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ABSTRACT Mobile cloud computing has emerged as a promising paradigm to facilitate computation-
intensive and delay-sensitive mobile applications. Computation offloading services at the edge mobile cloud
environment are provided by small-scale cloud infrastructures such as cloudlets. While offloading tasks
to in-proximity cloudlets enjoys benefits of lower latency and smaller energy consumption, new issues
related to the cloudlets are rising. For instance, unbalanced task distribution and huge load gaps among
heterogeneous mobile cloudlets are becoming challenging with respect to network dynamics and distributed
task offloading. In this paper, we propose ‘FairEdge’, a Fairness-oriented computation offloading scheme
to enable balanced task distribution for mobile Edge cloudlet networks. By integrating the balls-and-bins
theory with fairness index, our solution promotes effective load balancing with limited information at
low computation cost. The evaluation results from extensive simulations and experiments with real-world
datasets show that FairEdge outperforms conventional task offloading methods, it can achieve a network
fairness up to 0.85 and reduce the unbalanced task offload by 50%.

INDEX TERMS Mobile Cloudlets, Load balancing, Edge Computing, Fair Task Offloading

I. INTRODUCTION

In recent year, with the rapid development of mobile com-
puting technologies and pervasive proliferation of mobile
devices, mobile traffic data has been growing at an unprece-
dent rate. According to a latest white paper released by
Cisco [1], the global mobile traffic data will increase seven-
fold between 2017 and 2022, reaching 77 exabytes (1 exabyte
= 1018 bytes) per month. Notably, of all IP traffic in 2022,
over 50% will be Wi-Fi and smartphones will account for
nearly 60% traffic offloading. While mobile applications are
aggressively demanding in computation resources [2], [3],
mobile devices are still constrained by the limited capacities
in the batteries, memory and processers. As a consequence,
the enlarging gap between resource-constrained mobile de-
vices and computing-intensive applications has become a
great challenge.

It is believed that cloud computing is the ultimate solu-
tion to deal with this challenge. Generally, cloud computing

allows mobile users to offload computation tasks1, i.e., the
executable application phases, on to cloud computing infras-
tructures (i.e., IaaS, PaaS and SaaS). In the scenario of mobile
computing, by migrating computing intensive tasks to the
cloud, mobile devices can benefit from lower energy con-
sumption and enjoy the virtually unlimited computing capac-
ity. This is exemplified by a wide range of cloud computing
platforms, including Amazon Web Services, Microsoft Azure
and Google Cloud [4]. These cloud computing platforms
provide computing services that can be remotely accessed
by mobile users. However, existing studies have shown the
limitations of solely relying on offloading tasks to remote
clouds. Since mobile users access remote clouds via wide
area network (WAN), they may experience long latencies
caused by congested transmission over long distance between
end devices and clouds [4], [5].

1In the remaining of this paper, we will use the terms "task offloading"
and "computation offloading" interchangeably unless otherwise stated.
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Subsequently, the concept of mobile edge computing
(MEC) has been proposed to provide mobile users with in-
proximate computing resources, such as cloudlets [5], [6].
A mobile cloudlet is a trusted, resource limited cluster of
computing servers that are integrated with local are wireless
networks. By offloading tasks to a nearby mobile cloudlet,
the demands of fast and interactive response by mobile users
can be sufficiently satisfied with low-latency, one-hop and
high-bandwidth access. In comparison with remote cloud
computing resources, the mobile cloudlets at edge networks
can improve the task processing time significantly. As a
result, for mobile users of computation-intensive applica-
tions [7], [8] (e.g., virtual reality, image processing and
augmented gaming), they can enjoy faster response and better
Quality of Services [9], [10] (QoS) as well as Quality of
Experience [11] (QoE).

However, considering the capacity of each cloudlet is lim-
ited, a mobile cloudlet would become overloaded if travels in
an area where too many mobile users offload computation-
intensive tasks to it. In that case, above QoS and QoE for
mobile users can be seriously impacted, making the com-
munication cost and delay even higher than offloading tasks
to a remote cloud. Therefore, it is of great importance to
maintain load balancing among all mobile cloudlets at edge
networks, so that each cloudlet’s computing resource can be
fully exploited and mobile users can also have quick response
on their offloaded tasks.

Unfortunately, most existing solutions to improve per-
formance of edge networks overlook a fundamental issue,
i.e., the fairness of task offloading among mobile cloudlet-
s. Indeed, it’s difficult to achieve fairness-based balanced
task offloading among mobile cloudlets, as the mobility of
cloudlets is random and the network is intermittently con-
nected. Moreover, as the offloading behaviors of mobile users
are uncontrollable, the change in task load of each cloudlet
is highly dynamic, making it cost to probe the overall load
information in the cloudlet network for comparison and
decision making. Accordingly, two challenges need to be
formally addressed.

• First, load balancing should be achieved under the col-
laboration among mobile cloudlets. As the mobility-
enhanced cloudlets opportunistically encounter each
other, it is important for them to collaboratively offload
tasks to each other for the benefit of overall load balanc-
ing.

• Second, the fairness of the mobile cloudlet network
should be low-cost and light-weight to achieve. There-
fore, an universal metric should be adopted to mea-
sure the fairness based on load information of each
cloudlet. The fairness values should be further taken into
consideration when mobile cloudlets offload tasks to
each other. Moreover, the fairness metric of the cloudlet
network should be updated in each time interval, as load
information of all cloudlets are constantly changing.

In this paper, to deal with the aforementioned challenges,

we propose FairEdge, a fairness-oriented task offloading
scheme for collaborative mobile cloudlets at edge networks.
FairEdge integrates the balls-and-bins theory [12] with fair-
ness index [13] to achieve effective load balancing in mobile
cloudlet networks. Particularly, under FairEdge scheme, each
cloudlet only needs to query load information from two ran-
dom neighboring peers in each time interval. By comparing
the task load and fairness indexes of these two neighbors,
each cloudlet can make a practical decision on task offloading
to preserve both load balancing and fairness. Ultimately the
fairness of the mobile cloudlet network will converge and the
fairness-oriented load balancing can be achieved.

The main contributions of this paper are summarized as
follows.

• To the best of our knowledge, this work is the first to
investigate fairness issue in mobile cloudlet networks.
By fully considering the balancing property as well as
the fairness index, we propose FairEdge scheme based
on balls-into-bins theory and Jain’s fairness index. The
task load information of cloudlet is collected and com-
pared in a low-cost manner, which resolves the difficulty
in information collection from highly dynamic mobile
edge networks.

• The Jain’s fairness index is integrated as part of the
task offloading algorithm. By jointly considering the
task load information and fairness index of two targeted
neighbors, the proposed FairEdge scheme enables a
more reasonable offloading decision for each cloudlet,
and this further contribute to the overall load balancing
and fairness of the mobile cloudlet networks.

• We evaluate the proposed FairEdge with simulations
based on real-world datasets. The evaluation results
show that FairEdge can successful achieve load balanc-
ing with guaranteed performance, with a near-optimal
fairness index of 0.85 and an improvement of 50% in
balancing tasks among mobile cloudlets.

The rest of paper is organized as follows. We introduce
the related works and preliminaries on investigated issues in
Section II and Section III, respectively. Then, we introduce
system model and the problem in Section IV. We further
present our algorithm with detailed descriptions in Section V.
In Section VI, we present comprehensive simulation studies
with real-world datasets. At last, we discuss the future trend
of mobile edge computing in Section VII and conclude the
paper in Section VIII.

II. RELATED WORK
The comprehensive reviews on mobile edge computing can
be found in [14], [15]. Particularly, Nayyer et al. [6] com-
pared the mobile augmentation approaches [16], [17] for
resource optimization from the perspective of cloudlet-based
networks. Generally, existing studies for cloudlet load bal-
ancing can be categorized into two groups, i.e., optimal
cloudlet placement and computation offloading optimization.

For computation offloading optimization, the common
objects of offloading algorithms include optimizing device
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energy [18], [19], bandwidth utilization [20], [21], network
connectivity [22], cloud workload [23] and application la-
tency [24]. For instance, Sun et al. [25] proposed a latency-
aware workload offloading strategy to balance tasks from
mobile users to suitable cloudlets. Huang et al. [26], [27]
investigated the service provisioning problem under the
cloudlet-based network and proposed an adaptive update
scheme with the objective to maximize a weighted profit
for network operators. Yang et al. [28] jointly considered
security and sustainability issues of cloudlet networks and
proposed a novel task offloading scheme to avoid DDoS
attacks. Similarly, Fan et al. [29] proposed CTOM, a col-
laborative task offloading mechanism for mobile cloudlet
networks. Chen et al. [30] further investigated the task of-
floading problem in ultra-dense network and formulated the
offloading problem as a mixed integer non-linear problem.

For computation offloading in mobile edge computing
scenarios, Du et al. [31] investigated the computation of-
floading problem in a mixed fog/cloud system by jointly
optimizing the offloading decisions and allocation of compu-
tation resource, transmit power, and radio bandwidth, while
guaranteed fairness for each individual mobile user. Zhang et
al. [13] studied the fair task offloading for fog computing
networks, where the task delay and corresponding energy
consumption were formulated into the performance index
with fairness scheduling metrics. Moreover, Zhu et al. [32]
formulated the fair resource allocation problem in mobile
edge computing as a Nash bargaining resource allocation
game and further introduced the time-sharing variable to
solve the problem. Meskar et al. [33] designed a multi-
resource allocation mechanism by jointly considering domi-
nant resource fairness and external resources fairness. Differ-
ent from existing works, in this paper, we study the fairness
in a mobile edge network where mobility-enhanced cloudlets
collaborate to offload computation tasks to each other, with
the aim to achieve the fairness and load balancing for the
overall edge network.

III. PRELIMINARY
A. COMPUTATION OFFLOADING IN MOBILE EDGE
NETWORKS
With the proliferation of mobile devices and advances in
wireless communication technologies, mobile computing has
experienced a major shift from centralized cloud computing
to mobile edge computing [14]. In a typical mobile edge
network, edge cloud servers (e.g., cloudlets) are deployed at
fixed location or enhanced with mobility to be accessed by
nearby mobile users with proximate, high-speed and wireless
access. Subsequently, mobile users can offload computation-
intensive and latency-sensitive tasks to edge cloud servers
for processing, thus saving both energy and computation
resources on their own devices [15]. However, computation
offloading in mobile edge networks also brings new chal-
lenges in how to efficiently utilize edge computing resource
to enhance the overall performance of cloudlets. In this
work, we investigate how to improve resource sharing via

cooperation and collaboration among mobile cloudlets based
on the assumption that computation tasks can be offloaded
from one cloudlet to others for more efficient processing.
In particular, we adopt balls-into-bins theory for task distri-
bution among mobile cloudlets, to optimize the offloading
decisions in a distributed manner with low communication
and computation cost.

B. TWO-CHOICE BALLS-INTO-BINS PROCESS FOR
FAIRNESS-ORIENTED MOBILE EDGE CLOUDLETS

Balls-into-bins is a classic process to model task distribution
among a group of uniform servers [12]. In this study, we
adopt the load balancing theory of balls-into-bins process to
assist the fairness-oriented task offloading for IoT applica-
tions in mobile cloudlet networks. The original goal of balls-
into-bins processes is to allocate m balls into n bins, with
each ball to be thrown into a uniformly and randomly selected
bin at a probability of 1/n. Based on this allocation process,
the key criterion of load balancing in a balls-into-bins process
is the maximum load, i.e., the largest number of balls in any
bin M. First, when m = n and the task offloading is random,
with high probability the expectation of maximum load M
is [34]:

E(M) = Θ(
log n

log log n
). (1)

Meanwhile, if each ball has a chance to query the load
information from d random selected bins and then makes
allocation decision based on load comparison of above d
bins, the maximum load can be dramatically deceased. By
comparison, if each ball is allocated to the least loaded of
among d bins, the maximum load is with high probability
as [34]:

E(M) =
log log n

log d
+ Θ(1). (2)

Similarly, a more general case is when m� n, if the task
offloading is random, with high probability the maximum
load is [34]:

E(M) =
m

n
+ Θ(

√
m log n

n
). (3)

If the task offloading is based on the load comparison of d
random choices, with high probability the maximum load is
reduced to [34]:

E(M) =
m

n
+

log log n

log d
+ Θ(1). (4)

In this study, we use balls-into-bins process to model load
balancing with computation tasks (e.g., balls) and mobile
cloudlets (e.g., bins), and we explicitly adopt the ‘two-
choice’ paradigm for low-cost communication and compu-
tation. Accordingly, suppose that m user tasks are distributed
into nmobile cloudlets, as each task can be offloaded into the
least loaded of d = 2 cloudlets independently and uniformly.
Whenm = n, the maximum load of any cloudlet is with high
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probability at [35]:

E(M) = Θ(log log n). (5)

When m � n, the maximum load of any cloudlet is with
high probability at [35]:

E(M) =
m

n
+ Θ(log log n). (6)

Consider a mobile edge network where user tasks follow
an arrival rate λ are allocated into nmobile cloudlets, a balls-
into-bins process perfectly models the distributed computa-
tion offloading in a mobile edge cloudlet network. With the
random choice in task offloading, the maximum load under
an arbitrary round t is [36]:

E(M) = O(
1

1− λ
· log

n

1− λ
), (7)

where λ = λ(n) < 1. As we mainly focus on the task
redistribution among all mobile cloudlets, we further specify
the number of random choices as 2, to enhance the adapt-
ability and scalability of balls-into-bins theory. Accordingly,
when selecting a target for computation task offloading, each
mobile cloudlet can randomly and independently choose 2
nearby cloudlets within its inter-contact range as candidates.
As a result, with a fixed arbitrary round t, the theoretical
maximum load of any cloudlets becomes as [36]:

E(M) = O(log
n

1− λ
), (8)

where λ = λ(n) ∈ [1/4, 1).

IV. SYSTEM MODEL AND PROBLEM DEFINITION
In this section, we consider a mobile edge network for coop-
erative task offloading. First, we model the mobile cloudlet
and user task offloading. Then, we formulate the fairness-
oriented load balancing problem for a mobile edge network.

A. EDGE CLOUDLET MODEL
In this study, we consider a mobile edge network in an
urban area, which consists of: (1) a group of edge mobile
cloudlets that are integrated with AP for data transmission
and task processing, and (2) a number of mobile users that
periodically send computation tasks to nearby cloudlets for
task processing. First, we denote K edge mobile cloudlets
by {1, 2, ..., k}, the location for each cloudlet as (xi, yi), and
each mobile cloudlet is enhanced with random mobility to
have opportunistic encounter with other cloudlets and mobile
users. Moreover, we model each cloudlet i as an M/M/n
queue by referencing [37], i.e., each cloudlet i has ni servers
with the service rate µi. Specifically, a cloudlet i stores the
offloaded tasks as an FIFO queue, with the length of qti at
time t. In the edge cloudlet network, computation offloading
by mobile users to each cloudlet i is modeled as a Poisson
process, with task arrival rate λi as the number of tasks would
constantly change at each time interval. At time interval t, the
response time of a cloudlet i can be calculated as

⌈
qti+λi
µi

⌉
.

Moreover, each cloudlet i also stores information of the

number of tasks offloaded to another cloudlet j as sj,i.

B. TASK TRANSMISSION MODEL

In this paper, we assume that each cloudlet can connect
with other nearby cloudlets to exchange load information and
redirect tasks. As some mobile cloudlets may be overloaded
with user tasks, the tasks stored in them could experience
long processing delay, which could degrade the service ex-
perience for the corresponding mobile users. Therefore, the
task transmission model is formulated for mobile cloudlets
to collaboratively perform computation offloading for load
balancing. From the perspective of cloud service provides, it
is also important to enhance performance of mobile cloudlets
to make the edge network more efficient and sustainable.
The task transmission model is formulated for to address
above issues with following two considerations. First, only
when the distance between two cloudlets are within an inter-
contact rangeR, they can establish a intermittent connection.
Second, according to [38], the connecting probability of two
cloudlets i and j is computed as:

Pi,j(ta, tb) = e
− 1
αi,j

·t
, t ≥ 0, (9)

where αi,j is the pairwise connection rate of an exponential
distribution as f(t) = 1

αi,j
· e−

1
αi,j

·t
. Second, based on the

Jain’s fairness index [13], we calculate the value of fairness
index for each cloudlet i as:

f t(i) =

(
k∑
j=1

stj,i)

2

K
k∑
j=1

(stj,i)
2

, (10)

where K is the total number of edge cloudlets. Likewise, we
further calculate the value of fairness index for the mobile
edge network as:

F =

(
k∑
i=1

qti)

2

K
k∑
i=1

(qti)
2

, (11)

where qti is the number of loaded task in cloudlet i at time t.

C. PROBLEM DEFINITION

The fairness-oriented load balancing problem in a mobile
cloudlet network is defined as follows. Given a set of K
mobile edge cloudlet {1, 2,..., k}, where each cloudlet i with
service rate µi. Each cloudlet performs a random walk to
collect random user tasks with arrival rate λi, which follows
a Normal distribution. Meanwhile, for each mobile cloudlet
i, it has a fairness index value ft(i) at time interval t. When
two cloudlets encounter with each other, they collaboratively
share load information and fairness values, then, they would
perform fairness-oriented task offloading to enhance the load
balancing of the mobile edge network.
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Load Balancing Problem: The objective of fairness-
oriented task offloading is to minimize the differences among
task queues of all cloudlets, so that the user tasks can be
processed with the maximum utilization rate of edge cloudlet
computing resources. Here, we formulate the optimization
function with each cloudlet’s task queue by:

minimize max
i=[1,k]

{‖ qi − q̄ ‖ }, (12)

where q̄ is the averaged value of task queue of all mobile
cloudlets.

Fairness Optimization Problem: Maximizing the value
for each mobile cloudlet can further enhance the efficiency
and sustainability of a mobile edge network. Note that the
maximum fairness value in a task offloading process among
K mobile cloudlets is 1

K . On the contrary, the highest fairness
index value is 1, corresponding to the most balanced task
offloading result that all mobile cloudlet holds the same num-
ber of user tasks for processing. The fairness optimization
problem is as follows:

maximize min
i=[1,k]

{f t(i), f t(i) ≥ 1

K
}, (13)

where f(i) is the fairness value of cloudlet i at time interval
t based on Equation 10.

V. ALGORITHM DESIGN
A. OVERVIEW

To tackle the load balancing problem and fairness opti-
mization problem in mobile cloudlet networks, we propose
a heuristic algorithm called FairEdge. The major issue of
achieving fairness-oriented computation offloading for col-
laborative mobile cloudlets is determined by the opportunis-
tic encounters of mobile cloudlets. Apparently, it would be
costly in both computation and communication to control and
regulate task offloading process for all mobile cloudlets in
a centralized manner. In contrast, a distributed task offload-
ing scheme is more desirable, since each mobile cloudlet
can collaboratively share its load information and fairness
value nearby cloudlets. Moreover, with new task offloading
in each time interval, the load information of the whole
network constantly change. To collect above information and
broadcast it to all mobile cloudlet could result in intensive
overhead for the edge networks. Last but not least, for each
mobile cloudlet, it only needs load information from nearby
and contactable targets when making computation offloading
decisions. To address above concerns, we are inspired by the
‘balls-into-bins’ theory and further adopt the ‘two-choice’
paradigm to design the FairEdge algorithm. In general, we
have three basic assumptions over the mobile edge network.
First, each cloudlet i receives user tasks that follow a Poisson
process of λi, meanwhile, these tasks are executable and
offloadable by/to any other mobile cloudlet. Second, we
assume that the mobility trajectory of each cloudlet follows a
random walk process within the edge network area. At each
time interval, a mobile cloudlet is contactable to any other

cloudlet within its communication range. Third, according
to [39], the duration of time interval is long enough for
each mobile cloudlet to perform a complete computation
offloading.

With above considerations in mind, according to the mod-
els in Section IV, we devise an algorithm that enables each
mobile cloudlet i to randomly select d target cloudlets within
its communication range for computation offloading in each
time interval. By probing and comparing load information
from d nearby cloudlets, each mobile cloudlet i selects the
least loaded one as the target for computation offloading.
Then, the fairness index value of the target cloudlet will be
computed based on Equation 10 and further compared with
the fairness index value of the over all mobile cloudlet net-
work. The computation offloading decision will be made with
the above comparison result. Based on the above explanation,
we formally present FairEdge, the fairness-oriented compu-
tation offloading algorithm for mobile cloudlet networks as
in Algorithm 1.

B. FAIREDGE ALGORITHM DESIGN
The FairEdge algorithms is proposed to achieve fairness-
oriented task offloading in mobile cloudlet networks. To
begin with, we define the input and output of FairEdge ac-
cording to edge cloudlet model and task transmission model.
Next, the algorithm initializes the task queue qi and record
of task offloading Si for each cloudlet i as well as the time
interval t. Starting from the first time interval, FairEdge gen-
erates a random location for each cloudlet i to that performs
random walk and calculate its corresponding task load qi at
current time interval. At this stage, the fairness index value
f of the mobile edge network is also calculated using the
updated load information of all cloudlets. Next, each cloudlet
i will send probing message and add other cloudlets within
communication range into its contact list ci. To adopt balls-
into-bins process for task offloading, FairEdge uses d-choice
policy to randomly select d potential targets in its contact list
ci and further chooses the least loaded one as the computation
offloading target. By comparing the fairness index value
fchoicei of the chosen target with f , FairEdge will decide
whether to allow cloudlet i to perform task offloading to
choicei or not. If fchoicei ≥ f , the task offloading will be
successful and attributes related to cloudlet i and the target
cloudlet will be updated.

The above process will iterate for each mobile cloudlet
i and repeatedly execute for T time intervals. Finally, the
FairEdge will output the ultimate task queue qi and fairness
index value fi for each cloudlet i as well as the ultimate
fairness index value of mobile edge networks. Note that, the
d-choice here is presented for general computation offloading
with balls-into-bins theory. In practice, to reduce the commu-
nication cost and computation cost in task offloading process,
we apply the ‘2-choice’ paradigm. Thereby, the FairEdge
algorithm will only allow each cloudlet i randomly choose
2 contactable cloudlets for load comparison in each time
interval.
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At last, we brief discuss the theoretical performance of
FairEdge. First, as have been discussed in Section III-B, the
mobile cloudlet network fits the case where user tasks follow
an arrival rate λ into k cloudlets. With the random choice in
task offloading, the maximum load under an arbitrary round t
would be E(M) = O( 1

1−λ · log k
1−λ ), where λ = λ(n) < 1.

For the 2-choice process, if λ = λ(n) ∈ [1/4, 1), the maxi-
mum load of any cloudlets becomes as E(M) = O(log k

1−λ ).
Second, by leveraging ‘2-choice’ paradigm for selecting
computation offloading target, FairEdge only probes load
information from two contactable neighboring cloudlets for
comparison. According to [38] and [40], such process would
significantly reduce the complexity overhead to O(1) com-
pared with greedy offloading’s O(n) complexity.

Algorithm 1 FairEdge Algorithm

Input:
Number of cloudlets k, time slots T , random choices d;
servers, task arrival/service rates of cloudlet i: ni, λi, µi;
boundaries: a and b, contact range: r.

Output:
Each cloudlet’s: contact list ci, task load qi, fairness
index fi, overall fairness index: f , offload target: choicei,
offloading record: Si = s1,i, ..., sk,i.

1: Initialize qi=0, Si=∅, t=0;
2: while t ≤ T do
3: Generate random location for each cloudlet i as:

(xi, yi), where 0 < xi < a, 0 < y < b;
4: Calculate task load qi for i with m, µi and λi;
5: Calculate fairness index f with Equation 11;
6: Select offloading target for each cloudlet i:
7: while j ≤ K do
8: if (xi − xj)2 + (yi − yj)2 < r2 then
9: add j into ci as cji = 1;

10: end if
11: if ||ci|| ≥ d then
12: do: randomly choose d cloudlets from ci;
13: choicei is the least load in d chosen cloudlets;
14: else if 0 < ||cij || < d then
15: choicei is the least load in ||cij || cloudlets;
16: else if ||cij || = 0 then
17: skip task offloading for cloudlet i in this round;
18: end if
19: if fchoicei ≥ f then
20: cloudlet i performs task offloading to choicei;
21: end if
22: sj,i = sj,i + 1, qj = qj + 1;
23: update fi and fj ;
24: j = j + 1 (j 6= i);
25: end while
26: t = t+ 1;
27: end while
28: return task load qi, offloading record Si.
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FIGURE 1: The overall fairness values of each mobile
cloudlet in task offloading collaborations.

VI. EXPERIMENTAL STUDIES
In this section, we evaluate the performance of FairEdge with
simulations and trace-driven evaluations. We first introduce
the basic setups of simulation experiments and then present
the evaluation results.

A. SIMULATION STUDY
1) Simulation Setup
According to the mobile edge network model in Section IV
and FairEdge Algorithms in Section V, we develop a simula-
tion environment by referencing [29]. The fairness-oriented
task offloading scheme is simulated in a 20 km2 region, we
set the number of mobile cloudlets as 100, the total number
of time slots as 600, and the contact range of mobile cloudlets
as 20 m. For each cloudlet i, we set the number of its server
ni by sampling the Poisson distribution with a mean of 2
as well as its service rate µi by sampling from the Normal
distribution N (2, 1) > 0. Meanwhile, mobile user’s task
arriving rate at cloudlet i is sampled from the Normal dis-
tribution N (4, 2) > 0. We adopt three baseline methods for
comparison, including random task offloading, proportional
task offloading [40] and greedy task offloading [41]. We run
the simulation codes on a Dell laptop with Intel Core i5 CPU,
8GB RAM. Each simulation is executed for 20 times and we
report the final average results as follows.

2) Evaluation on Fairness Index
We first evaluate the fairness of task offloading by calculating
the fairness index of individual mobile cloudlet using Equa-
tion 10. The fairness index ranges from 0 to 1, with 0 as the
most unfair case and 1 as the purely fair case. As shown in
Figure 1, most of fairness index values of mobile cloudlets
under random offloading scheme and proportional offloading
scheme are below 0.6 and 0.7, respectively. In comparison,
the proposed FairEdge and greedy algorithm achieve an aver-
age value of fairness index of more than 0.8, showing that the
task distribution is well-balanced across all mobile cloudlets.
The greedy algorithm applies node traversal on each cloudlet
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FIGURE 2: Comparison of task offloading results in mobile cloudlets

when finding the least loaded and contactable neighbors
for task offloading. Therefore, it ensures both the balance
and fairness of task offloading at high communication cost.
Meanwhile, the proposed FairEdge adopts balls-into-bins
theory and ‘d-choice’ scheme in task offloading. It achieves
a close-greedy performance in fairness values while reducing
computation complexity to o(1), as each cloudlet only needs
to probe load information from two random neighbours and
make one-time comparison. Moreover, the fairness index
values of FairEdge at some cloudlets are higher than those
greedy offloading. In summary, the FairEdge can achieve a
network fairness up to 0.85 and reduce the unbalanced task
offload by 50% in comparison with other baseline methods.

3) Evaluation on Task Distribution

Second, we evaluate the task distribution results under differ-
ent task offloading algorithms. The bar plot of Figure 2(a)
shows the final task distribution after all offloading time
intervals. Obviously, under both random task offloading and
proportional offloading schemes, there are gaps (up to 30)
among different mobile cloudlets. In random task offloading,
a group of mobile cloudlets (number 15 to 50) are processing
much more tasks than others cloudlets (e.g., number 60 to
90). Meanwhile, under proportional offloading, the overload-
ed mobile cloudlets are distributed more dispersedly. The
above unbalance in task distribution would not only harm
the fairness of mobile cloudlet network but also degrade the
user experience, as the cloudlets require more time to process
all tasks. In comparison, the proposed FairEdge successfully
enhances the balance in task offloading, as most cloudlets
have nearly 10 tasks to process. The greedy method achieves
the best performance in balancing task distribution at the cost
of high communication and computation overheads, where
most cloudlets are offloaded with less than 10 tasks and no
cloudlet is idle.

To make a further comparison, we present the empirical
cumulative distribution results of task offloading in Fig-

ure 2(b). Here, the performance of FairEdge is very close to
that of greedy offloading, where over 90% mobile cloudlets
are offloaded with less than 10 tasks. In contrast, the task
offloading result by proportional method shows that almost
20% cloudlets are offloading with more than 15 tasks. In
addition, over 20% mobile cloudlets have more than 20
tasks to process under random offloading. Above evaluation
results validate the effectiveness of FairEdge, as it manages
to balance the task distribution by using fairness index and
‘2-choice’ paradigm in task offloading. In the following, we
further evaluate the FairEdge in real-world scenarios by using
mobility trace datasets for simulation.

B. EVALUATION ON REAL-WORLD TRACE DATASETS
To explore the feasibility of FairEdge in real-world scenarios,
we conduct trace-driven studies of mobile computation of-
floading with two real-world trace datasets. In brief, the two
trace datasets contain Bluetooth encounter records of mobile
nodes that can be used to emulate the communications among
mobile cloudlets at edge networks. The reasons of using two
different trace datasets for evaluations are: 1) to test the per-
formance of FairEdge in different network scenarios, where
cloudlets have different pattern of mobility; 2) to examine
the scalability of FairEdge with mobile cloudlet networks
of different scales. We present the details of each dataset
and corresponding evaluation results of mobile computation
offloading in the following.

1) MobiClique Dataset
Basic Setups. We adopt a real-world mobility dataset called
‘MobiClique’ [42] to emulate a random mobility of mobile
cloudlet for task sharing and computation offloading. This
dataset contains encountering records collected by a mobile
network software called MobiClique. MobiClique leverages
opportunistic contacts (e.g., Bluetooth encounters) between
smartphones to form a decentralized ad-hoc network for
information sharing [43]. The trace data of MobiClique

VOLUME 4, 2016 7



S. Lai et al.: Fairness-oriented Task Offloading Scheme for Collaborative Mobile Edge Cloudlets

0 10 20 30 40 50 60 70
0

50
100
150

T
as

ks Random

0 10 20 30 40 50 60 70
0

50
100
150

T
as

ks Proportional

0 10 20 30 40 50 60 70
0

50
100
150

T
as

ks FairEdge

0 10 20 30 40 50 60 70

Cloudlet Number

0
50

100
150

T
as

ks Greedy

(a) Task distribution in MobiClique dataset

0 10 20 30 40 50
Number of tasks

0

0.2

0.4

0.6

0.8

1

C
D

F

Random
Proportional
FairEdge
Greedy

(b) CDF of task offloading results in MobiClique dataset

FIGURE 4: Comparison of task offloading results in MobiClique dataset

FIGURE 3: Nodes and their encountering records in Mobi-
Clique [42] dataset.

was collected with 76 participants during SIGCOMM 2009
conference in Barcelona, Spain. We process the MobiClique
dataset as an edge mobile cloudlet network and visualize it
in Figure 3. Here, each vertex represents a mobile cloudlet,
an edge between two vertices represents a contact, and the
color of a vertex shows its active level in the network. In
total, there are 76 mobile cloudlets and 69,186 contacts in
MobiClique dataset. Moreover, the time stamp of the first
contact is 30 seconds and the time stamp of the last contact is
320,684 seconds. Based on above, we set the length of time
slot for computation offloading as 200 seconds, so that there
are totally 1,604 time slots. For each cloudlet i, we set its
number of servers, service rate and task arriving rate the same
as previous simulation setup.

Task Offloading Results. We conduct the mobile cloudlet
task offloading with MobiClique dataset for 100 times and
take the average values of task distributions and standard
deviations as the final task offloading results. The baseline
methods include random task offloading, proportional task

offloading and greedy task offloading. As shown in Fig-
ure 4(a), under random offloading and proportional offload-
ing, some particularly active mobile cloudlets are extremely
overloaded (e.g., offloaded with over 150 and even 200
tasks). While proportional offloading partially reduces the
number of overloaded cloudlets, the overall task distribution
is still highly imbalanced. In contrast, the proposed FairEdge
scheme and greedy offloading scheme show remarkable per-
formance in balancing the task distributions over the entire
network, where the task load of each individual cloudlet
is under 50. In addition, by combining ‘2-choice’ paradig-
m from balls-into-bins theory with Jain’s Fairness index,
FairEdge further achieves a slightly lower task load on each
cloudlet throughout the task offloading process.

The empirical cumulative distribution of task offloading
results with MobiClique dataset is presented in Figure 4(b). It
is clear that more than 80% of mobile cloudlets in FairEdge
and greedy schemes are offloaded with less than 25 tasks.
Meanwhile, more than 20% of mobile cloudlets in random
and proportional schemes have more than 30 tasks. The
above evaluation results show the effectiveness of fairness-
oriented task offloading scheme in a real-world scenario.
FairEdge can effectively achieve balanced task offloading on
real-world mobility trace dataset, where great disparity exists
in the active level of different cloudlets.

2) Haggle dataset

Basic Setups. We further evaluate the performance of
FairEdge in a larger mobility trace dataset, i.e., Haggle
dataset [44]. The Haggle dataset is under the project of
Koblenz Network Collection (KONECT) [45] for systematic
study on diverse networks. In short, the Haggle dataset con-
tains mobility and connectivity traces that were generated
from iMote devices. The iMote devices are small portable
devices to capture Bluetooth sightings (encounters) of their
carriers. We process and visualize the contact graph of
Haggle dataset in Figure 5, where all 274 vertices are with
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FIGURE 6: Comparison of task offloading results in Haggle dataset

FIGURE 5: Nodes and their encountering records in Hag-
gle [44] dataset.

28,244 edges. Similar to MobiClique dataset, each vertex
in the contact graph represents a mobile cloudlet, an edge
between two vertices represents a contact and the color of
each vertex shows its active level in the network. Different
from MobiClique dataset, the vertices in the Haggle contact
graph are more distributed, where a small number of vertices
form a ‘contact center’ (1-66) that links the rest edge vertices
with sparse contacts. In the following evaluations, all basic
setups are the same as evaluations with MobiClique dataset,
except for the time interval. In Haggle dataset, the beginning
and ending time stamps are 20,733 seconds and 364,094 sec-
onds, respectively. As the overall duration in Haggle dataset
is much longer than that of MobiClique, we set the length
of time slot as 3,600 seconds (i.e., 1 hour) for computation
offloading simulation.

Task Offloading Results. In evaluations with Hag-
gle dataset, we also conduct task offloading with mobile
cloudlets for 100 times. We take the average values of task
distributions and standard deviations as the final results. As

shown in Figure 6(a), a group of cloudlets with high contact
level take the majority of tasks in the Haggle network. This is
due to that the rest of each mobile cloudlet only has several
contact opportunities for task offloading, and target cloudlets
in these contacts are all in the group of the ‘contact center’
(cloudlets 1-66). As the cloudlet of number 80-274 have very
few encounters with others, most of them are offloaded only
several tasks or even none. To make it clearer for perfor-
mance comparison, we only provide the offloading results
for cloudlets 1-77. The random task offloading shows the
worst performance in balancing the task load in the contact
center, as several cloudlets are overloaded with nearly 100
tasks. While proportional task offloading slightly improves
the task distribution result, still there exist huge gaps (over
90 tasks) among cloudlet in the contact center. In contrast,
FairEdge and greedy task offloading schemes significantly
enhance the balance in task distribution over all cloudlets in
the contact center, where most of the cloudlets are offloaded
with less than 50 tasks. Besides, for the cloudlets with low
contact level, FairEdge still preserve their fairness by re-
balancing tasks from several overloaded cloudlets to others.
The empirical cumulative distribution of task offloading re-
sults with Haggle dataset is presented in Figure 6(b). This
CDF figure reveals that even there are huge gaps in contact
level among different mobile cloudlets, FairEdge can still
achieve balanced task offloading with the close performance
to the greedy algorithm.

VII. THE FUTURE DIRECTION

With the arrival of 5G, Mobile Edge Computing (MEC) is re-
garded as a promising technology for future communication
systems, by bringing the computing and storage resources to
the proximity to mobile users [46]. While mobile users can
save energy on their devices and reduce latency by offload-
ing computation-intensive tasks to nearby edge computing
servers, the task offloading problems in MEC remain as NP-
hard [47]. Such problems are generally formulated with typi-
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cal network settings and further solved with task offloading s-
trategies based on heuristic algorithms [48]. However, for the
coming 5G networks, a typical mobile edge node is expected
to have more than 2000 configurable parameters [49]. In that
sense, with the explosive growth of mobile data, existing
heuristic algorithms are not capable and scalable to tame
the complexity in highly dynamic computation offloading
environment.

To address such challenges, the future direction to op-
timize computation offloading in mobile edge computing
networks is to apply deep learning. The Deep Reinforce-
ment Learning (DRL) approaches can essentially eliminate
the need of solving combinatorial optimization problem-
s in MEC task offloading, thereby significantly reducing
the computational complexity [24]. For example, Huang et
al. [50] proposed DROO, a Deep Reinforcement learning-
based Online Offloading (DROO) framework that can learn
binary offloading decisions from the past experiences and
update offloading policy. Similarly, Li et al. [51] designed
a DRL-based optimization framework with Q-learning for
multi-use computation offloading and resource allocation in
MEC. Moreover, Zhao et al. [52] leveraged a multi-LSTM
based prediction model to assist task offloading strategy
and improve the performance of edge computing systems.
Ning et al. [53] proposed a distributed DRL-based solution
to minimize the offloading cost while satisfying the latency
constraints of users in 5G-enabled vehicular networks. To
this end, the above recent works have show a significant new
future direction of combining MEC with deep learning for
emerging 5G networks.

VIII. CONCLUSION
In this paper, we have proposed FairEdge, a Fairness-oriented
task offloading scheme to enable more balanced task sharing
and computation offloading for mobile Edge cloudlet net-
works. The FairEdge integrates balls-into-bins theory and
Jain’s fairness index for distributed task offloading by mo-
bile cloudlets. By adopting the ‘two-choice’ paradigm and
comparing fairness indexes between the source cloudlet and
the target cloudlet, We have developed the system model
of computation offloading in edge mobile cloudlet networks
and formally formulated the load balancing problem and
fairness optimization problem. We have further developed the
algorithm design of FairEdge and conducted intensive eval-
uations studies with both simulation and real-world mobility
trace datasets. The experimental results show that, FairEdge
successfully achieves load balancing with guaranteed per-
formance, with a near-optimal fairness index of up to 0.85
and improvement of 50% in comparisons with conventional
baseline methods.
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