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ABSTRACT Outlier detection over sliding window is a fundamental problem in the domain of streaming
data management, which has has been studied over 10 years. The key to supporting outlier detection is
to construct a neighbour list for each object, which is used for predicting which objects may become
outliers or are impossible to become outliers. However, existing work ignores the fact that, outliers amount
is usually small, in which it is unnecessary to construct neighbour-list for all objects when they arrive
in the window. It causes both high space and computational cost, which turns the solution infeasible
for working under edge computation environment. In this paper, we propose a novel framework named
PTAOD (Probabilistic Threshold-based Approximate Outlier Detection). Firstly, we propose an algorithm
for evaluating the probability of a newly arrived object becoming an outlier before it expires from thewindow,
using evaluating result for avoiding unnecessary candidate maintenance. In addition, we introduce a novel
index namely ZHB-Tree (Z-order-based Hash B-Tree) to maintain streaming data. Last of all, we propose
a novel algorithm to maintain candidate outliers. Theoretical analysis and extensive experimental results
demonstrate the effectiveness of the proposed algorithms.

INDEX TERMS Outlier detection, streaming data, probability guarantee, index.

I. INTRODUCTION
Continuous outlier detection over sliding window [1], [2] is a
fundamental problem, which has been deeply studied over ten
years. It has various applications, ranging from fraud detec-
tion, geological disasters warming to network traffic analysis
and health data monitoring. According to the description of
Hawkins [3], an object is described as an outlier if it behaves
not in accordance with the expectation, which should be paid
more attention.

Various of definitions [4] could be used for evaluating
whether a given object is an outlier. Among all of them,
distance-based outlier is one of the most widely used defi-
nition. Specially, let k and r be two parameters. An object o
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is labelled as an outlier if there are less than k objects within
the range of the maximum r from o.
In the edge computation environment [5], streaming data

only can stay in memory for a short time due to the limitation
of memory space. In addition, it is impossible to use much
space cost to support outlier detection. Therefore, in this
paper, we use sliding window model to depict the lifetime
of streaming data, and study approximate outlier detection
over streaming data. Without loss of generality, this window
can be either time- or count-based. In either case, the query
window has a fixed window size and a fixed slide (either
a time interval or an object count). Formally, in a count-
based window, it returns outliers in the query window that
contains n objects when the window slides; in a time-based
window, it returns outliers in the last n time units whenever
the window slides [6]. In other words, a continuous outlier
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detection could be expressed by the tuple 〈n, s, k, r〉, where
parameter s represents the number of objects that arrive
whenever the window slides or the duration in terms of time
units between two adjacent windows sliding [6]–[8]. The
continuous outlier detection returns objects satisfying that the
number of objects within a distance r from them are smaller
than another parameter k .

Due to the importance of outlier detection over streaming
data, many efforts have been proposed [9]–[13]. Their key
idea is using an index I to maintain streaming data in the
window. Based on I, when an object o arrives in the window,
they submit a range query on I, find objects within the range
of r , and check whether it is an outlier via counting the num-
ber of objects contained in the query region. If the answer is
yes, these algorithms construct an inverted-list for it, and use
k last arrived neighbours as the element of inverted-list. After
other objects arrive in the window, these algorithms update
inverted-list for o. In particularly, if elements in the inverted-
list are all arrived later than o, these algorithms regard o as
a safe object. The benefit is that only part of objects in the
window should be monitored, i.e., having chance to become
outliers. However, the algorithm has to spend high cost both
in space and computational in maintaining neighbours for
each object.

Besides exact algorithms, Angiulli et al [11].proposed an
approximate algorithm named Approx-storm. It makes a
tradeoff between space requirement and detection accuracy.
In this way, the algorithm could effectively reduce the mem-
ory cost, and return approximate results. However, this algo-
rithm still has to spend relatively high cost in processing
newly arrived objects. Note that, in most applications, only
a small number of objects have chance to become outliers,
it is unnecessary to spend relatively high cost in processing
each newly arrived cost especially under edge computing
environment.

In a nutshell, both exact and approximate algorithms have
to spend high cost in evaluating which objects have chance to
become outliers. All of the above algorithms are not suitable
for the situations where the capability of calculation and
space have limitation. They cannot effectively work under
edge computation environment. [14], [15].

Therefore, in this paper, we propose an approximate outlier
detection framework named PTAOD(short for probabilistic
threshold based approximate outlier detection). The key idea
behind it is, given a newly arrived object o and a threshold ρ,
we evaluate the probability of o becoming an outlier. If the
probability is lower than ρ, we regard it as a ρ-safe object,
and do not monitor it at all. Otherwise, we should construct an
inverted-list for it. Compared with other algorithms, we only
construct inverted-lists for a small number of objects. Obvi-
ously, both the space and computational cost could be reduced
a lot.
Challenges: However, it meets the following challenges.

For the first one, how to find a suitable threshold ρ. Note
that, if the threshold ρ is low, most objects could be pruned
directly, leading that fewer outlier could be found. Otherwise,

TABLE 1. The summary of notations.

we still have to construct inverted-list for many objects, and
the space cost could not be effectively reduced. For the second
one, it is also difficult to evaluate which objects have chance
to become outlier when they are arriving in the window.

To deal with the challenges above, the contributions of this
paper are as follows.
• We define a novel query called ρ-approximate con-
tinuous outlier detection over sliding window. ρ is a
threshold specified by users. It is used for bounding the
probability of identifying an outlier as inlier.

• We propose a novel index named ZHB-Tree. It is a two
level index. The first level of ZHB-Tree is a B-Tree, used
for maintaining the ID of these boxes. The second level
is a group of boxes. One advantage is we need not to
update the structure of ZHB-Tree in most cases when
objects flow into or expire from the window. In addition,
it is insensitive to the distribution of streaming data. Last
of all, we maintain the summary information of objects’
distribution in each box, leading that we can use, as small
as possible, cost for evaluating whether an object having
high probability to become an outlier.

• We propose a novel outlier candidate maintain algo-
rithm. It uses M-Tree for maintaining candidates. When
an object flows into or expires from the window,
we can efficiently findwhich candidates are impacted by
them, and update candidate set accordingly. In addition,
we could remove some objects from candidate set if they
cannot become outliers in a high probability.

The rest of the paper is organized as follows. Section II
reviews the previous work and basic concepts related to
ours. Then, Section III discusses the framework overview.
Section IV explains the index and the candidate maintenance
algorithm. Section V reports the results of our experimental
evaluation. Finally, Section VI concludes the paper with a
summary of our findings.

II. PRELIMINARIES AND DEFINITIONS
In this section, we first review the algorithms about the
problem of continuous outlier detection over streaming data.
Thereafter, we define the approximate outlier detection over
streaming data. Table1 summarizes the mathematical nota-
tions used in the paper.

A. RELATED WORK
Exact Algorithms:With the development of information sci-
ence and technology [16]–[23], outlier detection [24] over
sliding window has been deeply studied over ten years. Many
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scholars have studied the distance-based continuous outlier
detection algorithms. This definition is first introduced by
Knorr and Ng. Given the parameters k and r , according to
the definition of outliers, an object is a distance-based outlier
if it has less than k neighbours.
Yang at al. [13] propose a distance-based algorithm that

maintains all neighbors information for each object. Obvi-
ously, both the space cost and computing cost are all high.
Therefore, they improve it via using an important feature of
sliding window, that is, the ‘‘predictability’’ of the expiration
of each existing object.

Yamanishi at al. [12] introduce the distance-based outlier
detection algorithm named SmartSifter. It uses the online
discount learning algorithm to incrementally learn the proba-
bilistic mixturemodel. Considering the factor of drift, outliers
are calculated according to the probabilistic fitting value of
the learning mixture model. The online discount algorithm
can also be used to maintain the frequency of a set of attribute
values.

STORM [11] is another efficiently algorithm. Its key idea
is maintaining objects in the window via an index. In this
way, when a newly arrived object o flows into the window,
STORM submits a range query to find neighbours for o.
In addition, STORM updates neighbour list for each object.
In particularly, if an object has more than k succeeding neigh-
bors, we call it as a safe object. From then on, STORM needs
not to maintain neighbour list for it.

M.Kontaki at al. [10] propose a micro-clustering based
algorithm named MCOD. Its advantage is effectively reduc-
ing range query cost via using micro clustering. However,
it still cannot avoid the costly range query when newly arrived
objects flow into the window. In addition, range query cost is
increasing with data dimension d .
In [25], an algorithm named LOF (short for Local Out-

lier Factor) is proposed. Its key idea is measuring the local
deviation of input data points relative to their neighbors.
Cao at al. [9]propose a novel algorithm named Thresh-
LEAP via using another parameter s. Compared with other
methods, it first uses the lightweight probing operation to
gather minimal yet sufficient evidence for outlier detection.
Secondly, it uses the temporal relationships among stream
data points to prioritize the processing order among them
during the probing process. Based on these two principles,
they design an outlier detection strategy which is proven to
be optimal in CPU cost.
Approximate Algorithms: Angiulli et al [11]. introduce

an approximate algorithm Approx-storm. The Approx-storm
algorithm is derived from Exact-storm algorithm, which
makes a tradeoff between space requirement and detec-
tion accuracy. The algorithm effectively reduces the mem-
ory requirement via two measures, and returns approximate
results based on the estimation of statistical guarantee. How-
ever, the algorithm still needs to maintain each newly arrived
data object. In most application scenarios, object that deviates
from the expected behavior is only a small part of the entire
data set, and most data objects are inliers. Therefore, when

FIGURE 1. Outlier Detection over Sliding Window(k = 2).

the amount of data is large, it may fail to meet the real-time
requirements of users.

B. PROBLEM DEFINITION
At the beginning of this section, we first introduce the concept
of neighbour, S-Neighbour and distance-based outlier detec-
tion. For simplicity, the distance between o1 and o2, denoted
as D(o1, o2), is computed based on their Euclidean distance.
Definition 1 (Neighbour): Let o1 and o2 be two objects in

the data set D, r be a threshold. If the distance between o1
and o2 is smaller than r , we call o1 and o2 are neighbours of
each other.
Definition 2 (S-Neighbour): Let o1 and o2 be two

objects in the window W . If o1 arrives later than o2,
and D(o1, o2)≤ r , we call o1 as a S-Neighbour of o2.
Definition 3 (Continuous Distance-Based Outlier Detec-

tion): LetW be the sliding window with size n, q〈k, r〉 be an
outlier query. q monitors the window. When the window W
slides, q returns all outliers to the system.

Obviously, if an object o in the window has more than k
S-Neighbours, it cannot become an outlier before it expires
from the window. Otherwise, if an object o in the window
has less than k S-Neighbours, when some of its neighbours
expire from the window, it may become an outlier. Thus,
we should monitor, and report it as an outlier at the moment
its neighbour amount turns to less than k . In order to achieve
this goal, an efficient method is maintaining the last arrived k
neighbours for o. When one of these objects expires from the
window, we report o as an outlier. Take an example in Fig-
ure 1. Let the parameter k be 2, and the distance threshold be
R1.When the window slides fromWi toWi+1, o1 expires from
the window. At that moment, the distance between o3 and its
2-nearest neighbour, i.e., o4, is larger than R1. Therefore, o3
turns to an outlier.

We find that when an object arrives in the window, we have
to construct an inverted-list for it. In the worst cases, the total
space cost isO(nk). Obviously, the cost is so high that cannot
efficient work under edge computation environment. We also
find that, comparing with the whole object set, the number of
outliers is small, most objects can not become outliers before
they turn to meaningless. This obversion opens the door of
studying approximate distance-based outlier detection with
probability guarantee. In the following, we formally discuss
the problem definition.
Definition 4 (ρ-ACDOD): Let W be the sliding win-

dow with size n, q〈ρ, k, r〉 be an ρ− approximate outlier

VOLUME 8, 2020 1477



R. Zhu et al.: PTAOD: Novel Framework for Supporting Approximate Outlier Detection

detection. q monitors the window. When the window W
slides, for each outlier in the window, we report it as an outlier
with probability no less than ρ.
ρ-ACDOD allows algorithm identifies outliers as inliers

occasionally. Let o be a newly arrived object. If there are
many neighbours around o, we regard the region bounding
o as a high-density region. If the distribution of streaming
data is not changed a lot, objects located at such regions all
cannot become outliers in most cases. In other words, we can
predict which objects may become outliers via evaluating the
local density of these objects. If the density is high, we should
use the method discussed before to maintain it. Otherwise,
we avoid monitoring it. For simplicity, in the following, if an
object cannot become an outlier before it expires from the
window, we call it as a safe object. If an object cannot become
an outlier before it expires from the window with probability
no less than ρ, we call it as ρ−safe object. Otherwise, we call
it as an unsafe object. For this kind of objects, we should
associate them with neighbour-lists.

III. THE PPVBF FRAMEWORK OVERVIEW
In this section, we propose the framework PTAOD(short for
Probability Threshold based Approximate Outlier Detection)
for supporting ρ-ACDOD over sidling window. Let D be a
set of streaming data in the window. We first use Z-order
based method to construct an index named ZHB-Tree for
maintaining streaming data in the window. Based on the
index, we design the algorithm to summarize the distribution
of steaming data. In addition, we evaluate the probability of
objects becoming outliers in the future, construct neighbour-
lists for unsafe objects.

ZHB-Tree is a two level index. The first level index is
a B-Tree. The second level index is a group of non-empty
cubes. One advantage of ZHB-Tree is if a cube contains more
than two objects, we need not to delete it when an object in
it expires from the window. In addition, if a newly arrived
object is contained in this cube, we also need not to construct
a new cube for it. We will discuss the index details in the later
section.

When a newly arrived object o flows into the window,
we first access ZHB-Tree I , evaluate whether the probability
of o becoming an outlier is high. If the answer is yes, we use
the algorithm discussed in [9] to construct neighbour-list for
it. After o arrives in the window, if its corresponding cube
turns to a density region, we check whether existing objects
in this cube are ρ−safe object. If so, we delete these corre-
sponding neighbour-lists. Last of all, for each non-safe object,
we should check whether it is impacted by o. If the answer is
yes, we should update its neighbour-list. We will discuss the
searching and maintenance of the impacted objects later.

When an object o′ expires from the window, we first
remove it from the ZHB-Tree I . Next, we check whether
its corresponding cube turns to a non-density region. If the
answer is yes, we label it as a non-density cube. Thirdly, for
each non-safe object, we should check whether it is impacted
by o′. If so, we should update its impacted list.

Algorithm 1 The Framework Overview
Input: Window W , ρ outlier detection q, Newly object

o, expired object o′, ZHB-Tree I
Output: Outlier Set O

1 W ← W ∪ o, W ← W − o′;
2 insert(I , o);
3 delete(I , o′);
4 Im(O)← I-impact(I , o);
5 for i from 1 to |IM (O)| do
6 update(IM (O)[i]);
7 if IM (O)[i] = safe ∨ IM (O)[i] = ρ − safe then
8 Im(O)← Im(O)− IM (O)[i];

9 Im(O)← D-impact(I , o′);
10 for i from 1 to |IM (O)| do
11 update(IM (O)[i]);
12 if IM (O)[i] = outlier then
13 O← O ∪ IM (O)[i];

14 return;

IV. THE INDEX ZHB-TREE
In this section, we first discuss the ZHB-Tree structure. Next,
we discuss how to maintain ZHB-Tree when objects arrive in
the window or expire from the window. Lastly, we discuss the
algorithm about searching on ZHB-Tree.

A. THE ZHB-TREE DATA STRUCTURE
As is depicted in Figure 2, ZHB-Tree is a Z-curve [26], [27]
based two-level index. The first level of ZHB-Tree is a B-
Tree, which is used to maintain location relationship among
streaming data. The second level of ZHB-Tree is a group of
cubes. They are used for maintaining streaming data. Since
the first level is constructed based on the second-level index,
in the following, we first discuss the second level index.
Second-Level Index Construction: Let G be a grid file

that partitions the whole space into a group of cells with
size r

√
d
. The benefit is, for every two objects in a cube,

the distance between them must be smaller than r . Next,
we map all streaming data in the window into G according
to their position. For each non-empty cell c, we compute its
Z-address, and record how many objects are contained in it.
In particularly, if the number of objects in c is higher than
2k , we label it as a high-density cell. Otherwise, we label it
as a low-density cell. For this kind of cells, we use queues to
maintain objects in them.
First-Level Index Construction: Based on the computing

result, we are going to construct the first-level of ZHB-Tree.
In this step, we use a B-Tree to maintain the ID of these
cubes. After constructing, we use the final result to support
continuous outlier detection.
Example 1 (The Index ZHB-Tree): Take an example

in Figure 2. We use a grid file to partition the whole space
into a group of cells with size r

√
d
. The benefit is, for every

1478 VOLUME 8, 2020



R. Zhu et al.: PTAOD: Novel Framework for Supporting Approximate Outlier Detection

FIGURE 2. The Index ZHB-Tree Overview.

two objects in the same cell, we can make sure that the
distance between them is smaller than a threshold r . In order
to maintain these cells, we associate them with keys, and use
a B-Tree to maintain these cells.

B. THE ZHB-TREE MAINTENANCE
Once the index ZHB-Tree I is constructed, we use it for
processing newly arrived objects. Let oin be a newly arrived
object.Wefirst compute z(oin), i.e., the Z-address of oin. Next,
we search on ZHB-Tree I for finding whether existing a non-
empty cell c contained in the ZHB-Tree I . If the answer is
yes, we insert it into its corresponding cell. In particularly,
after insertion, if the number of objects in c is more than the
threshold 2k , we label it as a high-density cell. Otherwise,
we create a new cell, and insert it into the first level of ZHB-
Tree I .

Let oexp be an expired object. We first find which cube
c contains oexp, and then delete it from the ZHB-Tree I .
After deleting, if |c| ≤ k , we label it as a low-density cell.
Here, |c| refers to the number of objects contained in c. In
particularly, if c turns to an empty cell, we do not delete it
at once. By contrast, we use an integer, i.e., E(I ), to record
how many empty cells are contained in the ZHB-Tree I .
If E(I )≥ n

B , we remove all empty cells from the ZHB-Tree
I . One straightforward benefit is we could avoid frequently
updating ZHB-Tree.

As is depicted in algorithm 2, we first find the cell contain-
ing oin. If the searching result is null, we create a new cell,
and update the index ZHB-Tree I accordingly. Otherwise,
we insert oin into c directly. When handling expired object
oexp, we only focus on whether its corresponding cell turns to
empty. If the answer is yes, we update the ZHB-Tree I if the
number of empty cells achieve to a threshold.
Discussion: We want to highlight two points. First of all,

ZHB-Tree is not sensitive to the distribution of streaming
data. Evenmany objects are located in a small region, we need
not to construct many nodes for them. Secondly, ZHB-Tree
has a powerful ability to handle newly arrived or expired
object. If an object is inserted into a non-empty cell, we do
not need to update the structure of ZHB-Tree at all.

Algorithm 2 The ZHB-Tree Maintenance Algorithm
Input: ZHB-Tree I , newly arrived object oin, expired

object oexp
Output: ZHB-Tree I

1 Cell c← search(I , oin);
2 if c 6= ∅ then
3 c← c ∪ oin;
4 if |c| = 0 then
5 E(I )← E(I )-1;

6 if c = ∅ then
7 create(c),c← c ∪ oin;
8 insert(I ,c), update(I );
9 Cell c′← search(I , oexp);

10 c′← c′ − o;
11 if |c| = 0 then
12 E(I )← E(I )-1;
13 if E(I )≥ n

B then
14 batch-deletion(I );

15 return;

C. SEARCHING ON ZHB-TREE
In this section, we discuss the searching algorithm. Let oin
be a newly arrived object. The intuition behind is if oin has
many neighbours, it implies the region oin located is a density
region. Even the window slides many times, if the distribution
of streaming data is not changed a lot, the density of the region
that oin locates is still high. In this case, oin cannot become an
outlier within a relatively high probability. Before discussing
the algorithm, we first explain Theorem 1. For simplicity,
NL(o) refers to the neighbour amount of o.
Theorem 1: Let o be an object in the window. If its neigh-

bour amount is larger than ρ(k), it cannot become an outlier
before it expires from the window with probability ρ. Here,
m refers to the solution of k−mp

√
mp(1−p)

≥ ρ.
Proof: Let o be an object in the window, | NL(o)| be

m. If both k and m are big enough, we could use normal dis-
tribution N (np,

√
np(1− p)) to approximate Pr(NL(o) ≤ k)
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FIGURE 3. Searching On ZHB-Tree.

according to demovire-laplace theorem. Since Pr(NL(o) ≤ k)
≈ 8( k−mp

√
mp(1−p)

), if k−mp
√
mp(1−p)

≥ ρ, Pr(NL(o) ≤ k) ≥ ρ.
Theorem 1 implies if an object’s neighbour amount is

larger than a threshold m, it cannot become an outlier in
most cases. Therefore, when an object flows into the window,
we evaluate the probability of o becoming an outlier via
counting its neighbour amount. Take an example in Figure 3.
Since there are many objects contained in the cell ‘‘0110’’,
we need not to check objects contained in this cell.

Specially, let c be the cell containing o. We first compute
how many objects are contained in c. If the amount is larger
than ρ(k), the algorithm is terminated. Otherwise, we access
the neighbour cells of o. Here, we call a cell c′ as a neighbour
cell of c if the minimal distance between c and c′ is 0.
In order to access these cells, we first compute their IDs. Next,
we search on the ZHB-Tree for finding these cells. Thirdly,
we access these cells, find neighbours for o. The searching
algorithm is terminated in the following two cases: (i) we can
find m neighbours for o; (ii) we cannot find m neighbours for
o after searching all neighbour cells of o.

In case (i), we do not construct neighbour-list for o. In case
(ii), we should construct neighbour-list for o. Specially,
we select the k last arrived neighbours of o as elements of
o’s neighbour-list. Next, we insert o into the candidate set C .
In figure 3, since we can find enough neighbours for o, we can
terminate the searching after accessing two cubes.

D. THE CANDIDATE MAINTENANCE ALGORITHM
In this section, we will discuss how to maintain candidate set.
As is discussed before, we use a queue to maintain neigh-
bours for each candidate. When an object arrives in the win-
dow or expires the window, we check which candidates are
impacted by it, and then update their associated neighbour-
list.

In this paper, we use M-Tree [28], [29] to maintain candi-
dates. When an object oin arrives in the window, we search on
the M-Tree I ′ for finding which candidates are impacted by
oin. Here, an object o is impacted by oin if D(o, oin) is smaller
than r . Let IO be a set of objects impacted by o. For each of
them, we remove the element located at the top of neighbour-
list. In particular, for each object o ∈ IO, if its neighbour-list
turns to null, we remove o from the candidate set.

We want to highlight that since we allow neglect few
outliers based on problem definition, it opens the door of
removing candidate outliers from candidate set in advance.
Theorem 2 implies if there are enough neighbours whose
arrived moment are near to o, o also cannot become an outlier
with high probability. For simplicity, let o be a candidate,
n1(o) and nk (o) be the first arrived and last arrived neighbour
contained in NL(o). SW T (nk (o))

T (n1(o))
refers to a sub-window, which

satisfies that the first arrived object is n1(o), and the last
arrived object is nk (o).
Theorem 2: If nk (o) arrives later than o, and T (nk (o)) −

T (n1(o)) < m, o also cannot become an outlier before it
expires from the window with probability no less than ρ.

Proof: Let R be a circle with radius r and center
p(o). We could use normal distributionN (mp,

√
mp(1− p)) to

approximate Pr(NL(o) ≤ k) according to demovire-laplace
theorem, where p = k

m after enough objects in the window
expire the window. Here, m refers to the number of objects
in the sub-window. Since Pr(NL(o) ≤ k) ≈ 8( k−mp

√
mp(1−p)

),

if k−mp
√
mp(1−p)

≥ ρ, we can find a suitable m via computing
k−mp
√
mp(1−p)

= ρ.
When an object expires from thewindow,we first search on

the M-Tree I ′ for finding which objects are contained in the
searching region. Let IO′ be the search result set. For each o ∈
IO′, if the object locates at the top of NL(o) is o, we remove o
from the candidate set C , and then insert it into the outlier set.
Note, we could use the similar method to maintain outliers in
the outlier set. For the limitation of space, we skip the details.

V. EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to demon-
strate the efficiency of PTAOD. The experiments are based
on three real datasets. In the following, we first explain the
settings of our experiments, and then report our findings.

A. EXPERIMENTAL SETTING
Data Set: In total, three real datasets are used in our experi-

ments, including Stock, Tao and HPC. They contain 1048575
1-dimensional records, 575648 3-dimensional records, and
1289534 7-dimensional records respectively.
Experiment Method: In the implementation, we insert all

records into a buffer. After insertion, we use two pointers
for simulating the window sliding. Specially, when the win-
dow slides, s objects flow into the window, and the other s
objects expired from the window. We simulates it via moving
these two pointers. After processing all objects in the buffer,
we compute the average CPU time and memory we consume.
Parameters Setting: In our experiments, we measure the

following metrics by varying different parameters of the
system, which are response time,space cost. Here, response
time refers to the total time we consume after we process
1KB objects. Space cost refers to the memory we consume.
In this paper, we consider five parameters, i.e., the window
size n, the number s of new objects that slide into the win-
dow whenever the window slides. In addition, we should
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FIGURE 4. Running time comparison under different window size.

FIGURE 5. Space cost comparison under different window size.

TABLE 2. Parameter settings.

evaluate the impact of parameters k and r to the algorithm
performance. Last of all, we should evaluate the impact of
parameters ρ to the algorithm performance. The parameter
settings are listed in Table 2 with the default values bolded.
All the algorithms are implemented with C++, and all the
experiments are conducted on an CPU i7 with 16GBmemory,
running Microsoft Windows 7.

B. ALGORITHM PERFORMANCE
In this section, we compare our proposed framework PTAOD
with that of MCOD and LEAP. First of all, we evaluate their
performance under different window size. Other parameters
are default values.

As is depicted in Figure 4, PTAOD performs best of all.
The reason behind is, for one thing, we use ZHB-Tree to
maintain streaming data in the window. When we insert an
object o into the window, we need not to update the structure
of ZHB-Tree. By contrast, we only need to find the cell
containing o. For another, compared with other methods,
we only need tomaintain a small number of candidates. In this
way, when the window slides, we only need to update fewer
candidates’ neighbour list.

For the space cost, as is depicted in Figure 5, PTAOD
also performs best of all. The reason behind is we only main-
tain a small number of objects’ neighbour list. In addition,

when updating candidates’ neighbour list, if we find that
the probability of an object becoming outlier is small than
a threshold, we can remove this candidate from candidate set
directly.

As is depicted in Figure 6, PTAOD performs best of all.
We also find that with the increasing of s, their performance
all turn to better. The reason behind is the larger the s is,
the more the objects having the same arrived order. It leads
that we need to construct neighbour list for fewer candidates.
Thus, when the parameter s is large enough, the performance
of these three algorithms are roughly the same. However,
it implies our proposed framework is unsensitive to the
parameter s.

The space cost of PTAOD is the smallest of all. Similar
with the reason discussed before, we onlymaintain neighbour
list for a small number of candidates, leading that the space
cost overall could be reduced a lot(See Figure 7).

As is depicted in Figure 8, PTAOD performs best of all.
We also find that, the running time of these algorithms are
all increasing with the parameter k . Another observation is
that, as k increases, the running time of both MCOD and
MESI goes up rapidly. This is because when the k becomes
large, we should maintain more candidates. Because our pro-
posed PTAOD only maintains a small number of candidates.
Therefore, PTAOD is not sensitive to the parameter k , and
can efficiently work under different parameter k .

As is depicted in Figure 9, PTAOD also consumes the
smallest space cost of all. Similar with the reason discussed
before, although the space cost of these three algorithms are
all increasingwith the parameter k , PTAOD increases slowest
of all. Besides the reason discussed before, another reason is
we can delete a candidate from candidate set before it turns
to a safe object in many cases.
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FIGURE 6. Running time comparison under different s.

FIGURE 7. Space cost comparison under different s.

FIGURE 8. Running time comparison under different R.

FIGURE 9. Space cost comparison under different R.

As is depicted in Figure 10, with the increasing of the
parameter r , PTAOD performs best of all. The reason behind
is ZHB-Tree could self-adaptively adjust the cell size accord-
ing to the parameter r . In other words, the higher the param-
eter r is, the larger the size of the cell size. Let o be a newly

arrived object. In many cases, we can terminate the searching
via counting the number of objects in the cell that o locates.
Since this cost is only O(1), in many cases, we can use O(1)
cost for evaluating whether o could not become an outlier
with high probability.
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FIGURE 10. Running time comparison under different k .

FIGURE 11. Space cost comparison under different k .

FIGURE 12. Running time comparison under different ρ.

FIGURE 13. False negative rate comparison under different ρ.

For the space cost, as is depicted in Figure 11, PTAOD
also performs best of all. Similar with the reason discussed
before, we only need to maintain the neighbour-lists for parts
of non-safe objects.

As is depicted in Figure 12, with the decreasing of the
parameter ρ, the CPU time of PTAOD is reduced. The reason

behind it is the smaller the ρ is, the more outliers we could
ignore. However, we also find that when ρ is small enough,
the running time of PTAOD turns to reduced slowly. The
reason is we should spend parts of time to maintain index.

As is depicted in Figure 13, with the decreasing of the
parameter ρ, the false negative rate of PTAOD is increased.
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The reason behind it is the smaller the ρ is, the more objects
we ignored. Some of them may become outliers sometimes.
However, we also find that when ρ is small enough, the false
negative rate of PTAOD turns to increased slowly. The reason
is there are only a small part of objects that may become
outliers. In addition, if the distribution of streaming data is
not changed a lot, an object located at a high-density region
can not become outlier in most cases.

VI. CONCLUSION
In this paper, we propose a novel framework named PTAOD.
It uses the fact that if objects density in a region is high,
objects in this region cannot become an outlier with a high
probability. Firstly, we propose a novel index named ZHB-
Tree to maintain streaming data, and summarize the distribu-
tion of streaming data in the window. Based on ZHB-Tree,
we propose a novel algorithm to support approximate outlier
detection. Theoretical analysis and extensive experimental
results demonstrate the effectiveness of the proposed algo-
rithms.
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