
Direct Data Access BlueSnarf, BlueSnarf++ Bloover, BlueBug, Car Whisperer, HeloMoto, btpincrack
Man in the Middle Bthidproxy BT-SSP-Printer-MITM, BlueSpooof

review. This additional attack btCrack is a sniffer which
is based on the HCIDump tool, and attempts to recover
link keys from a captured data stream. Haines is unique
among these researchers, observing that sniffing a suit-
able stream of packets in the first place is significantly
harder than in Wi-fi.

A. PHY and MAC - Bluetooth as an RF System

Bluetooth devices communicate using Radio Fre-
quency signals in the 2.4GHz Industrial, Scientific and
Medical (ISM) Band. This is an internationally agreed
allocation of spectrum which is intended for devices
which can be operated without a user licence. The RF
and Baseband systems within Bluetooth devices are not
typically implemented by a device manufacturer – this
core functionality is implemented in proprietary chipsets
or System on Chip (SOC) components from leading ven-
dors such as Qualcomm, Texas Instruments, Microchip
etc. [11] and the firmware of these devices is not open
sourced [8].

[12] provide a detailed explanation of the RF layer of
the Bluetooth Classic environment. Frequency Shift Key-
ing (FSK) is a modulation scheme that uses the change
between two distinct frequencies within the allocated
band to represent a digital 0 and 1. In its simplest form,
Bluetooth BR, or Basic Rate, uses a modified form of this
scheme - Gaussian Frequency Shift Keying (GFSK).

This choice of modulation scheme has the unintended
side effect of adding a further degree of complexity to
the process of sniffing traffic [13]. As the transitions
between encoded digits are less precise, a potential
attacker attempting to derive the clock from the stream
of received packets must contend with ambiguous tran-
sitions, whereas a synchronised member of the Piconet
can use the known clock to assist in processing the
RF stream. This problem is even more compounded in
later Bluetooth versions, with v2.0 introducing Enhanced
Data Rate (EDR), and v3.0 adding High Speed (HS),
also referred to as “Alternative MAC/PHY” (AMP). EDR
makes use of different RF modulation, depending on
the packet type being sent. For the majority of link
management purposes, the previously defined GFSK
modulation is used; however, for data packets, partic-
ularly those involved in the delivery of audio services,

a more complex Phase Shift Keying (PSK) modulation is
used [14] .

When this scheme is in use, the modulation applied in
a specific communication session will change frequently
based on the data being sent. The sniffer’s challenge
of discriminating between spurious radio signals and
actual data becomes markedly harder, as confirmed by
[15].

Bluetooth is designed to support a hierarchy of Pi-
conets and Scatternets , however, this usage has not been
adopted widely, and in practice, most Bluetooth com-
munication is between a single master and single slave
device, such as a smartphone and car. In this scenario,
the master device will transmit on even numbered hops,
whilst the slave device will transmit on odd numbered
hops [16].

Pelzl and Wollinger’s other contribution is to describe
a series of limitations that they identify in Bluetooth’s
security. This 2006 list is largely an adaptation of [2],
however, they make the definitive statement "It is possi-
ble to intercept radio signals originating from Bluetooth
devices (e.g. with a Bluetooth protocol analyzer ...)".
While this is an enduring notion amongst researchers,
the work performed by [7], [13] and [17] has demon-
strated that practically intercepting traffic – particularly
in a passive fashion – is a significantly harder task than
these early authors had anticipated.

1) Basic Hopping Sequence: Bluetooth uses a Frequency
Hopping Spread Spectrum (FHSS) mechanism. The ISM
band from 2402MHz to 2480MHz is divided into 79
channels of 1MHz each. The edges of the band (2400-
2402MHz and 2480-2483.5MHz) are not used. [12] pre-
dates the development of Bluetooth Low Energy (BTLE),
which uses a different channel division schema, separat-
ing the same RF spectrum into 40 channels, with 2MHz
of bandwidth each [18]. The two schemas are compatible
at the RF layer, and can interoperate in the same physical
space, but require different mechanisms of link control.

Bluetooth devices maintain an internal 28-bit 3200Hz
clock. During normal communication, the upper 27 bits
of the clock, Clock27 is used and each of the 79 available
channels are used for only 625µs before communication
hops to the next channel in the sequence; this means
there are 1,600 slots per second, and the clock increments



Fig. 1. Simplified Hopset showing 16 Channels, 10ms of Hops, 2
Devices

twice for each time slot [7]. The hopping sequence is not
random – it is pseudo random, calculated using the Hop
Selection Kernel; an algorithm defined in the v1.1 Core
Specification and modelled in detail by [19]. The kernel
is seeded with the following values:

• The UAP and LAP of the master device; and
• Bits 1-26 of the clock index.
These are combined to define the RF Channel index,

the next channel to be hopped to. Figure 1 shows a
simplified example, with only 16 channels, demonstrat-
ing how hops proceed during normal communication,
from the perspective of the master device. In this limited
hopset, on each successive “slot”, the master device will
transmit the data which it wishes to send (if any), then
wait for a response on the next slot. This re-iterates
an important behaviour; Bluetooth uses TDMA “time
division multiplexed access” to determine when it can
transmit or not, based on these rotating time slots,
rather than the CSMA/CA “carrier sense multiple access
with collision avoidance” used in IEEE 802.x wireless
standards [12].

2) Adaptive Hopping Sequence: Adaptive Frequency
Hopping was introduced in Bluetooth version 1.2, rat-
ified in 2003. This approach improves resilience in an
environment where Wi-Fi or other ISM technologies are
being used – those channels which cannot be reliably
used because of interference from Wi-Fi users and access
points are marked as “bad” and the usable channels
available for frequency hopping, the hop set, is reduced
accordingly [20].

As described by [21], the behaviour of Frequency
Hopping systems is governed by rules laid down by the
regulatory bodies who control access to the radio spec-
trum, such as the FCC. To comply with these regulations,
frequency hopping must continue at high enough a rate
to ensure that the dwell time on any given channel is
no longer than 0.4 seconds in a given hop. Bluetooth

Fig. 2. Simplified Hopset with AFH mitigation of Wi-Fi interference,
2 Devices

supports a minimum hop set of 20 channels, and is able
to retain the same hopping rate, 1600 per second.

An AFH Channel Map is maintained by the master
device of the piconet – a 79 value table where each
channel is marked as “good”, “bad” or “unknown”. The
table is sent from the master device to all slaves in
the piconet using the Link Management Protocol (LMP)
command LMP_Set_AFH() [14]. Slave devices can ask
the master to exclude a channel, however, the master
makes the decision, and communicates the updated map
each time it is changed. It should be noted that the AFH
scheme is dynamic, and channels can be added to the
hop set again, as well as removed.

Figure 2 shows a simplified hopping scheme using
only 16 channels. In practice, all 79 channels are avail-
able, and a Wi-Fi channel can obstruct as much as
22MHz of available bandwidth; as many as 11 Bluetooth
channels above and below the Wi-Fi channels nominal
centre frequency.

This can be seen in Figure 3 – a capture of the ISM
band using the experimental setup described later, which
shows the broad footprint of Wi-Fi Channel 6 in heavy
use.

The X-axis represents the entire ISM Band, from chan-
nel 0 at the origin to channel 79 at the right-hand edge.
The Y-axis represents time - new samples are added at
the top, and the display scrolls downwards, removing
the oldest sample from the bottom. Each cell represents
an RSSI (Received Signal Strength Indicator), visualising
the signal strength as a “heat” map. The scale is “decibel
milliwatts” or dBm, where blue/black represents a weak
signal of -90dBm or less, continuing through green and
yellow until red, which represents the strongest signals
of -60dBm.

As for Basic hopping, the choice of next frequency
to hop to is based on the Hop Selection Kernel. From
version 2.1 onwards, this has been extended to support



Fig. 3. Spectrum Analysis - RF usage by Busy Wi-Fi

AFH, and is now seeded with the following:
• The UAP and LAP of the master device;
• Bits 1-26 of the clock index;
• The AFH Map supplied by the master device; and
• n, a numeric value. This is the number of usable

channels in the hop set.
The reduced hop set in this scenario means that any

available channel is selected more frequently by the
hopping algorithm than in an environment where AFH
is not used. This structure was hypothesised by Spill [7]
and again by Huang [8] to create a potential advantage
to a would-be sniffer because the likelihood of detecting
traffic for a given piconet increases whilst listening on a
single channel.

3) Finding and Joining a Piconet: Piconet link man-
agement relies on two mechanisms; Inquiry, which is
intended for discovering new devices and establishing
the required information to join the piconet and Paging,
which is intended to allow a device to join a piconet and
begin the pairing process [22]. In both modes, a smaller
set of 32 evenly distributed “wake-up” frequencies are
used across the same 79MHz band as the basic and
adapted hopping channels [14].

B. Pairing and Authentication

Prior to v2.1 of the standard, pairing encryption and
authentication used the Ex series algorithms, based on
SAFER and SAFER+ (Table II). With successive updates
to the standard, more secure mechanisms were intro-
duced in response to criticism and the hypothesised
weaknesses described by Jacobsson and Wetzell [2],
namely that the link key was recoverable, and the cipher
weakened due to poor key management.

It should be noted, however, that backwards compat-
ibility has been retained by the SIG, and this means
that even in the latest v5.0 standard, legacy E0 en-
cryption, and pairing using the Ex series algorithms
is still supported – indeed, if all devices in a piconet

Fig. 4. Key Generation and Authentication using Ex Series Algorithms

cannot support AES-CCM encryption or HMAC-SHA-
256 authentication, then all devices on the piconet will
downgrade to the legacy mechanisms [24]. We therefore
examine the legacy pairing and authentication schemes
as an example.

1) Legacy Bluetooth Pairing and E1 Authentication: The
legacy sequence takes seven packets [6] (Table III).

This sequence is shown in Figure 4, where Device A is
the initiator and Device B is the responder. After the first
packet, each device holds the IN_RAND initialisation
value, and each knows the PIN by other means, typically
being entered on the device by the user, or in the case
of simpler devices, hard-coded to a known value such
as 0000 or 1234. Each device generates an initialisation
key Kinit, generates another random number, xORs this
with their Kinit and passes this to the other device. Each
device uses these values, combined with their own Kinit,
to generate the Link Key KAB. This key persists for the
duration of the pairing.

Finally, each device produces another random number.
The device uses this random number, the BD_ADDR,
and the Link Key KAB to generate another 128-bit num-
ber – the top 32-bits are SRES and the lower 96-bits are
the Authenticated Ciphering Offset (ACO) [23]. The de-
vice then passes its random number to the other device.
When each device has verified that its own calculated



TABLE II
EVOLUTION OF BLUETOOTH CIPHER SUITE (ADAPTED FROM [23])

Description Prior to 2.1 2.1 - 4.0 4.1 Onwards
Pairing Algorithms E21, E22, SAFER+ P192 Elliptic Curve,HMAC-SHA-256 (Secure

Simple Pairing), E21, E22, SAFER+ (Legacy Pair-
ing)

P256 Elliptic Curve,
HMAC-SHA-256

Encryption Algorithm E3 / E0 / SAFER+ E3 / E0 / SAFER+ AES-CCM
Device Authentication E3 / E1 / SAFER E3 / E1 / SAFER HMAC-SHA-256

TABLE III
SEVEN PACKETS REQUIRED TO PERFORM SHAKED AND WOOL [6] PIN ATTACK

Packet Src Dst Data Length Notes
1 A B IN_RAND 128 bit Plaintext
2 A B LK_RANDA 128 bit XORed with Kinit
3 B A LK_RANDB 128 bit XORed with Kinit
4 A B AU_RANDA 128 bit plaintext
5 B A SRES 32 bit plaintext
6 B A AU RANDB 128 bit plaintext
7 A B SRES 32 bit plaintext

Fig. 5. Generation of Whitening Word from Clock6

value of SRES matches the value returned by the other
device, each knows that the other device holds a valid
copy of the Link Key, and has derived the same ACO
for the link [16].

2) Data Whitening: Prior to assembling a Bluetooth
packet, the 54-bit header and payload are whitened. The
whitening process, which is reversed at the receiver as
de-whitening, involves passing the data through a Linear
Feedback Shift Register (LFSR) which is preloaded with a
whitening word. The initial word is derived from Clock6
which is transposed as shown in Figure 5.

The LFSR changes state in a predictable fashion with
each operation, and XORs the current value with each
bit in the data to be transmitted in turn. The process
is repeated at the receiver, and, as long as the LFSR
is initialised with the same whitening word as used to
scramble the packet, allows the data to be unscrambled
in the same fashion.

Whitening is not technically part of the encryption
process, as it is not performed to obfuscate the data, but
primarily to remove any long chains of zeros or ones to
assist the performance of the analogue electronics in the
RF stage, and prevent DC Bias issues [14]. The process
does, however, add an extra degree of complexity in
recovering a packet from the radio transmission [25].

C. The Development of Hypothetical Attacks on Bluetooth

From version 1.0 of the Protocol onwards, attack meth-
ods have been proposed, such as Jacobsson and Wetzell
[2], who highlighted flaws which they believed to be
significant in the Bluetooth specification. The authors
assert that the inherent difficulty of frequency hopping
cannot be relied on to provide security, however, their
assertions about the ease of overcoming this difficulty
do not appear to be well supported. In short, these
authors describe a theoretical weakness but did not
demonstrate a practical means by which the weakness
could be exploited[2].

Shaked and Wool [6] laid out the fundamentals of such
an attack more clearly. The pairing sequence takes seven
packets. Packet 1 contains IN_RAND, the initialisation
value used to generate Kinit. A would-be attacker can
use this value, BD_ADDRA and repeat the E22 algorithm
with a guess for the PIN to generate a possible value of
Kinit. As the PIN is a 4-6 digit number, this is possible
to brute force offline in a trivial amount of time. Shaked
and Wool calculated that a high specification computer
of the day (a Pentium 4 3.0GHz based machine) could
brute force a 4-digit pin within 0.063s, whilst a 6 digit pin
could be recovered within 7.26s[6]. A current high spec
PC based on the Intel Core i9XE processor could brute
force the larger six digit pin within 0.096s; effectively
instantly in practical terms [26].

Packets 2 and 3 contain LK_RANDA and LK_RANDB
– random 128-bit values chosen by each device, XORed
with Kinit – the postulated value for Kinit is used to
retrieve these, and this set of information is now enough
for the attacker to use E21 to guess the Link Key KAB.

The E1 algorithm is then used with the guessed Link
Key to perform the mutual authentication process with
the AU_RANDA and AU_RANDB retrieved from pack-
ets 4 and 6. If the computed SRESA and SRESB values
are correct, then the attacker holds a valid KAB, and by



definition, has guessed the correct pin. If not, another
PIN is chosen and the process repeated.

The authors acknowledge that to actually perform the
hypothesised attack, it is necessary to Assume that the
attacker eavesdropped on an entire pairing and authentication
process and saved all of the messages [6].

Bluetooth Packets can take 1, 3 or 5 timeslots [27],
however each of the 7 pairing packets required by the
author’s method are short – containing only 32 or 128
bits of data respectively. Each packet in the pairing
sequence therefore takes only a single timeslot.

It is not possible to hop along with the devices as
they pair without either completing the inquiry/paging
process, which renders the attack active, rather than
simply eavesdropping, or by deducing the BD_ADDR of
the master device, and the Clockn value. If an attacker is
listening on a single channel, therefore, there is only a 7
in 79 chance (8.86%) that any of the packets involved in
the pairing sequence can be observed, and an absolute
certainty that the full exchange will not be seen.

The simple statement by Shaked and Wool [6] of
assume that..., reflects the ease of carrying out such
capture in other 802.x protocols. An assumption is made
that capturing Bluetooth data is similarly easy, whilst
attacking the protocol or crypto elements is harder,
therefore if a weakness in these can be demonstrated,
that it will be trivial to exploit in practice. Indeed, they
go so far as to advise against forcing devices to freshly
pair each time they communicate, instead storing link
keys and using Bluetooth’s re-pairing functionality to
avoid exposure to the weakness they describe. The lack
of practical evaluation of this, and other, hypothesised
attacks appears to be a gap that could be addressed
experimentally.

1) BlueSniff: Spill and Bittau [7] published a paper,
BlueSniff.The USRP platform proves limiting for two
reasons – firstly, it is expensive at over $2000 USD,
and secondly, it was not intended for FHSS use. In
the 2.4GHz range, the USRP takes 200µs to stabilise
on a given frequency; given that an entire Bluetooth
timeslot is 625µs in basic hopping and only 312.5µs in
page/inquiry scan mode, this means that it is not capable
of participating in frequency hopping.

The BlueSniff paper therefore describes the approach
taken by the authors to monitor multiple channels with-
out honouring the hopping behaviour – greatly assisted
by the discovery of a debug mode in Cambridge Silicon
Radio’s (CSR) Bluetooth development kit which forces
packets to be broadcast on a single channel [7].

Spill highlights three specific issues preventing eaves-
dropping – the lack of an integral ‘promiscuous’ mode,
as is offered in the PHY of other 802.x protocols, the
difficulty posed by the scrambling or ‘whitening’ of the
data, and finally, the requirement to recover the master’s
BD_ADDR.

Whitening is the most significant of these for Spill, and
means that it is not possible to use techniques such as
transmitting a block of data, then looking for that specific
pattern in the captured radio transmission. To do this,
the packets need to be extracted, and de-whitened. The
whitening of Bluetooth packet elements is based on a
whitening word derived from the master device’s clock
index, Clock6. This is transposed and a two byte prefix
added as shown in Figure 5. As the first 2 bits are always
“11”, the remaining 6 bits of the whitening word present
only 26 = 64 possible starting values for the LFSR.

Spill’s approach, and the first significant contribution
of the paper, is to use each of the 64 possible starting
positions for the LFSR, to perform the de-whitening
process, generate each of the 64 possible packets, then
recalculate the Cyclic Redundancy Check (CRC) of the
payload. If the CRC matches, then it is likely that the
proposed whitening word is correct, and from this, the
Clock6 can be recovered. A limitation which the authors
recognise is that not all Bluetooth packets require a CRC
on the payload. In practice, multiple packets may need to
be analysed before a suitable candidate is found. With a
means to de-whiten packets, Spill focuses on recovering
the BD_ADDR. The LAP is easily recovered, as it is
included in the header of every packet transmitted on
a piconet in the 72-bit access code.

Spill’s second significant contribution is a means to
recover the UAP, which is not included in the trans-
mitted packet. As a radio protocol designed to be toler-
ant of noisy, congested environments, Bluetooth makes
extensive use of error correction which proves to be
the key. Each packet’s 54-bit header includes a Header
Error Check (HEC) value. This HEC is generated and
checked using a similar LFSR method to the whitening
process, however, it is initialised at both ends of the
link using the 8-bit UAP, taken from the master device’s
BD_ADDR [14]. Spill recognised that as a fundamentally
bidirectional XOR process, the LFSR can be loaded with
the HEC value as the initialisation word, then the header
can be replayed in reverse bitwise. At the end of this
process, the LFSR will contain the previous initialisation
value, that is, the UAP. The paper represents a significant
breakthrough, but the authors are careful to highlight
the weaknesses of their approach. In considering future
directions, Spill and Bittau postulated that restricting
the channels available for Bluetooth to use through
manipulation of the AFH map might provide a means to
narrow the attack – it is this recommendation which is
investigated further by this paper. They also discussed
using multiple USRP’s, each monitoring five channels to
capture multiple channels at once.

Spill & Bittau recognised that to calculate the hopping
schedule, the full clock would be needed rather than
simply the clock offset used in whitening, and proposed
that, with the BD_ADDR recovered, it should be possible
to connect to the piconet master using paging mode and



Fig. 6. Ubertooth One adapter with SMA antenna

recover the clock. This would, of course, represent an
active attack, rather than passive eavesdropping.

2) The Ubertooth Project: The development of Uber-
tooth was discussed during the presentation by [13]
at ShmooCon in 2009. In an attempt to address the
issues of the USRP platform and provide a lower cost
tool for researchers, Ubertooth Zero was developed and
made available as an open sourced hardware design.
This tool built on the proposed research outlined in [7],
specifically, the ability to follow Bluetooth’s hopping se-
quence and perform some elements of the brute forcing
required in silicon rather than code. In his presentation
to RUXCON [25] introduced Ubertooth One (Figure 6),
and described the research of the Ubertooth project to
date.

Spill describes the Ubertooth One device, but also
highlights a breakthrough in thinking about clock recov-
ery – a mechanism to recover the full clock from traffic
without the need to connect to the piconet as required
by the method proposed in his 2007 paper. For a known
UAP + LAP, all 227 hops in the basic hopping sequence
before the clock wraps around can be calculated. The
clock index cannot be determined by observing a sin-
gle packet; however, as the actual hopping sequence is
observed, the pattern can be compared to the predicted
sequence to find a match.

When a sequence of observed hops matches the pre-
dicted sequence, a prediction of the next hop can be
made, and used to confirm the guess. This provides the
value of the clock index. Once the clock index is known,
the regular 625µs slots can be used to increment the clock
used by the eavesdropper.

3) BlueID: The BlueID paper [8] describes a means to
fingerprint and subsequently identify specific Bluetooth
devices, without attempting to follow the frequency hop-
ping sequence, or understand any of the higher protocol
elements. The paper is the first collective publication of
this team of researchers at Michigan State University
(MSU) and builds upon the exploration of the frequency
hopping mechanism by [19] in his Masters thesis, itself
building on [13].

4) BlueEar: In their BlueEar paper, Albazrqaoe et al
[17] consider the use of dedicated Bluetooth sniffing
equipment capable of listening to all 79 channels at once,

and propose a low-cost platform using two Ubertooth
One adapters; one as a “scout” and the second as a “snif-
fer”. Again, they highlight that a potential eavesdropper
cannot follow the hop sequence of a piconet unless they
know the BD_ADDR of the master, and the current clock
index.

They describe brute force clock acquisition, which
is similar to Spill and Bittau’s hypothesised approach;
however, they perform the work of extending the mech-
anism to consider the effects of AFH.

They make two further significant contributions.
Firstly, they observe that Bluetooth Classic in AFH mode
will only transmit on channels which the master device
considers “good”. This observation is used to make two
further deductions; if the packet rate observed on a given
channel is in the Top 20, then those channels are likely
deemed by the master as good. Further, given the FCC
rule, the average packet rate of these Top 20 can be
used as a good approximation for the packet rate of the
piconet as a whole. Conversely, knowing the average
packet rate of the piconet as a whole, it is reasonable
to assume that the channels which have packet rates
significantly below this average value are considered by
the master of the piconet as bad.

Secondly, they consider another implication of the
master device’s behaviour in selecting good and bad
channels; that the master will consider a given channel
to be bad if it is subject to interference from other devices
or ISM users. They make use of their two radio solution
by using one of the radios to hop between all 79 channels
measuring the apparent noise level on that channel.

Where a channel is particularly noisy, it is reasonable
to assume that the piconet master will consider this
channel to be bad and exclude it from the hop set. These
additional items of information help a prospective sniffer
to build their own replica of the AFH map held by the
master device – in turn, this allows for more accurate
prediction of the hopping sequence. [17] have developed
their approach across a series of papers, and have carried
forward Spill and Ossmann’s ideas significantly.

III. METHODOLOGY

A. Introduction
Spill, Albazrqaoe and Checkoway in their respective

papers quantify the extent to which deliberately congest-
ing the ISM band can force real world Bluetooth AFH
implementations to abandon the congested frequencies,
and whether the adoption of this updated AFH Map has
a quantifiable, measurable effect on the success rate of
packet capture. There are a variety of well understood
mechanisms to accomplish this, such as RF noise gener-
ators or Wi-Fi jamming devices, however, these appear
to be of questionable legality and limited availability.
Instead, an approach was sought using a commonly
available, legal to use, technology – consumer Wi-Fi
devices.



B. Experimental Method

As a starting point, the experiments will use the tech-
nique described in BlueSniff [7]. Subsequent researchers
[8], [17] and [28] had each chosen the Ubertooth hard-
ware developed by Spill and Ossman, and have used the
supporting software tools to examine similar research
questions. The literature did not describe any superior
alternative mechanisms, so Ubertooth was chosen as a
platform.

The planned investigation is to measure the effective-
ness of manipulating the AFH Map by congesting the
ISM band in improving the ability to sniff data passively.
Examining this step by step, to measure the effect on
sniffing data passively, a metric must be identified which
can be used as a benchmark to compare one capture
attempt to the next. A means must be developed of
capturing the AFH Map in effect, and a mechanism to
determine the degree of congestion of the ISM band
understood.

Additionally, the experiment should allow these mea-
surements to be made in a repeatable fashion, and be
carried out sufficient times to allow a reasonable body of
data to be gathered. Therefore, the experimental method
must have the following characteristics:

• A means to compare one capture run to another in
qualitative terms;

• Only a single aspect of behaviour should be mea-
sured in each experimental setup;

• A mechanism to ensure that each run is different
only in terms of the aspect being investigated and
any external factor should be controlled as far as
possible;

• The experiments should be repeatable; and
• The experiments should be repeated to allow a

meaningful amount of data to be gathered.

The process for capturing data described in [25] in-
volves the brute forcing of the Clock27 as a precursor to
decoding packets. At the simplest level, failure to acquire
Clock27 means that no data can be captured, whilst a
rapid, early acquisition means that, in theory, more data
can be recovered. At a high level, therefore, time to
acquire Clock27 and the number of packets captured
thereafter were hypothesised as useful metrics to gauge
success.

To assist in assessing congestion of the ISM band, a
suitable model was found in the paper by [29], which
carried out practical experiments examining RF interfer-
ence on Wi-Fi networks from ISM band sources. This
paper is not included in the literature review, as it does
not offer any particular contribution to developing cap-
ture of Bluetooth, however, the experimental mechanism
appears to be adaptable to the analysis of RF congestion
in a Bluetooth setting, and the subsequent effects on
capture rate.

In common with BlueEar [17], the authors use a two
radio setup – one to perform the specific experimental
activities, in this case, monitoring the Wi-Fi throughput
in response to Zigbee and other ISM traffic, and the other
to measure the level of RF interference.

As this method aligns with that chosen by other
Bluetooth researchers, a two-radio method was chosen
for the experimental activities of this project. [29] pro-
vide a second useful pointer – in the description of
their experimental setup, they describe carrying out 10
experimental runs for each test. This model was adopted
for experimentation, to provide a meaningful amount of
data for analysis.

Various mechanisms were discovered through experi-
mentation to assist in making the experiments repeat-
able, with the intent of eliminating potential factors
which could skew the results, or make it hard to compare
the results from one run to another.

The final capture process involved fully resetting the
environment before each run, which involved:

• Switching the smartphone devices into flight safe
mode to clear all connections;

• Unplugging the Ubertooth devices from USB;
• Switching power off using the car’s ignition key –

it was determined that the AV system powers off
after 30 seconds in this state when not being used
for radio/media playback; and

• Power off speaker systems (such as the Bose
Soundlink).

The steps were repeated in reverse to ready the en-
vironment for the next capture run. This process was
mildly cumbersome, but was performed to ensure that
information retained by the Ubertooth device from a
previous run was not able to influence the next. Previous
researchers in the field have not described any steps
taken to isolate experiments from each other in this
fashion – this may indicate that such steps are not re-
quired, or may indicate that the authors did not feel this
information added anything to their published results.

C. Experimental Setup - Overview
Two experimental setups are proposed. For testing

against a vehicle, the environment will be configured
as shown in Figure 7, with a smartphone used to ini-
tiate Bluetooth connections to the vehicle, whilst being
monitored by a laptop with two Ubertooth One devices.

Using a similar “two radio” setup to [17], one Uber-
tooth device was used to monitor the RF environment,
capturing the AFH map of the test piconet. In line with
the method described by [29], the AFH Map is captured
once per second. The second Ubertooth device was used
to passively snoop the audio data being transferred.

To produce a consistent, repeatable, stream of data the
smartphone media player was used to play the same
audio track, starting fresh for each test run. The author’s
sanity was not being tested as a factor in this experiment.



Fig. 7. Experimental Capture Environment – vehicle test

Fig. 8. Lab Based Experimental Setup

A second, lab based environment was used to perform
tests against commonly available consumer Bluetooth
media devices – a speaker, and a headset. This is shown
in Figure 8.

This second environment was used for two distinct
purposes – firstly to provide a more consistent “noisy”
RF environment for tests where manipulation of the AFH
map was attempted, and secondly to determine to what
extent the use of devices with older and newer Bluetooth
versions affected the ability to capture data, where RF
noise was not an experimental factor being measured.

D. Devices Used

Five smartphones were used in total (Figure 9), with
the configuration and characteristics summarised in Ta-
ble IV. The oldest was a 2006 HTC “TyTn”, running
Windows Mobile 5, and supporting Bluetooth 2.0. This
phone was of limited value, as it provided very little
in the way of accessible tools or diagnostic information;
however, it was used in a single experiment (Experiment
2) to determine the relative susceptibility of older Blue-
tooth 2.x implementations to snooping, relative to the
newer 4.x versions. The other smartphones used were
all Android devices, the oldest of which was a 2011

Fig. 9. Smartphones used for Experimentation

Samsung “Galaxy Ace”. This phone was a Bluetooth 3.0
chipset, and originally used Android 2.3.

To provide the means to capture HCI traffic, this phone
was ‘rooted’, and flashed with a newer Android version,
4.4.4, using the CyanogenMod project’s CM11 build. The
phone was more useful than the TyTn, but proved to
be limited due to the Broadcom chipset used in the
device; this implementation required a closed source
binary driver which limited the ability of the hci-tools
suite to provide useful information.

A pair of newer smartphones from the manufacturer
OnePlus were also used – a 2014 OnePlus One running
Android 6 and supporting the Bluetooth 4.1 standard,
and the newest phone used, a 2016 OnePlus 3T, running
Android 7 and supporting Bluetooth 4.2. Each of these
phones was used to gauge relative performance between
older and newer Bluetooth implementations, but were
also used to measure the capture rates in noisy and quiet
RF environments.

To evaluate whether the simple secure pairing (SSP)
modes introduced in Bluetooth 1.2 made a measurable
difference in capture rate, two different media targets
were used. One, a Bose Mini Soundlink, supports Blue-
tooth 2.1 configured with a default passphrase of ‘0000’,
and the other, a cheap Bluetooth headset based on the
Cambridge Silicon Radio (CSR) chipset is more basic –
similarly a Bluetooth 2.1 device, this supports SSP in
the “just works” configuration – in theory the weakest
and simplest pairing schema available. To remove other
potential factors from this experiment (Experiment 3),
only a single handset was used – the OnePlus One,
and the experiment was only performed in an RF Busy
environment.

E. Scenarios Tested
Three experimental scenarios were settled on, as

shown in Figure 10 - for each experimental run, the
following information was recorded:

• The start time of the run;
• How long it takes to find Clock27 (if successful);
• How many guesses were required to determine the

clock;



TABLE IV
BLUETOOTH DEVICES USED IN EXPERIMENTS

Device LAP UAP OS OSVer Version Notes
OP3T fd7fd1 fb Android 7.1.1 4.2 OnePlus 3T
ACEII 214b5f a4 Android 4.4.4 3.0 Samsung Galaxy ACE II
WM5 392795 76 Win Mobile 5.1.195 2.0 HTC TyTn
Bose 24cb9d 1f N/A N/A 2.1 Bose SoundLink Mini
i30 198626 44 Win CE 6.0 CE 2.1 2013 Hyundai i30
OPO 3456fa fb Android 6.0.1 4.1 OnePlus One
APTx 600df9 db N/A N/A 2.1 HV-800 Stereo Headset

Fig. 10. Devices and Scenarios tested in each Experiment

• How long it takes to successfully decode a packet
(again, if successful); and

• Statistical information about the capture: Number
of decoded packets; Number of ‘NULL’ or ‘POLL’
packets; and Number of failed decode attempts,
after the clock is established.

F. Wi-Fi Environment – From Quiet to Reliable Congestion
For each of the Bluetooth experimental environments,

a common Wi-Fi test environment was used.
A second smartphone, connected to a Wi-Fi access

point, was used to stream media from a local server to
create a predictable, repeatable level of RF congestion,
and hopefully to induce consistent AFH behaviour. It
would have been possible to use the same smartphone as
was being used to generate Bluetooth traffic, however, as
described by [11], the Bluetooth and Wi-Fi functionality
in devices which support both technologies is most
typically provided by a single Baseband System on a
Chip (SOC). Using separate devices ensures that any
potential interference is due to effects within the RF
environment, similar to those an attacker would expe-
rience, rather than due to resource congestion or shared
access to the radio device within a single smartphone. In
every case, a second 2014 OnePlus One handset running
Android 6 was used to generate the Wi-Fi traffic. It
should be noted – this was not the same device used to
generate Bluetooth traffic. In configuring and validating
this environment, a single Ubertooth was used, along
with the Kismet Spectrum Analyser Tools (spectools),
this uses the Software Defined Radio (SDR) to generate a
real time stream of signal strength information across the

ISM band. The output of this device is shown in Figure
24 below . In this output, the channel numbers displayed
below the Spectral View represent the midpoint of each
Wi-Fi channel. The main channel in use is channel 6, and
there is some minor traffic on channel 13.

Wi-Fi throughput could be sustained at a consistent
level of around 40Mbps. This was achieved by copying
a large ISO file from the server to the smartphone. The
same file was copied during all tests, and the copy
was restarted each time. This ensured that similar traffic
was being generated during “RF Busy” tests, although,
it would emerge that the behaviour of AFH and the
interaction between Bluetooth and Wi-Fi did not allow
for this high throughput or, indeed, consistency from one
run to the next.

Producing a quiet RF environment for testing was
challenging, but possible. As the key experimental ac-
tivity is to evaluate the effect of a congested RF space
map, it was important to be able to establish a baseline of
performance in a repeatable, measurably quiet environ-
ment. Early experimentation highlighted that both other
vehicles passing and the vehicle’s own non-Bluetooth
systems generated a sufficient level of radio interference
on the ISM band to influence the AFH data being
captured.

To avoid these potential sources of interference, RF
Quiet tests in a vehicle setting were therefore carried
out with the vehicle parked far away from buildings,
with the engine off. All Wi-Fi devices were disabled,
and potential Bluetooth sources (such as the author’s
personal fitness tracker) were removed from the envi-
ronment, producing the RF Quiet environment seen in
Figure 11.

The RF environment was inspected prior and sub-
sequent to each test and verified by examining the
AFH_Map (Figure 12) to ensure that the quiet conditions
were maintained.

The requirement to have the vehicle’s engine turned
off was particularly troublesome, as this limited the
amount of time available for testing before the engine
had to be restarted to prevent the battery from becoming
too deeply discharged.

G. Capture and Analysis Tools
As discussed above, capture activities were performed

using a pair of Ubertooth One devices, following the two



Fig. 11. RF environment used for "Quiet" tests - no Wi-Fi or external
Bluetooth activity

Fig. 12. AFH Map output from Ubertooth Tools during preparation
for "RF Quiet" Tests

radio approach of [17] and [29]. The Ubertooth tools used
were based on version 2017-03-R2 pulled from GitHub
and compiled on the test laptop (Figure 13), a generic x64
Intel machine running Ubuntu Xenial 16.04. Initial tests
were performed using the more security focused Kali
2016_r2 [30], however, the rolling updates of this system
did not provide a stable enough build environment for
the Ubertooth tools, which have a dependency on older
libusb versions.

The 2017-03-R2 version of the tools incorporates the
initial BlueSniff code, with improvements described in
[25] to incorporate AFH and following behaviour, and
further improvements to the codebase around clock
detection that were proposed in BlueID. As the capture
of data is dependent on acquiring Clock27, the improve-
ments in clock detection make the overall capture rate
more successful [8].

Wahhab Albazrqaoe, one of the authors of the Michi-
gan State University papers, was contacted and kindly
provided the Source code for the more advanced version
of the Ubertooth tools described in [17]. It was hoped
that this would allow for the capture mechanism de-
scribed in BlueEar to be repeated, however, on surveying
the supplied code, it became apparent that the BlueEar
code is based on the Ubertooth project’s earlier 2015-
10-R1 release, and was therefore not directly compatible

Fig. 13. Desk Based Lab Setup

Fig. 14. BlueEar Code, indicating de-scoping of RSSI data stream from
code.

with the tools being used for experimental capture.
BlueEar works by replacing the firmware code in

bluetooth_rxtx.c with code which uses the techniques de-
scribed in BlueEar to more accurately model the remote
AFH map. This updated firmware allows one Ubertooth
to be designated as the “Scout”, which provides an
accurate model of RF channel usage, and therefore an ac-
curate estimation of the AFH Map moment by moment.
The other Ubertooth is designated as the “Sniffer”, and
performs the actual capture activities. The devices are
dedicated to this functionality and as such, some of the
original Ubertooth functionality is lost. Of concern for
this project, the ability to provide real-time RSSI data
appears to have been removed, as highlighted in Figure
14.

For the planned experimental activities, the ability to
use the spectools spectrum analyser and Kismet packet
capture environment in addition to ubertooth-rx was
required. It was therefore decided to forgo the potential
improvements in capture rate offered by BlueEar, to
maintain the flexible range of tools available for use.

Prior to performing the experiments, the BD_ADDR of



Fig. 15. Adding timestamp outputs to the Ubertooth AFH tool

each participating device was discovered and recorded.
This allowed the LAP and UAP for each piconet to
be identified in advance, and removed the need to
run a ‘survey’ activity to identify the UAP for each
experimental run. To capture Bluetooth traffic, and an
associated AFH map, an approach similar to that used
by [17] is deployed – two Ubertooth devices are used;
one attempts to capture the AFH map of the piconet
using the ubertooth-afh tool, whilst the other performs
a sequence of data capture activities using the ubertooth-
rx tool. ubertooth-rx was used in a time-bounded mode
where it runs for a period of 180 seconds, and attempts
to:

• Use the provided LAP and UAP to determine which
Piconet is being monitored;

• Perform the brute forcing of Clock6 described in
BlueSniff;

• Once Clock6 is discovered, generate the entire hop-
ping sequence;

• Test possible Clock27 candidates, using the brute
force approach of [25]; and

• Once (if) Clock27 is acquired, follow the piconet, and
attempt to capture subsequent packets.

The ubertooth-afh tool was used to capture the AFH
map of the piconet once per second as per [29]. Dominic
Spill, author of BlueSniff and lead developer of the
Ubertooth project, was contacted and provided some
useful pointers in how to modify the Ubertooth code.
The underlying libubertooth was modified by the author
to include a system timestamp to allow the AFH map to
be compared to the ubertooth-rx output. This involved
a relatively simple change to the ubertooth_callback.c
component of libubertooth.

Once altered, the make environment was reset, and
the tools rebuilt from source. All experiments were per-
formed using this modified version of the ubertooth-afh
tool.

H. Tools Used in each Experiment

Each Ubertooth tool was run in a separate terminal
window, displaying the output to the console, and si-
multaneously capturing to a text file using tee:

ubertooth-rx -l fd7fd1 -u fb -U 0 -t 180 | tee
run1.console ubertooth-afh -l fd7fd1 -u fb -U 1 -r | tee
run1.afhmap

Fig. 16. Binary AFH Map Capture format

In this example, the piconet in which the master device
has LAP fd7fd1 and UAP fb is monitored (this is the
OnePlus 3T smartphone). The parameters are as follows:

• -U directs each tool to use a separate Ubertooth
device;

• –t 180 parameter causes the capture to terminate
after 180 seconds; and

• –r parameter tells ubertooth-afh to export the cur-
rently observed AFH Map once per second, in the
binary format shown in (Figure 15) to a file called
runx.afhmap.

In this representation, Channel 0 is output after the
timestamp, with one digit representing each Channel
– 0 means the channel is ‘unknown’ and available for
Bluetooth to use, 1 means the channel is ‘bad’ and
removed from the Hopping Set.

The map shown in Figure 16 was captured during run
1 of a capture session using the OnePlus 3T handset
and Hyundai i30 in an RF Quiet setting, and is broadly
typical of those captured during these experiments.

Alongside the AFH Map, the console output of
ubertooth-rx was captured to a file called runx.console.
This console file was then parsed to find the timestamp
for events of interest, notably the discovery of the full
clock, Clock27 which allows for the entire hopping se-
quence to be calculated. This event, as an example of
runx.console output is shown in Figure 17.

For each experimental scenario, the capture session
was reset and run 10 times, as per [29] with all log files
being retained for analysis.

I. Metrics of Capture Quality and Success

Various metrics were identified which could be ex-
tracted from the console log files that could be used
to weight the relative success of one capture attempt
to another. The first of these metrics is the number of
guesses required to discover the full clock. This was
chosen as a measure, reflecting the work in [8], where
timing information of packets received was used to
fingerprint devices, even when the packets themselves
could not be decoded.



Fig. 17. Full Clock27 Acquisition during a successful capture run

Once the Ubertooth tool successfully extracts Clock6
from a packet, it calculates the entire hopping sequence,
and begins to pattern match the hops of incoming
packets to determine the current offset. This event is
indicated in the console logs by the text “x initial CLK1-
27 candidates”, where x is a number, typically around
26,400. If the tool encounters enough incorrect matches
to conclude that none of the proposed Clock27 candidates
was correct, the guessing process is reset and a new
candidate value sought.

If the clock is correctly guessed, this provides the
second metric; the time taken to discover the full clock,
which was calculated by the difference between the
first “systime” timestamp in the capture file, and the
timestamp of the packet where the text “Acquired CLK1-
27” appears. If this text was not present, then the capture
was considered a Fail and no packets can be decoded.

The time taken after acquiring Clock27 till decoding
the first data packet was also recovered from the times-
tamps, however, in practice this was always within a
second or so.

IV. RESULTS AND EVALUATION

A. Introduction

Having considered mechanisms which could test the
hypothesis around AFH, and settled on the experimen-
tal setup detailed above, the experiments were run to
produce data as consistently as possible.

For each of the capture runs, the timing metrics iden-
tified previously were extracted. In addition, statistical
information to assist in understanding the quality of data
capture were gathered from the log files, including:

• The number of successful packet decodes.
• The number of failure decodes.
• The number of good data packets decoded (as op-

posed to NULL/POLL packets).
Once gathered, the data was examined to determine

to what extent a Busy RF environment impacted on data

capture rates, and whether the hypothesised approach of
[7] and [17] was able to provide a measurable improve-
ment.

B. Experimental Data
An example of the data gathered is shown in raw

format in Figure 18. The experimental data gathered is
included in full in Appendix 1. Ultimately, the capture
runs exhibit very large time differences, from a minimum
of four seconds through to a maximum of 2 minutes 55
seconds; with the likelihood that several of the captures
which terminated at the 180 second/3 minute mark may
well have succeeded if allowed to run beyond this time.

Figure 19 charts the time in minutes and seconds to
acquire the full clock. Each data point represents a single
capture run, and as this graph is intended to simply
demonstrate the variation in acquisition time, all of the
experimental scenarios are overlaid on the same graph,
such that each scenario’s “Run 1”, “Run 2” and so on
are grouped.

Given the variability of clock acquisition time, it is
entirely possible that this does not represent a good
proxy for the success of one capture run over another.
In any case, as the divergence between runs is evident
at the scale of seconds, adding millisecond resolution
would not appear to add any additional clarity to the
results.

In addition to timings, the other information drawn
from the console logs is a measure of the quantity of
data recovered, and an indication of data quality. Once
the full clock has been acquired, and both the hopping
sequence and current offset determined, the Ubertooth
tools are able to hop along with the Bluetooth piconet,
and recover data packets. Each time a captured packet
is analysed, a console entry is created, with the outcome
and, if successful, an extract of the data from the packet,
shown in Figure 20.

Figure 20 shows the three potential outcomes. The
packet captured at line 6501 is successfully decoded with



Fig. 18. Raw Data gathered from console dump files

Fig. 19. Time for complete clock acquisition per Run (All Experiments)

a matching clock offset, however the packet is a NULL
type – one of two heartbeat style packets (the other being
POLL) which contain no useful data. Bluetooth devices
send a packet on their allocated slot, whether they have
meaningful data to send or not, and this results in a large
percentage of the received packets comprising of these
POLL/NULL packets. In the experimental results of this
project, the percentage of NULL/POLL packets ranged
from 10.36% to as high as 96.04%.

The second packet, captured on line 6505, is also
decoded, and contains valid data – a 3-DH3 packet.
This is a three slot long packet which is part of the
inquiry/response mechanism used to relay device capa-
bilities [14] . In the playback of audio, these appear to
be used to support volume control adjustments between

the devices. In the graphs and later descriptions, packets
which were able to be decoded in this fashion and
contained valid data are collectively described as “good
data”.

The third outcome is a failed decode – the packet
captured on line 6519 is recognised as part of the piconet,
and has an appropriate sequence, however, the data itself
was not able to be recovered.

Figure 21 represents the averaged rates for each out-
come across the capture combinations involving the One-
Plus One and OnePlus 3T handsets, connecting to the
Bose Soundlink and Hyundai i30, with each combination
being tested in both RF Busy and RF Quiet scenarios
(Experiment 1).

It appears that achieving a high percentage of received
packets being decoded does not necessarily correlate
with a larger percentage of good data being recovered.
In each case where the Hyundai i30 was the target
device, a relatively successful rate of packet decoding
nonetheless resulted in almost no data being recovered.
This analysis provides the first finding of this project;
Only a small percentage of transmitted data seems to be
recoverable from radio signals, and this points towards a
dependency on the transmitting device using Basic Rate
data transmission.

C. Examining Data Capture Rates

Comparison with the HCI-dump pcap file generated
on the OnePlus handsets demonstrates how large the
shortfall is between the data transmitted and data cap-
tured. As a representative example, the Pcap file gener-
ated by a test run of the OnePlus 3T handset against the



Fig. 20. Three outcomes of a captured packet: decoded, NULL, or Failed

Fig. 21. Averaged Rates of Packet Decoding and Data Recovery (Experiment 1)



Bose Soundlink of captured data from Ubertooth was
around 30-40Kb in size, with 300 packets captured. The
corresponding HCI dump from the OnePlus 3T itself was
34.3Mb in size, and contained 67,000 packets (Figure 22).

Inspection of these recovered packets, and comparison
with the captured packets reveals another potential issue
for would-be packet sniffers, and highlights a possible
weakness in the experimental approach; it appears that
the packet types most likely to be successfully captured
from the air are HCI Event packets, specifically DH3
and DH5 packets. Notably, these packets are modulated
using the simpler GFSK modulation that is used by
Bluetooth Basic Rate, rather than the considerably harder
to demodulate QAMFSK used in Bluetooth Enhanced
Data Rate (EDR).

A large (greater than 65%) proportion of the traffic
is comprised of HCI ACL Packets, only a very small
number of which will be accessible to the Ubertooth to
capture. As described previously, the evolution of the
Bluetooth standard to support higher data rates involves
the use of more complex modulation schemes. Capture
of a frequency hopping signal requires an assessment of
whether a detected radio signal in a given channel slot
represents a meaningful signal to be demodulated and
decoded, or random radio noise. Where the communi-
cation is between two parties who have pre-negotiated
the hopping sequence, the hopping sequence is known;
therefore, the receiver has a higher degree of confidence
that a guess that channel x contains data rather than
noise is likely correct.

The third party observer, on the other hand, does not
have the sequence to start with, and must therefore make
guesses in a more complex and error prone environment.
Audio playback was used as a means to generate a
steady, consistent stream of data for long enough to
be captured. The use of stereo audio, however, may
have produced a data rate high enough to require the
Enhanced Data Rate (EDR), a feature since Bluetooth 2.0,
meaning that the traffic able to be captured and analysed
was significantly (and unintentionally) reduced [15].

It is notable that [7], [8] and [17] all describe the
capture environments of their experimental setups in
detail, but do not explain how they generate traffic to
be detected and sniffed. This lack of detail makes com-
parison with the method used in this project difficult.
EDR is not mentioned in Spill’s 2007 paper, however,
he does mention that it should be possible to capture
in his Usenix WooT presentation that year. It appears,
in light of the results obtained in this project, that this
was an aspirational goal of the Ubertooth project, rather
than an in-development capability. The Ubertooth toolset
represents the best efforts of researchers so far, however,
even in the 2017-03-R2 release of Ubertooth tools, the
authors note that Bluetooth Classic Basic Rate capture is
supported, whilst Enhanced Data Rate (EDR) capture is
‘experimental’ at best. The experimental results seem to

show that the data which is being generated in order to
be sniffed is an important factor – to produce useful data,
a transmitting device must only be generating traffic
using Basic Rate signalling. As this is highly unlikely
to be the case for an arbitrary device which an attacker
wishes to intercept, this in itself is likely to indicate
that passive snooping presents less of a risk than some
researchers have previously indicated.

In any case, whilst the quantities of data being cap-
tured are low, and represent the control channel of com-
munication, rather than the actual data itself, this capture
happens at a high enough level to provide comparison
between different devices and situations.

To test the assumption that newer Bluetooth protocol
enhancements have made capture more difficult, the
results were examined to determine to what extent there
was a measurable difference in the capture characteris-
tics of older devices, and whether these were easier to
reliably capture than the newer devices.

In contrast to the expected behaviour, testing showed
that the oldest devices were not demonstrably easier to
capture data from – on none of the metrics is there a
significant correlation between the age of the device and
an improved rate of capture (Figure 23). As it appears
that the use of Enhanced Data Rate traffic may represent
a key difficulty in capturing data, and this has been part
of the standard since Bluetooth 2.0, only a very narrow
time window of devices, supporting Bluetooth 1.0, 1.1
or 1.2 would in theory be more susceptible.

Busy RF conditions do appear to be slightly advanta-
geous for more rapidly guessing Clock27, however, this
does not seem to confer any benefit in terms of actual
data capture.

D. Excluding Bluetooth from a given Spectrum with Wi-Fi

While it was not possible to recover substantial quan-
tities of data for packet analysis, the Ubertooth devices
proved to be useful for capturing spectrum usage in-
formation. Having discovered that specific pairings of
device behaved consistently, two of the smartphones and
two of the targets were analysed together, attempting to
repeat the capture experiment using each in RF Quiet,
and RF Busy conditions (Experiment 1).

In BlueEar, [17] attempt to use a better knowledge
of the AFH environment, to improve capture rates –
they are able to show a better rate of capture in busy
environments. Whilst not using the BlueEar code, for the
reasons described above, this experiment seeks to verify
the same behaviour, using Wi-Fi. The Wi-Fi experimental
apparatus was used to generate a steady stream of
traffic by copying ISO images from a network share to
the smartphone. After an initial surge of speed, as the
server’s cache was exhausted, this settled to a steady
41MBps, as measured by the smartphone.

Once the Wi-Fi throughput was stable, Bluetooth au-
dio playback was started with the pairing being tested.



Fig. 22. Wireshark Analysis of captured HCI Dump

Fig. 23. Comparative Data Capture and clock acquisition by Device
Age (Experiment 2)

Fig. 24. Wi-Fi channel 6 saturated, then Bluetooth playback started

Fig. 25. Bluetooth AFH Excluding Channels after Wi-Fi Congestion

Kismet spectools was used to sample the RF environ-
ment, producing the output shown in Figure 24. This
includes the previously described spectral view, and one
other – the “Topo” view. In this view, the X-axis again
represents all channels from 0 at the origin to 79 at the
far right, and the Y-axis represents the sum of signals
observed. Over time, in the absence of new signals, the
pixels plotted will gradually fade to black, and move
down until they drop below the -90dBm “floor”. As new
signals are observed in the same channel, however, they
grow in intensity from ‘cold’ green to ‘hot’ red, and are
plotted at their observed signal strength.

in Figure 24, we see almost complete saturation of the
20MHz of spectrum around the centre of Wi-Fi channel
6, with occasional ‘flecks’ elsewhere – these single pixel
green RSSIs are a visual representation of the Bluetooth
audio traffic. During this period, Wi-Fi performance
dipped slightly when Bluetooth playback was started,
dropping to a sustained 38MBps.

To demonstrate the behaviour of Bluetooth’s AFH
Mapping, the Wi-Fi traffic was stopped by switching
off the Access Point, and disabling Wi-Fi on the smart-
phone being used for traffic generation. After around
10 seconds, the graphic shown in Figure 25 was cap-
tured. At this point, Bluetooth audio has been playing
continuously, and as the Wi-Fi traffic falls to zero, and



Fig. 26. Bluetooth AFH re-uses channels previously excluded

scrolls off the top of the screen, the ‘gap’ where the Wi-
Fi channel existed is shown to be empty of Bluetooth
traffic as well. In the following seconds, as the Bluetooth
devices test the channels previously obscured by Wi-Fi,
these are re-used, and Bluetooth now occupies the full
available spectrum (Figure 26).

This series of captures demonstrates AFH apparently
working as expected, however, this is not as simple as it
appears on initial inspection. Repeating the experiment
and making slight changes to the order of events showed
that, whilst Bluetooth’s AFH behaviour appears to be-
have as expected when Bluetooth starts communication
in a heavily congested, saturated Wi-Fi environment,
this is not the case when Bluetooth establishes a data
connection in an environment with more typical Wi-Fi
traffic – even if this traffic increases to cause congestion.
In this circumstance, it appears that Bluetooth’s AFH
behaviour does not work as expected, and instead, Wi-
Fi and Bluetooth contest the available channels in a
way that greatly reduces Wi-Fi throughput. During this
sequence, the Wi-Fi throughput fell to as low as 1-
2MBps, which was sustained until Bluetooth playback
was eventually stopped.

This disputed use of the available channels by each
technology is shown in Figure 27 – the distinctive ‘band-
ing’ pattern within the spectrum of Wi-Fi Channel 6 is
the result of Bluetooth audio playback which started
when Wi-Fi had not completely saturated the channel
and Bluetooth has partial use of the spectrum.

An AFHmap recovered using the Ubertooth tool dur-
ing this test demonstrated that Bluetooth did not, in
fact, consider the Wi-Fi channel’s space to be particularly
‘bad’ from a signal strength perspective.

It should be stressed that the RF events tracked in
these two diagrams do not necessarily align – they
are chosen to be broadly representative of what was
observed during this experiment, however, the times-

Fig. 27. Bluetooth and Wi-Fi Interfering directly

Fig. 28. AFH Map captured during Run 4, OPO-i30-RFBusy

tamps and resolution of each capture mechanism do not
support a direct one to one comparison.

Some previous work has been carried out on co-
existence between Bluetooth and Wi-Fi technologies. [31]
proposes a simulation model using raytracing techniques
to examine Bluetooth and Wi-Fi in a shared space; how-
ever, this work focuses on varying the signal strength of
interfering transmitters, and does not consider the poten-
tial role of each technology’s behaviour to spectrum use.
The paper by [29] used as a basis for the experimental
method of this project also considers co-existence issues,
and again, focuses on RF signal strength as the key factor.

From the observed behaviour, it appears that whilst
Wi-Fi devices seem to recognise the interference they en-
counter from Bluetooth traffic to be a sign of congestion,
and back off accordingly, Bluetooth does not consider
Wi-Fi traffic which emerges within its spectrum to nec-
essarily designate a channel as ‘bad’. It is possible that
this conflicting behaviour has its origins in the design
philosophy of each protocol – Wi-Fi has been an IEEE
developed 802.x class protocol since its inception, and
the concept of CSMA-CA (Carrier Sense, Multiple Ac-
cess, Collision Avoidance) produces a behaviour which
places a strong emphasis on being a “good citizen” when
sending data. Bluetooth, on the other hand, uses FHSS
technology in part for obfuscation, but primarily to be



more resilient. AFH deepens this idea; AFH does not ex-
clude other frequencies because it believes they are used
by others as some form of sacrifice, but merely because
using those channels may reduce its own resilience and
the reliability of sending information.

In fact, the Bluetooth Specification is explicit about this
– AFH is used to reduce the impact of interference from
other devices operating in the ISM Band. The impact
of interference caused by Bluetooth traffic to other ISM
users is not mentioned. As this competitive behaviour
has not been described in the literature, this experiment
was repeated, providing the same result each time; initi-
ating Bluetooth communications in a space where Wi-Fi
is already present, but not fully saturating the available
bandwidth, appears to result in a contest for available
bandwidth – with Bluetooth “winning” each time.

V. CONCLUSIONS

A. Summary of the Work done
This paper carried out a literature review to explore

the current position of Security Research into the Blue-
tooth protocol. Bluetooth is a complex protocol – signif-
icantly more so than comparable 802.x family protocols
– and this complexity requires the researcher to un-
derstand the interaction between the various functions
of the PHY, MAC and LLC layers to a greater extent
than that required to investigate Wi-Fi, for instance. The
literature review attempts to strike a balance between ex-
ploring these functional blocks in sufficient detail to un-
derstand the work and contribution of key researchers,
without becoming bogged down in the multiple options
at each step. In the most recent paper included in the
review [32] describe the multiple interfaces and schemes
support at each layer of the protocol provide such a
complex attack surface that it is difficult to see how it
could be reasonably secured.

Survey papers are reviewed, highlighting the multiple
ways in which Bluetooth can be compromised. Despite
this, there is a clear pattern in these exploits. Since
Bluetooth’s introduction, potential weaknesses in the
pairing, authentication and data transfer elements of the
protocol have been identified by researchers. From the
earliest of these, there has been an assumption made that
the Frequency Hopping behaviour of Bluetooth is of lim-
ited value in protecting data [2]. Despite these repeated
assumptions and assertions, a gradually building body
of research has indicated that, far from being an easily
circumventable technical trick, akin to ‘security through
obscurity’, the Bluetooth channel hopping mechanism
places significant obstacles in the path of a would-be
eavesdropper. Those attacks which have been demon-
strated rather than merely hypothesised require the at-
tacker to participate in the Bluetooth network correctly
at the RF and Baseband level, and rely on weaknesses
in the higher levels of the protocol – weakness in key
management, service authentication, etc.

A particular research direction has been developing
since proposed by Dominic Spill [7] – the ability to
passively sniff Bluetooth traffic from the air, as can be
easily done with Wi-Fi traffic. Even with considerable
advances, this has proven to be a difficult process,
relying on hidden variables which have to be brute
forced or recreated from recovered information. A great
deal of work has been contributed by the team behind
BlueEar [17] at Michigan State University in particular
a single researcher, Wahhab Albazrqaoe. These two key
contributors have presented capture which can work
under narrow, specific circumstances and have each
proposed avenues of future research to build on their
work. This paper seeks to experimentally evaluate one
of these proposed research avenues, by testing whether
deliberately restricting the bandwidth used by Bluetooth
can force its hopping behaviour to be simplified, reduc-
ing the number of channels to ultimately make brute
force attacks simpler. An experimental approach was
designed, repurposing work on Wi-Fi and Zigbee coexis-
tence by [29] to develop a repeatable way to experiment
on Bluetooth in a congested RF environment. The tools
developed by [7] and improved by [17] were used in
a series of experiments based on the approach of [29]
to measure the time taken to acquire the clock index,
one of the elements of ‘hidden’ information required to
follow Bluetooth’s hopping behaviour, and the packets
subsequently decoded.
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