
Nonlinear Dyn
https://doi.org/10.1007/s11071-020-05463-3

ORIGINAL PAPER

An authentication protocol based on chaos and zero
knowledge proof

Will Major · William J. Buchanan ·
Jawad Ahmad

Received: 11 July 2019 / Accepted: 1 January 2020
© The Author(s) 2020

Abstract Port Knocking is a method for authenti-
cating clients through a closed stance firewall, and
authorising their requested actions, enabling severs to
offer services to authenticated clients, without open-
ing ports on the firewall. Advances in port knocking
have resulted in an increase in complexity in design,
preventing port knocking solutions from realising their
potential. This paper proposes a novel port knocking
solution, named Crucible, which is a secure method
of authentication, with high usability and features of
stealth, allowing servers and services to remain hid-
den and protected. Crucible is a stateless solution, only
requiring the client memorise a command, the server’s
IP and a chosen password. The solution is forwarded as
a method for protecting servers against attacks ranging
from port scans, to zero-day exploitation. To act as a
random oracle for both client and server, cryptographic
hashes were generated through chaotic systems.

Keywords ZKP · Chaos hash · Port knocking ·
Random beacons · Attack model

1 Introduction

Port knocking, if integrated into a security environ-
ment, can offer an additional layer of authentication for

W. Major · W. J. Buchanan (B)· J. Ahmad
Blockpass ID Lab, Edinburgh Napier University,
Edinburgh, UK
e-mail: w.buchanan@napier.ac.uk

servers, furthering a defence-in-depth approach, and
can conceal the presence of services. It is suited to
defending against attacks directed at servers, ranging
from automatic scanning, as part of attack-chain recon-
naissance, to precisely targeted zero-day exploitation.
Port knocking solutions have progressed and changed
dramatically, since their conception as a simple tool
for opening firewall ports. Manymodern port knocking
implementations have accumulated layers of complex-
ity in the process of removing specific vulnerabilities
from their predecessors. This complexity issue is fur-
ther exacerbated by components in port knocking that
are mutually incompatible: replay protection can result
in desynchronisation problems, and interactive authen-
tication requires the server to forgo its ‘silent’ role. To
combat this, many modern port knocking implemen-
tations in academic literature take an ad-hoc approach
to fixing existing vulnerabilities without considering
a holistic viewpoint, nor the minimalist lineage upon
which port knocking was founded.

Port knocking can be considered a stealthy method
of authentication and command execution, allowing a
covert channel to exist between a client and server,
across an untrusted network such as the Internet. When
implemented properly, port knocking should be diffi-
cult to discover through passive surveillance of net-
work traffic, or active reconnaissance of the server.
Port knocking allows a server to conceal not only its
individual services, but also its role as a server. Num-
bers Stations are a Cold War era covert channel using
radio broadcasts of spoken number values (amongst

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05463-3&domain=pdf
http://orcid.org/0000-0003-0809-3523

W. Major et al.

other methods), suspected to communicate with intel-
ligence assets in the field [1]. Inmodern day computing,
Meltdown [2] and Spectre [3] are examples of serious
vulnerabilities enabling covert channels for exfiltrating
data from a victim’s machine.

Port knocking can simply be described as a means
for communicating with a machine that is protected by
a closed stance firewall. This entails a client machine,
operated by a user, sending a message—or knock—to a
firewall. The firewall in this instance will be referred to
as the server, for its role in receiving the knock, and the
subsequently authorised actions it performs. This ter-
minology further aims to clarify in situations involv-
ing multiple intermediaries (such as additional fire-
walls) between client and server. The networks across
which this transaction can take place could be local, or,
as is the common use case, remote. Port knocking is
by design aimed at operating over untrusted networks,
such as the Internet, wherein malicious actors of vary-
ing capabilities aim to subvert security measures. Port
knocking methods generally use cryptographic prim-
itives such as hash and encryption functions. In the
proposed port knocking method, we have utilised the
Chirkov standard map and absolute chaotic map for
the hash that ensures the output knock is different for
each session. Additionally, the chaos-based hash func-
tion provides a lightweight secure solution and as a
result, the proposed scheme will not require third-party
libraries.Moreover, chaos-based port knocking scheme
will have a number of properties such as sensitivity
to initial conditions, non-periodicity, ergodicity, and
attack complexity which strengthen the port knocking
scheme.

This paper offers three novel port knocking proto-
types: zero knowledge proofs and chaos-based cryp-
tography; a combination of chaos-based cryptography
and random beacons; and ‘Crucible’ which is com-
bines random beacons and password-based key deriva-
tion. Replay protection andNAT compatibility are con-
sidered significant issues in port knocking technology.
This paper proposes novel approaches for dealing with
these problems.

The rest of the paper is organised as follows. Related
work is discussed in Sect. 2. Section 3 discusses design
and the proposed methodology. Experimental results
are presented in Sect. 4. The proposed method is eval-
uated in Sect. 5. Research findings are concluded in
Sect. 6.

2 Related work

Port knocking allows authentication to a host without
requiring open ports, and without requiring modifica-
tion of the underlying protocol [4]. Furthermore, the
presence of port knocking can be difficult to detect
by sniffing traffic, and almost impossible to detect by
probing a server [5]. By making services ‘invisible’, a
machine’s function as a server can be hidden from an
attacker [6], offering a level of anonymity. Port knock-
ing disrupts attacker reconnaissance by denying fin-
gerprinting efforts against open ports. This prevents
automated and manual scanning efforts, and reduces
“malicious information gathering capabilities” [7]. In
the same vein, vulnerability scanning and discovery
are impeded, and thus port knocking can be consid-
ered one of the few non-reactive defences against zero-
day attacks [8]. In this manner, port knocking can pro-
vide protection for legacy and proprietary services with
“insufficient integrated security”, or for services with
“known unpatched vulnerabilities” [9]. Port knock-
ing also provides an additional layer of security and
authentication, that any malicious actors must over-
come before attacking the hidden service itself [7,9].

Port knocking can incur load and performance loss
on networks and systems [5], the latter applying an
overhead for each connection [4]. In addition, a num-
ber of ports may need to be “allocated for exclusive use
byport knocking” [10]. Port knocking implementations
may require user training [4] and client systems need to
implement port knocking, which may require mainte-
nance of dedicated remote client software [7]. Authen-
tication in port knocking is largely facilitated through
pre-shared keys (or other secrets), meaning secure key
distribution and management become requirements.
Port knocking also adds an additional layer of com-
plexity into the protection of assets [7], and another
attack vector to defend against. The fail-closed stance
of port knocking may result in inaccessibility of ser-
vices, should the authentication mechanism fail on the
server [4,10]. Such a failure in this mechanism could
render the server “unreachable or more easily compro-
mised” [7].

2.1 Mechanics and architecture

One of the main differentials when considering port
knocking solutions is the number of packets that are

123

An authentication protocol based on chaos

required to authenticate the client with the server. Tra-
ditional port knocking solutions sent a series of packets
(each knock) across the Internet, where the authenticat-
ing data would be communicated via this collection of
knocks, known as a knock sequence. More recently,
a single packet has been used to wholly and atomi-
cally send authenticating data to the server, in a single
knock, giving rise to the term “Single Packet Autho-
risation” [11]. Srivastava et al. [5] raises an immedi-
ate problem with using multiple packets to authenti-
cate, in that network and routing issues between the
server and the client, such as latency (from conges-
tion [7]) or packet drops, will cause the authenticating
packets to arrive out-of-order. If the knock sequence
doesn’tmatch the server’s expectations, the client likely
won’t be authenticated. Sel [12] offers a solution to this
problem by including a sequence number within each
knock’s authenticating data, allowing the knocks to be
reassembled after they are received.

2.2 Non-interactive or interactive server

While traditionally communications in a port knock-
ing implementation would be limited to unidirectional
client to server messaging, some modern variations
conversely include server to client communication.
This could also be described as unilateral or bilat-
eral communication. Sel [13] for example, use client
server conversations to negotiate a session key, which
is then used to authenticate application data after port
knocking has concluded. Tiwari [14] includes a lengthy
discussion on this topic. Incorporating challenge and
response mechanisms into port knocking can be seen
to enable fresh authentication, whereby random chal-
lenges are used to prove the identity of a peer. Sel [12]
also reiterates the advantages of interaction in provid-
ing freshness. This approach avoids the drawbacks of
other solutions for replay protection, such as requir-
ing time or state-based synchronisation, as is discussed
further in Sect. 2.4. Al-Bahadili and Hadi [15] imple-
ment such a solution, where as proof of identity, the
client is sent an encrypted random number, which it
must decrypt and return, to prove it possesses the asso-
ciated pre-shared key, thus authenticating the client.
The authors describe this method as mutual authenti-
cation, though it is unclear exactly how the server is
authenticated to the client.

2.3 Multi-party and multi-channel involvement

More recently, port knocking solutions have been
forwarded that eschew the traditional client-server
dynamic, and opt to include additional parties in the
protocol. Srivastava et al. [5] sends the client crypto-
graphic information, including a one time key, and a
random number, via an out of band, dedicated SMS
channel. The random number is used to generate a
client-spoofed IP, for preventing client identification by
a listening attacker. The one time key is used to encrypt
the client’s authenticating data, which is then sent as a
port knock to the server. As each knock attempted in
this way is unique, protection against replay attacks
is provided, with the added bonus of making the port
knocking traffic difficult for an attacker to identify.
Liew et al. [16] use a similar approach, where SMS is
instead used to deliver information from which IPSec
tunnel keys are derived, and used to setup a secure
channel between the client and server. Popeea et al.
[4] enforce time synchronisation between client and
server by having them issue NTP requests ahead of a
knock, and on startup, respectively. Maintaining accu-
rate timing allows the time-based authentication to be
more granular, reducing the window of opportunity for
replay attacks.

2.4 Replay protection

A port knock authenticates the client to a server, typ-
ically by proving the client possesses a secret, such
as a key or password. In proving this over the wire,
encryption or hashing are employed to prevent eaves-
droppers from learning the secret. An adversary lis-
tening to communications between the knocking client
and listening server could record a knock and replay it
back to the server in order to repeat its intended effect.
Such attacks have been cited as the main vulnerabil-
ity affecting basic port knocking implementations [7].
These attacks are prevented by ensuring that each time
a port knock is executed, the authenticating data are
unique, or fresh, and further ensuring that an attacker
is unable to generate a fresh knock. Many of the tech-
niques used to achieve freshness carry similarities with
one time password (OTP) protocols [17].

123

W. Major et al.

3 Design and methodology

3.1 Zero knowledge

A zero knowledge proof (ZKP) is a cryptographic pro-
tocol allowing one to prove they posses information to a
verifying party, without revealing any of the underlying
information itself [18]. Alternatively defined by [19],
a ZKP shows “a statement to be true without revealing
anything other than the veracity of the statement to be
proven”.

As a real-world example (modified from [20]), to
prove someone could distinguish between two differ-
ent types of wine, a number of blind-tests could be
performed until the claim was proven or refuted. If
the claimant identified the wine correctly each time,
the verifier can be reasonably sure of the claimant’s
distinguishing ability, without themselves learning the
difference between the vintages. In a similar vein, if
after being repeatedly being sent into the labyrinth as a
sacrificial offering for the Minotaur, a single Athenian
continued to escape, one could be reasonably certain
the citizen knew how to escape, though one would not
be able to discern the citizen’s method. These are not
perfect examples, but demonstrate the general idea.

Zero knowledge proofs harness difficult mathemat-
ical problems to provide security against information
leakage from the proof—the ‘zero knowledge’ prop-
erty. These difficult mathematical problems can be
seen in RSA, for large integer factorisation, and Diffie-
Hellman, relating to the discrete logarithm problem.
One-way (or trapdoor) functions are the embodiment
of these mathematical problems, a function that is rel-
atively easy to compute, but computationally infea-
sible to reverse [21], also referred to as a quality of
intractability.

Zero knowledge protocols are classically “instances
of interactive proof systems, wherein a prover and a
verifier exchange multiple messages (challenges and
responses)” [22], though there are a subset of ZKP
where this interactivity is removed, reducing the num-
ber of rounds needed to establish and verify the proof.
These ‘rounds’ are akin to each wine tasting, or
labyrinth escape, in the previous examples. A non-
interactive zero knowledge proof (NIZKP) allows the
prover to publish a proof, in a single communication,
that can be openly verified by anyone [18].

In the ‘proof’ component of aZKP, the prover asserts
a verifiable claim. One such strategy is where a proof of

knowledge is made by the prover, examples of this are
seen in the previous review of port knocking mechan-
ics: preimage resistance of a cryptographic hash could
imply proof of knowledge of the digested secret, proof
of decryption could be considered proof of knowledge
of the decryption key. Related is the concept of proof of
identity, where a “person’s identity can be linked to his
ability to do something and in particular to his ability
to prove knowledge of some sort” [20]. Identification is
a natural application for proofs of knowledge [23] and
as such, a proof of knowledge protocol can be used to
authenticate [24]. For example, a user could prove they
know a password, without revealing any information
about the password itself, to any parties privy to the
conversation.

3.1.1 Identification protocols

To harness the capabilities of zero knowledge proofs
for the client (or prover) authenticating with the port
knocking server, an identification protocol sets out the
framework for what is required of each party, how
values are calculated and which values are sent as
messages. Identification protocols based around zero
knowledge proofs are examined in depth in [18] and
[22], both works explore the protocols of Feige-Fiat-
Shamir, Guillou-Quisquater and Schnorr:

– Feige-Fiat-Shamir The protocol uses the difficulty
of extracting square roots modulo a large compos-
ite integer [22]. FFS requires a variable number of
rounds (depending on desired security level), each
requiring 3 messages [18].

– Guillou-QuisquaterGQuses thedifficulty of extract-
ing roots of a higher order [22]. GQ can be run in
multiple rounds, or a single, and uses 3 messages
per round [18]. GQ, at the cost of greater compu-
tation than FSS, minimises the number of interac-
tions required, and is comprised of short, simple
mathematical mechanics [18].

– Schnorr The Schnorr Identification Scheme har-
nesses the difficulty of computing discrete logs in a
prime field [22]. Like GQ, Schnorr’s solution uses
simple mechanics (shown in Protocol 1, please see
Appendix). The protocol uses 3 messages and one
round [22]. Schnorr’s has relatively low computa-
tional complexity and supports precomputation of
some values [25].

123

An authentication protocol based on chaos

Table 1 Table comparing chaotic and cryptographic properties, modified from [27]

Chaotic property Cryptographic property Description

Ergodicity Confusion The output has the same
distribution for any input

Sensitivity to initial conditions/ control parameter Diffusion from a small change in
plaintext/key

A small input deviation can largely
change the output

Mixing property Diffusion from a single plaintext
block

A small local deviation can largely
change the whole space

Deterministic dynamics Deterministic pseudo-randomness A deterministic process can cause
a random-like behaviour

Structure complexity Algorithmic complexity A simple algorithm has a very high
complexity

The design goal of using only a single packet for
authentication in the port knocking solution is at odds
with the interactivity of the three identification pro-
tocols; specifically each requires (at least) three mes-
sages. Mao [24] also notes “a large number of inter-
actions means a poor performance in both communi-
cation and in computation”. Thankfully, a solution to
this problem is outlined in RFC 8235: “Schnorr Non-
interactive ZeroKnowledge Proof” [26]. This RFCwill
form the reference basis for the remainder of this sec-
tion.

3.1.2 RFC 8235

The Fiat-Shamir Transformation is a method for trans-
forming a three-message zero knowledge proof of iden-
tity into a single message equivalent protocol. This is
achieved by introducing a cryptographic hash of par-
ticular variables, in lieu of the random challenge that
is issued by the verifier (message 2). As outlined in
the RFC, this can be used to convert Schnorr’s scheme
into a non-interactive zero knowledge proof, as seen in
Protocol 2.

3.1.3 Discussion

Protocol 2 (please see Appendix) will be harnessed as a
method for authentication, used during prototyping in
the following subsection. Considering its actions as a
black-box, where randomness, a private key and shared
parameters are input, the result is a proof which will be
sent over the wire to be received and validated by the
port knocking server. The protocol requires a secure
cryptographic hash and this will form the discussion in
the following section.

3.2 Chaos

Alvarez and Li [27] draws exact links between proper-
ties of chaotic and cryptographic systems. As seen in
Table 1, Shannon’s descriptions of simple operations,
of sensitivity to initial variable changes, and of a com-
plex output, for strong cryptographic primitives, largely
correspond with behaviours in chaotic systems. The
process for mixing pastry dough used as a metaphor by
Shannon and Hopf actually forms the basis of a well
studied chaotic system, known as the Baker’s map [28].

To help illustrate the key terms in Table 1, the fol-
lowing definitions are included:

– diffusion: the spreading out of the influence of the
function input over many bits of the function out-
put [29]. For example, a single plaintext bit being
distributed over the ciphertext output.

– confusion: the use of transformations to obscure the
statistical dependencies between function input and
output [29]

Lastly, it is important to clarify between some of the
key terms introduced, particularly to delineate between
the concepts of chaos and randomness. Truly random
behaviour is non-deterministic, even if a random sys-
tem is fully understood, predicting its outcome at a
given future state is impossible [30].Chaotic behaviour,
in comparison, is deterministic, and every future state
in the system is determined by its prior initialisation
[30]. In applied cryptography, both pseudo-random
and chaotic systems are deterministic, and used for
their qualities of being computationally unpredictable,
meaning that guessing the previous state of the system
(e.g., the inputs to a cryptographic primitive) is com-
putationally infeasible [29,30]. This is similar to how

123

W. Major et al.

hard mathematical problems were used to hide secret
information in zero knowledge proofs.

3.2.1 Chaotic systems

Chaotic systems are often result from mathematical
functions, or maps, such as the Ikeda map and the
Chirikov standardmap.Mathematically, Chirikov stan-
dard map is written as:

{
pn+1 = pn + K sin θn mod 2π
θn+1 = θn + pn+1 mod 2π

(1)

where K is control parameter, pn and θn are real val-
ues between (0, 2π). Each increment of n reflects an
iteration of the map, much like how a hash function or
ZKP uses a number of rounds [29]. The map represents
a dynamical mechanical system, where the dimensions
θ and p are used practically to represent position and
momentum, though the important note here is that vari-
ables take on new values, on each iteration of the map,
resulting in a new θp-coordinate. The constant coeffi-
cient K influences the degree of chaos exhibited by the
map.

3.2.2 Chaos-based cryptographic hashes

Chaotic cryptography is an active research area, pro-
ducing real-world applications including cryptographic
primitives such as pseudo-random number genera-
tors (PRNG), encryption systems (both symmetric and
asymmetric), and hash functions [31]. Chaotic maps
and hash functions have similar characteristics [32], as
explored previously in Table 1, and a number of cryp-
tographic hash functions have been created harnessing
chaotic systems.

For a formal definition, a hash function takes ames-
sage input, of arbitrary length, and calculates a fixed
length output, known as the hash value, or a digest.
This value is used to identify the input, acting as a
fingerprint. There are a number of required properties
for a hash function to be considered cryptographically
secure, including:

– Preimage Resistance—given a random hash value,
an attacker should never be able tofind the preimage
associated with the value [33]. This is why hash
functions are considered as one-way functions—a
message cannot be derived from a digest [34].

– Second-PreimageResistance - given amessageM1,
with hash value H(M1), an attacker should never
be able to findM2 such that H(M1) = H(M2) [33].

– Collision Resistance - it should be computationally
infeasible to find two (or more) different messages
that hash to the same value [33].

Returning to the components being researched for
prototyping, a secure cryptographic hash function
is required for use in Schnorr’s NIZKP. From the
design goals, this ideally will be lightweight, sim-
ple, and should not require the use of third-party
libraries.

3.2.3 Absolute-value chaotic hash function

The chaotic hash function proposed by [35] forms the
reference basis for the remainder of this section. This
implementation of a chaos-based hash function was
chosen for a number of reasons:

– The chaotic map and design of the function is
simple, using mostly basic mathematics, and the
authors have provided pseudo-code of the algo-
rithms involved.

– The authors have evaluated the hash using both
chaotic metrics, and metrics required of secure
cryptographic hashes. This includes:

– Assurance that sensitivity to initial conditions
is reflected in the hashing process.

– Statistical analysis of confusion, diffusion.
– Comparative testing of the statistical analysis
against other hash functions, including other
proposed chaotic hash functions, and against
popular hash functions MD5 and SHA-1.

The hash function is keyed, meaning it falls into a
category of cryptographic hashes that require a key and
a message to produce the digest output. Like regular
hashes, keyed variants can ensure the integrity of ames-
sage, though this is extended further to provide authen-
tication (by use of a key) for the message. In Ref. [36],
authors have utilised chaotic map, i.e., Chebyshev for
broadcast authentication and chaos-based hashing. All
broadcastmessageswere authenticated via chaosmaps.
A keyed hash has two main requirements to be cryp-
tographically secure [34]: an attacker must not be able
to forge a valid digest from a message without the key,
and secondly an attacker must not be able to recover
the key from message digests [34]. The hash function

123

An authentication protocol based on chaos

Fig. 1 Plot of Bifurcation diagram showing the chaotic region
for α parameter

harnesses use of an absolute-value chaotic map given
by:

xn+1 = 1 − ABS(αxn) (2)

Equation 2 produces a series of values that chaot-
ically vary when α is chosen to reside in the interval
1 < α < 2. The bifurcation diagram shown in Fig. 1
highlights the range of α which can be used as a key
parameter for chaotic region. From Fig. 1, it is clear
why one should use the interval 1 < α < 2 when ran-
dom data is required. The authors’ provided pseudo-
code outlines how this chaotic map is converted into
a hash function, which is summarised in Protocol 3
(please see Appendix).

3.2.4 Discussion

To convert Schnorr’s Identification Protocol (Protocol
1, please see Appendix) into a non-interactive zero
knowledge proof, a hash function is required, to act
as a random oracle for both client and server. Schnorr’s
NIZKP, in Protocol 2, now has its required hash func-
tion. Using only mathematical operations, this hash
function should require few library imports, and there-
fore should be fairly platform agnostic. It’s keyedmode
of operation will be further used to authenticate mes-
sages from client to server.

3.3 Random beacons

As discussed in Sect. 2.4, unique knock values are
required to prevent an attacker re-sending a previous
knock, to replay a previously authorised action. As port
knocking solutions typically use cryptographic primi-
tives such as hash and encryption functions, a random
number is often added to the functions’ inputs, ensuring
that the output knock value is different for each session.
This random value can be derived from methods such
as iterative hashing, synchronised time clocks, or using
counters. These methods require that both client and
server have a way of reaching the same random value,
i.e., it is shared between the two. Schnorr’s NIZKP, as
explored in Sect. 3.1.2 does not suffer this problem:
the random value is client generated, and included in
each knock, and checked by the server on arrival. Set-
ting Schnorr’s NIZKP aside for now, the design goals
explicitly prevent using client state, so an alternative
replay prevention mechanism is desired.

Rabin [37] introduced the idea of a random beacon,
an online security service emitting a random integer at
regular intervals, for public consumption, with appli-
cations in cryptographic protocols requiring trusted,
shared random number access. To introduce notation,
the beacon broadcasts a nonce value (a number used
once), to any satellite clients, who optionally may fur-
ther process the broadcast through extractor functions.
Formally, a list of requirements for a beacon service is
provided by [38]:

– unpredictable: an adversary should not be able to
predict any information about the nonce prior to its
broadcast

– unbiased: the nonce should be statistically close to
uniform, random information

– universally sampleable: any satellite client should
be able to harvest (or extract) the nonce

– universally verifiable: the beacon can be verified to
be unknown to any party prior to its broadcast

3.3.1 Sources of randomness

A number of solutions are present in the literature for
random beacons. Jiwa et al. [39] suggests that Net-
work Time Protocol (NTP) can be used as a beacon.
As an example, the hash of an NTP received time-
stamp (within a safe margin of precision) could pro-
duce a pseudo-random nonce. This is similar to the port

123

W. Major et al.

knocking implementation explored in Sect. 2.4, where
clock synchronisation can be considered a shared state
between client and server. Again, to avoid synchroni-
sation issues between port knocking client and server,
per the design goals, this is not an applicable solution
for the prototype. Furthermore the time-measurements
issued by an NTP service are likely unverifiable.

Clark and Hengartner [40] propose using the price
of publicly listed financial instruments, taken at closing
time, as a source of random data. The authors note this
approach has previously been used in cases including
committee nomination, proof of work cryptographic
puzzles, and in twopublic electionswithinNorthAmer-
ica. The proposed solution collects closing prices from
a number of stocks and uses a extractor function (with
elements of a PRNG) to harvest quantifiable entropy
results from the financial beacons. Lee et al. [41] also
provide an implementation using stock indices as ran-
dombeacons. Their paper details considerations onpar-
ticular stocks to harvest, which exchanges to use and
associated timezone factors. Both papers note that there
are historic examples of price manipulation in financial
markets, a method by which the security of the ran-
dom beacon could be adversely affected by a malicious
actor. Such a scenario would constitute a breach of the
unpredictability property of the random beacon. Lee
et al. [41] suggest a greater problem may be posed by
trusting the price reporting website (e.g., Bloomberg)
to accurately reflect market values. Bonneau et al. [38]
highlights that limited market opening hours will result
in lack of beacon availability.

Lenstra and Wesolowski [42] discusses the newly
introduced NIST random beacon, a public service pro-
viding a 512-bit nonce, every minute, of true-random
data, generated using “quantum mechanical phenom-
ena”. This sounds ideally suited for the purpose, how-
ever, the authors note that while the service is exten-
sively documented, there is no assurance to consumers
that the numbers are generated as advertised. Simply
put, again, the beacon is unverifiable. Bonneau et al.
[38] treats NIST’s reputation as a trusted party in this
context with a heavy dose of scepticism, alluding to
the discovery of a backdoor in the NIST-published
Dual_EC_DRBG cryptographic standard.

Relating back to the beacon requirements, these
solutions are all predominantly unverifiable, and as a
result, can’t be provably unpredictable, a desired qual-
ity. To address this problem, a number of different bea-
cons can be used, where their results are combined or

evaluated in a fashion that reduces the likelihood of
tampering. Some of the methods used to tackle dishon-
est beacons include:

XORnonces [43]: in this solution each beacon ser-
vice is polled, and the resulting nonces are XOR’ed
together. If the beacon sources are incapable of
influencing each other (perhaps they can’t witness
each other’s broadcasts), then this method does
reduce the effectiveness of tampering, by making
the outcome more unpredictable. However, if the
beacons are capable of influencing each other, the
authors note that the last beacon to be polled could
calculate the penultimate XOR result and alter its
broadcast accordingly to influence the final out-
come. In such a scenario, the solution is ineffective
and redundant.

Round-robin nonces [43]: this solution (also dis-
cussed in [44]) simply rotates which sources are
used by using each beacon for a fixed time-period,
before moving onto the next. Unpredicability of
the outcome is proportional to the ratio of dishon-
est beacons in the pool, meaning if at least one
beacon is honest, then the round-robin approach
does indeedmakes the overall outcomemoreunpre-
dictable. Unfortunately, this would require a shared
state between the client and server, namely the posi-
tion of the round, disagreeingwith the design goals.

Hashingnonces [43]: the collection of nonces from
different beacons could be hashed in some manner,
the authors suggest that a hash of the concatenation
of each nonce could be taken. The authors then
argue, an adversary with a large amount of com-
puting power at their disposal could use bruteforce
techniques to find preimages of the hash function
with certain qualities (e.g., H(m) starts with ’00’)
resulting in the compromise of the other nonces in
the pool. For these reasons, hashing nonces is con-
sidered by the authors as equal or less secure than
the XOR strategy.
Delayed evaluation [45]: as discussed previously,
a dishonest beacon can alter its nonce in an attempt
to influence the other nonces it is combined with, to
try and influence the final outcome. Variable delay
functions (VDF) are processes designed to strate-
gically slow down calculation of some task, and
hence can be used to slow down the process of

123

An authentication protocol based on chaos

evaluating the pool of nonces. If for example, two
independent beacons publish nonces in an hourly
window, the delay function could be set to pro-
long the time it takes to combine these nonces. If
the delay was set to a long enough period, neither
beacon would have the time to derive a malicious
nonce, before the hourly window had transpired
and new nonce values were expected to be broad-
cast. Lenstra and Wesolowski [42] contains further
discussion on VDFs and their applications.

These anti-tampering methods provide options for
combining multiple random beacons, where the issue
with trusting an single-source provider of random data
appears to largely concern how predictability can be
avoided, given that solutions are largely unverifiable,
and could be tampered with. The proceeding section
covers the random beacon chosen for the prototype,
that is transparent, distributed, an accordingly conveys
a higher degree of trust. It is worth noting however, that
preferably if the literature had provided a suitable alter-
native, applicable to the design goals for the prototype,
the combination of multiple random beacons would be
the preferred option, as discussed in the evaluation.

3.3.2 Bitcoin random beacon

Blockchains are distributed, immutable ledgers of
transactions used to record and authenticate activi-
ties of involved parties. Bitcoin is one such instance
of blockchain technology known as a cryptocurrency,
offering openly decentralised, self-governed currency
transactions, backed by secure cryptographic proto-
cols. Bitcoin transactions are collected into blocks,
where within each block a Merkle Root is calculated
and recorded in the block header. The Merkle Root
involves hashing each transaction in the block in a
manner that ensures that the entire contents of the
block, including its ordering, is recorded to protect the
integrity of the block’s contents. Once a block is filled
with transactions, the hash of the previous block on the
chain is added into its header, forming the ‘chain’ of
collections of transactions, where each link ensures the
integrity of its predecessor [46].

The job of calculating the latest block on the chain
is tasked to miners, who are rewarded with Bitcoin
currency for their efforts. Alongside the aforemen-
tioned hashing calculations, miners must also solve a
proof of work puzzle for each new block—the block’s

hash digest must begin with a number of zeroes—a
task requiring millions of hash calculations. If mul-
tiple chains are broadcast to the Bitcoin network the
longest is chosen, meaning it has been created with the
most work, and therefore is the consensus reached by
the mining community. This ensures that in order to
tamper with the blockchain, an attacker would require
computational power surpassing the rest of the mining
community [46].

The chosen randombeacon for the prototype is taken
from [38], which forms the reference source for the
remainder of this section. The paper proposes that the
random values resulting from proof of work compu-
tations in the Bitcoin network make each new block
mined on the network a suitable random beacon (please
see Protocol 4, Appendix).

4 Experimentation

4.1 Prototype I: ZKP and chaos

The first prototype introduced here combines the work
of Schnorr’s Non-Interactive Zero Knowledge Proof
(NIZKP) and the Chaos-based Keyed Hash Function,
from 3.1 to 3.2 in the preceding subsection. Prototype
I will display a large amount of the general structure
ahead of its successors.

4.1.1 Setup

The setup of a client and server is the only out-of-band
process, used to derive the secrets and configurations
required for port knocking operations. The subroutine
achieving this produces a profile JSON file each for
client and server, housing cryptograhic parameters and
configuration settings. The profile contents include:

– Schnorr NIZKP parameters (refer to Sect. 3.1.2)

– Group parameters p, q, g are generated using
a call to the openssl library. Specifically this
uses the dsaparam module, to generate DSA
parameters,which are applicable for theNIZKP
as outlined in [26]. DSA key-length is set to
2048-bit.

– Private key a is randomly selected from the
range [0, q − 1] and is used to derive public
key A ≡ ga . Note: the only difference between
the client and server profiles generated is the

123

W. Major et al.

absence of a in the server profile, as the ZKP
proves knowledge of a.

– 8-bit command ID - for future development to
support multiple commands under a single pro-
file. In the original protocol, these were refered
to as UserID, and OtherInfo.

– Private hash key: a float number in the range
(−1, 1), with 256-bit precision, for an associated
256-bit keyspace. Implemented using the mpmath
3rd-party Python library.

– Server port number: randomly generated during
setup, and fixed throughout all exchanges.

– Command: user specified shell command to run
upon successful client authentication.

On a modern laptop, generation of the profiles was
near instantaneous, and each was sized at 3KB. The
profiles should be securely transferred and housed on
the client and server machines.

4.1.2 Chaos-based hash function

The hash digest length was increased to 256-bit, as
was required by RFC 8235 [26] for compatability with
the NIZKP: “The bit length of the hash output should
be at least equal to that of the order q of the consid-
ered subgroup.” This level of precision necessitated
that the mpmath library be used, above the standard
float data types that ship with Python. The horsepower
required to manage calculations with these floats, with
up to log(2256)/log(10) ≈ 78 decimal places, had a
dramatic affect on the hashing speeds, with the hash
taking over 20 s to calculate the required digest for the
NIZKPprotocol. Issueswith chaoticmap computations
of floating-point numbers were noted by [32], though
were not expected to be this severe. A large factor in
the sluggishness of the hash function was the num-
ber of iterations to perform, or in terms of the chaotic
map, the time parameter t . From the authors’ paper,
little guidance was set for how to select this parameter,
t = 10, 000 was one such baseline used for testing,
however this proved unachievable in practical time. A
further factor in this speed is undoubtedly increasing
the hash’s bit length. Lastly, as the hash was imple-
mented in Python, a high-level language, time savings
could further be gained by implementing the final ver-
sion of the port knocking application in a language
closer to the client hardware.

4.1.3 Client actions

In Schnorr’s NIZKP, a hash is taken of the public key A,
the random walk V ≡ gv , where v is randomly gener-
ated by the client, and other, non-essential parameters.
The resulting digest c, accompanied by r ≡ v − ac,
form the proof of knowledge, or knock in this case, as
the pair of concatenated values c||r , that are then trans-
mitted to the port knocking server in the payload of a
UDP datagram.

UDP was chosen as the transport protocol for send-
ing the values, as TCP connection-based overhead and
interactivity were not deemed necessary nor applica-
ble, respectively, to minimalist design goals. ICMP
traffic could be an alternative, though nothing was
found in the literature to support this approach,whereas
[12,47,48] provide justifications for choosing UDP.
Python’s native socket library was used to send the
knock packet, where the server IP and destination port
values are both taken from the client profile, the for-
mer being user input from stdin, and the latter being
randomly generated.

4.1.4 Server actions

The server parses traffic using scapy, a 3rd-party
Python library that provides an interface to lower-level
libpcap functionality. The open-source libpcap
library for network traffic capture operates on Linux
systems, allowing packets to be inspected before fire-
wall rules [7], and is “amongst the most widely used
[APIs] for network packet capture”. Scapy is used to
continually sniff the server’s network interface. Col-
lected traffic is then subjected to conditional rulesets
designed to filter out traffic not meeting ZKP criteria:

1. Trafficmust be destined for the server port, as setup
in the client profile.

2. Traffic must be UDP, with an integer payload.
3. The payload is of length equal to the hash digest

length, plus an integer r mod q, padded with
zeroes to fix this length.

If a packet is sniffed meeting these criteria, then
the Schnorr NIZKP Protocol (see 3.1.2) outlines the
mathematical checks performed to validate the proof,
computationally, this involves:

1. Calculate c, v, by splitting the packet payload into
their appropriate lengths.

123

An authentication protocol based on chaos

2. Calculate V ≡ gr Ac using values from Step 1, and
the client profile.

3. Check whether the received c is equal to:
H (V ‖A‖CommandID)

If the proof is successful, the client is authenticated,
and their requested shell command is executed. Though
not implemented, the protocol allows for accompany-
ing the proof with further data, this could be used to
facilitate multiple command options for a single client,
and multiple users.

4.1.5 Discussion

Prototype I uses third-party libraries only for floating-
point computations, and packet sniffing from the wire.
Theoretically, a powerful pocket calculator could gen-
erate the proof required to authenticate, and it could
be sent via any number of online services for testing
network connectivity. It could be argued that reducing
dependencies such as 3rd-party libraries usewill reduce
threat vectors from exploitation of those libraries.
The prototype is further well suited for application
on devices with limited ability to maintain updated
libraries. Replay protection is a corollary of mixing
randomly chosen v, and resulting V , in some form,
into c and r , ensuring each time a knock is sent, each
element in the proof is derived from a nonce.

Returning to the design goals, the aim of having the
server precompute acceptable knock values is entirely
missed. Instead, this prototype requires the server to
check a potential client proof, requiring two exponen-
tiation operations in the group setting [26], and a hash
function execution. This opens a serious attack vector:
by sending data to a suspected port knocking service
port, an attacker can force the server to perform com-
putations, potentially blocking out valid client knocks.
As per [49], “processing required to verify the [knock]
should be minimal and not introduce a [DoS] vec-
tor.”. Filtering options are limited for preventing such
attacks, as knock values are pseudo-random, possess-
ing no identifiable characteristics other than length,
contradicting goals from [49]: “unauthorized packets
should be rejected as early as possible to reduce attack
surface and decrease server side processing.”

To combat this, a traffic rate limiter could be
enforced (the scapy sniffer offers such a feature)
though this could in turn enable an attacker to pur-
posely trigger the rate limiter to block out legitimate

clients. Alternatively, the server’s sniffer could estab-
lish a sort of reputational filter, ignoring the traffic from
IPs that have sent invalid knocks, though this could be
circumvented if the attacker spoofed their IP. Hopefully
these scenarios illustrate why both the only precompu-
tation and only key-based authenticationwere included
as design goals. Suffice to say, this prototype does not
fare well against denial of service attacks. DoS mitiga-
tion could be supplied by network and host monitor-
ing solutions, such as IDPS, though this should not be
required of a port knocking implementation.

4.2 Prototype II: chaos and random beacons

The second prototype explored in this subsection for-
goes zero knowledge proofs, and instead adopts a ran-
dom beacon service, as described in 3.3. The chaos-
based hash functionality is further retained, though this
time it is used to parse the random beacon. The client
and server profiles are setup as previously, thoughwith-
out the parameters for Schnorr’s NIZKP. Largely, the
code is replicated from the previous prototype, with
modifications outlined in the following.

4.2.1 Blockchain-based random beacon

The Bitcoin random beacon protocol, as shown in
Sect. 3.3.2, pulls information from a website provid-
ing updates on Bitcoin’s blockchain. The Python code
for implementing this feature is taken from [50], with
small changes, including a change of website to the
blockchain API provided by [51], which for this pur-
pose requires only a single HTTPS GET request using
the Python native request library, to a URL of the
website’s blockchain API. This API replies, offering
information on the latest published block in JSON for-
mat. From there, the block header, and block header
hash, are extracted and combined through a pairwise
OR. The resulting string is then passed through the
chaos-based keyed hash function, resulting in a 256-bit
beacon value. Of note, if the hash function used were
not keyed, then the attacker would be able to recreate
the beacon output. Given that the key used in the hash
function is only available to client and server, as per
Protocol I’s setup, this means the beacon values are
shared, random and private. The keyed hash function
could be used to combinemultiple random beacons, for

123

W. Major et al.

greater security (see Sect. 3.3.1, though this is beyond
the scope of the demonstration here.

After a new beacon has just been received, the bea-
con service sleeps for a fixed number ofminutes, which
can be changed to preference in accordance with block
production speeds varying roughly around the 1 per 10
minutesmark [38]. Following this wait, the beaconwill
check more frequently, until the data pulled from the
API differs, signalling a recalculation of the knock to
expect from a client.

4.2.2 Client operations

For this prototype, the UDP knock payload is defined
as Hk(beacon||command), where k and H are the key
and chaos-based hash implemented in the previous pro-
totype. As discussed in the port knocking mechanisms
literature review, hashes are one-way functions that can
provide a proof of identity: the attacker can only gen-
erate this payload if they are privy to the secret key,
which is securely shared in out of band setup. Replay
protection in this instance is provided by the freshness
derived from the beacon. After processing, the bea-
con’s values are pseudo-random, so the only instance
in which the hash function receives two identical mes-
sages would be where the blockchain API reports an
identical block and block hash. Therefore, the only
instance inwhich a knock-collision occurswould result
from either this scenario, or a weakness in the hash
function. The security level resulting from a 256-bit
keyspace for the chaos-based hash function ensures this
is unlikely. Once constructed, the UDP payload is sent
out as previously.

4.2.3 Server operations

The port knocking server’s operations include peri-
odically harvesting random beacon data, converting
this data into the knock it expects to see from the
client, and monitoring the network to detect whether
this knock has been received. These responsibilities
require a degree of concurrency, for example the server
must retain its listening abilities whilst at the same
time calculating what the proceeding knock should
look like, which uses the overwhelmingly slow chaos-
based hash function. To handle these tasks in parallel,
the native Python multiprocessing library is used
to setup individual processes for traffic monitoring,
beacon harvesting, and authorised command handling.

Special variables handled by a multiprocessing
Manager are shared between the processes, for
instance to signal that the client has successfully
authenticated.

4.2.4 Discussion

Once a beacon has been harvested and processed, the
server is left with a string value to listen for on the net-
work, which if found, signals authentication, and sub-
sequently the user’s command is authorised. To enable
multiple commands, a new Hk(beacon||command) is
calculated for each, per beacon, and accordingly lis-
tened for. In comparison with the first protocol, and in
the context of the design goals, this variant is vastly
more simple, and has managed to eschew the denial
of service attack vectors the latter was vulnerable
to. Where previously the server performed exponen-
tial calculations and hashing operations to verify the
authenticating data, this prototype need only check
whether strings are equal. By removing the Schnorr
framework, only a single private key is required (for the
keyed hash), and the openssl library can be forgone.
The introduction of a trusted third party (the blockchain
API), is an obvious security detractor. Further exami-
nation of this aspect will follow later, in the evaluation
section.

4.3 Prototype III: crucible

The final prototype introduced by this paper differs
largely from the previous iterations. As a consequence
of research leading up to this section, Prototype III,
henceforth named Crucible (a namesake derived from
its blending of ideas, much like elements in a furnace)
draws its motivations from zero knowledge proofs,
and chaos-based cryptography, but instead replaces
both previously implemented components with dedi-
cated off-the-shelf, cryptographic alternatives, that are
already established in practice.

For authentication purposes, the previous review
of zero knowledge proofs aimed to lead development
towards a practical proof of identity scheme which
could be used to prove knowledge of a secret key. Cru-
cible pursues this line of thinking, but instead uses a
password-based key derivation function (PBKDF) to
prove knowledge of a password. In doing so, the server
does not possess the password itself, only its hash. In

123

An authentication protocol based on chaos

both previous prototypes, the run-time of the chaos-
based keyed hash severely dampened results, instead,
in Crucible, it will be replaced with a modern keyed
hash alternative.

4.3.1 Password-based key derivation

A key derivation function converts a secret value (such
as a master key, passphrase, or password) into a secure
cryptographic key [34]. Password-based key derivation
functions (PBKDF) are the family of such solutions
aimed at converting potentially weak user supplied
passwords into a keys that are specifically designed
to be resistant to cracking attempts, making them well
suited for storing user credentials on a server, whilst
limiting the exposure to users if that server were to be
compromised [52].

As from the discussion on what comprises a secure
cryptographic hash in Sect. 3.2.2, a PBKDF requires all
the qualities of preimage, second-preimage, and colli-
sion resistance. In addition to this, a PBKDF needs
resistance to lookup table attacks (e.g., rainbow tables),
CPU-optimised cracking, hardware-optimised crack-
ing (e.g., GPUs, FPGAs and ASICs), amongst other
criteria, as established by the 2015 Password Hashing
Competition [52]. Argon2 was the winner of this com-
petition, and is selected for purpose inCrucible. Further
details on Argon2 can be found in the IETF draft [53]
and design paper [54].

TheprototypeusesPython’s nativepasslib library,
updated with installation of the Argon2 package. This
specifically uses the Argon2i variation, recommended
for password hashing purposes, as opposed to other
KDF operations [53]. The hash parameters chosen for
this prototype set Argon2 to use 20 rounds, 256 MB
ram, and 2 threads of parallelism, producing a hash in
under 2 s on a modern laptop. Salt is set to a fixed
value (explained later in Sect. 5.1.3), and with the cho-
sen parameters is stored alongside the digest, in a single
hash string. These settings should be chosen in imple-
mentation to maximise computation efforts under the
used hardware environment.

The setup process is similar to the preceding pro-
totypes, where instead Argon2 replaces key generation
procedures: the user is asked to input their chosen pass-
word (which they are to memorise), the hash of which
is then stored only on the port knocking server. In addi-
tion tomemorising the password,withCrucible the user
needs to know only the IP address on which to knock,

and the command name to execute. In this manner,
Crucible is stateless, whereby a user can download the
client application, and perform port knocking, without
needing access to secret keys or other parameters, i.e.,
following installation of a profile on the server, a client
profile (as per previous prototypes) is not required.

4.3.2 Keyed hash

With the client able to derive a key from their cho-
sen password, Crucible follows Prototype II in using a
keyed hash to digest a random beacon. In preference
of the chaos-based keyed hash already explored previ-
ously, an established hash function is taken from the
literature.

BLAKE2 was chosen to perform the task of hashing
operations inCrucible, being amongst the fastest secure
hash functions available, and the most-popular non-
NIST standard hash [34]. Unlike alternatives Siphash,
and SHA3, BLAKE2 is resistant to side-channel
attacks, where an attacker has access to RAM and reg-
isters [34]. Further, unlike SHA3, BLAKE2 has native
support for keyed mode hashing, without additional
construction. More information on BLAKE2 can be
found in [55].

The particular variant BLAKE2b, was chosen for
64-bit optimisation in the test environment. The
pyblake2 3rd-party Python library [56] was used
for the Python 2.7 implementation (referenced on the
authors’ website [57]), however the native hashlib
supports BLAKE2 for later versions.

4.3.3 Setup

Ahead of port knocking operations, the clientmust gen-
erate a profile to leavewith the server, used by the server
to knowwhich knocks to listen for. The generation pro-
cess firstly prompts the user for a password, and the
user is then directed to submit a number of commands
for the server to execute on successful authentication.
Each command must be named, and along with the
password and IP of the server, each command name
must be memorised. Following this, per the previous
prototypes, the client profile is serialised in JSON and
saved in a text file, to remain with the server.

123

W. Major et al.

4.3.4 Client operations

To execute a command on the port knocking server,
a remote user runs the client Python script, and the
following operations are performed:

1. The client supplied password is run throughArgon2
to generate the associated key:
key = Argon2b(password).

2. The client script pulls down and calculates themost
recent random beacon from the blockchain API.

3. The beacon and client supplied command are con-
catenated, and hashedwithBLAKE2, using a keyed
mode of operation:
knock = BLAKE2bkey(beacon||command)

4. The server’s port number listening to the knocks
is derived similarly to the key, though instead the
command is replaced with “0”. The first two bytes
of the resulting hash are then converted into an inte-
ger port number, this combined with the IP provide
the destination to which the knock is sent.

The key, beacon, and knock at i are calculated as:

key = Argon2i (password) ,

beacon = BLAKE2bkey (blockHeader

+ blockHeaderHash) , knocki

= BLAKE2bkey (beacon||commandi)

where i represents the chosen command for the par-
ticular knock session (the server will listen for all pos-
sible values of i).

Fig. 2 Crucible setup: generating a client profile

4.3.5 Server operations

The structure for the server operations is largely sim-
ilar to Prototype II: there are a number of interrelated
tasks the server needs to perform concurrently, man-
aged through Python’s multiprocessing library:

– The server periodically checks the blockchain API
for new values, and stores harvested beacons in
a multiprocessing Manager dictionary, to
enable access by other processes. Once a new bea-
con is harvested, a boolean in the dictionary is
flipped, signalling that the traffic sniffing process
needs to update the valid knocks it listens to.

– Whenever a new beacon is found, for each com-
mand in the client profile a new valid knock string
must be calculated (per Client Operation 3). Once
generated, each knock string is sent to the listening
process, using scapy. This listening process acts
on the port number generated per client Operation.

– The listening process, checks each received UDP
packet, of appropriate length, on the correct port,
against the calculated valid knock values. If amatch
is found, the relevant command is sought and exe-
cuted.

4.3.6 Discussion

The random port number derived from the beacon
serves two purposes: firstly, it may make the job of
an attacker listening on the wire slightly more difficult,
as there is one less defining traffic characteristic to fil-
ter by; secondly, it improves usability, as the user no
longer needs to memorise the port number to knock
against. This change from Protocol II is made possible
by the enormous difference in hash run-times.

5 Evaluation

To begin using Crucible, the client must generate a pro-
file and share this with the server. Figure 2 shows this
process, with the generated profile printed out. The key
is derived from the user’s password using Argon2, as
per Sect. 4.3.1.

Figure 3 shows typical usage of Crucible. The client
runs the Python script, passing in the IP, password and
command parameters. There is also an interactivemode
alternative for this operation. The client executes three

123

An authentication protocol based on chaos

commands, “cmd1”, “cmd2” and “cmd2”. As the latter
command has already been executed by the server, it
is ignored for replay protection. These commands will
become available again when a new random beacon is
sourced.

Figure 4 is a traffic capture of traffic emanating from
the client machine as a result of port knocking with
Crucible. It can be seen that Crucible does indeed only

require a single packet for authentication and command
authorisation. Further, the beacon data collected from
the blockchain API is seen to be protected via HTTPS.

The knock itself, as seen in Fig. 5, is a single 512-bit
BLAKE2 hash sent via UDP, both the payload contents
and the destination UDP ports are pseudo-randomly
derived, the source port is ephemeral and chosen by
the client OS.

Fig. 3 Normal client and server operations of Crucible

Fig. 4 Wireshark traffic capture of the client knocking process.
Packets 10–12 show the client’s DNS request for the Blockchain
API’s IP. Packets 12–24, and 28–29 show the random beacon

retrieval over HTTPS. Packet 26 is the client knock. Packet 27 is
a closed-port ICMP reply, per RFC 792 [58]

123

W. Major et al.

Fig. 5 Wireshark traffic capture of the client knock

Figure 6 demonstrates howCrucible avoids the NAT
problems faced by port knocking solutions. This prob-
lem arises if a port knocking client attempts to authenti-
cate with a server whose IP address has been translated,
for example, by NAT [59], proxies, or a VPN [6]. As a
result, the knock packet sent by the client will not reach
the intended destination. In such a scenario, Crucible
should be installed on each intermediary host, and is
setup with a command to spawn a new client process,
and knock on the next host in the chain, until the com-
mand reaches its final destination.

5.1 Attack modelling

In this section a range of potential attacks against the
operations of Crucible are considered, exploring what
capabilities an adversary may have, and what the ram-
ifications of each attack are. Aumasson [34] outlines
the goals of attack modelling, which are paraphrased
as follows:

– To help set requirements for future protocol design.
– To provide users guidelines on whether a protocol
will be safe to use in their environment.

– To provide clues for analysts keen to find weak-
nesses in the protocol, as part of the security pro-
cess, so they can determine whether a given attack
is valid.

Unless otherwise specified, the attack assumptions this
section operates under are that the attacker is positioned
per Fig. 7. This simple diagram may seem pointless to
include, but it helps formalise firstly that all networks
Crucible operates across are considered untrusted. Sec-
ondly, the diagram highlights the potential extent of
attacker capabilities under a worst-case scenario – full
traffic access, and interdiction.

Fig. 6 Routing Crucible commands through intermediary hosts

123

An authentication protocol based on chaos

Fig. 7 Attacker positioning context

5.1.1 Attacks on identification protocols

Katz et al. [22] outlines a range of attacks that can be
mounted against identification protocols, here they are
reviewed in the context of Crucible:

– “impersonation”: an attacker impersonating the
client will only be able to authenticate against
the server with use of the password. The bea-
con service is open-access, and would not suffer
an attacker imitating the client or server. Imper-
sonating the server, for example in a man-in-the-
middle scenario, could grant an attacker access
to knocks, and could prevent them reaching the
legitimate server. From obtained knocks, there is
arguably little an attacker could gain, as revers-
ing the hash functions is intractable by design. If
a knock value has already been issued, there is lit-
tle to be gained from an attacker intercepting and
relaying it themselves. Impersonation of the bea-
con, owing to HTTPS authentication via public key
infrastructure, is assumed to be difficult.

– “replay attack”: If a beacon value were replayed to
the server, an attacker would have the opportunity
to replay commands the client had already issued.
If a beacon value was replayed to the client alone,
the server would not accept that client’s knocks.
Both scenarios represent threats and illustrate the
trust required in the beacon service, and its secure
access. As the server is silent, only replay attacks
seemingly sent from the client require further con-

sideration, which are actively defended against per
Fig. 3.

– “interleaving attack: an impersonation or other
deception involving selective combination of infor-
mation from one or more previous or simultane-
ously ongoing protocol executions.” Interleaving
attacks don’t appear applicable here as the protocol
has little interactivity. Further information on such
attacks can be found in [60].

– “ reflection attack: an interleaving attack involving
sending information from an ongoing protocol exe-
cution back to the originator of such information.”
See interleaving attacks.

– “forced delay”: without a beacon, neither client nor
server can operate port knocking functions. Delay-
ing port knocks from client to server could make
them stale, and therefore unacceptable.

– “chosen-text attack: [...] an adversary strategically
chooses challenges in an attempt to extract infor-
mation about the claimant’s long-term key.” Imper-
sonating the beacon, an attacker could try to send
a message to recover the key through examination
of the resulting knocks, though this would require
subversion of the BLAKE2 hash function, which is
both keyed, and invoked twice in the production of a
knock value. It is unclear to the author how such an
attack would be approached, and seemingly infea-
sible.

From the attacks discussed, most would require
man-in-the-middle capabilities of an attacker. Imper-
sonation of the beacon service for use in replay of a
beacon, or chosen-beacon attacks, represent the only
threats substantially different from an attacker with the
capability to physically tamper with the network cable,
causing delay or loss of service. This sort of imper-
sonation could be carried out if an attacker had com-
promised the API’s service, or if the requests made to
the API via HTTPS were not sufficiently secured. If
Bitcoin itself were manipulated, in order to influence
beacon values, this should be considered in the same
context as an attacker impersonating the beacon ser-
vice. Bonneau et al. and Pierrot and Wesolowski [38],
and [61] provide cost estimates for such an attack in the
thousands of dollars. The chosen block outcome would
further need to circumvent double-invocation of keyed
BLAKE2.

123

W. Major et al.

5.1.2 Online attacks against the listening service

The scapy interface for lower-level libpcap func-
tionality could provide adversaries an attack vector for
Crucible. Indeed, the libpcap is not without histori-
cal vulnerabilities [62] and applications of libpcap,
such as Wireshark, have experienced vulnerabilities
as a result of this [63]. As noted previously, Crucible
requires root permissions (for its raw packet access),
and an exploitation of libpcap or scapy could have
dire consequences. The listening service itself could
also be vulnerable to a denial of service attack, as is the
case for IDPSdevices,where an attackermay send large
volumes of traffic, sometimes anomalous in nature, “
to attempt to exhaust a sensor’s resources or cause it
to crash” [64]. For Crucible, with its fail-closed stance,
this would prevent client from authenticating until the
service was restarted.

5.1.3 Offline attacks against passwords

In Crucible, the Argon2 hash is used as the key for
BLAKE2, and this hash is retained on the server to
authenticate clients. Should the server be compro-
mised, and if its hash values are stolen and cracked
(i.e., the passwords were discovered) an attacker could
use these credentials to log into other client accounts,
elsewhere. Password cracking is generally the process
of inverting a given hash Hi , by discovering the pass-
word such that H(password) = Hi . This involves
generating a great deal of passwords, hashing each,
and comparing the results against the obtained hash to
find a match.

If the password supplied to Argon2 is not of suf-
ficient length, bruteforce attacks are made easier for
an adversary, as there is less keyspace to search. Simi-
larly, if the password is weakened by using predictable
values (words, numbers, patterns etc.) then this makes
dictionary attacks easier to mount. Further, the Argon2
hash is derived using a static salt value, meaning if
future development added capability formultiple users,
then the hashes derived from these passwords would be
vulnerable to rainbow table attacks, whereby a single
H(password) can be tested against all of the server’s
user hashes. This could be solved by having the user
remember a salt value (or username = salt), or by
including a client state required for knocking, neither
of which are preferable solutions. The key point, noted
in 4.3.1, is that Argon’s settings parametrise the dif-

ficulty for calculating a hash, making authentication
slightly more slow for users, but dramatically increas-
ing the cost to adversaries of mounting bruteforce or
dictionary attacks.

5.1.4 Attacks against dependencies

Library and package dependencies are important in
the context of secure protocol design, because exter-
nal code vulnerabilities can result in exploitation of
the prototype itself. As discussed earlier in Sect. 3.3.1,
a NIST elliptic curve cryptographic standard was
allegedly backdoored. Cimpanu [65] is a more recent
example of a Python module for handling SSH con-
nections, which surreptitiously harvested and exfil-
trated the user’s SSH credentials. Javascript library
BrowseAloud was recently compromised, resulting in
infection of websites using the library with cryptojack-
ing software; repurposing their machines as crypto-
miners [66]. For transparency, Crucible’s dependencies
are included here in Table 2, and their use should be
properly reviewed before deployment in a production
environment. Once deployed, the libraries need to be
constantly updated, and periodically checked against
vulnerability databases.

5.1.5 Reconnaissance and stealth

Reconnaissance encompasses the methods an adver-
sary can deploy in information gathering at the start of
a campaign. The level of stealth a port knocking imple-
mentation provides may determine whether or not it is
detected by an attacker conducting reconnaissance, and
therefore stealth can decrease the likelihood that a port
knocking server is exploited. An attacker performing
reconnaissance activities could benefit from the follow-
ing information, all of which could be made possible
through detection of port knocking:

– Identification of a host as a client, server, or beacon
service.

– Detection of a port knocking service on a server.
– Identification of the services hidden or protected by
port knocking.

– Identification of the port knocking implementation,
i.e., Crucible.

There are a number of characteristics that could indi-
cate port knocking from captured traffic between client,
server and beacon. Assuming an attacker had access to

123

An authentication protocol based on chaos

Table 2 Dependencies in the Crucible prototype

socket getpass Argon2 pyblake2 sys Multiprocessing Time os Scapy

Client � � � � �
Server � � � � � �
3rd party? � � �

Crucible’s documentation and code, passive methods
of traffic analysis could look for indications such as:

– Periodic requests to the beacon service.These could
be cross referenced with the beacon API to match
a new block with a spike in HTTPS data transfer.
If using the default API, an attacker could perform
a reverse lookup to the API’s URL and identify
Crucible traffic this way.

– UDP packets with 512-bit payloads, where the des-
tination port always differs. Other features of the
knock packet may be identifiable, a number of
techniques for passive fingerprinting of traffic are
explored by [67]. Higher amounts of UDP traffic
than expected may contradict stealth goals [68].

– Identifiable traffic resulting from a port knocking
authorised command. For example, if the command
was to open a port, an attacker could periodically
diff open port scans of the server, and identify suc-
cessful knocking traffic.

Sanai [69] explores active methods an attacker can
use to identify use of promiscuous mode by a NIC on
the local network, which is active when Crucible is
running. One such method involves crafting an ARP
packet, which would normally be rejected by the NIC,
however in promiscuous mode the host issues no such
reply. As seen in Fig. 8, theNmapsniffer-detect
(Nmap is a popular network sniffing tool) script per-
forms this and other checks, and may allow an attacker
to distinguish between Crucible and other port knock-
ing solutions.

Greater discussion on stealth aspects of port knock-
ing is reviewed in [6,70] and [71]. In comparison with
other solutions examined in Sect. 2.1 on port knocking
mechanics, Crucible has the following overall advan-
tages and disadvantages in stealth:

– With only a single packet sent to the server for
the knock, proportionally less traffic on the wire
is attributable to Crucible than other solutions with
more client-server interactivity.

Fig. 8 Indication of a Crucible server: promiscuous mode NIC

– No indication of the command executed on the
server should be identifiable from the wire, as
replay protection is enforced (no command will be
re-issued), and as the command name is masked
by keyed hashing. The definition of a keyed hash
in Sect. 3.2.2 explains why the command is not
recoverable from traffic. No client identifiers such
as IP addresses or usernames are recoverable from
network traffic, nor are service identifiers such as
the service destination port. Very little information
is leaked: between client and server, the only traf-
fic exchanged is a single datagram with a pseudo-
random number as its payload.

– A single UDP datagram containing a random num-
bermay look suspicious in a given context,Crucible
makes no effort to deploy steganography, or other
methods, to appear innocuous to an attacker.

– As a multi-party solution using a random beacon
service, Crucible is more easily detected.

6 Conclusion

Zero knowledge proofs were introduced for private,
lightweight client-identification. Chaos-based cryptog-
raphy was explored for the purpose of minimalist,
dependency-free cryptographic hashing. Random bea-
cons were used to secure replay protection while pre-
serving a single-packet knock, and preventing attacker-
chosen computation. This paper has explored novel

123

W. Major et al.

combinations of these topics with regards to port
knocking and has used these ideas to develop Crucible.

Crucible achieves command authorisation using a
single packet between client and server, with a payload
likely indistinguishable from a random number. Cru-
cible’s design is minimalist, secure and stateless. It is
portable, and the user only needs to memorise an IP, a
password, and a command name in order to authenti-
cate. Crucible does not authenticate post-knock traffic
(see [11]) and a single command can only be executed
once within the period of a random beacon, though an
unlimited number of unique commands can be run in
this window. Lastly, trust must be placed in the random
beacon service, which is a non-trivial consideration.

Compliance with ethical standards

Ethical statement There are no potential conflicts of interest,
and the research does not include human participants and/or ani-
mals. The work has been undertaken to accepted standards of
ethics and of professional standards.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix

Protocol 1 Schnorr Identification Protocol

Protocol setup

– Let p and q be two large primes where p − 1 is
a multiple of q. Let Gq denote the subgroup of
Z

∗
p of prime order q, and g be a generator for the

subgroup.
– Let a be the private exponent chosen uniformly at
random from [0, q − 1].Let A = ga mod p.

– Ahead of execution, both prover and verifier know
(p, q, g,G, A).

Protocol actions

1. Prover chooses a number v uniformly at random
from [0, q −1] and computes V = gv mod p and
sends this to the Verifier.

2. Verifier chooses a challenge c uniformly at random
from [0, 2t−1], where t is the bit length of the chal-
lenge, and sends this to the prover.

3. Prover computes r = v−ac mod q and sends this
to the Verifier.

4. Verifier ensures:

(a) A is within [2, p − 1]
(b) Aq = 1 mod p
(c) V = gr Ac mod p

5. Protocol messages

Prover → Verifier: V = gv mod p (1)
Prover ← Verifier: c (2)
Prover → Verifier: r = v − ac mod q (3)

Notes
The protocol proves knowledge of the secret exponent
a without revealing any information about it. Setup
parameters may be chosen as per DSA choices. Checks
4(a) and (b) are to avoid invalid public keys. Check 4(c),
since:
gr Ac = (gv−ac)(ga)c = g(v−ac+ac) = gv = V
mod p. This protocol is referenced from [26], Section
2.2.

Protocol 2 Schnorr Non-interactive Zero-Knowledge
Proof

Protocol setup

– Let p and q be two large primes where p − 1 is
a multiple of q. Let Gq denote the subgroup of
Z

∗
p of prime order q, and g be a generator for the

subgroup.
– Let a be the private exponent chosen uniformly at
random from [0, q − 1]. Let A = ga mod p be
public key associated with a.

– Let H be a secure cryptographic hash function,
UserID a unique identifier for the Prover, and Oth-
erInfo optional data. The bit length of the hash out-
put should be at least equal to that of the order q of
the considered subgroup.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

An authentication protocol based on chaos

– Ahead of execution, both prover and verifier know
(p, q, g,G, A,H,UserID).

Protocol actions

1. Prover chooses a number v uniformly at random
from [0, q − 1] and computes the following:

(a) V = gv mod p.
(b) c = H (g‖V ‖A‖UserID‖OtherInfo)
(c) r = v − ac mod q.

2. Prover sends (UserID,OtherInfo, c, r) to Verifier.
3. Verifier uses the provided UserID to lookup A.
4. Verifier computes V = gr Ac.

5. Verifier ensures c
?= H (g‖V ‖A‖UserID‖OtherInfo).

Protocol 3 Absolute Value Chaos-based Crypto-
graphic Hash Function

Inputs

– A message string M of arbitrary length.
– A key K used as the initial value of the chaotic
map. Chosen as a long floating number of 128-bit
precision, and associated keyspace.

– A fixed number of map iterations i .
– A chosen range for the α coefficient to introduce
chaos into the absolute value map, as seen in Equa-
tion (2).

Process

1. The message is padded with the ASCII character
’0’ ASCII appended to the suffix, until the message
length in bytes is a multiple of 8.

2. The message M is split into an L-sized array of
bytes ωi for i = 1 . . . L . Each byte element uses
the ASCII integer value for the associated string
character in M .

3. With key K substituting for ω0 as the initialisation
value, each ωi is iterated through the chaotic map
i-times: xn+1 = 1 − ABS((0.0015ωm + 1.8)xn)

4. This is repeated for the next ωm+1, using the previ-
ous xi as the initialisation value ω0, until each byte
of the original message has been combined into xL
the last value.

5. The final value produced by the chaotic map xL is
normalised into a long number in the range 0 ≤
H(M) < 2128 as the message digest.

Notes In step (3) the α value is equal to 0.0015ωi +
1.8, this is because each ωi is an integer ASCII value
between 32 and 126, so these values are normalised
onto the chosen range of 1.8 ≤ α < 2 for the required
chaotic behaviour. This protocol is referenced from
[35] with modification to the α parameter.

Protocol 4 Bitcoin Random Beacon

Inputs

– Secure cryptographic hash function H(m, k), here
the chaos-based keyed hash function from earlier
is used, with key k for message m.

– Block header BH andblock header hash BHH of the
Bitcoin network’s most recent block, polled from
a Bitcoin tracking website (a blockchain API) by
through a HTTPS request.

Process

1. Pull down the block header BH and the hash of the
block header BHH from the website.

2. Calculate the binary OR of the header and the block
header hash, b = BH + BHH

3. Output H(b, k)

Notes
This protocol is referenced from the implementation by
[50] of the Bitcoin Random Beacon proposed in [38],
with the following modifications:
Check is performed to validate the block header hash
received from the website, this is to avoid importing
libraries for calculating SHA hashes used in Bitcoin.
[50] chose a HMAC construction using SHA-256,
instead the chaotic keyed hash from 3.2.3 is used. The
block header hash is included to strengthen against
malicious miners aiming to influence the block header.
Even if the header were tampered with, the resulting
hash value of this header remains unpredictable.

References

1. Sorrel-Dejerine, O.: “The spooky world of the ’numbers
stations’—BBC News,” Apr (2014). [Online]. Available:
https://www.bbc.co.uk/news/magazine-24910397

123

https://www.bbc.co.uk/news/magazine-24910397

W. Major et al.

2. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Ham-
burg, M.: “Meltdown,” CoRR, vol. abs/1801.01207 (2018).
[Online]. Available: arXiv:1801.01207

3. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas,
W., Hamburg,M., Lipp,M.,Mangard, S., Prescher, T., et al.:
“Spectre attacks: exploiting speculative execution,” pp. 1–19
(2019)

4. Popeea, T., Olteanu, V., Gheorghe, L., Rughiniş, R.: Exten-
sion of a port knocking client-server architecture with NTP
synchronization. In: 2011 RoEduNet International Confer-
ence 10th Edition: Networking in Education and Research,
6, pp. 1–5 (2011)

5. Srivastava, V., Keshri, A.K., Roy, A.D., Chaurasiya, V.K.,
Gupta, R.: “Advanced port knocking authentication scheme
with QRC using AES.” In: 2011 International Conference
on Emerging Trends in Networks and Computer Communi-
cations (ETNCC), 4, pp. 159–163 (2011)

6. Vasserman, E.Y., Hopper, N., Tyra, J.: Silentknock:
practical, provably undetectable authentication. Int. J.
Inf. Secur. 8(2), 121–135 (2009). https://doi.org/10.1007/
s10207-008-0070-1

7. Lunsford, P., Wright, E.C.: Closed port authentication with
port knocking. Age 10, 1 (2005)

8. Bou-Harb, E., Debbabi, M., Assi, C.: Cyber scanning: a
comprehensive survey. IEEE Commun. Surv. Tutor. 16(3),
1496–1519 (2014)

9. deGraaf, R., Aycock, J., Jacobson, M.: “Improved port
knocking with strong authentication.” In: 21st Annual Com-
puter Security Applications Conference (ACSAC’05), 12
(2005)

10. Jha, S.: An object oriented approach for port knocking.
IJNIET 6(1) (2016)

11. Jeanquier, S.: An Analysis of Port Knocking and Single
Packet Authorization. University of London, Royal Hol-
loway (2016)

12. Sel, D.: Authenticated Scalable Port-Knocking. Technical
University of Munich, Munich (2016)

13. Sel, D., Totakura, S.H., Carle, G.: “sKnock: port-knocking
for masses.” In: 2016 IEEE 35th Symposium on Reli-
able Distributed Systems Workshops (SRDSW). IEEE 1–6
(2016)

14. Tiwari, R.: Port–knocking system using unilateral authenti-
cation algorithm. 9 (2013)

15. Al-Bahadili, H., Hadi, A.H.: Network security using hybrid
port knocking. IJCSNS 10(8), 8 (2010)

16. Liew, J.-H., Lee, S., Ong, I., Lee, H.-J., Lim, H.: “One-
time knocking framework using SPA and IPsec.” In: 2010
2nd International Conference on Education Technology and
Computer, vol. 5, 6 (2010)

17. Worth, D.: COK: cryptographic one-time knocking. (2004)
18. Schneier, B.: Applied Cryptography: Protocols, Algorithms,

and Source Code in C. Wiley, Hoboken (2007)
19. Mohr, A.: A survey of zero-knowledge proofs with applica-

tions to cryptography. Southern Illinois University, Carbon-
dale, pp. 1–12 (2007)

20. Goldreich, O.: Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, Cam-
bridge (2009)

21. Mollin, R.A.: Cryptography and zero knowledge. Int. J. Pure
Appl. Math. 31(3), 345–360 (2006)

22. Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone,
S.A.: Handbook of Applied Cryptography. CRCPress, Boca
Raton (1996)

23. Goldreich, O.: Modern Cryptography, Probabilistic Proofs
and Pseudorandomness, 17th edn. Cambridge University
Press, Cambridge (1998)

24. Mao,W.:Modern Cryptography: Theory and Practice. Pren-
tice Hall PTR, Upper Saddle River (2003)

25. Van Tilborg, H .C., Jajodia, S.: Encyclopedia of Cryptogra-
phy and Security. Springer, Berlin (2014)

26. Hao, F.,Metere, R., Shahandashti, S.F., Dong, C.: Analyzing
and patching speke in iso/iec. IEEE Trans. Inf. Forensics
Secur. 13(11), 2844–2855 (2018)

27. Alvarez, G., Li, S.: Some basic cryptographic requirements
for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08),
2129–2151 (2006)

28. Kanso, A., Ghebleh, M.: A fast and efficient chaos-based
keyed hash function. Commun. Nonlinear Sci. Numer.
Simul. 18(1), 109–123 (2013)

29. Kocarev, L.: Chaos-based cryptography: a brief overview.
IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)

30. Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image
encryption algorithm based on autoblocking and electrocar-
diography. IEEE MultiMed. 25(4), 46–56 (2018)

31. Zhen, P., Zhao, G., Min, L., Li, X.: “A survey of chaos-based
cryptography.” In: 2014 Ninth International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, vol. 11,
pp. 237–244 (2014)

32. Teh, J.S., Samsudin, A., Akhavan, A.: Parallel chaotic hash
function based on the shuffle-exchange network. Nonlin-
ear Dyn. 81(3), 1067–1079 (2015). https://doi.org/10.1007/
s11071-015-2049-6

33. Li, C., Zhang,Y.,Xie, E.Y.:When an attackermeets a cipher-
image in 2018: a year in review. J. Inf. Secur. Appl. 48,
102361 (2019)

34. Aumasson, J.: Serious Cryptography: A Practical Introduc-
tion to Modern Encryption. No Starch Press, San Francisco
(2017)

35. San-Um, W., Srichavengsup, W.: “A topologically simple
keyed hash function using a single robust absolute-value
chaotic map.” In: 2013 IEEE International Conference on
Communication, Networks and Satellite (COMNETSAT),
vol. 12, pp. 95–99 (2013)

36. Luo, Y., Liu, Y., Liu, J., Ouyang, X., Cao, Y., Ding, X.:
Ecm-ibs: a chebyshev map-based broadcast authentication
for wireless sensor networks. Int. J. Bifurc. Chaos 29(09),
1950118 (2019)

37. Rabin,M.O.: Transaction protection by beacons. J. Comput.
Syst. Sci. 27(2), 256–267 (1983)

38. Bonneau, J., Clark, J., Goldfeder, S.: “On Bitcoin as a pub-
lic randomness source.” Cryptology ePrint Archive, Report
2015/1015 (2015). [Online]. Available: https://eprint.iacr.
org/2015/1015

39. Jiwa, A., Seberry, J., Zheng, Y.: Beacon based authentica-
tion. In: Gollmann, D. (ed.) Computer Security—ESORICS
94, pp. 123–141. Springer, Berlin (1994)

40. Clark, J., Hengartner, U.: “On the use of financial data
as a random beacon.” Cryptology ePrint Archive, Report
2010/361 (2010). [Online]. Available: https://eprint.iacr.
org/2010/361

123

http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/s10207-008-0070-1
https://doi.org/10.1007/s10207-008-0070-1
https://doi.org/10.1007/s11071-015-2049-6
https://doi.org/10.1007/s11071-015-2049-6
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2010/361
https://eprint.iacr.org/2010/361

An authentication protocol based on chaos

41. Lee,H.H.,Chang,E.-C.,Chan,M.C.: Pervasive randombea-
con in the internet for covert coordination. In: Barni, M.,
Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González,
F. (eds.) Information Hiding, pp. 53–61. Springer, Berlin
(2005)

42. Lenstra, A. K., Wesolowski, B.: Trust, and public entropy:
a unicorn hunt. (2016)

43. Bennett, C.H., Smolin, J.A.: “Trust enhancement by mul-
tiple random beacons.” CoRR, vol. cs.CR/0201003 (2002).
[Online]. Available: arXiv:cs.CR/0201003

44. Ferguson, N., Schneier, B.: Practical Cryptography, vol. 23.
Wiley, New York (2003)

45. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: “Verifi-
able delay functions.” Cryptology ePrint Archive, Report
2018/601 (2018). [Online]. Available: https://eprint.iacr.
org/2018/601

46. Barski, C.,Wilmer, C.: Bitcoin for the Befuddled. No Starch
Press, San Francisco (2014)

47. Mehran, P., Reza, E. A., Laleh, B.: “SPKT: secure port
knock-tunneling, an enhanced port security authentication
mechanism.” In: 2012 IEEE Symposium on Computers
Informatics (ISCI), 3, pp. 145–149 (2012)

48. Mahbooba, B., Schukat, M.: “Digital certificate-based port
knocking for connected embedded systems.” In: 2017 28th
Irish Signals and Systems Conference (ISSC), 6, pp. 1–5
(2017)

49. Koch, W., Bestavros, A.: “PROVIDE: hiding from auto-
mated network scans with proofs of identity.” In: 2016
Fourth IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), 10, pp. 66–71 (2016)

50. Lee, C.: “Bitcoin beacon: using the blockchain to gen-
erate random bits.” 7 (2017). [Online]. Available: http://
charlesjlee.com/post/20170716-bitcoin-beacon/

51. BTC.com.: “API Documentation—BTC.com.” (2018).
[Online]. Available: https://btc.com/api-doc

52. Wetzels, J.: “Open sesame: the password hashing com-
petition and Argon2.” Cryptology ePrint Archive, Report
2016/104 (2016). [Online]. Available: https://eprint.iacr.
org/2016/104

53. Biryukov, A., Dinu, D., Khovratovich, D., Josefsson,
S.: “The memory-hard Argon2 password hash and
proof-of-work function.” Working Draft, IETF Secre-
tariat, Internet-Draft draft-irtf-cfrg-argon2-03, 8 (2017).
[Online]. Available: http://www.ietf.org/internet-drafts/
draft-irtf-cfrg-argon2-03.txt

54. Biryukov, A., Dinu, D., Khovratovich, D.: “Argon2: new
generation of memory-hard functions for password hashing
and other applications.” In: 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS P), 3, pp. 292–302
(2016)

55. Saarinen, M.-J., Aumasson, J.: The BLAKE2 cryptographic
hash and message authentication code (MAC). Internet
Requests for Comments RFC Editor RFC 7693, 11 (2015)

56. Sokolovskiy, A.: “pyblake2—BLAKE2 hash function for
Python.” (2013). [Online]. Available: https://pythonhosted.
org/pyblake2/

57. Aumasson, J., Neves, S., Wilcox-O’Hearn, Z., Winner-
lein, C.: “Fast secure hashing.” (2017). [Online]. Available:
https://blake2.net/

58. Postel, J.: “Internet control message protocol.” Internet
requests for comments, RFC Editor, STD 5, 9 (1981).

[Online]. Available: http://www.rfc-editor.org/rfc/rfc792.
txt

59. Kirsch, J.: “Knock: Practical and secure stealthy servers,”
(2014). [Online]. Available: https://gnunet.org/

60. Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S.,
Molva,R.,Yung,M.: Systematic designof two-party authen-
tication protocols. In: Feigenbaum, J. (ed.) Advances in
Cryptology—CRYPTO ’91, pp. 44–61. Springer, Berlin
(1992)

61. Pierrot, C.,Wesolowski, B.:Malleability of the blockchain’s
entropy. Cryptology ePrint Archive, Report 2016/370,
(2016). [Online].Available: https://eprint.iacr.org/2016/370

62. “CVE-2011-1935,” Available fromMITRE, CVE-ID CVE-
2011–1935 (2011). [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2011-1935

63. “CVE-2014-4174, ”Available fromMITRE, CVE-ID CVE-
2014–4174 (2014). [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2014-4174

64. Scarfone, K., Mell, P.: Guide to intrusion detection and pre-
vention systems (idps). NIST Spec. Publ. 800(2007), 94
(2007)

65. Cimpanu, C.: Backdoored Python Library Caught
Stealing SSH Credentials 5 (2018). [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/
backdoored-python-library-caught-stealing-ssh-credentials/

66. NCSC, NCSC advice: malicious software used to
illegally mine cryptocurrency 2 (2018). [Online].
Available: https://www.ncsc.gov.uk/guidance/
ncsc-advice-malicious-software-used-illegally-mine-cryptocurrency

67. Zalewski, M.: Silence on the Wire: a Field Guide to Passive
Reconnaissance and Indirect Attacks. No Starch Press, San
Francisco (2005)

68. Manzanares, A .I., Márquez, J .T., Estevez-Tapiador, J .M.,
Castro, J .C .H.: Attacks on port knocking authentication
mechanism. In: Gervasi, O., Gavrilova, M .L., Kumar, V.,
Laganá, A., Lee, H .P., Mun, Y., Taniar, D., Tan, C .J .K.
(eds.) Computational Science and Its Applications—ICCSA
2005, pp. 1292–1300. Springer, Berlin (2005)

69. Sanai, D.: Detection of Promiscuous Nodes Using ARP
Packets (2001). [Online]. Available: www.securityfriday.
com/promiscuous_detection_01.pdf

70. Mileva, A., Panajotov, B.: Covert channels in TCP/IP pro-
tocol stack. Cent. Eur. J. Comput. Sci. 4(2), 45–66 (2014).
https://doi.org/10.2478/s13537-014-0205-6

71. Wendzel, S., Keller, J.: Hidden and under control. Ann.
Telecommun. Ann. des Télécommun. 69(7), 417–430
(2014). https://doi.org/10.1007/s12243-014-0423-x

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

http://arxiv.org/abs/cs.CR/0201003
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2018/601
http://charlesjlee.com/post/20170716-bitcoin-beacon/
http://charlesjlee.com/post/20170716-bitcoin-beacon/
https://btc.com/api-doc
https://eprint.iacr.org/2016/104
https://eprint.iacr.org/2016/104
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-argon2-03.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-argon2-03.txt
https://pythonhosted.org/pyblake2/
https://pythonhosted.org/pyblake2/
https://blake2.net/
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt
https://gnunet.org/
https://eprint.iacr.org/2016/370
https://nvd.nist.gov/vuln/detail/CVE-2011-1935
https://nvd.nist.gov/vuln/detail/CVE-2011-1935
https://nvd.nist.gov/vuln/detail/CVE-2014-4174
https://nvd.nist.gov/vuln/detail/CVE-2014-4174
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.ncsc.gov.uk/guidance/ncsc-advice-malicious-software-used-illegally-mine-cryptocurrency
https://www.ncsc.gov.uk/guidance/ncsc-advice-malicious-software-used-illegally-mine-cryptocurrency
www.securityfriday.com/promiscuous_detection_01.pdf
www.securityfriday.com/promiscuous_detection_01.pdf
https://doi.org/10.2478/s13537-014-0205-6
https://doi.org/10.1007/s12243-014-0423-x

	An authentication protocol based on chaos and zero knowledge proof
	Abstract
	1 Introduction
	2 Related work
	2.1 Mechanics and architecture
	2.2 Non-interactive or interactive server
	2.3 Multi-party and multi-channel involvement
	2.4 Replay protection

	3 Design and methodology
	3.1 Zero knowledge
	3.1.1 Identification protocols
	3.1.2 RFC 8235
	3.1.3 Discussion

	3.2 Chaos
	3.2.1 Chaotic systems
	3.2.2 Chaos-based cryptographic hashes
	3.2.3 Absolute-value chaotic hash function
	3.2.4 Discussion

	3.3 Random beacons
	3.3.1 Sources of randomness
	3.3.2 Bitcoin random beacon

	4 Experimentation
	4.1 Prototype I: ZKP and chaos
	4.1.1 Setup
	4.1.2 Chaos-based hash function
	4.1.3 Client actions
	4.1.4 Server actions
	4.1.5 Discussion

	4.2 Prototype II: chaos and random beacons
	4.2.1 Blockchain-based random beacon
	4.2.2 Client operations
	4.2.3 Server operations
	4.2.4 Discussion

	4.3 Prototype III: crucible
	4.3.1 Password-based key derivation
	4.3.2 Keyed hash
	4.3.3 Setup
	4.3.4 Client operations
	4.3.5 Server operations
	4.3.6 Discussion

	5 Evaluation
	5.1 Attack modelling
	5.1.1 Attacks on identification protocols
	5.1.2 Online attacks against the listening service
	5.1.3 Offline attacks against passwords
	5.1.4 Attacks against dependencies
	5.1.5 Reconnaissance and stealth

	6 Conclusion
	Appendix
	References

