
Investigations into Decrypting
Live Secure Traffic in Virtual

Environments

Peter William Lindsay McLaren

A thesis submitted in partial fulfilment of the requirements
of Edinburgh Napier University, for the award of Doctor of

Philosophy

July, 2019

i

COPYRIGHT

Copyright in the text of this thesis rests with the Author. Copies
(by any process) either in full or of extracts may be made only by
instructions given by the Author and lodged in the Edinburgh
Napier University Library. Details may be obtained from the
Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made by such instruc-
tions may not be made without the permission (in writing) of the
Author.

The ownership of any intellectual property rights which may
be described in this thesis is vested in the Author, subject to any
prior agreement to the contrary, and may not be made available
for use by third parties without the written permission of the
Author, which will prescribe the terms and conditions of any such
agreement.

Further information on the conditions under which disclosures
and exploitation may take place is available from the Dean of the
School of Computing.

ii

DECLARATION

No portion of the work referred to in this thesis has been sub-
mitted in support of an application for another degree or qualifi-
cation of this or any other university or other institute of learning.

iii

ACKNOWLDEGMENTS
The PhD research has been a thoroughly stimulating experience
with many peaks and troughs along the way. I would not have
completed the work without support from my family, friends, and
my supervisory team at Edinburgh Napier University.

I would like to acknowledge my late parents who instilled my
strong desire for learning. I am most grateful to my wife, Penny
McLaren, for her commitment to my reaching this stage. I would
like to acknowledge her encouragement throughout as well as her
shouldering significant household activities during this process.
Other family members and friends, such as ’Oxford comma Phil’,
have also provided encouragement and recommendations when I
might otherwise have yielded.

I have had the benefit of an extended supervisory team as well
as an independent panel chair, Professor Hazel Hall. I would like
to thank you all. I appreciate the continued encouragement, sup-
port, and reflection over many supervisory sessions from Doctor
Gordon Russell, in particular once I returned to Australia. Thanks
to Doctor Zhiyuan Tan for seeding the VMI idea, providing Uni-
versity of Technology Sydney contacts, and for his interesting,
thought-provoking viewpoints. Finally, my profound thanks to
Professor William Bill Buchanan OBE for his energy, excitement,
and lateral thinking abilities that encouraged me to explore new
opportunities.

Contents

ABSTRACT xiv

1 Introduction 1
1.1 Context . 1
1.2 Significance . 2
1.3 Approach . 5
1.4 Research Questions 8
1.5 Ethics . 9
1.6 Contributions . 12
1.7 Aims and Objectives 14
1.8 Organisation of Thesis 16
1.9 Publications . 18

2 Background and Theory 20
2.1 Introduction . 20
2.2 Cryptography in Digital Networks 21
2.3 Symmetric Block Algorithms 22

2.3.1 Modes of Operation 23
2.3.2 Algorithms 25
2.3.3 Advanced Encryption Standard 27

2.4 Symmetric Stream Algorithms 29
2.4.1 Algorithms 30
2.4.2 ChaCha20 31

2.5 Conclusions . 33

iv

CONTENTS v

3 Literature Review 35
3.1 Introduction . 35
3.2 Implementation Attacks 36

3.2.1 Memory 38
3.2.2 Virtualised Environments 41

3.3 Virtual Machine Monitoring 41
3.3.1 Virtual Machine Introspection 44
3.3.2 Disk Introspection 47
3.3.3 Memory Introspection 48
3.3.4 Network Introspection 51
3.3.5 Monitor Frequency 53

3.4 Conclusions . 55

4 MemDecrypt: A Framework for Decrypting Secure
Communications 57
4.1 Introduction . 57
4.2 Requirements Definition and Terms 58
4.3 Design . 61

4.3.1 Description 61
4.3.2 Data Collection Component 64
4.3.3 Memory Analysis Component 66
4.3.4 Decrypt Analysis 71

4.4 Construction . 72
4.4.1 Hypervisors 72
4.4.2 Data Collection 76
4.4.3 Memory Analysis 80
4.4.4 Decrypt Analysis 81

4.5 Evaluation . 82
4.5.1 Test Criteria 83
4.5.2 Test Approach 84
4.5.3 Test Environment 86

4.6 Extensibility . 86
4.7 Conclusions . 88

CONTENTS vi

5 Determining Insider Attack Data Exfiltration 90
5.1 Introduction . 90
5.2 SSH Protocol . 91

5.2.1 Set-up Phase 92
5.2.2 Authentication Phase 95
5.2.3 Connection Phase 96
5.2.4 Secure File Transfer 97

5.3 SSH Extension Design 100
5.3.1 Data Collection 101
5.3.2 Memory Analysis 101
5.3.3 Decrypt Analysis 103

5.4 SSH Extension Implementation 104
5.4.1 Data Collection 104
5.4.2 Memory Analysis 105
5.4.3 Decrypt Analysis 107

5.5 Evaluation . 107
5.5.1 Experimental Set-up 108
5.5.2 Experimental Results 109
5.5.3 Analysis 113

5.6 Conclusions . 114

6 Decrypting Web Traffic 117
6.1 Introduction . 117
6.2 Background . 118

6.2.1 Protocol Versions 118
6.2.2 Handshake, Change Cipher Specification, Ap-

plication Data 120
6.2.3 Record Protocol 122

6.3 TLS Extension Design 125
6.3.1 Data Collection 125
6.3.2 Memory Analysis 126
6.3.3 Decrypt Analysis 130

6.4 TLS Extension Implementation 131

CONTENTS vii

6.4.1 Data Collection 131
6.4.2 Memory Analysis 132
6.4.3 Decrypt Analysis 135

6.5 Evaluation . 135
6.5.1 Experimental Set-up 136
6.5.2 Experimental Results 137

6.6 Conclusions . 141

7 Discovering Malware ActivityWithout Prior Knowl-
edge 143
7.1 Introduction . 143
7.2 Sourcing Malware Samples 145
7.3 OpenSSL Extension Evaluation 148
7.4 Windows Library Extension Design 151
7.5 Windows Library Extension Evaluation 153
7.6 Conclusions . 156

8 Deriving ChaCha20 Key Streams From Targeted
Memory Analysis 159
8.1 Introduction . 159
8.2 Background . 160

8.2.1 ChaCh20 Description 160
8.2.2 ChaCha20 Implementations 161

8.3 ChaCha20 Extension Design 162
8.4 ChaCha20 Extension Implementation 164
8.5 Evaluation . 165

8.5.1 Experimental Set-up 167
8.5.2 Experimental Results 168

8.6 Conclusions . 171

9 Conclusions and Future Work 173
9.1 Key Conclusions 173
9.2 Achievement of Aim and Objectives 174

CONTENTS viii

9.3 Key Contributions 176
9.4 Future Work . 177

9.4.1 Investigative Gaps 177
9.4.2 Potential Research Areas 178

A Package Dependencies 218

B Hypervisor Research Review 219

C NetScantbl Plugin Output 220

D Malware Client Downloads 221

List of Figures

1-1 Investigative Approach 8

2-1 CBC Mode Encryption and Decryption Process . . 24
2-2 CTR Encryption and Decryption Process 25
2-3 AES Encryption Process 29
2-4 ChaCha Encryption Process 31

3-1 Decryption Approaches 37

4-1 High-level architecture 62
4-2 Framework Activity Flow Diagram 64
4-3 Analysis Framework Component Interaction 64
4-4 Guessing Entropy 69
4-5 Shannon Entropy 69
4-6 Cumulative Entropy Distribution Example 70

5-1 SSH Handshake 92
5-2 SSH Client Key Exchange 94
5-3 SSH Message Flow 99
5-4 SSH Decrypt Output 110
5-5 SSH Analysis Durations for Variable Key Lengths . 112
5-6 SSH Analysis Durations for Variable Modes 112
5-7 SSH Decrypted Session 116

6-1 TLS AES-GCM Application Data Messages 124
6-2 TLS AES-CBC Application Data Messages 125
6-3 TLS Extension AES Data Collection Flow 126

ix

LIST OF FIGURES x

6-4 TLS Extension GCM Memory Analysis Flow . . . 127
6-5 TLS 1.2 AES-GCM Application Data Message . . 132
6-6 TLS 1.2 Implicit AES-GCM IVs 133
6-7 TLS 1.2 AES-GCM Candidate Key Blocks 133
6-8 TLS 1.3 AES-GCM IVs 135
6-9 TLS 1.2 AES-GCM Memory Analysis Log 139
6-10 TLS 1.2 GCM and CBC Mode Analysis Durations 140

7-1 Zbot Fake . 146
7-2 Gozi Data Theft 147
7-3 TorrentLocker/Crypt0L0cker Warning 148
7-4 Zbot Application Data Message 150
7-5 Windows Explorer High-entropy Regions 152
7-6 Zbot Decrypt Log 155
7-7 Zbot Server Log 156

8-1 ChaCha20 SSH Base Structure in Memory 169
8-2 ChaCha20 TLS Base structure in Memory 169
8-3 ChaCha20 SSH Decrypt Output Example 170
8-4 ChaCha20 TLS Memory & Decrypt Analysis Logs 170
8-5 ChaCha20 SSH Analysis Durations vs File Size . . 171

C-1 Netscantbl Output 220

List of Tables

3-1 VM Introspection Research Summary 46

4-1 Logical Component Mapping to Requirements . . . 63
4-2 Hypervisor Comparison 76
4-3 Entropy Thresholds 81
4-4 Virtual Machine Configurations 87

5-1 Applied SSH Algorithm Types 94
5-2 SFTP Write File Message Types 100
5-3 SSH Encrypted Payload Format 103
5-4 Windows 7 vs Windows 10 Durations (secs) 110
5-5 AES-CTR Upload File Size Analysis Durations (secs)111
5-6 AES-CTR Ubuntu Server Analysis Durations (secs) 113

6-1 TLS Version Usage Statistics 119
6-2 TLS 1.2 Handshake Phase Messages 121
6-3 TLS 1.2 GCM Key Block Fields 123
6-4 AES-GCM Application Data Message Format . . . 123
6-5 AES-CBC Application Data Message Format . . . 124
6-6 Key Block Field Example 134
6-7 TLS Analysis Duration Means - Operating Systems

(secs) . 137
6-8 TLS Analysis W10 Duration Means - Other Varia-

tions (secs) . 138
6-9 AES-GCM 256-bit Key Analysis Duration Means

(secs) . 138

xi

LIST OF TABLES xii

7-1 Malware Samples 146
7-2 Malware Decrypt Analysis Output Examples . . . 157
7-3 Malware Extension Analysis Durations (secs) . . . 158

8-1 ChaCha SSH & TLS Memory Analysis Durations . 171

List of Algorithms

2.1 AES Substitute . 27
2.2 AES Shift Rows . 28
2.3 AES Mix Column 28
2.4 AES Add Round Key 28
2.5 ChaCha20 Quarter round 32
2.6 ChaCha20 Keystream 33

5.1 SSH AES-CTR IV Memory Analysis 106

6.1 TLS 1.2 AES-GCM Key Block Memory Analysis . . 128
6.2 TLS 1.3 AES-GCM IV Memory Analysis 130

7.1 Windows Library TLS Memory Analysis 154

8.1 ChaCha20 Memory Analysis 165
8.2 ChaCha20 Cryptographic Artefact Discovery 166

xiii

ABSTRACT

Malicious agents increasingly use encrypted tunnels to commu-
nicate with external servers. Communications may contain ran-
somware keys, stolen banking details, or other confidential infor-
mation. Rapid discovery of communicated contents through de-
crypting tunnelled traffic can support effective means of dealing
with these malicious activities.

Decrypting communications requires knowledge of cryptographic
algorithms and artefacts, such as encryption keys and initialisa-
tion vectors. Such artefacts may exist in volatile memory when
software applications encrypt. Virtualisation technologies can en-
able the acquisition of virtual machine memory to support the
discovery of these cryptographic artefacts.

A framework is constructed to investigate the decryption of poten-
tially malicious communications using novel approaches to identify
candidate initialisation vectors, and use these to discover candi-
date keys. The framework focuses on communications that use the
Secure Shell and Transport Layer Security protocols in virtualised
environments for different operating systems, protocols, encryp-
tion algorithms, and software implementations. The framework
minimises virtual machine impact, and functions at an elevated
level to make detection by virtual machine software difficult.

The framework analyses Windows and Linux memory and val-

xiv

ABSTRACT xv

idates decrypts for both protocols when the Advanced Encryp-
tion Standard symmetric block or ChaCha20 symmetric stream
algorithms are used for encryption. It also investigates commu-
nications originating from malware clients, such as bot and ran-
somware, that use Windows cryptographic libraries.

The framework correctly decrypted tunnelled traffic with near cer-
tainty in almost all experiments. The analysis durations ranged
from sub-second to less than a minute, demonstrating that de-
cryption of malicious activity before network session completion
is possible. This can enable in-line detection of unknown mali-
cious agents, timely discovery of ransomware keys, and knowledge
of exfiltrated confidential information.

Chapter 1

Introduction

1.1 Context

The Internet is a primary communications medium for businesses,
organisations, and individuals. It also supports malicious activ-
ity. Internet communications may be sent in the clear where an
initiator, a client, and a receiver, a server, are unconcerned with
other parties knowing contents of the exchange. Increasingly, the
privacy of communications is a key concern for Internet users [1]
that is generally realised with secure communications protocols.
These protocols use encryption to provide information confiden-
tiality, and with the growth of security awareness amongst users
and developers, encryption is an increasingly common communi-
cations feature so that now more Internet traffic is encrypted than
unencrypted [2] [3]. Encryption is, thus, a key facet of Internet
communications for benign or malign intent.

Benign and malicious users may benefit from strong encryption
in secure communications protocols. For benign users, encryption
provides confidence that third parties cannot access the confiden-
tial information contained in on-line activities such as banking,
purchasing of goods, and emailing. Encrypted channels also en-
able malicious actors to hide nefarious activities. Examples of ma-
licious activities are attackers who obtain access to a company’s

1

CHAPTER 1. INTRODUCTION 2

servers and exfiltrate confidential data [4] [5], malware applica-
tions running on desktops or servers communicating banking in-
formation with external controllers [6], or criminals using messag-
ing applications to conduct conversations [7].

Information misuse is not restricted to malicious actors, as an
authorised user may upload confidential data via a secure channel
to an external server for later investigation [8]. Although such a
transfer may be benign, the transfer might be against company
policy in case, for instance, they result in General Data Protection
Regulation (GDPR) breaches.

While security analysts may be able to identify harmful com-
munications without knowledge of encrypted contents [9] [10], de-
coding such channels and understanding message contents may
enable information owners to take measures that minimise pos-
sible damage. Obtaining message contents is problematic and is
the focus of these investigations.

Principal protocols used in secure communications are Trans-
port Layer Security (TLS) and Secure Shell (SSH). Both TLS [11]
and SSH [5] enable the types of misuse described earlier, are well-
defined, and extensively used [12]. Decryption of malicious com-
munications using these protocols can therefore benefit security
analysts. Dealing with misuse in live TLS and SSH communica-
tion sessions may require rapid decryption with little information
as malicious users seek to evade detection with short network ses-
sions [13] [14] [10]. An ability to discover the message contents
of terse TLS and SSH sessions in live environments in a timely
manner may, therefore, offer security analysts an opportunity to
identify potential misuse.

1.2 Significance

Discovering message contents requires decryption. Whereas en-
cryption takes information that is intelligible in some sense (plain-

CHAPTER 1. INTRODUCTION 3

text) and applies a cryptographic algorithm to generate obfus-
cated data (ciphertext), decryption is the reverse process of de-
riving plaintext from ciphertext. Secure communications contain
ciphertext so decryption requires knowledge of the cryptographic
algorithm.

Publicly-known encryption algorithms are commonly used in
secure communications protocols. Kerckhoffs’ Second Principle
asserts that the security of an encrypted message should not rely
on secrecy of the algorithm [15]. Indeed, reverse-engineering tech-
niques may enable a proprietary algorithm’s functionality to be
discovered. Although such algorithms remain a subject of research
[16], they may lack robustness without extensive independent ver-
ification [17].

With public encryption algorithms, encryption key secrecy is
paramount. Consequently, to decrypt secure communications, de-
cryption keys must be discovered. Many decryption techniques
identify probable encryption keys through the application of sta-
tistical algorithms, ranging from simple to complex. Trial-and-
error is the simplest and most direct approach in which decryp-
tion is attempted with each possible key variation. This approach
succeeded in discovering the 56-bit key of the Digital Encryp-
tion Standard (DES), at the time a commonly used encryption
algorithm, in 56 hours [18] and a year later in 22 hours 15 min-
utes [19] resulting in the algorithm’s subsequent discontinuance
for American Federal communications [20]. With encryption al-
gorithm key lengths now commonly exceeding 128-bits, the prob-
ability of successful key discovery with a trial-and-error approach
in a useful time frame is much reduced. As a result, researchers
generally focus on more efficient approaches, typically investigat-
ing key management, or vulnerabilities in an algorithm’s design
or implementation.

Decryption approaches that investigate algorithmic design ap-
ply statistical analysis techniques to discover keys. Through an

CHAPTER 1. INTRODUCTION 4

iterative process of analysing discrepancies in ciphertext associ-
ated with specific plaintext, individual key bits can be deter-
mined. The process requires knowledge, and in many cases selec-
tion, of the plaintext for each iteration. Furthermore, the number
of plaintext-ciphertext pairs required for accurate analysis is sub-
stantial. For instance, the linear analytic approach required 243

known plaintext-ciphertext pairs to obtain an 85% probability of
discovering a DES algorithm key [21].

Knowledge of linear analytic and differential analytic approaches
enable researchers to design encryption algorithms to be highly re-
sistant to such techniques. Although approaches to investigating
algorithmic weaknesses continue to be explored, success in live
scenarios is difficult as plaintexts associated with ciphertexts are
generally unknown, and even if obtained, may not be available
in sufficient quantities. Consequently, algorithmic design analysis
techniques may be ineffective for decrypting live secure communi-
cations.

Side-channel attacks that investigate implementations of en-
cryption algorithms are actively researched to discover encryption
keys. By monitoring the physical device during the encryption
process, sufficient evidence may be produced for keys to be iden-
tified. Many such approaches require physical access or proximity
to the encrypting device so that, for example, PCI cards must
be installed in the target [22] or target power levels measured
with oscilloscopes [23]. Unless there is prior knowledge of mis-
use, such access or proximity may be unfeasible in practice. Even
with proximity, the number of required monitoring units may be
impractical to uncover malicious activities in live situations. How-
ever, memory acquisition techniques may support the discovery of
data used as input to encryption and decryption processes, known
as cryptographic artefacts.

CHAPTER 1. INTRODUCTION 5

1.3 Approach

Memory acquisition techniques vary in appropriateness for discov-
ering cryptographic artefacts associated with wide-scale malicious
activity in real-world scenarios. Memory forensic analysis crite-
ria are: image copy accuracy; invulnerability to tampering [24];
the absence of signs of concurrent activity [25] [26]; and integrity
where the target device is uncontaminated [27]. Extending the
criteria to this investigation, techniques should be scalable, unde-
tectable, and non-invasive.

Scalability ensures multiple suspect network sessions can be
monitored simultaneously. This can be useful when many infected
clients communicate with one or more controllers. Scalability can
also assist where malicious activity crosses multiple devices, such
as peer-to-peer botnets.

Undetectability is an awareness by target device software, or
device users, of the acquisition activity. Undetectable memory
acquisition reduces the opportunities for virtual machine entities
to manipulate acquisition results.

Invasiveness is the degree to which memory acquisition trans-
forms the target environment. As multiple memory acquisitions
may be required for decryption, temporal consistency may be re-
quired, which can be problematic with large memory extracts [28].
Techniques permanently altering the target should be avoided
to ensure comparability in repeated memory acquisitions. Also,
highly invasive techniques may render the target inoperable. Un-
detectability and invasiveness are not independent, as highly in-
vasive techniques may be detectable. For example, malware may
detect the presence of software monitors executing on the target
device.

From a technological perspective, forensic researchers classify
memory acquisition methods as target hardware insertion, target
direct memory access, emulation, virtualisation, kernel-level ac-

CHAPTER 1. INTRODUCTION 6

quisition user-level acquisition, Windows hibernation file, or cold-
boot attack [25] [27] [29]. A less granular categorisation of hard-
ware access, software applications, and hosted access suffices for
thesis purposes. Hardware access includes target device hardware
insertion, direct memory access, and cold-boot attacks; software
applications include kernel and user-level acquisition tools; and
hosted access includes emulation as well as virtualisation. Win-
dows hibernation file availability implies the target is not opera-
tional and is not investigated.

Hardware Access Hardware access methods necessitate physical
connectivity between target and collection devices. Examples of
hardware access include PCI card insertion [22], USB device in-
sertion [30], and cabled connection via Ethernet or Firewire ports
[31]. Connecting new devices can be detected - for instance, Win-
dows pop-up windows commonly notify device users when new
hardware is added. Even if the hardware can be surreptitiously
attached, practicality limits its wide-scale implementation unless
access is already enabled, as attempted with the “Clipper” chip
[32]. Cold-boot attacks, where the target memory is artificially
cooled, rebooted and inspected [33], do not scale and are highly
invasive as the target is permanently altered. However, such at-
tacks are potentially undetectable as the reboot may not restart
previously executing target applications. Hardware access meth-
ods have scalability, undetectability, and invasibility memory ac-
quisition issues, which make them challenging for the discovery of
cryptographic artefacts.

Software memory acquisition Software memory acquisition ap-
plications also have limitations. The applications execute at user
or kernel level, resulting in different memory extraction capabili-
ties. User-level applications, such as ProcDump [34] and Process
Hacker [35], obtain memory of a target device process and write

CHAPTER 1. INTRODUCTION 7

memory contents to disk. The acquisition application executes on
the target making it detectable by target software. Furthermore,
executing the application may impact target memory including
target process memory if, for example, memory is paged to vir-
tual memory. Kernel level applications, such as FTK Imager [36],
DumpIt [37], Memoryze [38], and WinPmem [39] obtain complete
target volatile memory images. These tools also execute on the
target and can be detected. Further, the generated image copy
is either written to a local target device folder or, optionally for
WinPmem, across a network. The image copy activity may not
contaminate copy contents but the activity impacts the target,
temporarily at least. If the image is written to a local folder,
extraction for external analysis requires copying to a physical de-
vice such as a USB device. So, executing user-level or kernel-level
applications for memory acquisition are detectable and partially
invasive.

Hosted Access Hosted access may offer a scalable, non-invasive
opportunity to acquire memory. In these environments, multiple
virtual machines, each comprising an operating system and ap-
plications, use computer resources, including disk, memory, and
network of the host physical machine. This allows programs ex-
ecuting on the physical host to access virtual machine memory.
With physical hosts supporting multiple virtual machines, such
programs have the potential for simultaneous virtual machine ac-
cess and may, therefore, access the network traffic and memory
of encrypting programs in any virtual machine running on that
host [40]. Furthermore, by executing on the physical host, the
programs may be more resistant to detection and manipulation
than virtual machine programs.

Virtualisation is a key technology because it offers enhanced
utilisation of computing resources so desktops and servers are
frequently virtualised. For example, virtualisation technologies

CHAPTER 1. INTRODUCTION 8

underpin many cloud architectures [41]. Investigating effective
approaches to decrypting secure communications traffic in virtu-
alised environments may be useful in assisting defences against
secure channel misuse.

This thesis focuses on developing a framework, MemDecrypt,
to investigate the decryption of potentially malicious communica-
tions that use SSH and TLS protocols in virtualised environments
as illustrated in Figure 1-1. MemDecrypt analyses traffic to pre-
dict when cryptographic artefacts used in suspect virtual machine
network sessions have been generated. The framework then ex-
tracts and analyses virtual machine memory to discover candidate
artefacts enabling the decryption of the suspect sessions.

Figure 1-1: Investigative Approach

1.4 Research Questions

This thesis presents a framework design and construction to inves-
tigate effective and efficient decryption of TLS and SSH protocol

CHAPTER 1. INTRODUCTION 9

traffic through access to live virtual machine resources. The main
research questions to be answered are:

• RQ1 How effective are existing methods for decrypting secure
communications originating from live machines?

• RQ2 What new methods can be developed to decrypt secure
communications originating from live machines in virtualised
environments?

• RQ3 Can the new methods decrypt secure communications
originating from a client in a virtualised machine efficiently
and effectively?

1.5 Ethics

Decrypting communications poses an ethical question. There is
increasing conflict between the privacy rights of citizens and the
rights of society to protect itself from adversaries with some ad-
vocates favouring public safety [42] and others more equivocal
[43] [44]. Also, legislative disparity exists between jurisdictions
protecting user privacy and anonymity, such as the European
Union [45], and those requiring the active involvement of interme-
diaries in enabling decryption by state agencies, such as Australia
[46]. Eavesdropping by decrypting secure communications may
find common acceptance depending on the who, why, what, and
how of the activity [47].

Inter-state conflict provides grounds for eavesdropping. For
example, decrypting enemy communications in military conflicts
can change the status quo, enabling resources to be deployed to
maximise advantage as occurred when the French broke the Ger-
man ADFGX cipher in World War I [48]. In such instances, an
intention to minimise loss of life may be the justification. Out-
side of military conflict, eavesdropping on supposedly unfriendly

CHAPTER 1. INTRODUCTION 10

states may also be justified, as when the American Black Cham-
ber decrypted Japanese shipping tonnage demands in disarma-
ment negotiations [49]. Although media reports highlight attacks
on infrastructural computational capabilities, such as against Ira-
nian nuclear facilities, Estonian national communications network,
and Ukrainian power-grid attacks, cyber espionage may be more
prevalent [50]. For example, the National Security Agency (NSA)
is believed to have intercepted and decrypted confidential commu-
nications of allied states using a weakness in the implementation
of the Diffie-Hellman algorithm in protocols such as VPN, TLS,
and SSH [51].

The NSA and partnering organisations are reported to have
also eavesdropped on the personal communications of foreign in-
dividuals [52] despite legislation and covenants, such as Article
12 of the United Nations declaration safeguarding personal pri-
vacy [53]. Following the Snowden revelations, the effectiveness of
surveillance is openly discussed [54], suggestive of its continued
practice. With encryption of email, messages, and phone calls
becoming more common, eavesdropping necessitates decryption.

Intra-state eavesdropping on citizens’ communications may be
less contentious. Local legislation can identify processes for state
organs to obtain data access. However, with end-to-end message
and phone call encryption used by terrorists [55] and criminals [7],
simple data access may be insufficient. In Australia, the Telecom-
munications and Other Legislation Amendment (Assistance and
Access) Bill has been approved requiring digital communications
providers to facilitate decryption of personal communications. By
contrast, in the United States the FBI has failed to coerce Apple
to decrypt smartphone data of alleged criminals despite judicial
direction [56]. The balance between user privacy rights and crime
prevention and detection has become blurred [44] and the Aus-
tralian approach may be followed with interest [57].

At an institutional level, successful eavesdropping can prevent

CHAPTER 1. INTRODUCTION 11

cyber-crime. With the growth in encrypted communications be-
tween malware and controllers [58] [59] and confidential data ex-
filtration using TLS, SSH, and DNS by insider attackers [60], fu-
ture defences may require content knowledge. Header information
permits the distinguishing of malicious activity from benign ac-
tivity [61] [9] [10]. Although this enables session disruption, such
an approach may be counter-productive. For example, when a
TLS payload contains the ransomware key, disruption may lead
to loss of essential information. With SSL proxies enabling in-
stitutions’ knowledge of encrypted communications content, insti-
tutional agreement to decrypt employee communications may be
acceptable. The problem is more contentious for cloud vendors
[62] but retention of the cryptographic artefacts enabling later
decryption may assist in legislative adherence.

Knowledge or suspicion that confidential information is de-
cryptable may lead to preventative measures. For example, the
Digital Encryption (DES) algorithm was decommissioned feder-
ally after knowing that information could be decrypted within a
useful time-frame [19]. More recently, TLS version 1.3 removes
support for algorithm variations that encrypt after authenticat-
ing. This is believed to be consequential [63] [64] on publicised
BEAST, POODLE and Lucky13 attacks [65] [66]. With evolving
technologies, other cryptographic measures may be considered.
For instance, in the commonly used Advanced Encryption Stan-
dard (AES) algorithm, where key lengths of 128, 192 and 256 bits
have sufficed to resist current decryption techniques, key length
increases are expected if quantum computer cryptographic poten-
tial is realised [67].

Generally, decrypting secure communications remains an area
of conflict, with agencies seeking to discover methods that pro-
vide access to possible malicious activity while applications with
vulnerabilities that enable decryption are corrected. A further
concern is that techniques that support decrypting suspect com-

CHAPTER 1. INTRODUCTION 12

munications may also be employed by malicious actors to obtain
the confidential data of benign actors.

The thesis aims to benefit protectors against malicious actors
by decrypting their suspect communications. Although malicious
actors could arguably also use the proposed approach, the results
can be used to improve the robustness of secure communications
applications to prevent this. The framework also presents oppor-
tunities for privacy campaigners. For instance, identified candi-
date cryptographic artefacts may be retained along with network
traffic and decryption deferred until such time that legal sanction
is obtained.

1.6 Contributions

The MemDecrypt framework is developed to investigate the de-
cryption of secure communications in virtualised environments.
The framework executes at a privileged level in virtualised en-
vironments which s limit misuse. Consequently, it may benefit
agents with hypervisor access, such as operators of virtualised en-
vironments, as well as providing a foundation for researchers and
security analysts. This thesis makes the following original contri-
butions:

• Constructs the MemDecrypt framework that accesses virtual
machine network and memory resources to rapidly identify
small sets of candidate cryptographic artefacts including en-
cryption keys. The framework decrypts efficiently with min-
imal impact to the target device. MemDecrypt is imple-
mented on the Xen hypervisor but may be extended to apply
to alternative environments, such as more commonly used hy-
pervisors, as well as other applications, protocols, and algo-
rithms. Thus, the framework can benefit researchers seeking
to develop comprehensive security tools that defend against

CHAPTER 1. INTRODUCTION 13

malicious activity taking place within the target devices in-
cluding virtual machines.

• Develops an extension for MemDecrypt to rapidly decrypt
secure communications that use the SSH protocol. Knowl-
edge of SSH enables candidate AES cryptographic artefacts
to be discovered with minimal interruption to live virtual ma-
chines running Windows or Linux operating systems. The
correct artefacts are then rapidly identified with high levels
of certainty. As SSH has been used as a medium for data
exfiltration [5], this capability can assist security analysts in
developing defences against these attacks, which are increas-
ingly common and difficult to detect [68].

• Builds an extension for MemDecrypt to rapidly decrypt the
TLS communications of Linux andWindows virtual machines.
Application of TLS protocol knowledge, including generation
of cryptographic artefacts, enables small sets of AES candi-
date artefacts to be identified. Although TLS supports other
application protocols such as SMTP, HTTP-over-TLS is com-
monly used for benign on-line transactions between clients
and web servers and malicious communications such as mal-
ware applications communicating with external controllers
[9]. The rapid decryption of HTTP-over-TLS traffic can de-
termine the nature of malicious activity and assist security
analysts in developing countermeasures.

• Constructs an extension for the rapid decryption of secure
communications emanating from client bot or ransomware
applications. When executing on Windows platforms, mal-
ware can use Windows cryptographic libraries, so specific
features of the library data structures can enable commu-
nications to be decrypted even when the malware hijacks a
benign application. This approach can benefit analysts con-

CHAPTER 1. INTRODUCTION 14

cerned with detecting new malware, tracing malware activity
and security application providers interested in intercepting
and preventing such breaches.

• Develops and proves an approach to decrypting TLS and SSH
secure communications that use a recently approved stream
encryption algorithm, ChaCha20. Two common ChaCha20
implementations leave memory traces that facilitate the rapid
decryption of SSH and TLS secure communications. As well
as benefiting security analysts with defences, this knowledge
may enable the adoption of enhanced implementation ap-
proaches to protect ChaCha20 cryptographic artefacts.

Although this thesis focuses on virtual environments, the frame-
work is extensible. Secure communications from other technolo-
gies that support memory access to live encrypting devices may be
vulnerable and, so, benefit from the application of this framework.
As memory access is important to forensic investigations [69] soft-
ware tools and libraries already exist to support such capability
for technologies such as desktops, servers, the Internet of Things
(IoT), Android smartphones, and virtualized environments. For
example, as Android smartphones run the Linux operating sys-
tem, non-commercial memory acquisition tools such as the Linux
Memory Extractor application (’LiME’) [70], AMExtractor [71]
and TrustDump [72] or commercial tools such as Cellebrite [73]
may support memory access enabling possible decryption of secure
network traffic.

1.7 Aims and Objectives

This thesis aims to deliver a framework that enables the secure
communications of live virtual machines to be decrypted. The
framework should minimally impact target virtual machines and

CHAPTER 1. INTRODUCTION 15

also provide security against misuse by virtual machine actors. To
attain this aim, the following objectives are to be achieved:

• Review related literature. This determines the encryption
algorithms for analysis through a review of cryptographic
mechanisms used in secure protocols.

• An exploration of techniques for discovering cryptographic
artefacts. Also included is a review of existing methodologies
for accessing live virtual machine network traffic and memory.

• Design of a framework, executing at a privileged level, that
can capture live virtual machine memory and encrypted net-
work traffic, discover small sets of candidate cryptographic
artefacts in the captured memory, and rapidly decrypt the
encrypted network traffic.

• Implementation of the framework to decrypt the encrypted
traffic originating from Windows clients and Ubuntu servers.

• Extension of the framework to SSH. Experiments are con-
ducted to evaluate the framework capability for decrypting
SSH traffic for different operating systems, encryption algo-
rithms, key lengths, and volumes of exchanged data.

• Extension of the framework to TLS. Experiments are con-
ducted to evaluate the framework capability for decrypting
TLS traffic with different operating systems, encryption al-
gorithms, and key lengths. A further extension investigates
framework decryption of malware traffic using Windows en-
cryption libraries.

• Proposals for future work to address any gaps in investigation
and suggestions for potential interesting research areas where
the framework can be adopted.

CHAPTER 1. INTRODUCTION 16

1.8 Organisation of Thesis

This thesis is structured as follows:

• This chapter has provided a brief introduction to the prob-
lems addressed by the research. It explains the research mo-
tivation, offers justification for investigating decryption of
SSH and TLS protocol traffic in virtualised environments,
proposes research questions, discusses the ethics of the thesis
topic, states the thesis contributions, aim and objectives. It
also presents the organisation of the thesis.

• Chapter 2 provides context for this thesis. Background on en-
cryption algorithms, particularly symmetric block and stream
algorithms with a focus on AES, its Cipher Block Chaining
and Counter modes, and ChaCha20 is presented.

• Chapter 3 reviews and discusses prior research into discovery
of cryptographic artefacts. This confirms that virtual ma-
chine memory analysis may be an effective mechanism for se-
cure traffic decryption as large quantities of data, specialised
equipment, or physical device access or proximity are not re-
quired. It considers studies that obtain access to live virtual
machine resources, focussing on methods to extract live vir-
tual machine network and memory data without disrupting
normal operations. Although researchers have discovered en-
cryption keys in virtual machine memory, study scopes were
limited and decryption not achieved where additional cryp-
tographic artefacts are required.

• Chapter 4 describes the framework for investigating the de-
cryption of secure communications in virtual environments.
Framework requirements focus on effectiveness, efficiency, and
security. A detailed design to meet requirements is proposed
followed by a consideration of implementation options. The

CHAPTER 1. INTRODUCTION 17

framework is intended to fulfil the generic purpose of de-
crypting secure communications in virtualised environments
so extensions are supported.

• Chapter 5 investigates decrypting SSH communications that
use AES encryption. Salient aspects of the Internet Engi-
neering Task Force (IETF) SSH specifications are presented
as well as features of SSH cryptographic artefacts. These en-
able development of an SSH extension to the MemDecrypt
framework. Experiments are performed with file transfers on
Windows client and Linux server virtual machines to evaluate
the framework extension. Experimental results are discussed
and extension limitations considered.

• Chapter 6 investigates decrypting TLS communications that
use AES decryption. A MemDecrypt extension is developed
to address TLS 1.2 and 1.3 protocol versions. Experiments
are performed principally with TLS 1.2 on Windows client
and Linux server virtual machines and an additional exper-
iment conducted with TLS 1.3. Experimental results are
discussed and extension limitations considered.

• Chapter 7 presents an investigation into decrypting secure
communications originating from malware applications on
Windows clients. Although the TLS protocol is used for
malware-controller communications, the TLS extension has
performance limitations. A MemDecrypt extension to ac-
commodate the use of Windows cryptographic libraries and
prioritising memory extracts is constructed. Experiments are
performed with real ransomware and bot malware applica-
tions on Windows clients. Experimental results are discussed
and limitations to the Windows library cryptographic exten-
sion considered.

• Chapter 8 investigates SSH and TLS use of the ChaCha20-

CHAPTER 1. INTRODUCTION 18

Poly1305 symmetric stream algorithm. A framework exten-
sion is developed to discover cryptographic artefacts in com-
mon implementations. Experiments are carried out using
Windows and Linux operating systems for each protocol.
ChaCha20 experimental results are discussed and counter-
measures considered.

• Chapter 9 reviews the experimental results and discusses im-
plications of the investigation. It reflects on whether contri-
butions have been provided, reviews research questions, the-
sis aim and objectives, and proposes future research using
the framework as a platform.

1.9 Publications

During these studies, the following papers have been published in,
or have been submitted to, peer-reviewed journals. All except the
first paper relate to specific experiments conducted for this thesis.

• McLaren, P., Russell, G., & Buchanan, B. Mining malware
command and control traces. In 2017 Computing Conference
(pp. 788-794). IEEE [10].

• Buchanan, B., Tan, Z., McLaren, P., & Russell, G. Decrypt-
ing Live SSH traffic in virtual environments Digital Investi-
gation. Elsevier [74]. This paper is expanded on in thesis
Chapter 5.

• Buchanan, B., Tan, Z., McLaren, P., & Russell, G. Dis-
covering Encrypted Bot and Ransomware Payloads Through
Memory InspectionWithout A Priori Knowledge. ACMTrans-
actions on Privacy and Security (submitted). This paper is
expanded on in thesis Chapter 7.

• Buchanan, B., Tan, Z., McLaren, P., & Russell, G. Deriving
ChaCha20 Key Streams From Targeted Memory Analysis.

CHAPTER 1. INTRODUCTION 19

Journal of Information Security and Applications. Elsevier
(2nd draft submitted after first review). This paper is ex-
panded on in thesis Chapter 8.

Chapter 2

Background and Theory

2.1 Introduction

This chapter provides a background on cryptography with a focus
on the application of symmetric encryption algorithms in secure
communications encryption and decryption processes. It discusses
the importance of initialisation vectors and nonces to these pro-
cesses through a description of two major encryption algorithms,
AES and ChaCha20.

Cryptography enables secure transmission of information across
insecure digital networks. Security generally requires transmitted
information to be inaccessible to an eavesdropper, uncorrupted by
a man-in-the-middle, to reach the intended recipient, or more tech-
nically, digital network security requires confidentiality, integrity,
and authentication.

Information is encrypted to achieve confidentiality [75]. When
a cryptographic algorithm generates ciphertext from the plain-
text, an eavesdropper should be prevented from discovering the
plaintext in encrypted communications. Insecure digital networks
are a standard communications transport medium so, for privacy,
secure communications protocols employ encryption algorithms.
Cryptographic hash algorithms provide potential for message in-
tegrity whereby the receiver verifies that received information is

20

CHAPTER 2. BACKGROUND 21

what was transmitted. Authentication commonly employs cryp-
tographic algorithms which enable verification of the respondent’s
identity.

2.2 Cryptography in Digital Networks

In digital communications, asymmetric and symmetric algorithms
support confidentiality, integrity, and authentication. Following
Kerckhoffs’ Second Principle [15], these algorithms are generally
publicly known so key secrecy is paramount. Whereas asymmet-
ric algorithms require two keys, a public and private key pair,
symmetric algorithms require one key. This characteristic enables
different, useful cryptographic requirements to be addressed.

Uses for asymmetric algorithms in digital communications in-
clude authentication and digital signing. In these instances, the
sender encrypts information with the sender’s private key and the
recipient uses the public key to decrypt the message. If an eaves-
dropper intercepts an exchange and interposes a replacement mes-
sage, the receiver’s decrypt fails.

Asymmetric encryption keys are typically generated using com-
plex mathematical operations such as exponentiation and modular
arithmetic. These operations make discovering asymmetric algo-
rithms’ private keys challenging. The complexity takes processor
time, so asymmetric algorithm encryption is considerably less ef-
ficient than with symmetric algorithms [76]. Consequently, for
secure communications, asymmetric algorithms, such as Elliptic
Curve and El-Gamal, are commonly used in the initial phase of
a network session to securely distribute session encryption and
message authentication keys for subsequent message integrity and
confidentiality.

Message integrity is achieved by comparing message hashes.
Application of a publicly known hash algorithm, agreed in the ini-
tial phases, to the transmitted message generates a hash value. As

CHAPTER 2. BACKGROUND 22

obtaining the same hash for different messages is unlikely, equiv-
alence between the received hash and the receiver-generated hash
provides confirmation that the message has not been corrupted.

Network protocols commonly use symmetric encryption algo-
rithms for confidentiality. In symmetric encryption, the same key
encrypts and decrypts, so in a secure network session encryp-
tion keys for transmitting and receiving must be mutually known.
Symmetric algorithms encrypt data element-by-element (where an
element is a bit or byte), known as stream algorithms, or in blocks
of a defined size, known as block algorithms. Despite stream al-
gorithms generally encrypting faster than block algorithms, their
implementation has been considered difficult [77] or less adapt-
able [78]. However, concerns with the lack of alternatives should
vulnerabilities be discovered in, and the software performance of,
symmetric block algorithms have led to the adoption of specific
symmetric stream algorithms in secure communications [79].

This thesis investigates decrypting secure communications traf-
fic encrypted with symmetric key block and stream algorithms.

2.3 Symmetric Block Algorithms

Symmetric block encryption with a session key alone may be vul-
nerable. Plaintext is generally segmented into blocks of 64 or 128
bytes. Encrypting two identical data blocks with the same key and
algorithm produces two identical encrypted blocks, which in many
circumstances is an unacceptable weakness [80]. To avoid this, the
US National Institute of Standards and Technology (NIST) rec-
ommendation is that symmetric block algorithms use initialisation
vectors for confidentiality [81]. The initialisation vector differs for
each block encrypted with the same key so that through incorpo-
rating them in the encryption process, identical plaintext blocks
encrypted with the same key produce different ciphertext.

CHAPTER 2. BACKGROUND 23

2.3.1 Modes of Operation

For symmetric block algorithms, the application of initialisation
vectors in encrypting successive blocks of data is known asmode of
operation, or simply mode. The NIST reviewed five confidential-
ity modes for symmetric block algorithms: Cipher Block Chain-
ing (CBC), Cipher Feedback (CFB), Output Feedback (OFB),
Counter (CTR), and the Electronic Codebook (ECB). ECB does
not use an initialisation vector, and as a result, exhibits the vul-
nerability mentioned before. An example of ECB’s weakness was
demonstrated in an analysis of the 2013 Adobe data loss [82] where
passwords were encrypted with a symmetric block encryption al-
gorithm in ECB mode. Derivation of a single user’s password
through alternate means enabled all accounts with the same pass-
word to be accessible. Of the other modes, CBC and CTR have
been in common use [83] [84] and are supported by secure pro-
tocols, such as SSH and TLS 1.2, when used with the Advanced
Encryption Standard. However, as TLS 1.3 has removed support
for CBC because vulnerabilities were discovered when used with
TLS, use of that mode may decline.

The application of initialisation vectors varies per mode. For
CBC, the initialisation vector for encrypting and decrypting each
block of data after the first block is the encrypted output of the
previous block, i.e. the previous ciphertext. A bitwise exclusive-or
operation of the initialisation vector and plaintext provide the in-
put for the encryption process, and for decryption the exclusive-or
operation on the output of the decryption process and initialisa-
tion vector yields the plaintext. The NIST requires the initialisa-
tion vector for the first block in CBC mode to be unpredictable,
i.e. random. Figure 2-1 illustrates the encryption and decryption
processes for two consecutive blocks using CBC mode including
the chaining between them.

In CTR mode, after its initial value is generated, the initialisa-

CHAPTER 2. BACKGROUND 24

Figure 2-1: CBC Mode Encryption and Decryption Process

tion vector increments by a defined value for each successive block
of data. Normally, the incremental value is 1, although other val-
ues are possible. As with CBC mode, the initialisation vector for
encrypting and decrypting the first block should be unpredictable.
Unlike the chaining modes, such as CBC, the initialisation vector
for each data block after the first block can be calculated inde-
pendently of previous encryptions. This allows for possible par-
allelisms in encryption and decryption processes. In CTR mode,
the initialisation vector is encrypted and then an exclusive-or op-
eration is performed with the unencrypted block of data to obtain
the ciphertext as shown in Figure 2-2.

With the ability to encrypt blocks in parallel, the CTR mode
encrypts large amounts of data considerably faster than other
modes, which use chaining, so that CTR is commonly preferred for

CHAPTER 2. BACKGROUND 25

Figure 2-2: CTR Encryption and Decryption Process

secure communications [85]. CTR has also been recommended for
confidentiality when compared with the other modes [86] although
a lack of CTR initialisation vector uniqueness may weaken secu-
rity [17]. Many symmetric block encryption algorithms, including
the widely adopted Advanced Encryption Standard, support CTR
mode, and the CTR mode is approved with that Standard for ma-
jor secure communications protocols.

2.3.2 Algorithms

With increased demand for information confidentiality in digital
networks [58], confidence in an algorithm’s invulnerability to key
discovery is essential. A vulnerability can result from shortness of
key length or algorithm weaknesses. For example, the Data En-
cryption Standard (DES), previously used for protecting financial

CHAPTER 2. BACKGROUND 26

transactions inter alia, had an effective key length of 56 bits. With
the availability of increased computational power, keys were in-
evitably discovered in less than a day using the exhaustive, brute-
force method of checking every possible key [19]. Keys may be
discovered faster than brute-force by applying statistical analysis
to plaintext-ciphertext pairs [87] [21] as will be discussed in the
next chapter.

Concerns with DES and its successor, TripleDES, led to the
NIST search for a replacement algorithm to become known as the
Advanced Encryption Standard. Five of the fifteen submissions,
namely Mars, Rijndael, RC6, Twofish, and Serpent, were short-
listed on the basis of security, speed and memory usage, imple-
mentation flexibility, algorithm simplicity, and public comments
with a particular focus on the first three qualities. Because of
its versatility across software and hardware platforms, low mem-
ory requirements, and fast key set-up times, the NIST selected
the Rijndael algorithm, with restrictions, to be the Advanced En-
cryption Standard (AES) for symmetric block ciphers [88]. The
restrictions are that the block size must be 128 bits, i.e. 16 bytes,
and key lengths must be 128, 192 or 256 bits [89]. For AES, a
segment of unencrypted data is divided into blocks of 16 bytes for
encryption and decryption. As plaintext must be a multiple of 16
bytes, padding is added to the last block where necessary.

Despite AES being called the ‘gold standard’ for encryption
[79], limitations exist. Although shortlisted AES candidate im-
plementations were evaluated on floating-point gate arrays, for
newer technologies such as sensors, radio-frequency identification
(RFID), and embedded devices, which are limited in memory, pro-
cessor and/or power availability, alternate lightweight block algo-
rithms, such as PRESENT, may be preferred [90]. As virtualised
systems hardware is generally unrestricted by these limitations,
this thesis focuses on investigating AES as the symmetric block
algorithm.

CHAPTER 2. BACKGROUND 27

2.3.3 Advanced Encryption Standard

AES encryption and decryption processes perform repeated se-
quences of mathematical operations on the plaintext. Each re-
peated sequence is known as a round and the number of sequences
depends on the key size: 10 rounds for 128-bit keys, 12 rounds for
192-bit, and 14 rounds for 256-bit keys where the output from the
final round of encryption is the ciphertext. Decryption reverses
the process.

The encryption process is illustrated in Figure 2-3. The input
to each round is constructed as an array. Substitution output is
produced by matching input bytes with a predefined substitution
array, known as an S-Box as shown in Algorithm 2.1. The Shift
operation diffuses the array by moving row elements by varying
offsets as shown in Algorithm 2.2 and the Mix operation diffuses
the array further by performing column wise calculations over an
algebraic field as shown in Algorithm 2.3. The Add Round Key, as
shown in Algorithm 2.4, is a bitwise exclusive-or operation, XOR,
between a round key and either the output from the Mix opera-
tion, for rounds 1 to n−1, or the output of the shift operation, for
round n. Round keys are derived from the encryption key and the
assembly of all round keys is commonly known as a key schedule.

Algorithm 2.1: AES Substitute
Data: S is State Array
Result: S ′ is new State Array
for i = 0 to 3 do

for j = 0 to 3 do
S

′
ij ⇐= Substitute(Sij) ;

end
end
where Substitute is the S-Box value matching the Sij element

AES is frequently used in secure communications for security
and ease of implementation. The Rijndael proposal demonstrated

CHAPTER 2. BACKGROUND 28

Algorithm 2.2: AES Shift Rows
Data: S is State Array
Result: S ′ is new State Array
for i = 0 to 3 do

for j = 0 to 3 do
S

′
ij ⇐= Sij << i ;

end
end

Algorithm 2.3: AES Mix Column
Data: S is State Array
Result: S ′ is new State Array
for j = 0 to 3 do

S
′
0j = (2 • s0j)⊕ (3 • s1j)⊕ s2j ⊕ s3j;

S
′
1j = s0j ⊕ (2 • s1j)⊕ (3 • s2j)⊕ s3j;

S
′
2j = s0j ⊕ s1j ⊕ •s2j)⊕ (3 • s3j);

S
′
3j = (3 • s0j)⊕ s1j ⊕ s2j ⊕ (2 • s3j);

end
where • is multiplication over GF(28)

Algorithm 2.4: AES Add Round Key
Data: S is State Array, R is Round Key Array
Result: S ′ is new State Array
for j = 0 to 3 do

for j = 0 to 3 do
S

′
ij ⇐= Sij ⊕ Rij ;

end
end

CHAPTER 2. BACKGROUND 29

Figure 2-3: AES Encryption Process

resistance to known attacks [91]. Subsequent research has not
established any overt vulnerabilities in the algorithm so AES is
currently considered secure. Because the same set of mathemat-
ical calculations is used in each round, the software code is re-
usable, allowing for compact AES implementations. Where AES
implementations support CTR, CBC, OFB or CFB modes, an
initialisation vector the size of the AES block is used. This the-
sis investigates decrypting secure communications that implement
the AES symmetric block encryption algorithm in CTR and CBC
modes.

2.4 Symmetric Stream Algorithms

This thesis also investigates symmetric stream decryption. Sym-
metric stream algorithms substitute plaintext elements, bits or
bytes, with ciphertext elements. The substitution changes for each

CHAPTER 2. BACKGROUND 30

element to make frequency analysis ineffective. Typically, stream
algorithms generate continuous pseudorandom key streams [92],
which are melded with plaintext using mathematical operations
to obtain ciphertext. With symmetric streaming algorithms, cryp-
tographic artefacts are shared by secure communications parties.
The generated key stream is typically XORed with the plaintext
to generate ciphertext [92] so the decryption process is identical
to encryption.

Stream algorithm software implementations are demonstrably
faster than block algorithm equivalents although possibly more
difficult to implement [77]. Symmetric stream algorithms are
useful where power consumption and memory is restricted. So,
stream algorithms have typically been used in embedded tech-
nologies such as Internet of Things (IoT) devices and smartphones
[93].

2.4.1 Algorithms

Stream algorithms used in IoT devices, for example, are Trivium
and Enocoro [90]. The RC4 stream cipher was applied in mobile
communications, such as the weak WEP protocol, as well as en-
vironments with no significant power and memory concerns. As
the algorithm is vulnerable [94], RC4 is deprecated for TLS [95]
and SSH [96]. New stream algorithms are now available for these
protocols.

Concerns with AES software implementation performance, and
the consequences if AES vulnerabilities are discovered, has led to
an interest in alternatives [79]. As a result, ChaCha20 with the
Poly1305 authenticator has been adopted for SSH [97] and TLS
[98], and is the default encryption algorithm for Google mobile
phone connectivity using Chrome [99]. ChaCha20 design makes
it resistant to timing attacks [100] [101]. Furthermore, algorith-
mic and side-channel attacks require large quantities of plaintext-

CHAPTER 2. BACKGROUND 31

ciphertext pairs for success [102].

2.4.2 ChaCha20

ChaCha20 [101] is an extension to the Salsa20 stream algorithm
[100]. The algorithm takes as input a constant, a key, a nonce,
and a counter. (Stream algorithms refer to nonces rather than ini-
tialisation vectors but, in context, the terms are interchangeable)
[79]. This creates a key stream, which is melded with the plaintext
stream to generate ciphertext. In software-only implementations,
it is more than three times faster than AES [98] and is well suited
to lower-powered devices and real-time communications. The en-
cryption process is illustrated in Figure 2-4.

Figure 2-4: ChaCha Encryption Process

ChaCha20 operates on 32-bit words with a key of 256 bits (K
= (k0, k1, k2, k3, k4, k5, k6, k7). This outputs 512-bits blocks
for a key stream (Z) which is XORed with the plaintext stream.
The state of the encryption is stored with 16 x 32-bit word values
within a 4x4 matrix as shown in Equation 2-1:

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 (2-1)

CHAPTER 2. BACKGROUND 32

The initial state contains 16 x 32-bit values with constant val-
ues (0x61707865, 0x3320646e, 0x79622d32, 0x6b206574), the
key (k0, k1, k2, k3, k4, k5, k6, k7), the counter (c0) and the nonce
(n0, n1, n2) as shown in Equation 2-2:

0x61707865 0x3320646e 0x79622d32b 0x6b206574

k0 k1 k2 k3
k4 k5 k6 k7
c0 n0 n1 n2

(2-2)

The counter thus has 32-bits (1 x 32 bits), and the nonce has
96-bits (3 x 32 bits). ChaCha20 then defines a quarter round
(QR), which is shown in Algorithm 2.5.

Algorithm 2.5: ChaCha20 Quarter round
Result: QR(a,b,c,d)
a = a+ b;
d = d⊕ a;
d = (d) << 16;
c = c+ d;
b = b⊕ c;
b = (b) << 12;
a = a+ b;
d = d⊕ a;
d = (d) << 8;
c = c+ d;
b = b⊕ c;
b = (b) << 7;

20 rounds are carried out (10 for column rounds and 10 for di-
agonal rounds) where the QR function is invoked 4 times on each

CHAPTER 2. BACKGROUND 33

iteration as shown in Algorithm 2.6.

Algorithm 2.6: ChaCha20 Keystream
Data: X is created with K, c and n
Result: Z is the resultant key stream.
y ←− X;
for i = 0 to 9 do

(x0, x4, x8, x12)←− QR(x0, x4, x8, x12);
(x1, x5, x9, x13)←− QR(x1, x5, x9, x13);
(x2, x6, x10, x14)←− QR(x2, x6, x10, x14);
(x3, x7, x11, x15)←− QR(x3, x7, x11, x15);
(x0, x5, x10, x15)←− QR(x0, x5, x10, x15);
(x1, x6, x11, x12)←− QR(x1, x6, x11, x12);
(x2, x7, x8, x13)←− QR(x2, x7, x8, x13);
(x3, x4, x9, x14)←− QR(x3, x4, x9, x14);

end
Z ←− X + y

The counter increments for repeated iterations to generate ad-
ditional keystreams. As the plaintext is not required to be a 512-
bit multiple, unused key stream elements are discarded. Of note,
is that ChaCha mathematical operations are: addition; bitwise
XOR; and bitwise rotation, so that software implementations can
be fast. ChaCha and Salsa variants allow for reduced rounds
of 8 and 12, such as ChaCha12 which implements 12 rounds.
XChaCha is an extension with a 192-bit nonce [103] proposed
for Google Android disk encryption [104].

2.5 Conclusions

Symmetric block and stream algorithms have been adopted for en-
crypting network traffic in digital network security protocol stan-
dards. Both AES and ChaCha20 use keys and initialisation vec-
tors (or nonces) in encryption and decryption processes so both

CHAPTER 2. BACKGROUND 34

artefact types must be discovered to reveal the original plaintext.
Alternative symmetric algorithms for encrypting secure com-

munications exist. However, the pre-eminence of ChaCha20 and
AES in TLS, and to a lesser extent, SSH, protocols in confiden-
tial client-server interaction, suggests that focusing on these algo-
rithms in this thesis may be beneficial.

Chapter 3

Literature Review

3.1 Introduction

With increased usage of secure protocols in the communications
of malicious actors [105], an ability to uncover exchanged informa-
tion speedily enough to prevent damage is important. Rapidity
is critical as malware infections can spread or banking details be
lost and transacted upon in seconds.

Encryption keys may be discovered using techniques that in-
clude attacks on algorithm’s design, its implementation, or key
management. The review established that typical approaches tar-
geting implementation, known as side-channel attacks, are un-
likely to succeed in the rapid decryption of terse live network com-
munication sessions, encrypted with algorithms such as AES and
ChaCha20. However, research suggests that virtual machine mon-
itoring may provide opportunities for discovering cryptographic
artefacts.

Virtual machine monitoring enables full access to virtual ma-
chine resources. To prevent monitor manipulation, monitoring
from outside, such as the hypervisor, may be preferred. Differ-
ences between the hypervisor and the monitored virtual machine
introduces the issue of the semantic gap, which is discussed.

External virtual machine monitoring has been employed for

35

CHAPTER 3. LITERATURE REVIEW 36

various purposes, frequently associated with detection or analysis
of malware activity. The virtual machine resources employed in
such studies are considered with a particular focus on the discov-
ery of encryption keys in virtual machine memory. This review es-
tablishes that decrypting secure traffic from live virtual machines
may be a productive and, as yet, unresearched topic.

3.2 Implementation Attacks

Decryption, where plaintext is obtained from the ciphertext, is the
partnering process to encryption so that decryption commonly re-
quires knowledge of the encryption algorithm, key, and frequently
the initialisation vector. Where public encryption algorithms are
employed, only key and initialisation vector need be ascertained.
Prior research has focused solely on key discovery.

Implementation attacks discover keys from information leaked
by a device during the encryption process [89]. When a process ex-
ecutes a set of instructions, physical events may occur that can be
measured with appropriate technologies. Sufficient measurements
allow partial or complete key identification. Principal implemen-
tation attack approaches, also known as side-channel attacks, in-
clude differential fault analysis, timing attacks, power analysis,
and electromagnetic radiation analysis [106]. Although memory
analysis also investigates the encryption process implementation,
it is not commonly considered as a side-channel attack, perhaps
because physical process measurements are absent. A high-level
classification of implementation attacks is illustrated in Figure 3-1.

Differential fault analysis Differential fault analysis manipulates
a bit or byte on an encrypting device by external interference
and uses differential analysis on resultant ciphertexts to discover
keys [107]. A single generated fault may suffice to discover a

CHAPTER 3. LITERATURE REVIEW 37

Figure 3-1: Decryption Approaches

128-bit AES key under selected conditions [108] and a 256-bit
AES key may be discovered with two pairs of correct and faulty
plaintexts and associated ciphertexts [109]. So, key recovery may
be achieved with little computational effort. Analysis requires
physical access to manipulable computing devices, such as smart
cards, and electronic equipment to engineer bit or byte changes.
Differential fault analysis may be more attuned to test situations
than live cloud and mobile network environments.

Timing Timing attacks measure instruction execution time to
identify keys [110]. Because of significant clock cycle differences
between accessing cached and non-cached memory, measuring cache
access is a common type of timing attack [111] [112], although
branch instruction timing has also been successfully studied [113].

As block algorithms, such as AES, typically use S-Boxes, cache
access times can be measured through a displacement of elements
prior to encryption. Although hardware access requirements are
absent, timing attacks require repeated tests with chosen plaintext
for key recovery. Moreover, software [114] and hardware [115]
counter-measures use specific assembler instructions that mask
AES encryption processes. ChaCha20 is resistant to cache timing
attacks as look-up tables are not used [100] [101].

CHAPTER 3. LITERATURE REVIEW 38

Power Power analysis techniques sample electrical data to mea-
sure power consumed by an encrypting device. Whereas simple
power analysis involves a visual inspection of measurements, dif-
ferential power analysis compares power consumption for itera-
tions with different plaintexts and a fixed key [116]. Both forms
require large quantities of plaintexts to obtain meaningful accu-
racy [23]. Also, measuring and encrypting devices require physical
connectivity or proximity. These approaches can succeed with ac-
cess to proximate small devices such as embedded hardware, field-
programmable gate arrays, or smart cards, but may be challenging
in real-world scenarios such as cloud environments.

Electromagnetic Measuring electromagnetic radiation is possi-
ble without device connectivity perhaps offering greater flexibility
than other techniques [117]. A related approach uses microphones
for measuring acoustic signals emitted when encryption operations
are performed [118]. Bandwidth and noise challenges can make
effective measurement more expensive and difficult but forms of
exponentiation used in asymmetric encryption have been attacked
to discover partial keys. As with similar hardware attacks, mea-
surement equipment should be in close proximity to the encrypting
device and chosen plaintexts may be required.

3.2.1 Memory

Cryptographic artefacts may be discovered in volatile memory.
As the artefacts are parameters of software encryption processes,
they may be resident in encrypting device memory. The obser-
vation, regarding implementation attacks, that exploiting such
weaknesses may seem unfair, but makes the impact more im-
portant [119] could apply to searching memory for these arte-
facts. Memory acquisition methods for key discovery vary but, in
the absence of a taxonomy, a classification might be key-schedule

CHAPTER 3. LITERATURE REVIEW 39

matches, program data structures, process traces, and randomness
tests.

Key Schedules Encryption programs can improve performance
by generating cryptographic data structures for frequent re-use
such as key schedules comprised of round keys. Halderman et
al. [33] investigated whether blocks of memory in an artificially
cooled, rebooted computer might contain full or partial key sched-
ules for symmetric and asymmetric algorithms. For AES, each
memory block was treated as a possible key schedule. Round keys
were generated for the first block segment and identified as po-
tential keys if round keys closely matched memory block contents.
A similar approach was extended to the AES candidate, Serpent
[120].

These studies aimed to discover keys used by disk encryption
tools such as BitLocker. However, when applied to network session
key discovery in, for example, Skype, the researchers were unsuc-
cessful [120]. In these studies, for disk encryption, the elapsed key
discovery durations ranged from 75 seconds with pre-processing
[120] through to 2 hours [33]. Although the duration for key re-
covery using cold-boot techniques has been improved with more
efficient search algorithms [121] and the use of specialised hard-
ware [122], such approaches may not scale in real-world scenarios.

Cryptographic Data Structures Key discovery performance can
be improved by finding identifiers for cryptographic data struc-
tures. For example, known malware key delimiters assisted in
determining the RC4 keys used in enciphered botnet command
and control traffic [123]. Implementation knowledge also enabled
the identification of Twofish key structures, another AES candi-
date, used in TrueCrypt [120]. As RSA keys are frequently stored
as ASN.1 objects, private asymmetric keys can also be found in
memory [124] [125]. Cryptographic data structure specifications

CHAPTER 3. LITERATURE REVIEW 40

are not necessarily available, as, for instance, for Windows cryp-
tographic libraries.

Process Traces Encryption artefacts have been discovered by de-
termining encryption sub-routine parameters. One technique is
to attach tracing or debugging tools to an encrypting process to
access program data. For example, the Linux ptrace command
can identify the probable encryption key parameter, using known
plaintext to differentiate data segments [126]. Although effective
for experimentation, the use of tracing and debugging tools may
be considered too invasive in live environments. Furthermore, as
the approach is detectable by software executing on the encrypting
device, malicious actors may cease their activity.

Randomness Measures Measuring randomness can assist in en-
cryption key discovery. Entropy is a commonly used random-
ness measure that has distinguished potential key regions from
other memory regions. As an example, Shamir and Someren [127]
counted the number of unique byte values in a string to differenti-
ate memory regions and identify potential RSA key locations. An
entropy-like measure also facilitated the discovery of TLS master
keys in memory [128]. Here, researchers evaluated bit-level ran-
domness assuming a random string should have the same number
of ‘0’s as ‘1’s. Non-random counter-examples, such as ‘0000111’,
’1111000’, ‘0000111’,. . . ‘0000111’, ’1111000’ may defeat this ap-
proach.

Standard byte-level entropy measures, such as Shannon en-
tropy, are also commonly applied. For example, Shannon entropy
enabled detection of probable Twofish algorithm key schedules
when searching for S-Box values [120]. Shannon entropy has also
been used as a filtering mechanism to identify potential AES key
schedules [33] [123]. In this thesis, randomness measurements will
be used to discover keys in virtual machine memory.

CHAPTER 3. LITERATURE REVIEW 41

3.2.2 Virtualised Environments

As virtualised environments enable virtual machine volatile mem-
ory access, studies have been undertaken to discover keys. For
example, a virtual machine environment supported testing in un-
successful searches for session keys [120]. In other studies, entire
virtual machine images were copied to support RSA key searches
[125] [123]. TLS encryption keys have also been discovered in
virtual machine environments by the TLSkex system [128].

The TLSkex study is suggestive of a method that could sup-
port wide-scale decryption of malicious traffic, as in-line memory
extracts were acquired to enable encryption key discovery [128].
Initialisation vectors were not obtained, so its applicability was
restricted to a specific algorithm and mode. However, the virtual
machine monitoring approach could be employed to support rapid
decryption of secure communications.

3.3 Virtual Machine Monitoring

Plaintext can be obtained from virtual machine memory with-
out decryption. For example, hooked system calls, where hooks
are program modifications that interpose activities before the in-
tended function is invoked, in a controlled target server can log
information received from a client [129]. Such circumstances may
be exceptional. Generally, additional virtual machine resources
are required to obtain the plaintext. Resources such as memory,
network traffic, and file activity can be monitored externally by a
host-based monitor or internally by a virtual machine application.
For convenience, the process of examining a virtual machine from
the outside has been called virtual machine introspection, or VMI
for short [130].

Host-based virtual machine monitoring may be challenging. It
offers strong potential for VMI monitor application security, but

CHAPTER 3. LITERATURE REVIEW 42

as it executes on a different platform from the virtual machine,
comprehending virtual machine activity may be difficult because
of the semantic gap, which is discussed below. Early VMI re-
searchers often addressed the challenge by installing internal vir-
tual machine agents to communicate with the VMI application
[131] [132]. However, newer approaches may enable VMI applica-
tions to monitor effectively without the need for internal agents
[133].

Monitor Security The avoidance of malware tampering is a co-
gent reason to prefer VMI over internal monitoring. Code run-
ning on an unprivileged virtual machine typically runs at a lower
privilege than the hosting hypervisor [134] so malware on an un-
privileged virtual machine must elevate privilege to manipulate
a VMI application [130]. This is notwithstanding that hypervi-
sor vulnerabilities can enable virtual machine break-out [135]. By
contrast, malware on an unprivileged virtual machine can detect
and subvert internal virtual machine monitoring tools with ease
[136]. Nevertheless, malware can avoid VMI detection and analy-
sis through kernel data manipulation [132] [137], or termination on
detection of sandboxing, debugging operations, or virtualisation
[138].

Semantic Gap The semantic gap is an issue because of operat-
ing system differences. Analysing virtual machine activity often
requires high-level information, such as process lists or open file
tables. However, data extracted from a virtual machine is raw,
that is, in the form of bits and bytes [139]. Even if the hypervisor
and the hosted virtual machine are running the same versions of
the same operating system, system data structures, such as pro-
cess lists, differ. VMI derivation of high-level knowledge from low-
level virtual machine data has been termed ‘closing the semantic
gap’ [140]. Various techniques have been developed to address the

CHAPTER 3. LITERATURE REVIEW 43

issue.
Manual derivation of virtual machine semantic structures has

been the most commonly used approach [141]. For this, VMI
applications are re-configured for each monitored virtual machine
operating system and operating system version. With frequent
operating system updates, maintaining such VMI applications can
become onerous. For example, the Windows 10 operating system
at one stage had 11 base builds with between 2 and 151 updates
[142]. As a result, more automated solutions have been developed.

Image cloning has been implemented to close the semantic gap.
In Virtuoso, a training environment used the same operating sys-
tem as the monitored virtual machine [140]. Introspection tool
profiles were programmatically developed on the copied image.
An inability to analyse all system calls, or generate tools for file
or network introspection, and a requirement to clone and train
each virtual machine were acknowledged as limitations by the re-
searchers. Although more efficient than manual derivation, this
approach may be inappropriate for general use.

The semantic gap can be addressed through hooking virtual
machine system calls that invoke hypervisor functions. A VMI
application hook can obtain relevant virtual machine semantic
data structures. For instance, in HyperShell, when specific vir-
tual machine system calls invoked functions in the KVM hypervi-
sor and its Linux kernel, a virtual machine helper process provided
VMI access to virtual machine memory [143] [144]. This approach
required mapping virtual machine calls to hypervisor functions,
known as para-virtualisation, and also that the virtual machine
operating system and the hypervisor use compatible operating
systems. So, although HyperShell successfully monitored Linux
virtual machines on a KVM hypervisor, analysing a Windows vir-
tual machine running on, say, the VMware ESXi hypervisor might
be difficult.

Similarly, approaches can combine internal and VMI monitor-

CHAPTER 3. LITERATURE REVIEW 44

ing. An internal virtual machine process can extract requisite sys-
tem data structures and communicate them to the VMI monitor.
In ShadowContext, a randomly selected virtual machine process
was cloned to fulfil the monitor helper role [145]. Cloned process
calls were intercepted by the VMI monitor for semantic data ex-
traction. However, virtual machine helper processes are detectable
and potentially manipulable by malware.

VMI integration with high-level semantic derivation tools can
also bridge the semantic gap. Memory forensics tools such as
Volatility [146] and Rekall [147] commonly extract semantic infor-
mation from memory images for the investigation of potentially
malicious activity. Integrating these tools with virtual machine
memory extraction libraries, such as LibVMI [148], provides an
opportunity for the extraction of higher-level information from live
virtual machines. Although researchers still create custom VMI
access routines to derive semantic data [149], integrating foren-
sic memory tools and VMI applications is common [133] [150]
[151]. With better security and a solution to the semantic gap
issue, VMI provides greater confidence in the validity of virtual
machine monitoring results.

3.3.1 Virtual Machine Introspection

VMI inspects the resources of virtual machines. A VMI clas-
sification, comprising memory introspection, I/O Introspection,
and process introspection, where I/O includes file system, inter-
rupt request and system call introspection, has been proposed
[152] and expanded on [153]. However, a VMI classification of
memory, network, and disk may enable easier transfer of forensic
techniques between physical and virtual environments. VMI re-
searchers frequently study a mixture of these classes as shown in
Table 3-1, which is a summary of reviewed major VMI research.
VMI techniques for analysing each resource class are discussed in

CHAPTER 3. LITERATURE REVIEW 45

the following subsections.

Ta
bl
e
3-
1:

V
M

In
tr
os
pe

ct
io
n
R
es
ea
rc
h
Su

m
m
ar
y

A
u
th
or
s

S
ys
te
m

N
am

e
A
p
p
ro
ac
h

V
M

R
es
ou

rc
es

G
ar
fin

ke
l&

R
os
en
bl
um

,2
00

3[
13
0]

Li
ve
w
ir
e

P
ol
lin

g
du

m
ps

an
d
tr
ig
ge
rs

M
em

or
y

K
ou

ra
i&

C
hi
ba

,2
00

5[
15

4]
H
yp

er
Sp

ec
to
r

M
ir
ro
ri
ng

M
em

or
y,

N
et
w
or
k,

D
is
k

Jo
sh
i,
K
in
g,

D
un

la
p,

&
C
he
n,

20
05

[1
55

]
In
tr
oV

ir
t

V
ul
ne
ra
bi
lit
y
vi
a
pr
ed
ic
at
e
ch
ec
ks

M
em

or
y,

D
is
k

Ji
an

g,
W
an

g,
&

X
u,

20
07

[1
39
]

V
M
w
at
ch
er

M
em

or
y
st
at
e
re
co
ns
tr
uc
ti
on

D
is
k

Y
in
,S

on
g,

E
ge
le
,K

ru
eg
el
,&

K
ir
da

,2
00

7[
15

6]
P
an

or
am

a
Ta

in
t
an

d
flo

w
tr
ac
ki
ng

M
em

or
y

P
ay

ne
,C

ar
bo

ne
,S

ha
ri
f,
&

Le
e,

20
08

[1
31

]
La

re
s

H
oo

k
pr
oc
es
s
cr
ea
te

ca
lls

M
em

or
y
(c
od

e)
H
ay

&
N
an

ce
,2

00
8[
15
7]

V
IX

M
em

or
y
co
py

M
em

or
y

La
nz
i,
Sh

ar
if,

&
Le

e,
20

09
[1
58

]
K
-T
ra
ce
r

D
yn

am
ic

ke
rn
el

an
al
ys
is

M
em

or
y
(c
od

e)
D
ol
an

-G
av

it
t,
Le

ek
,Z

hi
vi
ch
,G

iffi
n,

&
Le

e,
20

11
[1
40

]
V
ir
tu
os
o

In
st
ru
ct
io
n
Tr

ac
in
g

M
em

or
y
(c
od

e)
B
en
ni
ng

er
,N

ev
ill
e,

Y
az
ir
,M

at
th
ew

s,
&

C
oa

dy
,2

01
2[
15

9]
M
ai
tl
an

d
H
oo

k
m
em

or
y
ca
lls

M
em

or
y

H
ar
ri
so
n,

C
oo

k,
M
cG

ra
w
,&

H
am

ilt
on

,2
01

2[
16

0]
-

Fo
re
ns
ic

an
al
ys
is

of
po

lle
d
da

ta
M
em

or
y

Fu
,R

d,
&

Li
n,

20
13

[1
61

]
E
X
T
E
R
IO

R
H
oo

ks
&

m
em

or
y
co
py

M
em

or
y

C
hu

ng
,K

ha
tk
ar
,X

in
g,

Le
e,

&
H
ua

ng
,2

01
3[
16

2]
N
IC

E
N
et
w
or
k
tr
affi

c
an

al
ys
is

N
et
w
or
k

Le
ng

ye
l,
M
ar
es
ca
,P

ay
ne
,W

eb
st
er
,V

og
l,
&

K
ia
yi
as
,2

01
4[
16

3]
D
R
A
K
V
U
F

K
er
ne
ld

eb
ug

gi
ng

M
em

or
y,

F
ile

H
iz
ve
r
&

C
hi
ue
h,

20
14

[1
49

]
R
T
K
D
SM

M
em

or
y
w
ri
te

ho
ok

s
M
em

or
y

Fa
tt
or
i,
La

nz
i,
B
al
za
ro
tt
i,
&

K
ir
da

,2
01

5[
16

4]
A
cc
es
sM

in
er

M
od

el
F
ile

ac
ti
vi
ty

ho
ok

s
F
ile

+
re
gi
st
ry

Sa
xo

n,
B
or
db

ar
,&

H
ar
ri
so
n,

20
15

[1
65

]
-

E
nt
ro
py

an
al
ys
is

M
em

or
y

Sh
i,
Y
an

g,
Li
,&

W
an

g,
20

15
[1
33

]
SP

E
M
S

K
er
ne
ld

eb
ug

gi
ng

M
em

or
y

Ta
ub

m
an

n,
Fr
äd

ri
ch
,D

us
ol
d,

&
R
ei
se
r,

20
16

[1
28

]
T
LS

ke
x

In
te
rc
ep
t
pa

ck
et
s
&

m
em

or
y
ex
tr
ac
t

M
em

or
y,

N
et
w
or
k

Zh
an

,Y
e,

Fa
ng

,D
u,

&
Su

,2
01

6[
15

0]
C
F
W
at
ch
er

Tr
ig
ge
rs

on
de
nt
ry

F
ile

T
ie
n,

Li
ao

,C
ha

ng
,&

K
uo

,2
01

7[
16

6]
-

Sa
nd

bo
x
on

V
M

co
py

M
em

or
y

Se
nt
an

oe
,T

au
bm

an
n,
&

R
ei
se
r,

20
17

[1
29

]
-

Sy
st
em

ca
ll
an

al
ys
is

M
em

or
y

U
pa

dh
ya
y,

G
oh

el
,P

on
s,

&
La

go
s,

20
18

[1
67

]
-

K
er
ne
ld

at
a
m
on

it
or
in
g

M
em

or
y

Zh
an

,L
i,
Y
e,

Zh
an

g,
Fa

ng
,&

D
u,

20
19

[1
68

]
-

K
er
ne
ld

at
a
m
on

it
or
in
g

M
em

or
y

CHAPTER 3. LITERATURE REVIEW 47

3.3.2 Disk Introspection

VMI disk monitoring is not much researched. Technically possible
as a virtual machine file system is accessible, remotely, through
the creation of a shadow copy and tracking of file operations, it
could be an interesting research area. In preliminary work for
this thesis, virtual machines were monitored for unusually high
quantities of file operations, as such activity might indicate the
presence of ransomware. This approach rapidly discovered Hidden
Tear [169] ransomware keys in memory.

Justifications given for the dearth of research are that such
techniques may be trivial [141], or the host file system structure
is unknown [139]. Nevertheless, cloning and kernel level system
call intercept techniques have been developed.

Cloning has enabled detection of suspicious access to sensitive
files. For example, in HyperSpector the Tripwire file integrity
manager [170] executed on a virtual machine shadow copy to dis-
cover whether specific files had changed [154]. Similarly, a high-
level abstraction of the virtual machine file system was generated
from a shadow copy in VMwatcher and anti-virus software applied
to the abstraction to detect malware [139]. Potentially malicious
file modifications such as permission changes or deletions were de-
tected by performing vulnerability analysis on a virtual machine
copy in Introvirt [155]. Generating and monitoring multiple vir-
tual machines shadow copies frequently or continuously may not
scale.

Instead of file system monitoring, disk activity can be ascer-
tained through analysing virtual machine kernel memory. To il-
lustrate, file system data structures such as buffer caches were
examined for potential malware in Livewire [130]. Other systems
have inspected the kernel heap to identify artefacts including open
files [171] [160] [163]. Kernel file activity can also be used in build-
ings models of benign activity, which then enable the detection

CHAPTER 3. LITERATURE REVIEW 48

of anomalous behaviour [164]. A potential disadvantage to that
approach is that such models require frequent retraining as be-
nign activities evolve. CFWatcher intercepted system calls and
triggered alerts when the directory entry objects of identified files
were accessed [150]. Disk activity monitoring may signal the pres-
ence of malware but does not aid decryption.

3.3.3 Memory Introspection

Memory introspection describes the analysis of virtual machine
memory [152]. As malware is unobfuscated on execution, VMI
research into memory introspection has concentrated on malware
detection and analysis as shown in Table 3-1. Researchers can also
derive requisite file system and network structures from memory
data structures. Generally, research has focused on image, kernel,
or process introspection.

Image Introspecting complete virtual machine memory images
may be problematic. Each extraction interrupts virtual machine
activity so large acquisitions can degrade its performance. Con-
sequently, when multiple extractions are needed, researchers typ-
ically extract the full image once and then maintain consistency
by applying changes from the virtual machine to the copy.

In HyperSpector, this approach supported an intrusion detec-
tion system that executed on the copy [154]. In another study, the
copy maintained a taint status for each byte and status anoma-
lies with benign taint baselines indicated potential malware [156].
Typically, a virtual machine helper process communicates changes
to the VMI monitor.

Single complete images have been analysed to discover cryp-
tographic artefacts. For instance, RSA keys were discovered by
searching for ASN.1-like objects in an image copy [125]. Similarly,
a complete image was searched for large prime numbers and their

CHAPTER 3. LITERATURE REVIEW 49

products enabling Apache server RSA keys to be discovered in
Linux servers [165]. For traffic decryption, multiple image copies
may be required, potentially through the use of virtual machine
helper processes, which are detectable, and therefore manipulable.

Kernel Being smaller, kernel data structure acquisition has less
virtual machine impact. Furthermore, as malware sometimes ma-
nipulates kernel structures for concealment, determining whether
sensitive kernel data has been overwritten may be useful. For
instance, in Livewire, kernel memory regions susceptible to mal-
ware manipulation, such as Windows system call tables, were set
to read-only [130].

Kernel data has been the focus of VMI malware studies. K-
Tracer traced malware activity through identifying those instruc-
tions associated with sensitive kernel data [158]. It required a
hypervisor that emulated virtual machine system calls, which is
less common in modern hypervisors. In EXTERIOR, a managed
virtual machine replicated the virtual machine kernel. Changes
in the managed kernel data structures were written to the vir-
tual machine to enable recovery from malicious activity such as
rootkits [161], similarly to Nixer [172]. VMI can also support the
protection of kernel data [168]. However, cryptographic artefacts
are not commonly stored in system data structures.

Cryptographic artefacts may be system call parameters that
can be obtained with breakpoints or kernel function hooks. In
Lares, hooks were inserted into kernel process creation system
calls [131]. A hook invoked a local helper process, which requested
monitor assessment of the created process’s potential malicious-
ness. Malware has been detected by hooking memory management
system calls and checking whether data regions have been made
executable [159] but these calls are required to invoke hypervisor
functions directly. Researchers have identified malicious activity
by causing suspect writes to sensitive kernel data regions to gener-

CHAPTER 3. LITERATURE REVIEW 50

ate page faults causing alerts [149], however page fault monitoring
incurred an excessive performance overhead. DRAKVUF tracked
malware manipulation of kernel memory with breakpoints on in-
ternal kernel instructions, such as heap memory allocations, as
kernel mode rootkits can bypass system calls [163].

Kernel memory techniques, such as hooks and breakpoints,
may be unacceptably invasive for real-world scenarios. Further-
more, encryption processes may not be kernel functions.

Process Process introspection can assist in discovering crypto-
graphic artefacts. This term is meant as the inspection of process
user space. Thus, kernel data investigations, such as the analy-
sis of process headers to determine suspect process creation [173],
or the discovery of hidden processes through comparing proces-
sor usage times [174], are kernel introspection, whereas finding
changes in program executable code across the temporal frame is
process introspection [175]. The distinction may be unclear as, for
instance, when user-space system calls are trapped to appropriate
stack contents for analysis, an active area of research [176] [152]
[177] [178].

Process user-space data regions, such as the process stack,
heap, or static variables can contain useful information. For ex-
ample, introspecting process heaps has discovered large quantities
of no-op instructions, often an indicator of malicious code being
inserted on the heap [179], or detected stack and heap buffer-
overflow attacks [180]. Process data structures can also be con-
structed when other information sources such as binary symbol
tables are available [181].

Cryptographic artefacts may exist in process user-space data
regions. In one study, Windows virtual machine memory was
searched for software application virtual disk and session encryp-
tion keys when systems were in specific operating system states
such as: live; hibernated; user logged off; and rebooted [120]. No

CHAPTER 3. LITERATURE REVIEW 51

session keys were discovered for stand-alone encryption applica-
tions, such as WinZip, or secure network communication appli-
cations, such as Skype or Simp Lite MSN. This was thought to
result from proprietary cryptographic data structures or obfusca-
tion mechanisms, but with ephemeral data structures, extraction
timing is critical.

TLS AES-CBC keys have been discovered by introspecting pro-
cess user-space data regions [128]. After identifying the Linux
process through searching the file descriptor table for associated
socket details, process memory was scanned for potential keys.
Memory segments were assessed for randomness using bit counts,
and prospective keys, then evaluated by comparing decrypted and
transmitted authentication codes. That study analysed Linux
memory so Windows virtual machines, considered more prone to
malicious activity [9], were not addressed. Furthermore, AES-
CBC key discovery depended on obtaining memory extracts at a
specific moment.

3.3.4 Network Introspection

Virtual machine network traffic must be captured so it can be
decrypted. Virtualised networking implements virtual software
switches at the hypervisor level, enabling virtual machines to
communicate internally and externally. A VMI monitor accessing
traffic passing through the switch, is arguably not introspection.
Analysing memory network structures is possible, but for complete
network sessions, memory acquisition might be required for every
packet, with a potentially deleterious impact on virtual machine
performance. Nevertheless, this approach was adopted in Livewire
where the network monitor checked for unusual port usage [130].
Generally, network introspection studies examine virtual network
switch traffic either through port mirroring, promiscuous moni-
toring, or packet interception.

CHAPTER 3. LITERATURE REVIEW 52

Port Mirroring Port mirroring has been used for intrusion detec-
tion. For instance, virtual machine server ports were mapped to
VMI intrusion detection system ports to detect incoming malware
in HyperSpector [154]. A customised operating system was used
so that technique may not be transferable. The Open vSwitch
software bridge [182] supports port mirroring, and was used in
the NICE system [162] to scan for malware traffic using the Snort
intrusion detection tool [183]. Virtual machine network profil-
ing produced alerts, to which the monitor responded by blocking
all traffic from the suspect, diverting traffic for deep packet in-
spection, or re-configuring the virtual machine’s network config-
uration. Packet interception might provide more timely control
over malicious activities. Open vSwitch was also implemented
in DRAKVUF in order to provide virtual machine isolation to
limit cross-contamination rather than provide network introspec-
tion [163].

Promiscuous Monitoring Promiscuous monitoring captures all
accessible network traffic. Promiscuous network traffic monitor-
ing tools, such as ‘tcpdump’ [184] and VMware ESXi ‘pktcap-uw’
[185], are network introspection enablers. For instance, the tcp-
dump libpcap library was used to capture network traffic from
untrusted virtual machines to detect network intrusion [186]. The
monitor’s passive nature prevents action, such as dropping pack-
ets, being taken ex post facto.

Interception Network traffic interception interposes the monitor
between the source and destination and so offers active control
opportunities [162]. To illustrate, a proxy application inspected
packets to identify specific TLS messages and trigger memory ex-
tractions in TLSkex [128]. With this approach virtual machine
operation is unaffected until a specific packet is detected but also
allows for immediate action, such as interacting with the virtual

CHAPTER 3. LITERATURE REVIEW 53

machine. Triggered extraction is an example of monitoring fre-
quency.

3.3.5 Monitor Frequency

The frequency of VMI monitor information gathering is largely
dependent on its purpose. In real-world environments, exces-
sive monitor activity can degrade virtual machine performance,
whereas for dynamic malware analysis in laboratory conditions,
VMI activity levels may be inconsequential. Monitoring frequency
can be categorised as being: polled; semi-continuous; or triggered.

Polled Polled monitoring reduces virtual machine impact by in-
trospecting at intermittent intervals. With polling, essential vir-
tual machine data may be absent precisely when required, should
the data be ephemeral and the poll interval exceed the data life-
time. Nevertheless, researchers have used polled VMI monitoring.

Livewire periodically checked virtual machine integrity by com-
paring monitor results with user-level program output, compar-
ing virtual machine process hashes, searching for malware signa-
tures and checking raw sockets usage [130]. Other researchers
extracted memory, file, and network data at polled intervals to
reconstruct the virtual machine states for detecting anomalous
behaviour [160]. Polled inspection of virtual switch traffic was
employed for detecting potential malware activity in NICE [162].

For certainty of detection, frequent polling with degraded vir-
tual machine performance might be required. Polling to detect
malicious activity may be particularly risky especially when mal-
ware uses counter analysis techniques, so despite reduced virtual
machine impact, polled monitoring may be insufficiently determi-
nate.

CHAPTER 3. LITERATURE REVIEW 54

Semi-continuous Semi-continuous monitoring interrupts virtual
machine operations frequently, either through breakpoints or hook-
ing. Despite its potential virtual machine performance impact,
the approach can be useful. To illustrate, setting break-points
on virtual machine internal kernel calls enabled the DRAKVUF
monitor to analyse malware activity [163]. AccessMiner activated
the monitor for each file operation but the performance impact
was sufficiently severe that it was restricted to specific applica-
tions [164]. This approach risks missing malicious activity when
malware employs techniques such as process hollowing to evade
detection.

Triggered The impact of triggered monitoring impact depends
on how often the trigger is activated. Typically, monitoring is
activated when identified virtual machine events occur. For in-
stance, the CFWatcher monitor was activated when virtual ma-
chine directory entries associated with sensitive files were accessed
[150]. When the quantity of monitored sensitive files increased,
virtual machine performance degraded so triggers need judicious
selection.

In this discussion, semi-continuous and triggered monitoring
are distinguished by the former activating when specific functions
are called, and the latter on the detection of specific data. An
illustration of a trigger is the detection of a TLS Change Cipher
Specification message [128].

Triggers may indicate appropriate moments for extracting vir-
tual machine memory as the memory might contain information
needed for decryption. Triggering may, therefore, require less
computational resources than semi-continuous monitoring, and so
have less impact on virtual machine activity. Furthermore, it is
more deterministic than polled monitoring.

CHAPTER 3. LITERATURE REVIEW 55

3.4 Conclusions

Side-channel attack approaches are limited in their capacity to
rapidly decrypt terse network communication sessions, encrypted
with algorithms such as AES and ChaCha20, in live environ-
ments. Such attacks commonly require substantial quantities of
selectable plaintext-ciphertext pairs and specialised measurement
equipment. However, malware command and control communi-
cation sessions may be composed of few packets, plaintext may
not be selectable, and the placement of equipment may not be
possible without prior knowledge.

Volatile memory, and in particular, virtual machines offer less
restrictive opportunities for discovering cryptographic artefacts to
enable decryption of real-world network traffic. Virtual machine
monitoring provides access to virtual machine resources. Exter-
nal monitoring, VMI, limits monitor manipulation and through
integration with forensic tools, addresses the semantic gap issue.
Furthermore, a triggered approach to deciding when to obtain
memory ensures that virtual machine impact is minimised.

Although studies into discovering encryption keys in virtual
machine memory exist, their scope has been limited to key dis-
covery. Encryption keys may not suffice to obtain plaintext from
ciphertext. Despite initialisation vectors, or nonces, being essen-
tial elements in the encryption and decryption processes for major
symmetric block and stream algorithms, there are no published in-
vestigations into their discovery in volatile memory. Publication
of this thesis addresses the knowledge gap. Further research will
continue to build on the approaches developed to construct the
framework.

Approaches for identifying initialisation vector and nonce arte-
facts differ from those of key discovery. For example, with shorter
artefact lengths, randomness measurements may be limited for
the efficient identification of artefacts. This thesis investigates

CHAPTER 3. LITERATURE REVIEW 56

the construction of these artefacts for encryption algorithms com-
monly used in SSH and TLS protocols and develops novel ap-
proaches to speedily identify small sets of candidate artefacts in
memory. With this knowledge new approaches to discovering can-
didate keys are incorporated in the framework leading to the rapid
decryption of live secure network sessions.

Decryption provides useful knowledge of the confidential in-
formation exchange by malicious actors including their malware,
and the timeliness of this knowledge is important. So, this the-
sis investigates efficient methods of discovering the initialisation
vectors and encryption keys of encrypted communications in the
volatile memory of live virtual machines. Although the investi-
gation focuses on AES and ChaCha20 algorithms, the techniques
may be applicable to cryptographic artefacts discovery for other
encryption algorithms.

Chapter 4

MemDecrypt: A Framework for
Decrypting Secure
Communications

4.1 Introduction

Knowledge that decrypting secure communications can be benefi-
cial, cryptographic artefacts may be found in computer memory,
and VMI offers a scalable, stealthy approach for obtaining virtual
machine memory, motivates the proposed line of research. This
chapter presents a framework for decrypting virtual machine se-
cure communications through memory acquisition and analysis.

The framework, MemDecrypt, contains memory acquisition,
protocol decomposition, memory search, and decrypt analysis mod-
ules. Although focused on specific technologies, encryption algo-
rithms, modes, and operating systems, the framework is intended
to be extensible. The base framework implementation follows a
rapid application development cycle [187] to enable the addition
of extensions for protocol, algorithm, and operating system vari-
ants. The development approach proceeds through the following
stages: requirements definition; design; and construction, includ-
ing evaluation.

57

CHAPTER 4. MEMDECRYPT 58

4.2 Requirements Definition and Terms

MemDecrypt requirements can be derived from the research ob-
jective ’a framework to capture live virtual machine memory and
encrypted network traffic, discover small sets of candidate cryp-
tographic artefacts in the captured memory, and rapidly decrypt
the encrypted network traffic’. This objective can be divided into
five essential activities:

• Extraction: capturing live virtual machine memory

• Interception: capturing live virtual machine traffic

• Interpretation: inspecting virtual machine traffic contents

• Identification: discovering small sets of candidate artefacts

• Decryption: rapidly decrypt the encrypted network traffic

The choice of virtual machine environments was predicated
on memory acquisition criteria of scalability, undetectability, and
non-invasiveness so these requirements are considered in the frame-
work design. Rapidity is also a consideration as it is a determiner
of MemDecrypt’s utility. In the following paragraphs each require-
ment is described in further detail and relevant terms defined for
consistency.

Extraction acquires the memory of an untrusted virtual ma-
chine process from outside the virtual machine. A virtual ma-
chine is a software system including operating system and appli-
cations with the appearance of a system on a physical machine
and that runs on software that supports access to physical ma-
chine hardware. The software that a virtual machine runs on is
a hypervisor. As hypervisor consoles manage many modern hy-
pervisors, for brevity, the term hypervisor will also reference its
console. Untrusted virtual machines generally execute at lower
privilege levels than hypervisors or trusted virtual machines. As a

CHAPTER 4. MEMDECRYPT 59

result, untrusted virtual machines may be compromised by mali-
cious activity, such as malware, so their activities may be suspect.
From outside the virtual machine means that virtual machine re-
sources are accessible by an application executing on the hypervi-
sor. Memory acquisition is the activity of obtaining the memory
contents of a process executing on the virtual machine in a form
accessible to an external application, where the form is, typically,
a binary file or raw memory blocks.

Interception captures network traffic originating from, or re-
ceived by, an untrusted virtual machine. In all instances, the
initiator in a network session, a client, is an untrusted virtual
machine within the monitored environment. In many instances,
the receiver in a network session, a server, is also an untrusted
virtual machine, although the client may also communicate with
external servers. All virtual machine traffic is required to traverse
a monitored virtual switch, enabling capture.

Interpretation inspects network packet contents to determine
whether further analysis is required. Fields for IP (OSI layer 3),
TCP or UDP (OSI layer 4) and application protocols including
SSH, TLS and DNS (OSI layer 7) may warrant examination. For
example, IP source and destination addresses can identify spe-
cific untrusted virtual machines, while TCP fields can determine
whether a supported application protocol is being used.

Identification discovers small sets of cryptographic artefacts
in memory obtained from the extraction activity. Cryptographic
artefacts are encryption keys, initialisation vectors (or nonces),
and counters. An encryption key is the random sequence of bits
used by a symmetric algorithm to perform an encryption or de-
cryption process. An initialisation vector (IV) is a sequence of
bits used in AES modes to ensure identical plaintext produces
different ciphertext, while a nonce is a sequence of bits used in
ChaCha20 to generate a key stream.

The smallness of a small set is contextual and determined by

CHAPTER 4. MEMDECRYPT 60

computational resources, the mode of operation, and framework
efficacy. A multi-threaded VMI monitor on a parallel processing
device may investigate larger sets than an equivalent single proces-
sor device. Mode set sizes may also vary. For example, AES-CBC
mode IVs are obtained from the network packet or preceding en-
crypted block so that the IV set size is one, whereas AES-CTR set
sizes are less determinate and set sizes exceeding one thousand are
possible. Implementation and evaluation approaches should con-
sider these factors.

Decryption identifies correct session cryptographic artefacts
by validating the decrypt for various protocols. Generally, the
correct key and IV are identified for successful decryption. Vali-
dation may depend on message contents. For example, decryption
that correctly produces binary strings unintelligible only to ses-
sion parties could be difficult to validate. However, protocol fields,
such as HTTP header fields, can provide clues to valid decrypts.

Scalability requires the framework to investigate multiple vir-
tual machine sessions simultaneously. In this thesis, scalability is
achieved by creating framework copies. Multi-threading of activ-
ities is likely to be a more efficient solution.

Non-invasiveness is the degree of impact on virtual machine
normal operations. A significant impact might contaminate the
virtual machine’s run state and disrupt process activity such as
live network sessions. Contamination can invalidate memory and
network session extracts limiting analysis so this requirement aims
to minimise virtual machine impact.

For undetectability, monitor operations should be segregated
from untrusted virtual machine programs. Malware can detect
and modify other programs executing on a virtual machine [188] so
as to evade detection or analysis. Any tampering with the monitor
application may invalidate framework results so monitor software
should execute at a more privileged level than an untrusted virtual
machine.

CHAPTER 4. MEMDECRYPT 61

Rapidity requires the period between session packet capture
and valid decryption to be sufficiently brief for MemDecrypt to
have application in real-world scenarios. Applicability is contex-
tual as the impact of malicious behaviour may be almost instanta-
neous when a spam campaign is launched by a botnet command,
whereas exfiltration of large databases may take seconds, minutes,
hours, or, perhaps, days [189]. In general, rapidity is a key design
consideration.

4.3 Design

VMI provides access to virtual machine resources from outside
the virtual machine. A virtual machine monitor application run-
ning on the hypervisor implements VMI. This thesis focuses on
VMI monitoring of memory and network traffic virtual machine
resources. The following sub-sections describe an architecture for
monitoring these resources and present details of individual archi-
tectural components.

4.3.1 Description

A simple VMI architecture comprises a hypervisor and a moni-
tored virtual machine. For these investigations, the architecture
is extended to enable one virtual machine, the client, to communi-
cate securely with another virtual machine, the server. Although
the server could reside external to the virtual environment, a local
virtualised server is generally preferred.

One reason for using internal servers is that, in specific ex-
periments, malware programs are executed on the client. Aside
from legal considerations and Internet Service Providers possibly
blocking such communications, malware activity introduces unjus-
tifiable risks to co-located devices. In non-malware experiments
the framework also investigates decrypting secure communications

CHAPTER 4. MEMDECRYPT 62

by analysing server memory. It is expected that more accurate
results can be obtained by excluding extraneous factors such as
traffic bottlenecks or server shutdowns.

Virtual machine traffic generally traverses a hypervisor virtual
software bridge. A hypervisor application, such as a VMI moni-
tor, can intercept and analyse each packet. If the VMI monitor
suspects unusual behaviour, activities such as: manipulation of
the virtual machine’s environment; the collection of virtual ma-
chine memory; or disruption of the network connection may be
performed. For framework analysis, virtual machine memory is
acquired. Figure 4-1 depicts a data flow between untrusted vir-
tual machines through the hypervisor console.

Figure 4-1: High-level architecture

The framework requirements of interception, interpretation,
extraction, memory analysis, and decrypt analysis can be mapped
directly to five logical components as shown in Table 4-1. This de-
composition enables individual components to be extended or re-
placed for different technologies, protocols, and algorithms. Func-
tionally the components can be described as:

• packet interception captures each virtual network packet

• packet interpretation inspects packet send and receive IP
addresses, and TCP and UDP port numbers. Interesting

CHAPTER 4. MEMDECRYPT 63

packets are retained for implemented protocols, and protocol
fields parsed to obtain relevant details

• memory extraction determines the virtual machine pro-
cess associated with the network transaction and acquires
useful process memory when appropriate

• memory analysis discovers sets of candidate cryptographic
artefacts such as encryption keys and IVs (or nonces)

• decrypt analysis checks packet stream decryption with sets
of candidate cryptographic artefacts until a valid combina-
tion is discovered

Table 4-1: Logical Component Mapping to Requirements

Requirement Component
extraction memory extraction
interception packet interception
interpretation packet interpretation
identification memory analysis
decryption decrypt analysis

In the framework, interception and interpretation components
are linked to enable real-time analysis. Maintaining separation is
possible if subsequent activities such as memory extraction are
performed without the need for interception or interpretation.
In this thesis, the interception component invokes interpretation
yielding the framework activity flow diagram shown in Figure 4-2.

In virtual environments, further efficiencies are obtained by
integration. Packet interception, packet interpretation, and mem-
ory extraction relate to a virtual machine whereas memory and
decrypt analysis are technology independent. Integrating vir-
tual machine-related components may enhance framework perfor-
mance, albeit with a possible loss in extensibility. Consequently,
MemDecrypt consists of a data collection component incorporat-
ing inspection, interpretation, and memory extraction elements, a

CHAPTER 4. MEMDECRYPT 64

Figure 4-2: Framework Activity Flow Diagram

memory analysis component, and a decrypt analysis component.
Figure 4-3 illustrates the chaining between these three MemDe-
crypt components. For enhanced performance, component output
quantities are minimised to reduce subsequent component pro-
cessing. The following sub-sections detail individual component
designs.

Figure 4-3: Analysis Framework Component Interaction

4.3.2 Data Collection Component

The component monitors an untrusted client or server virtual ma-
chine and acquires data for the analysis components. Framework

CHAPTER 4. MEMDECRYPT 65

efficacy is achieved by restricting data acquisition to relevant net-
work packets and potentially useful memory. This approach min-
imises the virtual machine impact.

Each packet is analysed for possible suspect activity. Indica-
tors can be: DNS requests for unknown domain names; unknown
protocol packets; and packets associated with known protocols,
such as HTTP, VPN, SSH, and TLS, targeting non-whitelisted
IP addresses. All packets are ultimately forwarded to the desti-
nation IP address. When activity is suspect, packets are retained
for subsequent analysis. For SSH and TLS protocols, packet fields
provide important information for analysis and, also, the appro-
priate stage for memory extraction. For instance, encryption algo-
rithms, authentication algorithms, modes of operation (for AES),
and encryption key lengths are important. The information is
gleaned from specific protocol fields in messages such as SSH ‘Key
Exchange Initialisation’ and TLS ‘Hello’.

Essential MemDecrypt information is obtained from virtual
machine memory acquisition. Identifying virtual machine pro-
cesses associated with suspect activity supports restricting mem-
ory extract sizes. As open network connections are associated with
specific ports and processes, matching virtual machine connec-
tions and network packet port numbers can identify the process.
However, if different processes perform encryption and packet
transmission, then the memory of an incorrect process may be
extracted. So, as a precaution, virtual machine process lists at
network session start are compared with lists at the time of mem-
ory extraction. New processes may suggest possible encryption
processes, although other processes not associated with encryp-
tion activity may also have been created.

Process memory extracts are restricted. Because framework
performance is highly correlated with memory extract sizes, only
memory potentially containing encryption artefacts is acquired.
As artefacts are commonly negotiated and generated by client

CHAPTER 4. MEMDECRYPT 66

and server endpoints during the network session, a generating
process will store these in writable memory. Furthermore, the
artefacts are process data fields and, so, found in user-level, as
opposed to kernel, memory. To limit memory extract size, the
component extracts user-level writable memory of the identified
process. Memory extracts are acquired when the probability that
extracts contain cryptographic artefacts is high. Generally, this
occurs after completion of a protocol client-server handshake, dur-
ing which parameters used in generating cryptographic artefacts
are exchanged. Secure communications protocols incorporate dif-
ferent handshake processes so extensions are developed for each
and described in later chapters. Extracted memory, network pack-
ets, and algorithm details are retained for memory and decrypt
analysis.

4.3.3 Memory Analysis Component

The component searches for candidate cryptographic artefacts in
extracted memory. IVs vary in composition and size for protocols
and encryption modes so component protocol extensions address
variations. By contrast, encryption key characteristics are similar
across protocols, encryption algorithms, and modes. Core com-
ponent features of candidate artefact identification are prioritising
searches for candidate IVs ahead of candidate keys and techniques
to determine candidate encryption keys.

Candidate IV locations are identified before candidate key lo-
cations. For each variation, IV characteristics enable the discovery
of smaller sets of candidate IVs than keys. Cryptographic appli-
cations may store the artefacts in common data structures. Con-
sequently, identifying candidate IVs in memory and using their
memory locations to ascertain candidate keys from nearby mem-
ory segments may improve framework efficiency.

Key characteristics restrict the number of memory segments

CHAPTER 4. MEMDECRYPT 67

being candidate keys. One characteristic is randomness. Encryp-
tion algorithm key randomness aims to reduce the potential for
key discovery by trial-and-error. For instance, RSA key certifi-
cates used for TLS and SSH protocols were discovered when keys
were insufficiently random [190]. Various interpretations of in-
formation theoretic randomness exist. Von Mises proposed that
an event sequence is random if each sequence element is unpre-
dictable [191]. With this meaning, the probability of a sequence
element in a binary sequence being 0 or 1 is equally likely. This
interpretation was applied in a search for TLS keys [128]. How-
ever, the example of a sequence of alternating 0s and 1s suggest a
possible weakness in von Mises’ definition.

Instead, specifying a sequence, or string, of events to be ran-
dom if there is no description shorter than the string itself [192]
may offer greater rigour. Restated, this means a string of bits
is random if it cannot be described algorithmically as a shorter
string of bits. Random strings, such as encryption keys, generated
by computer programs are algorithmic and so, may not be purely
random, or, as eloquently yet brutally stated:
"Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin" [193].

Nevertheless, computer pseudo-random number generators are
frequently used. Randomness measures may distinguish memory
segments containing keys from other memory segments so mea-
sures that differentiate segment randomness are useful.

Entropy measures the randomness of memory segments. In
information theory, entropy calculates the uncertainty of predict-
ing the value of a string. In other words, entropy measures how
difficult it is to predict an observation [194]. Shannon entropy,
min-entropy and guessing entropy are considered the most useful
information theoretic entropy measures for cryptography [195].
Min-entropy and guessing entropy both evaluate the probable
number of attempts required to discover a sequence. Shannon

CHAPTER 4. MEMDECRYPT 68

entropy evaluates the degree to which a key can be compressed.
As min-entropy and guessing entropy adopt similar approaches,
the benefits of Shannon entropy and guessing entropy only are
compared for thesis purposes.

Shannon entropy provides a measure of the average uncertainty
of a string of bits. It calculates the average number of bits which
can describe the string [195]. As an example, if the sequence of
bits consists of a character repeated many times, it is predictable
and the entropy is 0. The Shannon entropy formula is given by
[196]:

H = −
n∑

i=1

p(i) log2 p(i) (4-1)

where p(i) is the normalized frequency, f(i), of the ith element
in the sequence i.e. p(i) = f(i)/n. For encryption keys to be
unpredictable, their H values should exceed a threshold, where
longer sequences have higher thresholds.

Guessing entropy evaluates the probability of guessing the value
of a discrete random variable [197]. A definition of guessing en-
tropy is given by [195]:

E[G(x)] =
n∑

i=1

ip(i) (4-2)

where G(x) is the number of guesses to identify the correct value
x and p(i) is the probability of an erroneous guess at the ith

attempt. The greater the number of guesses before obtaining the
correct value, the greater the randomness.

For the framework, small candidate key sizes are preferred as
the set size is proportional to computational processing effort and
hence analysis durations. The maximum entropy measure that
always identifies key segments, the threshold, determines candi-
date set size. The graphical comparison in Figures 4-4 and 4-5,
which maps the entropy measure (Y-axis) against memory offsets

CHAPTER 4. MEMDECRYPT 69

(X-axis), suggests that either entropy measure might suffice. In
experiments with 256-bit keys, Shannon key entropies exceeded
4.5 and guessing entropies 38,000. However, with these thresh-
olds, the guessing set size is ten times the Shannon entropy size
making the Shannon entropy measure more efficient for comparing
segment randomness.

Figure 4-4: Guessing Entropy

Figure 4-5: Shannon Entropy

CHAPTER 4. MEMDECRYPT 70

Entropy measurements are useful for key discovery only if key
entropy is sufficiently different from non-key memory segment en-
tropy. An experiment was conducted to analyse the entropy dis-
tribution for sets of secure communications applications that use
encryption. Figure 4-6 illustrates a typical distribution, where
the count of memory segments exceeding an entropy (X-axis)
maps against that entropy level (Y-axis) so that, for example,
whereas out of 264,813 segments exceeding 0.0 entropy, 188,602
(i.e. 72.1%) exceed 2.0, 2,628 (i.e. 0.99%) exceed 4.5. Segments
with 0 entropy are approximately 95% of all sets and are not
shown for illustration purposes.

So, for 256-bit keys, an entropy threshold of 4.5 provides dif-
ferentiation between candidate keys and other memory regions.
While the Shannon entropy maximum for 256-bit keys is 5.0, for
shorter key lengths the maximum and the minimum threshold
decrease leading to larger candidate key set sizes. Other charac-
teristics can reduce these set sizes.

Figure 4-6: Cumulative Entropy Distribution Example

Staticity in a network session is an encryption key character-
istic. After completion of the protocol handshake, the generated
keys support encryption and decryption until client and server

CHAPTER 4. MEMDECRYPT 71

negotiate generation of new keys. Keys are generally input pa-
rameters to encryption processes, and therefore may be memory
resident in a cryptographic data structure throughout the session.
So, memory extracts taken at different stages in a session may
contain keys. Furthermore, if memory extracts are acquired on
subsequent iterations of a virtual machine process function exe-
cuting, such as network packet transmission, keys may be at the
same location for each extract.

Another key characteristic is the distance between the memory
extract locations of encryption keys and IVs. During the protocol
handshake, the parties agree on the algorithm, mode of operation,
and key length for encrypting confidential information. This en-
ables a parameter exchange so that cryptographic artefacts can
be generated. Cryptographic data structures are therefore often
created at run-time to store fields such as encryption/decryption
flag, key size, key, and IV (or nonce). Consequently, keys and IVs
may be present in memory locations a short distance apart and
thus in the same read/write memory extract.

These characteristics can enable the prioritisation of valid keys
over other candidates. Specifically, memory segments near the
memory locations of candidate IVs, with contents that are static
between memory extracts, and with a Shannon entropy above the
threshold are candidate encryption keys. The memory analysis
component uses these insights to identify candidate cryptographic
artefacts for processing by the decrypt analysis component.

4.3.4 Decrypt Analysis

The component searches for valid artefacts through an iterative
process of decryption and verification. It generates decrypts for
the first encrypted block in network packets by iterating through
candidate artefact sets produced by memory analysis. This pro-
cess terminates when the decrypt is verified. Although invalid

CHAPTER 4. MEMDECRYPT 72

decrypts are generally random strings and therefore have high
entropy, valid decrypts such as binary file blocks or dynamically
generated URLs may also exhibit high entropy so decrypt entropy
measures may not be safe for verification. Protocol features can
provide higher confidence in decrypt validity and are built into
protocol extensions. A valid decrypt identifies cryptographic arte-
facts enabling other session packets to be decrypted and reviewed.

4.4 Construction

MemDecrypt construction implements the proposed design using
existing platforms and tools with bespoke software. Fully bespoke
solutions may provide increased security for the monitor [164] and
also be more efficient, but the additional development effort may
not offset investigative benefits. Bespoke means that the software
is written specifically for the framework.

A review was conducted of available hypervisors, packages, and
tools for each component. Key selection criteria for each element
were that they be non-commercial and able to integrate seamlessly
where necessary. Most reviewed packages and tools permitted in-
tegration with Python programs so bespoke MemDecrypt software
was written in the Python 2 programming language and is antic-
ipated to be upgradeable to Python 3 with minor alterations.

4.4.1 Hypervisors

Custom hypervisors are not used. Although researchers have de-
veloped instances, e.g. Hyperspector [154] and AccessMiner [164],
the review of major VMI studies, summarised in Appendix B,
found this to be atypical. For MemDecrypt, the hypervisor should:
support full virtualisation; be minimally exposed to tampering;
and support application-level memory mapped memory extrac-
tion from live virtual machines. The principal non-commercial

CHAPTER 4. MEMDECRYPT 73

hypervisors [198], VMware vSphere/ESXi, Microsoft’s Hyper-V
Server 2012, Xen, and KVM, are reviewed after a discussion of
these criteria.

Full virtualisation is more suited to MemDecrypt require-
ments than para-virtualisation and operating-system level virtu-
alisation. Whereas full virtualisation translates virtual machine
instructions for hardware access into host machine instructions us-
ing software or hardware translation, para-virtualisation modifies
the virtual machine operating system to provide direct hardware
access. As an example, a para-virtualised Windows virtual ma-
chine operating system requires specific drivers [199]. Formerly,
para-virtualisation performed significantly better than full virtu-
alisation but with Intel VT-x and AMD-V instruction sets, full
virtualisation performance is considered no longer to be a signif-
icant limitation [200] and for servers, full virtualisation is more
common [201]. In operating-system level virtualisation, sets of
applications run independently on a common operating system
hosting a container platform, so for experiments with Windows
and Linux, two virtualisation environments are necessary. Thus,
only full virtualisation enables multiple, unmodified virtual ma-
chine operating systems to co-exist on a single host.

Bare-metal hypervisors are preferred. An aspect of hypervi-
sor security is limiting the potential for tampering, in particular
by virtual machine software detecting and disrupting hypervisor
applications, called ‘VM escape’ [188]. For analysis, hypervisors
can usefully be classified as bare-metal or hosted. Bare-metal hy-
pervisors are installed directly onto the physical hardware while
hosted hypervisors execute as an application on a base operating
system, such as Windows or Unix, which itself runs on the phys-
ical hardware. Hosted hypervisors are considered less secure as
their base operating systems are large, complex products with
vulnerabilities that can facilitate hypervisor compromise [202].
A counter-argument exists that a bare-metal trusted computing

CHAPTER 4. MEMDECRYPT 74

base, comprising hypervisor and hypervisor console, may exceed
the trusted computing base of a hosted hypervisor [203]. Operat-
ing system vulnerabilities may be more prevalent than hypervisor
console vulnerabilities. Owing to the additional layer between the
virtual machine and the hardware, hosted hypervisor performance
is also poorer than bare-metal [204]. VMI studies using hosted
hypervisors, such as Livewire [130] and HyperSpector [154], are
therefore exceptions.

Memory mapping is desirable. MemDecrypt requires live
virtual machine memory extraction. Possible extraction tech-
niques include virtual machine snapshotting or memory mapping.
Memory snapshotting writes virtual machine memory to file, which
generally requires the virtual machine to be in a powered off or sus-
pended state. Memory mapping translates virtual machine mem-
ory to local, hypervisor memory. While snapshotting extracts all
virtual machine memory, memory mapping accesses only virtual
machine memory pages of interest. For performance, extractions
should only extract the user-level read/write memory of identified
processes making memory mapping a preference.

vSphere/ESXi The VMware hypervisor supports a wide range of
virtual machine operating systems including Windows and Linux.
The vSphere/ESXi 6.7 hypervisor component has a 129 MB foot-
print [205]. Most functionality, including a client which provides
management capability, is delivered by separate applications for
improved performance [206]. Virtualised memory can be acquired
by powering-off or suspending the virtual machine. The minimum
ESXi hypervisor size is 2GB of physical memory.

Hyper-V Server The Microsoft hypervisor supports all Windows
and selected Linux virtual machine operating systems [207]. A
privileged ‘root’ partition performs management functions such as
virtual machine creation and the enabling virtual machine hard-

CHAPTER 4. MEMDECRYPT 75

ware access [208]. Hyper-V needs a minimum hardware configu-
ration, such as a 64-bit processor with nested paging [209]. Al-
though virtual machine memory can be acquired, for example by
using LiveKD [34] program [210], Windows debugging is invoked
so the technique applies only to Windows virtual machines. Fur-
thermore, the full virtual machine image is extracted.

Xen Project The Xen open-source hypervisor [211] supports vir-
tual machines running a wide range of Windows and Linux vari-
ant. The hypervisor supports full virtualisation as well as para-
virtualisation. Approximately 1 MB in size, it delivers scheduling,
memory management and interrupt handling for hosted virtual
machines [211]. A privileged virtual machine (Dom0) manages
the hypervisor and also provides hardware functionality such as
virtual disk device and network access to other hosted virtual ma-
chines. Xen supports LibVMI, a virtual machine memory map-
ping library [148], so VMI applications can directly access the
memory and registers of live Linux or Windows virtual machines.
Process details are obtained by mapping to the virtual machine’s
kernel data to access the process table. Xen Project requires 1
GB of physical memory.

KVM & QEMU The KVM [212] hypervisor is a Linux kernel
module. As a result, Linux kernel security enhancements au-
tomatically apply to KVM. It is argued that KVM is a hosted
hypervisor because of the Linux kernel presence [41]. The im-
plementation leads to a large code base, which exposes a larger
attack surface. KVM does not provide hardware emulation and
relies on user-space implementations such as QEMU to provide
this functionality. QEMU [213] provides full virtualisation by em-
ulating the virtual machine for processor and hardware. To em-
ulate, virtual machine binary code is dynamically translated into
blocks of instructions for host execution. For performance, KVM

CHAPTER 4. MEMDECRYPT 76

and QEMU are used together to provide processor virtualisation
and hardware virtualisation, respectively. The LibVMI library
is supported by KVM-QEMU providing virtual machine memory
mapping after patching the hypervisor.

The Xen Project hypervisor appears most consistent with the
MemDecrypt construction as shown in Table 4-2. vSphere/ESXi
and Hyper-V Server map virtual machine memory internally so
their functionalities may be available to hypervisor applications,
e.g. with vSphere Software Development Kit for vSphere/ESXi
[214]. Xen’s low minimum memory requirement, support for Win-
dows and Linux operating systems, and access to a memory map-
ping library, justifies further investigation into its appropriateness
for the framework.

Table 4-2: Hypervisor Comparison

Hypervisor Memory map Full virtual’n Bare-metal
vSphere ESXi - Y Y
Hyper-V Server - Y Y

Xen Y Y Y
KVM-QEMU Y Y -

For MemDecrypt construction, the Xen Project hypervisor is
installed on a physical device and configured with recommended
partition sizes, the xenbr0 software network bridge, which acts as a
switch, and an SSH server to provide isolated communication with
management devices [211]. MemDecrypt components execute or
are initiated from Dom0. Build details for each component are
described in the following subsections.

4.4.2 Data Collection

The data collection component obtains virtual memory network
traffic and memory extracts. For network traffic, an iptables rule

CHAPTER 4. MEMDECRYPT 77

routes traffic traversing xenbr0 to a NetFilterQueue queue [215]
for interpretation. The Scapy Python package [216] deconstructs
IP, TCP, and UDP fields in each packet. If a packet indicates
suspect activity, such as an unusual destination IP address, be-
spoke protocol-specific modules analyse each session packet for
supported protocols. All packets, including suspect packets, are
forwarded to the destination to maintain the network session.

During the set-up process of a secure session for each protocol,
the client and server agree on algorithms to be used to enable the
secure exchange of data. The encryption algorithm including the
mode of operation and key size are retained for use by the memory
analysis and decrypt analysis components. For each protocol, a
stage is reached during the set-up process when keys and IVs are
likely to be in the memory of the process performing encryption.

Memory extraction is implemented differently for Windows client
virtual machines and Linux server virtual machines. These ap-
proaches are described in the following paragraphs.

Windows Clients For Windows virtual machines, where kernel
data structures are complex and changeable, a semantic anal-
yser assists in process identification and memory extraction. This
enables specific operating system and process structures to be
examined to determine the process associated with the unusual
event and the extraction of read/write user-level process memory.
For reasons of availability, maintainability, and comprehensive-
ness, memory forensics analysis frameworks are preferred to other
semantic analysers as discussed in the Literature Review. Volatil-
ity and Rekall are free, open-source memory forensics analysis
frameworks that provide semantic analysis.

Volatility [146] derives high-level semantic information from
memory image files, principally for forensic investigation. When
integrated with LibVMI [148] and PyVMI [217], a Python Lib-
VMI wrapper, Volatility provides live virtual machine semantic

CHAPTER 4. MEMDECRYPT 78

information. This is achieved by invoking low-level calls to ob-
tain kernel symbols, read memory segments, and convert virtual
to physical addresses, for example. Volatility does not require vir-
tual machine agents, reducing potential for detection and manip-
ulation. Although Volatility derives Windows and Linux semantic
information, there are limitations on its use with Linux images.
While the Volatility distribution includes profiles for most sup-
ported Windows operating systems, because Linux variations are
more plentiful, Linux kernel profiles must frequently be generated.
Volatility has fewer memory extraction features for Linux than for
Windows. As Linux process memory management structures are
simpler than Windows, deriving Linux semantic information may
not require a semantic analyser tool.

The Rekall framework [147] branched from Volatility, and al-
though rewritten [218], similarities exist. Functionally, both ex-
tract semantic information from image files and live systems. Op-
erationally, both frameworks use plugins and can be used as li-
braries. Rekall generates operating system profiles using a dif-
ferent approach [219], but, more importantly, requires a virtual
machine agent for data collection [220], so Rekall agents may be
detected by virtual machine malware. To limit the potential for
data corruption, Rekall is less appropriate for MemDecrypt pur-
poses than Volatility.

The data collection component invokes Volatility through in-
stalled Python scripts, rather than as a stand-alone executable
or an imported library. Volatility functions are accessed through
supplied or user plugins [221] so the scripting approach allows
for implementation of bespoke plugins and also makes Volatil-
ity upgrades, including the addition of operating system profiles
and plugins, simpler [146]. Bespoke plugins are implemented for
framework efficiency to obtain specific process details as well as
extract read/write process memory.

The bespoke netscantbl plugin, based on the supplied Volatility

CHAPTER 4. MEMDECRYPT 79

netscan plugin, obtains the names, process identifiers, port num-
bers, and physical offsets of processes with open network ports.
An extract of sample plugin output is shown in Appendix C.
Matching plugin output network addresses and ports identifies
the virtual machine process associated with the network activity.

The vadanalyse plugin, based on the supplied Volatility vad-
dump plugin, extracts user-level process read/write memory. The
plugin traverses the process Virtual Address Descriptors (VADs)
tree that is implemented by the Windows Memory Management
system for rapid access to program memory regions [34]. The plu-
gin identifies those VADs with read/write protection flags as po-
tential containers of encryption artefacts and writes the memory
to time-stamped files for memory analysis component examina-
tion. Only memory-resident VADs are extracted so the virtual
machine should be suspended during the plugin operation to pre-
vent memory pages being unavailable.

Linux Servers The Linux server implementation uses LibVMI for
process identification and memory extraction. LibVMI requires
knowledge of specific operating system global symbols and pro-
cess values. For Linux, the global symbol values are extracted
from the system map. Process values are discovered by execut-
ing a temporary kernel module on the virtual machine prior to
operation. Process values identify field offsets in the process task
structure. For example, the linux_pid value is the process iden-
tifier offset from the process task structure start. Process code,
stack, and heap start and end offset values were obtained in addi-
tion to those required for LibVMI configuration. Bespoke process
identification and memory extraction scripts invoke PyVMI API
functions, which call associated low-level LibVMI routines to read
virtual machine memory.

Process names are generally known because server applications
are started to listen to client requests. Bespoke code traverses the

CHAPTER 4. MEMDECRYPT 80

double-linked list containing process header pointers until process
names are matched. Process details, such as identifiers and mem-
ory structure pointers, are then extracted using the known process
value offsets.

Linux memory management is less complex than Windows so
semantic abstraction is not required for process read/write mem-
ory extraction. For user-level read/write memory extraction, be-
spoke code reads the process heap in 4Kb blocks, the smallest
Linux memory allocation, and writes them to a time-stamped file.
Swapped out blocks cannot be read and are ignored.

4.4.3 Memory Analysis

The memory analysis component is bespoke and customised for
each operating system, protocol, and the modes within each pro-
tocol. In particular, candidate IVs have different characteristics
for each protocol and mode. However, candidate key identification
is common in each variant.

The randomness characteristic of encryption keys asserts that
their Shannon entropies exceed a threshold. Any memory blocks
with entropies above the threshold are of interest. The threshold
setting is important as a high threshold limits the candidate keys
for analysis. Small sets of artefacts such as candidate keys re-
duce the time required by the decrypt analysis. However, setting
the threshold too high may lead to an artefact being missed and
invalidate the framework.

Artefact lengths determine entropy threshold. Thresholds set-
tings are determined for possible encryption key lengths (256, 192,
and 128 bits) and TLS CTR mode IVs (32-bits). Random strings
are commonly produced by pseudo-random number generators
such as the OpenSSL toolkit [222] rand function. A 99.99% confi-
dence level for threshold settings can be ascertained by generating
10,000 keys with ‘openssl rand nnn’ where nnn is requisite byte

CHAPTER 4. MEMDECRYPT 81

count and obtaining entropies. The values are detailed in Table
4-3 together with the actual framework threshold settings.

Table 4-3: Entropy Thresholds

Artefact length 99.99% confidence Threshold
256 bits 4.52 4.5
192 bits 4.08 4.0
128 bits 3.45 3.4
32 bits 1.5 1.5

Memory analysis also identifies candidate key locations by prox-
imity to candidate IV locations. Commencing from candidate IV
locations, entropies for key length segments, located at increment
multiples from the IV locations, are calculated and segments re-
tained as candidate keys if the entropy threshold is exceeded. As
cryptographic artefact sizes are 4-byte multiples, encryption pro-
grams probably align the artefacts on word boundaries so the
incremental value is generally 4. For Linux, a single heap memory
file is analysed for each extraction, whereas for Windows, every
VAD file is examined for each memory extraction .

4.4.4 Decrypt Analysis

For each protocol, mode, and operating system variant the com-
ponent carries out iterative decryption using the sets of candidate
encryption artefacts produced by memory analysis and retained
network packets. The process terminates on the correct decrypt
validation or exhaustion of the candidate artefacts. As perfor-
mance is critical, data such as candidate encryption artefacts and
network packets are memory resident throughout the iterative pro-
cess.

The component comprises bespoke code and two decryption
packages. For decrypting AES in CTR and CBC modes with 128,
192, and 256-bit keys, the Python ‘PyCrypto’ package [223] is

CHAPTER 4. MEMDECRYPT 82

recommended [224], has minimal Python package dependencies,
and is easily integrated into MemDecrypt without modification.
For decrypting ChaCha20, the Python Chacha20poly1305 package
[225] was modified to integrate with the framework.

Framework effectiveness relies on the accuracy of decrypt val-
idation. One approach is evaluating decrypt entropy. The ra-
tionale is that valid decrypts may be less random than invalid
decrypts and hence have lower entropy. However, in preliminary
testing, the decrypt entropy approach was unable to distinguish
valid and invalid decrypts with sufficient accuracy, so the approach
was discontinued.

Another approach calculates lengths of decrypt strings match-
ing regular expressions containing alphanumeric or common spe-
cial characters, based on an assumption that valid decrypts will
be largely alphanumeric. When 3-byte strings matched a regu-
lar expression, large quantities of potential decrypts were gener-
ated, while matching longer strings could exclude valid decrypts.
Although this approach could probably be improved, protocol-
specific decrypt validation results in greater accuracy. Generally,
valid decryption identifies the encryption artefacts, which enables
complete session decryption and deconstruction.

4.5 Evaluation

Experiments were conducted with various protocols, encryption
algorithms, and operating systems. Success can be measured by
decrypt precision and rapidity. For consistency and comparability,
experiments were executed in a standard environment. Evaluation
criteria and environment details are discussed in the remainder of
this section.

Of known information security measurement philosophies [226],
the adopted approach is formulation of a hypothesis and conduct-
ing experiments to investigate its validity. For framework utility

CHAPTER 4. MEMDECRYPT 83

in live scenarios, decryption must complete correctly and rapidly,
that is, effectively and performantly.

4.5.1 Test Criteria

In this thesis, effectiveness requires that the probability that ses-
sions are correctly decrypted exceeds a nominal value. Because
related domain studies do not decrypt, a commonly accepted value
does not exist and is therefore defined within the context of frame-
work usefulness. A tolerance of 1 session in 10,000 to decrypt
incorrectly may still miss a vital malicious communication ses-
sion but compares favourably with network intrusion detection
systems. The boundary condition of 99.99% may be challeng-
ing in short secure communications sessions that comprise one or
two encrypted blocks. With longer sessions, and therefore more
encrypted blocks, invalid decrypts are progressively less likely as
protocol deconstructs become meaningless.

Performant requires that the elapsed time taken to discover
the correct combination is sufficiently short for the framework to
be useful in real-world scenarios. If decryption is achieved dur-
ing a live network session, actions, such as session disruption, are
possible. Decryption after session completion may nevertheless be
beneficial, if, for instance, the decrypt contains a ransomware key,
or identifies confidential information that has been exfiltrated. In
the absence of published malicious activity network session dura-
tions, a target decryption time-period can be set through a con-
sideration of network session lengths.

User-initiated and software-initiated malicious activity session
durations are assessed separately, as the former allows for user
decision making. Analysis of a publicly available HTTPS traffic
dataset established that the network session duration of a very
small quantity was below 1 second, and the duration for the re-
mainder exceeded 1 minute [227]. As only the second set con-

CHAPTER 4. MEMDECRYPT 84

tained encrypted payloads, 1 minute may be indicative of typical
user-initiated benign or malicious network session lengths.

An analysis of malicious software-initiated traffic flows discov-
ered that sessions may be less than 100 packets [10], which is sug-
gestive of 1 second network session durations. Optimally, then,
decrypts should be obtained within 60 seconds for user-initiated
and 1 second for software-initiated malicious activities. Durations
for non-optimal solutions where the decrypt is obtained after the
session terminates depend on the scenario and impact of the ma-
licious activity.

4.5.2 Test Approach

Experiments were conducted by establishing network sessions be-
tween Windows clients and Ubuntu server virtual machines. In
each instance, a client application was executed at the command
level on the Windows client after a server listener process was
started. Destination server IP addresses and ports were provided
as client application parameters, where supported. In other in-
stances, such as client malware, a DNS application running on a
virtual machine responded to suspect requests with the IP address
of the destination server.

Once client and server awaited input, data collection was ini-
tiated from the Dom0 console command line. Monitored virtual
machine network traffic and memory extracts were retained, to-
gether with identified encryption algorithms and extract message
numbers for further analysis. Monitor commands were of the form:

python intercept.py -p DPORT PROFILE SRC DST
where DST and DPORT are the server destination IP address
and port respectively, SRC is the client IP address, and PRO-
FILE identifies the operating system and version of the monitored
virtual machine.

After completion of a monitored network session, the memory

CHAPTER 4. MEMDECRYPT 85

analysis process was initiated from the Dom0 console command
line. Using data retained by the data collection component, it
identifies and retains sets of candidate cryptographic artefacts.
Memory analysis commands were of the form:

python PROT_PROFparse.py FOLDER
where PROT identifies the protocol, such as SSH or TLS, PROF
identifies the operating system, and FOLDER the location of
memory analysis input and output data.

After completion of a memory analysis process instanc, decrypt
analysis was initiated from the Dom0 console command line. Us-
ing the sets of candidate cryptographic artefacts retained by the
memory analysis component, and captured network traffic, it tests
decrypts for protocol compliance. Decrypt analysis commands
were of the form:

python PROT_PROFdecrypt.py FOLDER
where PROT identifies the protocol, such as SSH or TLS, PROF
identifies the operating system, and FOLDER the location of re-
tained data.

MemDecrypt effectiveness was measured by executing the frame-
work to obtain decrypts and then calculating the theoretic proba-
bility that correct decrypts had been obtained by chance. The as-
sumption is made that each possible result is equally likely. Thus,
the likelihood of obtaining a specific three character decrypt, such
as ’GET’, is 1 in 3256 as any ASCII value is possible for each
character position.

Experiments were conducted varying specific parameters such
as user input data, encryption algorithms, and modes. This aimed
to ensure that framework effectiveness was not restricted to spe-
cific scenarios. For example, for file uploads, multiple text files
were generated, and Adobe Portable Document files and Excel
files downloaded from the Internet.

Framework performance was measured by obtaining the time
difference between the start and completion of specific operations.

CHAPTER 4. MEMDECRYPT 86

For data collection, measured operations were memory extract,
while for memory and decrypt analysis, primary measurement
was of the complete process. Invocations to the Python logging
package were used to generate times to an accuracy of 1/1000 sec-
onds. Component durations were obtained in each experiment to
assess framework performance relative to the evaluation criteria
and identify anomalies.

4.5.3 Test Environment

The physical environment used for thesis experiments is a Core 2
Duo Dell personal computer with 40 GB of disk storage and 3GB
of RAM. The hypervisor, which supports all virtual machines, is
Xen Project 4.4.1. Virtual machine configurations are provided in
Table 4-4. Anti-virus software is not installed on untrusted vir-
tual machines and firewall rules are implemented solely for test-
ing purposes. A single software network bridge provides network
connectivity between all virtual machines and any external com-
munications. To enable test runs, packages installed on Dom0 are
LibVMI, PyVMI, Volatility and their dependencies (listed in Ap-
pendix A), NetFilterQueue, Scapy, and the non-essential tcpdump
used for display purposes.

4.6 Extensibility

MemDecrypt extensibility can be considered from both a practical
and a conceptual perspective. The former determines the require-
ments for in-scope protocol extensions, while the latter discusses
how the framework might apply to technologies, algorithms, and
protocols outside the scope of this thesis.

Practically, the data collection component requires analysers
for each protocol. Protocol analysis extensions indicat e when
cryptographic artefacts may be memory-resident as well as agreed

CHAPTER 4. MEMDECRYPT 87

Table 4-4: Virtual Machine Configurations

Role Operating sys-
tem

Memory Disk Installed s/w

VMI Debian 3.16.0-4-
amd64 version 1

512 MB 15 GB sshd, Volatility,
LibVMI

Test Client Windows 7 SP1 512 MB 30 GB PuTTY,
OpenSSL,
nasm

Test Client Windows 10
(10.0.16299)

2 GB 40 GB As above

Test Server Ubuntu 14.04
(“Trusty”)

512 MB 4 Gb OpenSSL, sshd

DNS Ubuntu 14.04
(“Trusty”)

512 MB 4 GB dnsmasq

encryption algorithms and related information. Memory extrac-
tion is a commonly performed technique for Xen hypervisors with
Windows and Ubuntu virtual machines. Conceptually, memory
extraction may be possible for other hypervisors, as well as other
technologies, such as Android smartphones. For instance, where
Android smartphone volatile memory is acquired using a Linux
tool such as the Linux Memory Extractor (’LiME’) application
[70], the framework could support decryption of TLS sessions
using ChaCha20 without modifying memory analysis or decrypt
analysis components.

The memory analysis component focuses on firstly identify-
ing candidate IVs or other traces of cryptographic material and
secondly using that knowledge to identify candidate keys. The
first element may vary for: each encryption algorithm and mode;
protocol, including its version; and software implementation of
the protocol. Thus, both practically and conceptually, new ex-
tensions may be required where new variations are investigated.
However, the second, candidate key, location element is common
across variations where candidate keys have not been identified by

CHAPTER 4. MEMDECRYPT 88

the first element.
Decryption in the decrypt analysis component varies with pro-

tocol and encryption algorithm to enable determination of succes-
sive IVs. Where these are determined with a common approach,
conceptually a common component may be used. As decrypt val-
idation is protocol specific, new extensions are constructed for
each protocol type only. For example, TLS-over-HTTP validation
is common for each TLS version, encryption algorithm, operating
system, and protocol implementation. So, practically, validation
is built into the protocol extension and would need to be con-
structed for additional protocols, such as IPsec.

4.7 Conclusions

This chapter’s aim was to present a design and construct a frame-
work that supports decryption of secure protocol communica-
tions in virtualised environments. Although the solution may not
uniquely solve the challenge, MemDecrypt componentry does sup-
port the addition of extensions for different environments, algo-
rithms, and protocols.

Construction selections, particularly regarding hypervisor and
memory extraction approach, may require revision. Although Xen
is a popular research hypervisor and its capabilities make it use-
ful for investigative purposes, the commercial version ranked only
third behind VMware’s ESXi and Microsoft’s Hyper-V in a 2017
survey of server virtualisation [228]. With VMware’s pre-eminence
in the market, Volatility’s ability to extract process information
from VMware snapshots suggest that MemDecrypt could plausi-
bly be implemented on the ESXi hypervisor. The framework con-
struction is also constrained by its application to a single hypervi-
sor instance and therefore does not address the potential impact
of virtual machines moving between hypervisor instances. The
framework current analysis limit of a maximum of two memory

CHAPTER 4. MEMDECRYPT 89

extracts may also be a mitigating factor.
MemDecrypt uses Volatility plugins for Windows extraction

and LibVMI API calls for Linux extraction because of complex-
ities in Windows memory management and kernel data struc-
ture changes between operating system versions. However, the
MemDecrypt framework requires little semantic analysis. If pro-
cess identification and memory extraction durations differ signifi-
cantly between Windows and Linux, it may be expedient to repli-
cate the requisite Volatility semantic analysis in MemDecrypt.

The constructed framework meets the research objective a frame-
work to capture live virtual machine memory and encrypted net-
work traffic, discover small sets of candidate cryptographic arte-
facts in the captured memory, and rapidly decrypt the encrypted
network traffic. Furthermore, the solution scales, may be diffi-
cult to tamper with, and minimally impacts monitored virtual
machines.

Chapter 5

Determining Insider Attack Data
Exfiltration

5.1 Introduction

SSH provides secure communications between clients and servers.
As a legacy, SSH is also an application providing protocol func-
tionality in most Ubuntu systems. The protocol is supported on
MAC OSX and Windows operating systems by other applications.
Typically, SSH applications are employed to provide security for
remote access to target servers from clients across potentially in-
secure networks. Types of remote access include: executing com-
mands on a remote server; secure file transfers between client and
a remote server; and providing a secure tunnel to a remote server
[229]. SSH has been used as a medium for data exfiltration [5]
so successful decryption can assist in identifying insider attacks,
which are difficult to detect and increasingly common [68].

SSH encryption keys can be discovered by intercepting encryp-
tion function calls to extract parameters. For example, the Linux
ptrace command can attach to the encrypting process enabling
identification of keys and other artefacts [126]. This approach ap-
pears to have been used to discover SSH plaintext, ciphertext, and
keys, although implementation details are unclear [230]. Ptrace, or
the related strace, can also monitor server system calls to extract

90

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 91

SSH plaintext but this presumes control of the server and rapidity
of tracing, both of which could be problematic in live scenarios.
A similar technique obtained SSH client plaintext by extracting
identified system call data from a modified SSH honeypot server
[129]. These approaches are Linux-specific and, furthermore, may
be detectable by virtual machine software. Consequently, they
may be ineffective against malicious insiders, especially when the
target device runs on Windows.

An SSH MemDecrypt extension implements a novel approach
to find IVs in memory extracts that, in turn, enable rapid loca-
tion of candidate keys, and the deciphering of live SSH traffic
with high certainty. Protocol background, including SSH set-up
and the message exchange process, is presented first, followed by
details of the SSH framework extension design, construction, and
evaluation. The final section discusses the implications of the in-
vestigation and observations on the adopted approach. Focus is
restricted to AES encryption, with ChaCha20 encryption investi-
gated in a later chapter.

5.2 SSH Protocol

MemDecrypt investigates the current SSH protocol, SSH-2. SSH-1
was defined in 1995 following development of the original SSH ap-
plication. However, SSH-1 has security weaknesses and limited
functionality. These factors led to the development of SSH-2,
which uses different authentication and encryption algorithms,
and defines additional functions such as secure file transfer [229].
SSH-2 is the most recent version, and is investigated in this chap-
ter. SSH-2 will be referred to as SSH.

SSH is specified in four Internet Engineering Task Force (IETF)
Request for Comments (RFCs), which are listed below. Of these,
the second, third, and fourth items provide the technical details
that form the basis for the framework extension.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 92

• SSH Protocol Architecture (SSH-ARCH) [231] describes the
SSH componentry and SSH architecture along with policy
recommendations.

• SSH Transport Layer Protocol (SSH-TRANS) [232] specifies
the set-up phase of a secure connection between a client and
a server.

• SSH Authentication Protocol (SSH-AUTH) [233] defines the
authentication process for a client once the connection is es-
tablished.

• SSH Connection Protocol (SSH-CONNECT) [234] defines
protocols for an SSH sub-system. Examples of sub-systems
are starting a remote shell or transferring a file.

Although commonly layered, the protocols are considered to be
independent. After completion of the set-up phase, authentication
and connection services are requested by the client. Figure 5-1
illustrates the set-up, or handshake, phase.

Figure 5-1: SSH Handshake

5.2.1 Set-up Phase

The initial connection, packet protocol, server authentication, and
basic encryption and integrity services are defined in the set-up

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 93

phase [229]. During this process, clients and servers exchange
four messages: Protocol Version, Key Exchange Initialisation, Key
Exchange, and New Keys. The New Keys message indicates set-
up is complete for the sender.

In the initial exchange, SSH version compatibility is deter-
mined. The client initiates the conversation with the Protocol
Version message identifying the supported SSH version and, op-
tionally, the application and version implementing the connec-
tion, and the server responds in kind. The message contents are
unencrypted ASCII strings in the format ‘SSH-protocolversion-
softwareversion comments’ enabling the application or library, and
probable operating systems to be inferred. For instance, SSH-2.0-
PuTTY_Release_0.70 indicates use of the PuTTY SSH client
program [235], suggesting a probable Windows client. SSH-2.0-
OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 advises the receiver of the
sender’s operating system, Ubuntu, and library, OpenSSH, used
in many applications and operating systems such as Ubuntu’s sshd
[97].

In the second message exchange, the client and server agree
on algorithms for the session. The client transmits a Key Ex-
change Initialisation message, in which the contents are a set of
unencrypted ASCII strings advising the server of supported algo-
rithms for various purposes. For each purpose, the algorithms are
listed in decreasing order of preference. Figure 5-2 illustrates the
algorithm lists in a client Key Exchange Initialisation message.

The server Key Exchange Initialisation message identifies its
algorithmic preferences for each purpose. SSH-TRANS stipulates
that the agreed algorithm for each purpose is the most preferred
client algorithm that is also supported by the server. For instance,
if the client sends its encryption_algorithms_client_to_server
list as a truncated string such as aes256-ctr,aes256-cbc,rijndael-
cbc@lysator.liu.se . . . and the server response is aes128-ctr,aes192-
ctr,aes256-ctr,arcfour256 . . . , then aes256-ctr becomes the agreed

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 94

Figure 5-2: SSH Client Key Exchange

client to server encryption algorithm. Key Exchange algorithms
of interest for constructing the MemDecrypt SSH extension are
listed in Table 5-1. Whereas knowledge of the agreed symmetric
algorithms is core to MemDecrypt, the hash algorithms are only
used in the determination of encrypted message structures.

Table 5-1: Applied SSH Algorithm Types

Field Description
encryption_algorithms_
client_to_server

Symmetric algorithms for encrypting secure
messages sent by the client

encryption_algorithms_
server_to_client

Symmetric algorithms for decrypting secure
message received by the client

mac_algorithms_
client_to_server

Hash algorithms to authenticate messages sent
by the client

mac_algorithms_
server_to_client

Hash algorithms to authenticate messages re-
ceived by the client

In the third message exchange, client and server send infor-
mation required to generate the session cryptographic artefacts
in Key Exchange messages. Asymmetric protocols such as Diffie-
Hellman provide security for the exchange. The artefacts for the
agreed algorithms are generated using the transmitted and re-
ceived information. For example, if AES-CTR with 256-bit keys

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 95

using SHA2-256 hash was agreed, then encryption keys, IVs and
authentication keys of the required size are generated.

In the fourth message exchange, the ‘New Keys’ message is
transmitted to signify set-up completion for the sending party.
All subsequent network messages in the session are encrypted us-
ing the generated symmetric encryption artefacts until another
‘New Keys’ message is transmitted or the session terminates. Au-
thentication, connection, and sub-system exchanges are therefore
encrypted.

5.2.2 Authentication Phase

Authentication with the server is commonly required before the
client can perform activities on the remote server. The client
initiates the authentication process by requesting support for the
‘user-auth’ service. Following a successful server response, the
authentication method can be determined.

SSH-AUTH authentication methods are: ‘public key’, ‘pass-
word’, ‘host based’, and ‘none’. Although the ‘none’ method is
not recommended for actual authentication, the client can send
it to discover supported server authentication methods. The only
required method is ‘public key’ authentication, in which the client
typically sends an encrypted message with a signature generated
from a private key controlled by the client user. The server verifies
the key using previously exchanged key data. For ‘password’ au-
thentication, the encrypted message includes the user name and
the password. In ‘host based’ authentication, the client device
rather than the user is authenticated. For this method, a client
sends an encrypted message with a signature generated by the
client device private key for authentication.

For all methods, the server responds with a success or failure
message. Success enables the session to progress to the connection
stage.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 96

5.2.3 Connection Phase

A client requires connection with a server for remote access. Mul-
tiple concurrent SSH sessions may be needed for client-server pairs
as, for example, when a client user logs on for a shell session on
the remote server and contemporaneously downloads files from
the server. After successful authentication, a separate channel is
established to support each SSH service. Client message types
for the maintenance of SSH channels are ‘Channel Open’, ‘Chan-
nel Request’, ‘Data Transfer’, and ‘Channel Close’. A Channel
Open message specifies the channel identifier type of the channel
required, which could be a session, x11 connection, or a direct or
port-forwarded tunnel. This investigation focuses on session type
channels.

Opening a session type channel advises the server that a client
will request a server application. For a session type channel, the
activity type to be executed on a server is identified with a Chan-
nel Request message. Common channel activity types request the
creation of a command shell, or the enabling of an application or
sub-system.

For the PuTTY client implementation, one Channel Request
message identifies the server application. A string such as sim-
ple@putty.projects.tartarus.org advises the server that a single
channel is required. A second Channel Request message iden-
tifies the sub-system. Sub-systems are applications configured to
be supported by the SSH server. A common SSH server applica-
tion sub-system is secure file transfer, which is described in the
next sub-section.

The Data Transfer message type payload encapsulates the chan-
nel data. For the secure file transfer sub-system, all protocol mes-
sages are Data Transfer message payloads. The Channel Close
type advises that no further messages will be sent for that chan-
nel.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 97

5.2.4 Secure File Transfer

The secure file transfer sub-system has significant potential for
malicious use by insiders stealing confidential files [5] making it
worthy of investigation. Although the SSH file transfer protocol
can be layered on other protocols, SSH is the norm. The SSH
file transfer protocol (SFTP) is specified in IETF Draft 13 [236].
SFTP functions enable a number of file-related operations to be
performed on the remote server such as writing, retrieving, delet-
ing, renaming, setting and retrieving attributes, locking files, and
reading directory contents. Of these, the writing of confidential
files to a remote server is the activity most commonly associated
with insider attackers using SSH and SFTP.

Common client SFTP message types involved in file uploads
to remote servers are shown in Table 5-2. Though SFTP mes-
sage lengths and request identifiers (except for Initialisation and
Version message types) are message payload fields and therefore
encrypted, these are intentionally omitted from the table for legi-
bility.

The client initiates and, generally, terminates file uploads. The
initial exchange determines the SFTP version for the session. The
client transmits an Initialisation message with its supported SFTP
protocol version and the server responds with a Version message.
The next message exchange establishes server capacity to sup-
port the upload. A client Retrieve Attributes message requests
information on the file system object. Of the available request
attributes, a key request is determining whether the file size can
be accommodated. A File Attributes message provides the server
response. Following a client Open File message that contains the
full path and file name for writing, the server responds with a
Handle message. The client uses the handle to transmit source
file contents in Write File messages, to which the server responds
with Status messages. Once the upload has completed, a client

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 98

Close message advises that the server handle can be released and
the server responds with its final Status message. A complete
SSH message flow for connection, authentication, and connection
for secure file upload is illustrated in Figure 5-3.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 99

Figure 5-3: SSH Message Flow

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 100

Table 5-2: SFTP Write File Message Types

Code Message
Type

Purpose Sample Pay-
load

SSH_FXP_STAT Retrieve
Attribute

Confirm file
attributes e.g.
file size, access

4096 (file size)

SSH_FXP_CLOSE Close Handle (handle
string)

-

SSH_FXP_STAT File
Attributes Request file

or directory
attributes

/home/user/

SSH_FXP_HANDLE Handle Confirm file
open with
handle identi-
fier

(handle
string)

SSH_FXP_INIT Initialisation Protocol ver-
sion definition

3 or 6

SSH_FXP_OPEN Open File Request han-
dle for folder
& filename

/home/user/
creditcard.csv

SSH_FXP_STATUS Status Client opera-
tion outcome

0-31 & associ-
ated message

SSH_FXP_VERSION Version Protocol ver-
sion definition

3 or 6

SSH_FXP_WRITE Write File File contents name, num-
ber, expiry,
cvv

5.3 SSH Extension Design

Each MemDecrypt component incorporates an SSH extension.
Protocol features and associated packet formats are primary de-
terminants. However, AES modes and virtual machine operat-
ing systems also require separate logic. Customisation improves
performance further and provides opportunities for accurate vali-
dation of decrypts. The following sub-sections present extension
details for each component and, where applicable, for modes of

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 101

operation and operating systems.

5.3.1 Data Collection

This component obtains virtual machine data including network
packets and virtual machine process memory for analysis. SSH
network packets are inspected to discover agreed algorithms and
determine the timing for process identification and process mem-
ory extraction. Encryption and hash algorithms are derived by
matching preferred client algorithms with server algorithms from
the SSH Key Exchange messages.

Completion of the SSH session’s TCP handshake phase presents
a useful opportunity to identify the encrypting process. On Win-
dows clients, the initiating SSH process is generally discovered by
inspecting lists of processes with open network ports for a match
with the network packet addresses. A second, weaker, test is by
identifying new client processes. On Ubuntu servers, the SSH sshd
service connects to an SSH port awaiting connection requests. On
reception of such a request, the SSH service creates a child sshd
process to service it. So, new server sshd processes are potential
encrypting processes.

Memory extracts may contain cryptographic artefacts once New
Keys messages are transmitted, as all subsequent SSH session
messages have encrypted payloads. To discover candidate crypto-
graphic artefacts, the read/write memory of each identified pro-
cess is extracted for memory analysis when two different messages
are transmitted. The messages are not required to be sequential.

With algorithms known, memory acquired, and network pack-
ets captured, memory analysis commences.

5.3.2 Memory Analysis

AES modes are treated differently in memory analysis. In AES-
CBC, IVs are obtained from network packets so only candidate

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 102

keys are sought. Candidate keys are segments of process mem-
ory extracts taken at different times, that are static across the
extracts, and with Shannon entropies exceeding the threshold.

In AES-CTR, candidate IVs and keys are sought. Candidate
IV locations are discovered first with approaches that encompass
an analysis of memory extracts, network packets, or both network
packets and memory extracts. If program memory extracts are
taken when the same activity is being performed, such as the
transmission of outgoing messages, memory blocks containing IVs
change, while other blocks remain static.

AES-CTR IVs increment by 1 for each encrypted or decrypted
block so the IV delta between blocks in two outgoing SSH network
packets is equal to the number of encrypted blocks transmitted
between them. Algorithmically, suppose the value at location p in
extract file y at time a is compared with the value at location p in
extract file y at time b. Then, for the values to be IVs, represented
by IVpya and IVpyb respectively, equation 5-1 must be valid:

IVpyb = IVpya + n (5-1)
where n is the number of AES encrypted network blocks trans-

mitted in the session between times a and b. IV field locations
in program data structures, and therefore in memory, may not
change during a session. So, when a virtual machine process per-
forms an action, such as transmitting a packet to the same des-
tination address, values at the same memory address in different
extracts can be usefully compared. Memory segments with val-
ues that change between extracts by the number of blocks in the
payload of the intervening packets are candidate IVs.

As with AES-CBC, AES-CTR candidate encryption keys are
segments of process memory extracts taken at different times, that
are static and have entropies exceeding the threshold. Because
keys and IVs are cryptographic artefacts and probably in common
data structures, candidate key discovery commences from candi-

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 103

date IV locations. Candidate cryptographic artefacts are used in
decrypt analysis.

5.3.3 Decrypt Analysis

The component iterates through candidate IVs and keys until a
valid combination is found or all combinations exhausted. In AES-
CBC mode, the IV for decrypting the first network packet block is
contained in the network packet, and for subsequent blocks is the
preceding ciphertext so its candidate IV set size is 1. The same
validation approach is used for both AES-CTR and AES-CBC
modes.

In SSH, the valid combination can be determined using en-
crypted data block fields. The encrypted segment in SSH data
packets has the format shown in Table 5-3. As specified by SSH-
TRANS, the sum of the payload and padding field sizes must be
a multiple of 16 with a minimum padding of four bytes.

Packet
Length (4
bytes)

Padding
Length (1
byte)

Payload
(variable
bytes)

Padding
(variable
bytes)

MAC (16/32
bytes)

Table 5-3: SSH Encrypted Payload Format

The packet length is the sum of the padding length size, the
payload, and padding fields. Equation 5-2 may be a good decrypt
test for SSH messages as 2(8×4) − 21 valid packet length decrypts
are possible. The minimum SSH block size is 21 bytes comprising
a packet length of four bytes, a padding length of one byte, and the
payload and padding, which are at least one block. So, the prob-
ability of an incorrect decrypt producing the correct header data
is 1 in 4,294,967,275 for SSH packets not extending beyond one
network packet. Equation 5-2 is sound during the authentication,
channel, and sub-service setup stages when SSH packet sizes are
generally small. Reassembly is undertaken for SSH packet sizes

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 104

exceeding the network packet size. A modified version of Equa-
tion 5-2 is applied to reassembled SSH packets as the reassembled
packet size must be equal to the encrypted SSH packet size less
the packet length field size and authentication code size.

packet data length =

decrypted packet length +

size(packet length field) +

size(MACfield)

(5-2)

An additional decrypt test evaluates the padding length field.
As specified in SSH-TRANS, a correct decrypt must comply with
Equation 5-3:

4 <= padding length <= 255 (5-3)

When both equations are correct, the desired cryptographic
artefacts have been identified. The component uses these artefacts
to decrypt the session. The decrypts are parsed to determine SSH
authentication and connection fields, as well as all SFTP fields
including file details and content.

5.4 SSH Extension Implementation

Implementation details for SSH extensions are presented in the
following sub-sections. For each component, Windows client and
Ubuntu server details are provided where differences exist. AES
mode implementations also differ and are described.

5.4.1 Data Collection

Cryptographic algorithms are obtained from the Key Exchange
Initialisation messages. The bespoke software for finding client
preferences in server algorithm lists is identical for clients and

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 105

servers. This information is available in the retained network
packets so could be obtained during the analysis phases.

Operating system process identification implementations differ.
For Windows clients, the Volatility netscantbl plugin retrieves de-
tails of processes with open network ports and matches SSH client
packet and destination addresses with plugin source and target ad-
dress fields. For Ubuntu servers, process lists and their associated
details are generated by calling a bespoke routine to detect re-
cently created sshd processes. Candidate process identifiers and
associated memory structure pointers are retained for later mem-
ory extraction.

Operating system memory extractions also adopt different ap-
proaches. A specific SSH extension is not required for extraction
so, for Windows, the vadanalyse Volatility plugin identifies VADs
with read/write protection attributes and writes the memory to a
time-stamped file. For Ubuntu server virtual machines, the heap
memory start and end locations are identified from the memory
structure for each new sshd process, the memory read, and then
written to a time-stamped file.

5.4.2 Memory Analysis

Memory analysis approaches differ between the AES modes. For
AES-CTR mode, bespoke software first discovers candidate IVs.
IVs increment between separate memory extractions, so identical
files over different extracts cannot contain IVs, when IV memory
locations are fixed over different extracts. For Windows analysis,
files in the first memory extraction folder are compared with cor-
responding files in the second folder. If the memory files differ, a
deeper analysis identifies candidate IVs.

Candidate IVs are discovered in these Windows extract files
and Linux heaps by evaluating Equation 5-1. For example, if a
16-byte memory block value is 123,456 and two network packets of

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 106

10 and 5 encrypted blocks are transmitted before the next extract,
then a memory block value of 123,471 at the same address in the
second extract identifies a candidate AES-CTR IV. Algorithm 5.1
shows the AES-CTR IV location process.

Algorithm 5.1: SSH AES-CTR IV Memory Analysis
Data: extract folders fldra,fldrb and packets pkta, pktb
Result: Z = candidate IVs
delta := blocks[pkta:pktb];
for file f1 in fldra do

f2 = match (f1, fldrb);
if f1 <> f2 then

for i = 0 to size(f1) inc 4 do
if val(f2[i:i+16]) - val(f1[i:i+16]) = delta then

Z += f1[i:i+16];
end

end
end

end

The increment of four assumes 16-byte IVs are word-aligned in
memory. Lower increments would result in longer analysis times.
The MemDecrypt extension accommodates big-endian and little-
endian memory storage schemes to allow for different SSH imple-
mentations.

Key discovery is bespoke software. For AES-CTR, candidate
IV locations assist in the discovery of candidate encryption keys.
Extract files in the first folder with candidate IVs are inspected for
candidate keys. The component iteratively evaluates entropies of
memory segments and identifies candidate keys where the Shan-
non entropy threshold is exceeded. Keys are assumed to be word-
aligned so iterations increment and decrement by four starting
from candidate IV locations. Key length determines segment size
and entropy threshold. Segments with entropies exceeding the
threshold are compared with the segments at the same extract

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 107

file location in the second folder. Equality identifies the segment
as a candidate key.

For AES-CBC mode, candidate keys are identified applying
the same process. However, there is no preferential ordering of
memory extract files. The identified candidate keys, and IVs for
AES-CTR, provide input to the decrypt analysis component.

5.4.3 Decrypt Analysis

The component iterates through the sets of candidate keys and
IVs until decrypts are validated for the first ciphertext block.
Software is bespoke aside from using PyCrypto [223] to gener-
ate the decrypt. For performance, session network packets and
cryptographic artefacts are held in MemDecrypt extension mem-
ory data structures. Decrypt validation evaluates Equation 5-2, or
its modified version, to exclude decrypts with implausible payload
lengths. Decrypted padding length compliance with Equation 5-3
provides additional validation. A valid decrypt identifies the key
and IV combination enabling SSH plaintext to be uncovered.

Each encrypted block is deconstructed as specified in SSH-
AUTH, SSH-CONN, and SFTP RFCs. For authentication, the
‘password’ authorisation method is implemented for client and
server messages. For connection requests, complete Channel Open,
Channel Request, Data Transfer, and Channel Close messages
are decrypted for client and server messages. For the SFTP sub-
system, all fields for client and server SFTP message types are
decrypted. Decrypted messages, including file contents, are writ-
ten to disk for off-line viewing.

5.5 Evaluation

The SSH MemDecrypt extension was evaluated by carrying out
a series of experiments with variable file sizes, key lengths, AES

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 108

modes, operating systems, and operating system versions. The
SSH experimental set-up is described, followed by the experimen-
tal results for Windows clients and Ubuntu servers. The testbed
is comprised of the base MemDecrypt physical environment with
additional software to support SSH communications.

5.5.1 Experimental Set-up

Windows supports a number of SSH clients, including the PuTTY
suite [235]. PuTTY is widely used [237], so may be used by suspect
actors. It is anticipated that other Windows SSH client applica-
tions may generate similar results. Two secure copy programs,
pscp and sftp, are included in the PuTTY suite but, in mod-
ern implementations, these programs execute the same process to
transfer files [229]. For testing, pscp was run from the Windows
command line using commands of the form:

pscp -P nnnn filename name@ipaddress:/home/name

where nnnn is the target port, filename is the file being trans-
mitted, name is a user account on the target Ubuntu server,
ipaddress is the target server IP address and /home/name is the
Ubuntu server target folder for the transmitted file.

SSH server functionality is provided by openssh-server. An
Ubuntu service is started from the bash command line to receive
SSH client requests with commands of the form:

/usr/sbin/sshd -f /root/sshd_config -d -p nnnn

where nnnn is the service receiving port number and sshd_config
contains configuration details such as server supported encryption
algorithms.

Sets of experiments investigated decrypting SSH traffic en-

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 109

crypted with AES under different conditions. One set evaluated
decrypt effectiveness for Windows 7 and Windows 10 clients. To
evaluate file invariability, a second set uploaded 30 files in text,
Adobe Portable Document Format (pdf), Microsoft Office Ex-
cel, and Microsoft Windows executable formats from Windows 10
clients in AES-CTR mode with 256-bit keys. A third set evaluated
the effectiveness of 128-bit, 192-bit and 256-bit keys on Windows
10 clients in AES-CTR mode. A fourth set evaluated MemDe-
crypt effectiveness with 256-bit keys in AES-CBC and AES-CTR
modes on Windows 10 clients. A final set assessed decrypt ef-
fectiveness for Ubuntu server memory extracts in AES-CBC and
AES-CTR modes with 256-bit keys.

5.5.2 Experimental Results

In each experiment, the encryption keys, and for AES-CTR, the
IVs, were discovered and valid plaintext produced for all SSH and
SFTP fields. For example, the decrypted fields of interest from
the command ’pscp -P 2222 plaintext.txt peter@192.168.137.85:
/home/peter’ and plaintext.txt of ’An outcropping of limestone
beside the path that had a silhouette. . . ’, are illustrated in Figure
5-4. Other decrypted fields such as request identifiers and file
handles are omitted. As observed earlier, the probability of an
incorrect combination generating a packet length complying with
Equation 5-2 is 0.00000002%. As a result, no false positives were
generated in the experiments.

Analysis durations for producing SSH plaintext determines the
framework’s utility. For example, if plaintext is produced during
the network session, MemDecrypt can assist in detection or pre-
ventative measures. Component durations were obtained in each
experiment to assess framework performance and identify anoma-
lies.

The first experiment considered component durations for Win-

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 110

Figure 5-4: SSH Decrypt Output

dows 7 and Windows 10 clients. Fixed variables were AES-CTR
encryption mode, 256-bit key length, and the uploaded text file.
The results are summarised in Table 5-4. Windows 7 extracts
were typically 4.1 MB, and Windows 10 6.9 MB. The size dif-
ferences result from VAD structure changes between operating
system versions, so Windows 7 memory analysis completed faster
than Windows 10. Maximum and minimum sizes for IV candidate
sets were 18 and 4, and for key candidate sets 525 and 267. Al-
though combinatorial quantities are significant, the primary cause
of differences in operating system version decrypt analysis dura-
tions was the IV candidate ordering, where correct Windows 7
IVs generally occurred later in the candidate set than Windows
10 IVs.

Table 5-4: Windows 7 vs Windows 10 Durations (secs)

Extract Memory Decrypt

Windows 7 Mean 2.0 10.0 3.5
Std Dev 0.1 1.4 0.5

Windows 10 Mean 4.9 15.9 1.6
Std Dev 0.5 1.4 1.5

A second experiment compared analysis time durations for dif-
ferent file sizes on Windows 10 clients using AES-CTR with 256-
bit keys. File sizes ranged between 5 bytes and 660 KB and in-
cluded text files, Excel spreadsheets, and Adobe pdf files. The
results are presented in Table 5-5. Memory analysis durations

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 111

were invariant with file size. In decrypting different sized files
with a single key and IV combination, larger files generally took
longer, but durations were not determined solely by file size. So,
a 660 KB file could be decrypted in 2.0 seconds whereas a 230 KB
file required 3.9 seconds. Here, differentiators were the candidate
IV set size and the ordering of IVs within the set.

Table 5-5: AES-CTR Upload File Size Analysis Durations (secs)

Memory Analysis Decrypt Analysis
Maximum 25.2 3.9
Minimum 12.3 0.1
Mean 16.7 1.4
Standard Deviation 3.0 1.2

The third experiment considered analysis durations for differ-
ent AES-CTR key lengths on Windows 10 clients. Shorter key
lengths required lower entropy thresholds, so more candidate en-
cryption keys were discovered in memory analysis. For example,
one test sequence with identical file sizes yielded 272 candidate
keys with a 256-bit key length, 1123 candidate keys with a 192-
bit key length, and 5,658 candidate keys with a 128-bit key length.
These differences are reflected in decrypt analysis durations as il-
lustrated in Figure 5-5.

The fourth experiment compared analysis time durations on
Windows 10 clients for 256-bit key lengths in AES-CTR and AES-
CBC modes. Memory analysis was generally more rapid in AES-
CTR than AES-CBC although extract sizes were similar. The
decrypt analysis component does not iterate through potential
IVs for AES-CBC resulting in marginally shorter durations than
for AES-CTR as shown in Figure 5-6.

A fifth experiment investigated the extension’s ability to de-
crypt SSH traffic when analysing Ubuntu server memory. In tests
with AES-CTR encryption, 256-bit key lengths, and file sizes be-
tween 200 bytes and 20 KB, client and server sessions were de-

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 112

Figure 5-5: SSH Analysis Durations for Variable Key Lengths

Figure 5-6: SSH Analysis Durations for Variable Modes

crypted. However, the approach was slightly different from Mi-
crosoft Windows. In particular, candidate IV and keys were dis-
covered in extracts associated with messages later in the SSH ses-
sion when compared with Windows. A possible reason for the dis-
crepancy is that server process extracts were triggered on frame-

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 113

work interception of SSH client messages. Artefacts might be
discovered in earlier extracts with SSH server message triggers.
Figure 5-7 at the end of this chapter illustrates an example of a
complete SSH session, including a file upload.

Also in the fifth experiment, the data collection component ob-
tained Ubuntu server process lists and extracted process heaps in
0.3 seconds. The memory analysis component consistently discov-
ered 2 candidate IVs and between 290 and 330 candidate keys. As
encryption and decryption IVs should be independent, both candi-
dates could be assumed to be valid IV instances. When combined,
Ubuntu server analysis durations, which are shown in Table 5-6,
are faster than the Windows client equivalents.

Table 5-6: AES-CTR Ubuntu Server Analysis Durations (secs)

Memory Analysis Decrypt Analysis
Maximum 2.0 1.9
Minimum 1.3 1.2
Mean 1.6 1.5

Standard Deviation 0.3 0.3

5.5.3 Analysis

Component duration analysis suggests opportunities for perfor-
mance enhancement. Ubuntu memory extraction is more than an
order of magnitude faster than Windows. MemDecrypt employs
Volatility plugins to extract Windows process read/write mem-
ory. Volatility loads layered Python classes on each invocation to
provide extensibility in supporting various operating systems and
versions. A faster, but more complex, framework solution may be
to invoke low-level PyVMI functions directly, as implemented for
Ubuntu.

Operating systems memory management differences also im-
pact memory extraction durations. While the openssh-server heap

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 114

is typically no greater than 168 KB, Windows read/write VADs
number 16 files with a total size of 6.9 MB. In SSH experiments,
Windows cryptographic artefacts were always discovered in one of
three 1 MB VAD extracts, so extracts could possibly be limited
by memory size. Deeper knowledge of undocumented VAD struc-
ture fields may also enable precise identification of which memory
extracts contain cryptographic structures.

Memory and decrypt analysis durations can also be reduced.
With PuTTY, distances between key and IV memory addresses
were invariant for operating system version or transmitted file size,
but not key length. For example, pscp distances are 968 bytes for
256-bit and 192-bit keys and 728 bytes for 128-bit keys. With
this knowledge, memory and decrypt analysis durations reduced
to one second.

As decrypt analysis for a single key-IV combination took about
0.0056 seconds and each decrypt can be checked independently,
parallelising can reduce durations significantly. Implementing pre-
testing, pipelining between components, multi-threading of com-
ponents to use parallel processing, and translating the framework
into low-level language offer opportunities for further performance
enhancements.

5.6 Conclusions

Results show the MemDecrypt SSH extension identified small can-
didate sets of cryptographic artefacts in the memory of Windows
clients and Ubuntu servers enabling SSH sessions to be decrypted
with very high degrees of certainty. These results were indepen-
dent of Windows client version, AES mode, key length, and up-
loaded file size. Performance sufficed for user-initiated sessions.
Although the investigation was limited to specific authentication,
SSH sub-system, encryption algorithm and modes, and client and
server applications, these selections are not uncommon.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 115

Assumptions were made regarding candidate encryption key
and IV characteristics. Candidate encryption keys were assumed
to have high Shannon entropy, static throughout a network ses-
sion, and at the same memory location for multiple extracts.
Lower entropy implies less randomness, which is considered to
be an unlikely outcome. Two extractions were required for AES-
CTR memory analysis and one for AES-CBC. As extractions can
be sequential, non-static keys might require a new key exchange
between encrypted messages, which is impractical. An experiment
manually relocating keys within Linux heap extracts delayed de-
tection by less than 0.5 seconds. The key characteristic assump-
tions appear valid.

Candidate AES-CTR IVs were assumed to be present at the
same address for multiple extracts and to increment by 1 for each
encrypted plaintext block. As with keys, relocation induced slight
memory analysis delay. Obfuscating IV values in memory may
delay framework decryption and so could be implemented in se-
cure communications applications. Possible obfuscatory measures
include IV encryption or splitting. The former requires doubled
decryption with significant performance consequences, so IV split-
ting may be more promising. For example, randomised splits with
variable interposed data offers potentially faster IV reassembly.
This technique can also be applied to keys making MemDecrypt
artefact discovery more challenging.

Completely decrypted SSH sessions offer opportunities to counter
insider attacks, such as the exfiltration of data to external loca-
tions. Another potential application is, with candidate artefact
retention, decryption can be delayed until required to avoid con-
travening privacy laws. Decryption also introduces the risk that
malicious actors may obtain access to remote servers as well as
legitimately uploaded confidential data.

CHAPTER 5. DETERMINING INSIDER DATA EXFILTRATION 116

Figure 5-7: SSH Decrypted Session

Chapter 6

Decrypting Web Traffic

6.1 Introduction

TLS is a key protocol for Internet client-server communications [2]
[3]. In this chapter a framework extension is constructed to de-
crypt TLS communications. Focus is restricted to AES-encrypted
TLS communications as a later chapter will investigate ChaCha20-
encrypted communications.

Analysts can discover plaintext or encryption keys used in TLS
communications. For instance, plaintext can be obtained by inter-
posing a man-in-the-middle proxy, such as SSLsplit [238], which
transforms a single TLS session into two such sessions. Encryp-
tion keys have also been found for the AES-CBC encryption mode
in Linux memory extracted upon detection of a specific client
message available in the TLS 1.2 protocol [128]. However, these
scenarios are restrictive.

The TLS MemDecrypt extension implements novel approaches
to locate candidate IVs in memory extracts, thereby supporting
the discovery of candidate keys. These artefact sets enable the
rapid decryption of TLS 1.2 and 1.3 payloads. To provide con-
text, the first section presents protocol background, including set-
up and message exchange process details. The following sections
discuss the TLS framework extension and its implementation, con-

117

CHAPTER 6. DECRYPTING WEB TRAFFIC 118

duct experiments, and discuss experimental results.

6.2 Background

TLS versions are discussed first, followed by protocol version de-
tails where relevant. In particular, IV structures differ between
TLS versions and, for TLS 1.2, between modes, and these dif-
ferences were important for developing the framework extension.
Unlike other variations, TLS 1.2 AES-GCM IVs may be found in
generated key blocks and this mode is described first, followed by
details of TLS 1.2 AES-CBC and TLS 1.3 IV constructs.

6.2.1 Protocol Versions

Various TLS versions are still in use. TLS 1.0 was specified as the
successor to SSL by the Internet Engineering Task Force (IETF)
in 1999, after which versions 1.1, 1.2 and 1.3 addressed perceived
shortcomings of previous versions. Protocol goals are: to provide
a secure end-to-end channel between two parties through server
authentication; confidentiality of the exchanged information once
the channel is secured; and integrity, meaning data cannot be
manipulated without detection [239].

TLS 1.2 was published by IETF RFC 5246 in 2008 [240]. For
improved performance and security, TLS 1.3 was specified, ratified
[241], and issued as a new RFC [239] in 2018. Although individual
browsers are reported to be TLS 1.3-ready, a large hosting com-
pany survey over a 24-hour period in December 2017, obtained
the TLS version usages shown in Table 6-1 [242]. The survey was
conducted prior to TLS 1.3 ratification so, though indicative, us-
age may have changed. A signficant challenge is believed to be
the upgrading of intermediary and target devices to support the
newer version [242].

CHAPTER 6. DECRYPTING WEB TRAFFIC 119

Commonly used tools and libraries were still under develop-
ment for TLS 1.3 when primary thesis experiments were con-
ducted so TLS 1.2 was the focus of investigations. Nevertheless,
the framework is constructed to decrypt TLS 1.2 and 1.3 traffic.

Table 6-1: TLS Version Usage Statistics

Version Usage
TLS 1.0 11.36%
TLS 1.1 00.38%
TLS 1.2 88.2%
TLS 1.3 00.06%

TLS 1.3 introduces changes which impact framework design.
One change affects AES modes. For enhanced TLS performance,
message confidentiality and integrity can be achieved in the same
transaction by extending an encryption mode, commonly known
as authenticated encryption. For instance, when the AES-CTR
encryption mode is followed with a Galois field hash [243], the
mode is called Galois Counter (GCM). GCM generally offers bet-
ter performance than other TLS modes [85] [243].

Though encryption followed by authentication is considered se-
cure, authentication followed by encryption, as with TLS 1.2 AES-
CBC, creates vulnerabilities. Padding attacks, such as POODLE
and BEAST, and timing attacks, such as Lucky13, demonstrated
that AES-CBC encrypted traffic could be decrypted with suffi-
cient attempts [66]. As a result, while TLS 1.3 supports AES
in GCM mode, AES with CBC is deprecated. As MemDecrypt
investigates TLS 1.2, both AES-GCM and AES-CBC modes are
analysed. Other TLS 1.3 changes that impact the framework are
covered in later sections.

CHAPTER 6. DECRYPTING WEB TRAFFIC 120

6.2.2 Handshake, Change Cipher Specification, Appli-
cation Data

TLS 1.2 comprises a record protocol, which provides encryption
and authentication, and four protocols layered on the record pro-
tocol: handshake, change cipher specification, application data,
and alert protocols [240]. All except the alert protocol, which is
unconnected with this research, are analysed by the MemDecrypt
extension. Each layered protocol is identified by a defined mes-
sage content type. The relevant details of each analysed, layered
protocol are described followed by germane elements of the record
protocol.

The outcome of a completed TLS handshake is the production
of cryptographic artefacts and algorithms for use in a secure ses-
sion. The client and server exchange the messages shown in Table
6-2 to reach agreement on TLS version, session algorithms, ex-
tensions, to validate compatibility, and verify the opposite party’s
credentials where required. Unlike earlier versions, in TLS 1.3 the
TLS version is negotiated through the extensions.

Client and server Hello messages define random values for key
generation, and establish TLS version, new session cryptographic
algorithms, message compression algorithms, and additional re-
quested server functionality, the extensions. The client Hello
message contains its algorithmic and extension preferences and
the server Hello response identifies the first supported client pref-
erence. The agreed TLS version is the most recent supported
by client and server. The cryptographic algorithm value iden-
tifies the session key exchange mechanism, the encryption algo-
rithm, and the authentication algorithm. For example, the value
0xc014 specifies that key exchange applies the Elliptic Curve
Diffie-Hellman Ephemeral method, server authentication requires
RSA certificates, encryption applies AES encryption in CBC mode
with a 256-bit key size, and authentication uses the Secure Hash

CHAPTER 6. DECRYPTING WEB TRAFFIC 121

Table 6-2: TLS 1.2 Handshake Phase Messages

Message Type Description
Client Hello Preferred list of ciphers, compression algo-

rithms, and extensions
Server Hello Agreed cipher, compression algorithm, and

extensions
Server Certificate Server Certificate for authentication
Server Key Exchange Server parameters for master secret
Client Key Exchange Client parameters for master secret
Server Hello Done Server has sent all messages for the hand-

shake
Server New Session Ticket Tickets for resumed TLS sessions
Client Change Cipher Spec-
ification

Further client data messages are encrypted

Client Encrypted Hand-
shake

Encrypted agreed handshake parameters

Server Change Cipher Spec-
ification

Further server data messages are encrypted

Server Encrypted Hand-
shake

Encrypted agreed handshake parameters

Algorithm 1 (SHA-1) algorithm, which is now considered insecure.
The server Certificate message allows for client verification of

the server credentials. The message includes a sequence of certifi-
cates starting with the server’s own. In Internet TLS communi-
cations, third-party generated certificates are commonly required
by the client. The message is not of interest for the current frame-
work.

The Key Exchange message contents depend on the agreed key
exchange mechanism. The objective is for sufficient material to be
exchanged for client and server to generate pre-master keys and
then master keys enabling the generation of key blocks. For in-
stance, if Diffie-Hellman is the agreed mechanism, Diffie-Hellman
public values are included in the client Key Exchange message,
and potentially in a server Key Exchange message when the key
exchange mechanism variation requires it. These messages are not

CHAPTER 6. DECRYPTING WEB TRAFFIC 122

of interest for the current framework.
A server Done message signifies no further server data is re-

quired for key block generation. It generally also transmits a New
Session Ticket message so that TLS sessions can be resumed with-
out a new handshake. These messages are also not of interest for
the current framework.

The Change Cipher Specification message is not a handshake
protocol message. However, its interposition between the prior
handshake protocol messages and the handshake completion mes-
sage (Encrypted Handshake) suggest that it is appropriately dis-
cussed at this juncture. The Change Cipher Specification mes-
sage exchange advises that all further transmitted data messages
in the session are encrypted. The next messages exchanged are
Encrypted Handshake, also known as Finish, messages which in-
clude encrypted handshake parameters. The message following
completion of the handshake phase is generally the first Applica-
tion Data Message, which carries an encrypted payload. Change
Cipher Specification is not a defined TLS 1.3 protocol message.
The keys and IVs used in the encryption and decryption processes
are defined by the record protocol.

6.2.3 Record Protocol

In TLS 1.2, the record protocol ingests material exchanged in the
handshake to generate key blocks. In particular, the hash algo-
rithm uses the client and server random values and the generated
master secret to generate a key block comprised of randomised
values. Key block field quantities and sizes vary in accordance
with encryption and hash algorithms. Table 6-3 shows the key
block structure for AES-GCM with 256-bit keys and a 256-bit
SHA hash.

IV implicit segments are not used in all encryption modes. For
instance, TLS IVs are constructed differently for AES-GCM and

CHAPTER 6. DECRYPTING WEB TRAFFIC 123

Table 6-3: TLS 1.2 GCM Key Block Fields

Field Size (bytes)
Client Authentication key 32 (SHA256)
Server Authentication key 32 (SHA256)
Client Encryption Key 32 (AES 256)
Server Encryption Key 32 (AES 256)
Client IV implicit segment 4 (AES-GCM)
Server IV implicit segment 4 (AES-GCM)

AES-CBC modes. In AES-GCM, a 12-byte IV is comprised of a
4-byte implicit and an 8-byte explicit segment [243] [244]. The
implicit segment is the key block field value and the explicit seg-
ment is independently generated by the sender and included in
each Application Data Message. The implicit field is a mutually
agreed fixed value, so the explicit field is incremented for each
packet to avoid identical plaintext producing identical ciphertext.
The AES-GCM Application Data message format is shown in 6-4.

Table 6-4: AES-GCM Application Data Message Format

Content
Type

Version Data Length Explicit IV Encrypted
Data

To illustrate, Figure 6-1 shows the payloads of two consec-
utive TLS 1.2 Application Data messages. In the highlighted
sections, the content types 0x17 signify Application Data mes-
sages, versions 0x0303 that TLS 1.2 is the protocol, and the data
lengths 0x001d and 0x0033, that is 29 and 51 decimal respec-
tively, are the sizes of the encrypted data fields. The difference
between the explicit IV segment values 0x703afd67c24e275d and
0x703afd67c24e275e is 1, the incremental value.

AES-CBC IVs are constructed differently. The 16-byte IV is
generated by the sender and included as a field in the Application

CHAPTER 6. DECRYPTING WEB TRAFFIC 124

(a) GCM Application Data Message

(b) Next GCM Application Data Message

Figure 6-1: TLS AES-GCM Application Data Messages

Data message as shown in Table 6-5.

Table 6-5: AES-CBC Application Data Message Format

Content
Type

Version Data Length CBC IV Encrypted
Data

The IV for each following block in a packet is the previous ci-
phertext block. Figure 6-2 illustrates two consecutive AES-CBC
client Application Data messages. In the highlighted sections, the
16-byte segments from offset 0x3b to 0x4a are the randomly gen-
erated IVs for the first block and differ significantly. The second
block’s IV is the ciphertext of the first block. For example, in
6-2b, the IV for the second block is the 16-byte segment starting
at offset 0x4b with 0x59.

TLS 1.3 AES-GCM Application Data messages do not include
IV segments. The 12-byte initial IV, generated during the hand-
shake process, is XORed with a counter to obtain the IV to be
used in the AES-GCM encryption process. The counter value is
initially set to zero and then incremented for each transmitted
Application Data message.

CHAPTER 6. DECRYPTING WEB TRAFFIC 125

(a) CBC Application Data Message

(b) Next CBC Application Data Message

Figure 6-2: TLS AES-CBC Application Data Messages

6.3 TLS Extension Design

The framework extension analyses: TLS protocol messages in-
cluding handshake, Change Cipher Specification and Application
Data message types; AES-CTR and AES-CBC IV characteristics;
and properties of encryption keys. By integrating these features,
the extension supports the rapid and accurate decryption of TLS
communications. The following sub-sections describe extension
details for data collection, memory analysis, and decrypt analysis
components.

6.3.1 Data Collection

The component extracts useful virtual machine data when trig-
gered. Data includes session network packets, cryptographic algo-
rithms and characteristics, and memory extracts from virtual ma-
chine processes associated with the TLS session. Cryptographic
algorithms and characteristics are obtained from the server Hello
message. Fields extracted for the analysis stages are TLS version
number, session identifier, and cipher suite. The cipher suite is
decomposed into encryption algorithm, mode, and key length, and
authentication algorithm and hash length.

CHAPTER 6. DECRYPTING WEB TRAFFIC 126

Triggers for TLS 1.2 memory extraction are detection of Cipher
Change Specification or Application Data messages, and for TLS
1.3, Application Data messages only. These messages indicate
that the sender has generated cryptographic artefacts and a key
block may exist. Although a single memory extract suffices for key
block discovery, the component extracts memory twice to allow for
their absence.

For Windows clients, the probable encrypting process is identi-
fied by discovering the virtual machine process associated with the
network session client and server addresses. Figure 6-3 illustrates
the logical steps for Windows client TLS data collection. Ubuntu
processes that service client requests are user-initiated, so details
for the known process are extracted.

Figure 6-3: TLS Extension AES Data Collection Flow

6.3.2 Memory Analysis

This component analyses network packets and memory extracts
to discover sets of candidate cryptographic artefacts. In TLS
1.2 AES-GCM, the process for obtaining candidate cryptographic
artefacts is to obtain the explicit IV segment, discover the implicit
IV segment, and discover key blocks as illustrated in Figure 6-4.
If key blocks are not found, a fourth step discovers candidate en-
cryption keys. In AES-CBC, the process is to identify candidate
encryption keys and in TLS 1.3 AES-GCM, to discover candidate
IVs, and then encryption keys.

CHAPTER 6. DECRYPTING WEB TRAFFIC 127

Figure 6-4: TLS Extension GCM Memory Analysis Flow

TLS 1.2 AES-GCM Initially, the component extracts the first 8
bytes from a transmitted Application Data message payload, the
explicit segment of the 12-byte IV. In the second step, the compo-
nent searches memory extracts for 8-byte segments closely match-
ing the explicit IV allowing for IV counter increments. AES-GCM
encryption uses the complete IV so explicit and implicit segments
may be memory co-resident. Consequently, 4-byte segments be-
fore 8-byte explicit IV matching segments are identified as candi-
date implicit IV segments. The third step probes for potential key
blocks by searching memory extracts for 4-byte memory regions
matching each candidate implicit IV. Matches indicate possible
key block presence. The two key length-sized memory segments
in a key block antecedent to the client implicit IV are client and
server encryption keys. So, the two antecedent segments to can-
didate implicit IVs are identified as candidate keys if the Shannon
entropies of both segments exceed the key length threshold. The
implicit IV segments and candidate keys are retained for decrypt
analysis. Algorithm 6.1 shows the key block location process.

Complete key blocks may be ephemeral in memory. For in-
stance, they may be partially or fully overwritten prior to a mem-
ory extraction. So, when no candidate key blocks are discovered,
a final step discovers candidate encryption keys using entropies.
Key length-sized memory segments in identical locations in sepa-
rate extracts, that are static, and have entropies above the key-
length threshold are candidate encryption keys. Segments that

CHAPTER 6. DECRYPTING WEB TRAFFIC 128

Algorithm 6.1: TLS 1.2 AES-GCM Key Block Memory Analysis
Data: extract folder fldr and Application Data message packet pkt
Result: X = client keys, Y = server keys, Z = Implicit IVs
ExpIV = pkt[ExpIV start : ExpIV start+ 8];
for file f in fldr do

fmem = memory(f) for ExpIV in fmem do
potentialImpIV = fmem[ExpIV locn− 4 : ExpIV locn];
if entropy (potentialImpIV) > threshold then

ImpIV s := fmem[ExpIVlocn-4:ExpIVlocn];
end

end
for ImpIV in ImpIVs do

if entropy(fmem[ImpIVlocn-64:-ImpIVlocn-32]) > Threshhold
& entropy(fmem[ImpIVlocn-32:ImpIVlocn]) > Threshhold
then

X += fmem[ImpIV locn− 64 : ImpIV locn− 32);
Y += fmem[ImpIV locn− 32 : ImpIV locn];
Z += ImpIV ;

end
end

end
where ExpIVstart is the encrypted data offset in an Application
Data message, ExpIV is the explicit IV segment, ImpIV is the
implicit IV segment, and *locn suffixes are memory locations of
respective elements

CHAPTER 6. DECRYPTING WEB TRAFFIC 129

are located near IVs are prioritised by commencing searches from
IV memory locations in order to enhance the rapidity of correct
key discovery by the decrypt analysis component.

TLS 1.2 AES-CBC In AES-CBC mode, memory analysis only
discovers candidate keys. For improved decrypt analysis perfor-
mance, IV traces are sought in memory extracts to enable probable
candidate keys to be prioritised. For example, the last ciphertext
block of an encrypted message, such as an Encrypted Handshake
message or an Application Data message, may be memory-resident
when the extraction takes place. So, the component searches for
matches to the last ciphertext block in Application Data messages.

Matched memory locations provide an offset for commence-
ment of candidate key searches and, if unmatched, the searches
commence at the first block of each extract file. As with AES-
GCM, key-length sized segments with entropies exceeding the
key-length threshold, and static across extracts, are retained as
candidate encryption keys for processing by the next analysis com-
ponent.

TLS 1.3 AES-GCM The memory analysis component searches
for IVs followed by encryption keys. As encrypt IVs result from
an XOR between a fixed IV value and a strictly increasing counter,
an XOR of two encrypt IVs in a session is equal to the quantity
of records transmitted between the two extracts. The IV location
process is shown in Algorithm 6.2.

Identified IV memory locations provide an offset for commence-
ment of candidate key searches and if unmatched, the searches
commence at extract starts. As with TLS 1.2 AES-GCM and
AES-CBC modes, key-length sized segments with entropies ex-
ceeding the key-length threshold, and static across extracts are
retained as candidate encryption keys for processing by the next
analysis component.

CHAPTER 6. DECRYPTING WEB TRAFFIC 130

Algorithm 6.2: TLS 1.3 AES-GCM IV Memory Analysis
Data: extract folders fldra,fldrb and packets pkta, pktb
Result: Z = candidate IVs
delta := packetno[pktb] - packetno[pkta];
for file f1 in fldra do

f2 = match (f1, fldrb);
if f1 <> f2 then

fmem1 = memory(f1);
fmem2 = memory(f2);
for i = 0 to size(f1) inc 4 do

if fmem2[i : i+ 12]⊕ fmem1[i : i+ 12] = delta then
Z += fmem1[i : i+ 12];

end
end

end
end

6.3.3 Decrypt Analysis

The component decrypts by iterating through the cryptographic
artefact sets and decrypting an Application Data Message until
a valid decrypt is obtained or all combinations are exhausted.
For AES-GCM in both TLS versions, cryptographic artefacts are
sourced from memory analysis, while for AES-CBC, the IV is
extracted from the network packet payload’s first block and keys
sourced from memory analysis. The decrypt validation process is
common to all modes .

MemDecrypt analyses HTTP-over-TLS traffic. Although TLS
can provide security for high-level protocols [245] such as SMTP,
IMAP, POP, [246] and FTP [247], HTTP-over-TLS, also known
as HTTPS, is commonly used [248]. The framework validates
requests conforming with the HTTP 1.1 specification and is ex-
tensible to HTTP 2.0. The format of HTTP 1.1 request messages
is:

CHAPTER 6. DECRYPTING WEB TRAFFIC 131

request-line:headers:body [249]

A valid decrypt is inferred where the decrypt adheres to the
HTTP 1.1 specification for ‘request-line’ and ‘headers’ elements.
Validation identifies the session cryptographic artefacts, which
then enables the remaining Application Data message payloads
to be decrypted.

6.4 TLS Extension Implementation

This section presents implementation details for the TLS exten-
sion. For each component, the details for both Windows client
and Ubuntu server are described where differences exist. Imple-
mentations are described for both TLS 1.2 modes of operation and
TLS 1.3.

6.4.1 Data Collection

The identification of cryptographic algorithms, TLS versions, en-
crypting processes, and memory extraction are performed by be-
spoke software. The TLS cryptographic algorithms and TLS ver-
sion are obtained from the server Hello message. The details for
identifying processes and memory extraction are similar to those
for SSH Data Collection and are only summarised here for com-
pleteness.

Bespoke process identification software differs between Win-
dows clients and Ubuntu servers. For Windows clients, the Volatil-
ity netscantbl plugin retrieves details, such as process names, iden-
tifiers, physical offsets, and source and target addresses of pro-
cesses with open network ports, and matches TLS client packet
source and destination addresses with plugin output source and
target fields. For Ubuntu servers, process lists and associated
details are generated and recently created openssl processes iden-

CHAPTER 6. DECRYPTING WEB TRAFFIC 132

tified. Candidate process identifiers and associated memory struc-
ture pointers are retained for memory extraction.

Bespoke memory extraction software also differs between Win-
dows clients and Ubuntu servers. For Windows clients, the vad-
analyse Volatility plugin identifies VADs with read/write protec-
tion attributes and writes identified memory to a time-stamped
file. For Ubuntu servers, the heap memory start and end locations
are identified from the memory structure for each new openssl pro-
cess and written to a time-stamped file.

6.4.2 Memory Analysis

The memory analysis software is bespoke. For each of TLS 1.2
AES-GCM, AES-CBC, and TLS 1.3 AES-GCM, the processes
described in Section 6.3.2 are implemented.

TLS 1.2 AES-GCM The implementation may be elucidated with
an example using the Wireshark capture shown in Figure 6-5.

Figure 6-5: TLS 1.2 AES-GCM Application Data Message

The first 8-byte segment of the highlighted encrypted payload
in the Application Data message, 0x5201...19c9, is the client ex-
plicit IV. A memory extract search for an explicit IV close match,
in this instance the first 7 bytes, discovers segments such as those

CHAPTER 6. DECRYPTING WEB TRAFFIC 133

(a) Low entropy candidate Implicit IV

(b) High entropy candidate Implicit IV

Figure 6-6: TLS 1.2 Implicit AES-GCM IVs

(a)

(b)

Figure 6-7: TLS 1.2 AES-GCM Candidate Key Blocks

shown in Figure 6-6. The 4-byte antecedents, such as 0x03030028
in Figure 6-6a and 0xe8c134c8 in Figure 6-6b are temporary can-
didate implicit IVs. Candidates may be implicit IVs if their en-
tropy exceeds the 4-byte field threshold so only 6-6b is retained
as a candidate implicit IV.

As implicit IVs are key block fields, a search in memory ex-
tracts for candidate implicit IV segments such as 0xe8c134c8

may discover key blocks as illustrated in Figure 6-7. For each
match, entropies of the preceding two key-length fields are calcu-
lated. Entropies of both preceding 32-byte segments exceed the
threshold in Figure 6-7a only.

So, the concatenation of implicit and explicit segments yields a
candidate IV, and the two key block segments are candidate client
and server encryption keys. For this example, Table 6-6 shows the
candidate cryptographic artefacts.

CHAPTER 6. DECRYPTING WEB TRAFFIC 134

Client IV xe8c134c85201453940f619c7
Client key x2cb08ff4669274f4db2984f9790f7303

8853f8c84637aa6c72c5226813cace68
Server key xb189bb7fab2ea54df78670584f749e3

f8facf88e3e036a9f0a285b84a6f73066

Table 6-6: Key Block Field Example

If the component finds no key blocks, it searches for candidate
keys. AES-GCM candidate keys are high-entropy, static segments
near candidate IV memory locations. Using candidate IV memory
locations, segments at the same address in two separate extracts
are compared. Identical segments with an entropy exceeding the
threshold identifies a candidate encryption key.

TLS 1.2 AES-CBC The memory analysis component discovers
candidate encryption keys. After locating the last encrypted block
in the network packet associated with the memory extract, the
component searches memory extract files for block matches to
identify probable extract files and start locations. Then, if seg-
ments at the same location in two separate extracts are identical
and the entropy exceeds the key-length threshold, candidate en-
cryption keys have been identified for use in decrypt analysis.

TLS 1.3 AES-GCM The component discovers candidate keys and
then encryption keys. The IV discovery process is illustrated us-
ing the two segment extracts shown in Figures 6-8a and 6-8b. An
XOR of the first and second segments from extracts taken from
two consecutive transmitted Application Data messages is one,
which is equal to the quantity of sent records so these are candi-
date IVs.

Discovering encryption keys follows the standard framework
approach, namely that if segments at the same location in two

CHAPTER 6. DECRYPTING WEB TRAFFIC 135

(a) 1st segment

(b) 2nd segment

Figure 6-8: TLS 1.3 AES-GCM IVs

separate extracts are identical and the entropy exceeds the key-
length threshold, they are candidate encryption keys.

6.4.3 Decrypt Analysis

Component code is bespoke aside from use of the PyCrypto pack-
age for decryption. For all variations, decrypt validation is com-
mon. A decrypt is considered valid for HTTP-over-TLS if it
is consistent with the specified HTTP 1.1 format. In particu-
lar, for request lines, the presence of a request method, such
as ‘GET’, ‘POST’, or ‘HEAD’, and the HTTP version, such as
‘HTTP/1.1’ suffices. However, the presence of entity header in-
formation, such as ‘Connection’, ‘Accept’, ‘Accept-Encoding’, or
‘User-Agent’, provides additional validation.

6.5 Evaluation

The MemDecrypt extension was evaluated using a TLS library
to perform a sequence of experiments with variable file sizes, key
lengths, AES modes, operating systems, and operating system
versions. The TLS experimental set-up is described followed by
a presentation of results for Windows clients and Ubuntu servers.
The base MemDecrypt physical environment is supplemented with
software to support TLS communications.

CHAPTER 6. DECRYPTING WEB TRAFFIC 136

6.5.1 Experimental Set-up

OpenSSL [222] supports both client and server testing. The soft-
ware library is an open-source implementation of TLS that pro-
vides Unix and Windows command-line utilities incorporating the
TLS cryptographic functions. OpenSSL 1.1.1, which supports
TLS 1.3, was in beta state during the primary sequence of ex-
periments, so OpenSSL Version 1.1.0g was implemented on client
and server virtual machines to evaluate the extension’s capacity
for TLS 1.2 decryption. OpenSSL command line utilities were ex-
ecuted on the client and server. After generating Ubuntu server
certificates and keys, the OpenSSL command line utility server
emulated a web server with the command:

openssl s_server -accept p -cert crt.pem -key key.pem -WWW

where p is the listening port number, crt.pem the server cer-
tificate, and key.pem the server private key. The Windows client
connected to the OpenSSL server with a command of the form:

openssl s_client [-cipher CIPHER] -connect a.b.c.d:p

where the optional CIPHER identifies the encryption algo-
rithm, key exchange, and authentication algorithms (e.g. ECDHE-
RSA-AES256-GCM-SHA384), a.b.c.d is the OpenSSL server IP
address and p the OpenSSL server port. Test request and header
strings were manually entered at the OpenSSL client console. Re-
quest strings are typically of the form:

GET /[xxx] HTTP/1.1

where xxx is empty, a server folder, or parameters. Header
strings included: Host: a.b.c.d, Accept-Encoding: gzip, deflate,

CHAPTER 6. DECRYPTING WEB TRAFFIC 137

and Accept: */*.

6.5.2 Experimental Results

Experiments investigated decrypting TLS traffic for different op-
erating systems, operating system versions, modes, and extract
triggers. Except for one scenario, to be discussed below, valid
decrypts were obtained for all experiments. The probability of
generating an exact valid three character decrypt, such as ’GET’,
with incorrect cryptographic artefacts is 1 in 3256. Although other
headers, such as ’POST’ are possible, validation certainty exceeds
99.99%.

For performance analysis, Table 6-7 summarises the memory
and decrypt analysis duration means for the different operating
systems or operating system versions.Standard deviations were
generally less than 0.01 and, so, are omitted from the table.

Table 6-7: TLS Analysis Duration Means - Operating Systems (secs)

Operating System Memory Decrypt
Windows 7 10.0 0.1
Windows 10 11.5 0.1
Ubuntu 14.04 2.0 0.8

For the remaining experiments memory was extracted from
Windows 10 clients using 256-bit key length, AES-GCM mode
encryption unless indicated otherwise and Table 6-8 shows the re-
sults. The results of each experiment are discussed in the following
paragraphs.

The first experiment investigated Windows 7 and Windows 10
client memory extracts taken when Change Cipher Specification
and Application Data messages were detected in 256-bit AES-
GCM mode. In each test, valid decrypts were discovered for dif-
ferent HTTP-like inputs. The component duration mean values
are shown in Table 6-9.

CHAPTER 6. DECRYPTING WEB TRAFFIC 138

Table 6-8: TLS Analysis W10 Duration Means - Other Variations (secs)

Experiment Variation Memory Decrypt

Key lengths 128-bit 12.1 0.9
256-bit 11.5 0.1

Modes (C) AES-CBC 6.0 0.1
AES-GCM 11.3 0.1

Modes
(ASM)

AES-CBC 6.1 0.1
AES-GCM 11.5 0.1

Table 6-9: AES-GCM 256-bit Key Analysis Duration Means (secs)

Components Windows 7 Windows 10
Data Collection/extract 2.0 5.0
Memory Analysis 10.0 11.5
Decrypt Analysis 0.03 0.03

Although Windows OpenSSL extracts (3.9 MB) are smaller
than the SSH application VAD extracts (6.9 MB), TLS data col-
lection extract durations are similar to SSH durations and are not
re-analysed. Memory analysis generally discovered 3 candidate
explicit IVs in memory extracts. From these, the key entropy
threshold filter reduced candidates to 1 as illustrated in the Fig-
ure 6-9 example. Each Windows 7 client memory extract is typi-
cally marginally over 3 MB, and Windows 10 marginally under 4
MB yielding similar memory analysis durations for each operat-
ing system and with a single encryption key and IV combination,
decrypt analysis durations are identical.

The second experiment investigated AES-GCM and AES-CBC
encryption modes with 256-bit keys on Windows 10 clients. C
and assembly language OpenSSL build options were investigated
because OpenSSL invokes different encryption modules for each
mode. Valid decrypts were produced for both modes with various
HTTP-like inputs, irrespective of build option. Over a series of
test runs, AES-CBC memory analysis yielded a mean of 936 can-
didate encryption keys with a standard deviation of 63.2, taking

CHAPTER 6. DECRYPTING WEB TRAFFIC 139

Figure 6-9: TLS 1.2 AES-GCM Memory Analysis Log

6.0 seconds, in comparison with AES-GCM’s 11.5 seconds. The
decrypt analysis duration mean for AES-CBC was 0.10 seconds
compared to AES-GCM’s 0.03 seconds reflective of the increased
candidate key set size. As illustrated in Figure 6-10, duration
times were independent of the assembler (ASM) or C language
(NOASM) build class. In summary, AES-GCM analysis com-
pleted within 11.6 seconds and AES-CBC 6.1 seconds.

The third experiment considered outcomes with different AES-
GCM key lengths on Windows 10 clients. Valid decrypts were
produced for the permitted 128-bit and 256-bit keys with various
HTTP-like inputs. With a lower entropy threshold, 128-bit key
memory analysis yielded a candidate encryption key set size mean
of 11,019 with a standard deviation of 512.5. 128-bit key length
analysis duration times were 12.1 and 0.9 seconds for memory
and decrypt analysis respectively. Duration differences between
the key lengths result from the lower entropy threshold and an
absence of key blocks in 128-bit key length memory extracts.

A fourth experiment investigated 256-bit keys on Ubuntu server
for both modes. Valid decrypts were produced with HTTP-like
inputs for AES-GCM. Although the Ubuntu OpenSSL heap size
(267 KB) is larger than the ssh_server heap size (176 KB) the

CHAPTER 6. DECRYPTING WEB TRAFFIC 140

Figure 6-10: TLS 1.2 GCM and CBC Mode Analysis Durations

TLS memory extraction durations of 0.3 seconds are similar to
SSH extraction durations and are not discussed further. Key
blocks were not discovered in Ubuntu memory. The candidate
key set size means were 1,707 and 1,654 for AES-GCM and AES-
CBC respectively. Although the AES-GCM encrypted payload
decrypted correctly, AES-CBC failed, indicating an absence of
the encryption key from the candidate set.

Though TLS 1.3 does not support AES-CBC, this anomaly
warranted further analysis. For performance, OpenSSL generates
an enhanced AES-CBC key schedule when built with the assem-
bler option. Although key schedules are discoverable in Ubuntu
memory, the initial key is absent unlike Windows where key traces
remain. However, the AES-CBC decrypt assembler routines them-
selves can be invoked using the enhanced key schedules.

Following the announcement of an OpenSSL TLS 1.3 compli-
ant version [250], a fifth experiment investigated TLS 1.3 on a
Windows 10 client in AES-GCM mode using OpenSSL 1.1.1.b in-
stalled on both Windows client and Ubuntu server. To enforce
use of TLS 1.3, server commands were revised to be of the form:

CHAPTER 6. DECRYPTING WEB TRAFFIC 141

openssl s_server -tls1_3 -accept 443 -key key.pem -cert crt.pem
-WWW

where tls1_3 stipulates the TLS version. Memory analysis
test runs yielded 1 candidate IV and approximately 2000 candi-
date keys. Using these artefacts, the decrypt analysis component
identified the correct key through a similar process to TLS 1.2.
The memory analysis and decrypt analysis duration means were
11.9 seconds and 0.8 seconds, respectively.

6.6 Conclusions

The experiments demonstrated that encrypted TLS traffic can be
decrypted with a high degree of certainty when the well-known
OpenSSL library is used. Implementation alternatives such as
WolfSSL [251], a C-language library intended for embedded sys-
tems, libreSSL [252], a fork of OpenSSL which focuses on BSD
systems but has been ported to Windows, GnuTLS [253], a C-
language library running on Linux and Windows platforms, and
NSS [254], used for Red Hat and Oracle server cryptographic li-
braries, may exhibit similar vulnerabilities.

The assumptions made in constructing the extension could
limit effectiveness. For TLS 1.2 AES-GCM, candidate key block
identification is predicated on discovering candidate implicit IV
segments. Separating actual keys, explicit IV, and implicit IV in
memory by secure protocol implementers may increase candidate
set sizes, so these are potential decrypt analysis delay measures.
For TLS 1.3, moving IV memory locations around slowed memory
analysis, albeit by less than 1 second.

The results indicate that secure Internet communications be-
tween clients and servers may be vulnerable, particularly in vir-
tualised environments. For HTTPS, the probability of correct

CHAPTER 6. DECRYPTING WEB TRAFFIC 142

decrypts being generated exceeds 99.99%. Framework analysis
decrypts takes place in approximately 12 seconds so performance
suffices for user-initiated, but not software-initiated, sessions. By
multi-threading, memory analysis completion in 1 second may be
achievable. As TLS 1.3 progresses to becoming the default proto-
col version, MemDecrypt is already enabled.

Chapter 7

Discovering Malware Activity
Without Prior Knowledge

7.1 Introduction

Malicious actors employ secure channels to hide communications
from detection agents. These channels facilitate activities such
as the installation of exploit kits, distribution of malware and
adware, and communication of confidential information to con-
trollers. Knowledge of channel contents is unknown, while use
of secure channels for malicious purposes surges [105]. Malware
classes that frequently use TLS secure channels for communica-
tions are bots and ransomware [58].

Modern bot malware is often multi-purpose [255]. Once in-
stalled on a client and a channel established, an external con-
troller determines bot activities through issued commands. En-
crypted controller-to-bot channels prevent defenders from discov-
ering commands or knowing what information is being extracted.

By contrast, ransomware clients are generally single purpose in
that users pay to recover documents or regain access to a device.
A common variant is crypto-ransomware, where documents on an
infected client are encrypted and a payment required, typically in
Bitcoins, for the decryption key [256]. Communications between
crypto-ransomware clients and controllers may include useful in-

143

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 144

formation such as encryption keys.
Existing methods that deal with the malicious use of secure

channels have limitations. Unlike unencrypted channels, where
payloads provides knowledge of malware activity, with encrypted
channels, analysis relies on discovering anomalies between benign
and malicious activity using data mining methods [257]. Differ-
entiators such as channel request and response times [258], short
packet sizes [259], TLS header information [9], or a combination
of features [10] assist in the possible detection and prevention of
malicious activity. Knowledge of the plaintext may enable the
development of more effective methods for dealing with malware.

Plaintext of malware client encrypted communications can be
obtained by logging client requests in an emulated botnet con-
troller. Environment security, scalability for large botnets, and
transparency, where malware detects the presence of a test envi-
ronment and terminates, may present challenges [260]. Although
controlled environments are useful for analysis [261], such as the
detection of adversarial activities [129], drawbacks exist for de-
crypting real-world malware communications. There may be a
knowledge gap in valid controller responses but, perhaps more
importantly, prior knowledge of the malware is typically required
for its execution in an emulator environment.

Memory analysis supports malware forensics. For instance,
Patil et al. [175] define an investigation framework for analysing
captured memory for the detection of malware using process infor-
mation, running threads, opened registry keys, and user authenti-
cation details. Memory inspection can also detect malware using
virtual machines to discover anomalous behaviour [262]. These
approaches do not decrypt network sessions.

This chapter aims to discover the plaintext of encrypted com-
munications sent by potentially unknown malware. Initially, real
bot and ransomware samples are identified. The MemDecrypt
TLS extension, constructed and evaluated in the previous chapter,

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 145

is applied to analyse malware sample communications. As frame-
work performance challenges result from malware use of different
cryptographic libraries, an additional extension is constructed to
accommodate the Windows cryptographic library. Experiments
evaluate decrypting real bot and ransomware command and con-
trol communications using the new extension.

7.2 Sourcing Malware Samples

Malware communications analysis ideally executes real malware
samples. Samples of recent provenance are preferred as these re-
flect the approaches of modern malware authors. Maintained on-
line databases provide guides to current malware usage. For TLS
traffic, the SSL Blacklist website [263] lists bot and ransomware
clients in reverse chronological order. For these investigations, 21
potential malware entities were manually identified.

For each entity, one or more executable samples were down-
loaded in compressed, password protected format from VirusShare
[264]. The 36 downloaded executables and their MD5 hashes are
listed in Appendix D. The compressed files were securely copied
to the client, on which Windows Defender was disabled, the com-
pressed files uncompressed and executed.

As the responder, acting as a malware controller, was not con-
figured to respond appropriately for the malware client, only three
executables successfully established a TLS connection including a
data exchange. As shown in Appendix D, other samples exited
for a variety of reasons including IP validation, use of UDP, and
HTTP POST and GET failures, including one requesting access
to a site hosting the US Constitution. The three malware exe-
cutables that connected with the OpenSSL server, and their MD5
hashes, are shown in Table 7-1. To provide context, background
information for these samples is provided.

Zbot, also known as ZeuS or Zeus, is a well-known bot mal-

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 146

Table 7-1: Malware Samples

Type Class MD5
Bot Zbot eeef1e062c8011cabb23b3c833ff766a
Ransomware Torrentlocker aeb5bb78ab442bc94bb94d968754e523
Bot Gozi 67a775879d3664456cb6a5026c518ca0

ware instance. Detected in 2006 [265], Zbot is primarily known for
stealing banking passwords by injecting code into a user browser as
illustrated in Figure 7-1 [266]. Other Zbot functionality includes:
extracting information such as browser history and cookies, cer-
tificates, and mail account information; manipulating local files;
installing ransomware; logging keystrokes; taking screenshots; and
managing botnets of other infected computers [267] [268]. Al-
though Zbot once used the HTTP protocol for client-controller
communications, information and commands are now generally
concealed in TLS payloads.

Figure 7-1: Zbot Fake

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 147

Gozi, also known as Ursnif inter alia, is also an information-
stealing bot. Detected in 2007 [269], Gozi is commonly used by
malicious actors for stealing banking and other confidential infor-
mation [270] [271] [272] as shown in Figure 7-2 [269]. Although
functions include theft of cookies and email credentials, and log-
ging of keystrokes and browsing activity [273], a key Gozi fea-
ture is intercepting network traffic to hijack financial transactions.
For example, when a money transfer is detected, Gozi issues an
encrypted message through its command and control server to
prevent the valid transfer and redirect the funds to a controlled
account [274].

Figure 7-2: Gozi Data Theft

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 148

TorrentLocker is an example of crypto-ransomware. Known
since 2014, and sufficiently similar to CryptoLocker ransomware
to also be known as Crypt0L0cker, it encrypts user documents,
advises the user of what has transpired, and demands payment
[275] as indicated in Figure 7-3. Although client-controller com-
munications were previously encrypted using XOR, TLS is now a
common communications mechanism [276]. Information transmit-
ted to the controller includes the ransom page, the encryption key,
which is RSA-encrypted with a TorrentLocker public key, counts
of encrypted files, address book contacts, email credentials, and
logs [275].

Figure 7-3: TorrentLocker/Crypt0L0cker Warning

7.3 OpenSSL Extension Evaluation

Each of the three samples negotiated agreement on TLS version
1.2 using AES-GCM encryption with 256-bit keys. The TLS ex-
tension that was evaluated with OpenSSL supports this TLS ver-
sion, encryption algorithm, and mode, and so can be applied.

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 149

The extension memory analysis component searched for key blocks
adopting the three-step process: find the explicit IV segment in
an Application Data message network packet, search for candidate
implicit IVs, and then search for candidate key blocks. Candidate
implicit IVs are memory extract segments co-located with explicit
IV segment values. Candidate key blocks are memory extract seg-
ments containing candidate implicit IV segments, and where the
Shannon entropies of the client key and server key fields exceed a
threshold.

The test environment configuration differed in one crucial re-
spect from the OpenSSL experiment testbed. The malware client
was prevented from communicating with external servers, as the
target might be a real malware controller, which could seek to
corrupt other environments. So, a virtual machine was created
and established as a DNS server with the ‘dnsmasq’ package.
Responses to benign DNS requests, such as *.microsoft.com, re-
turned the DNS server IP address, and to other requests, the IP
address of the target TLS server. For the first experiment, debug
mode was enabled for the server to log keys, IVs, and plaintext.
The OpenSSL server commands entered on the Ubuntu server
command-line were:

openssl s_server -accept 443 -debug -cert crt.pem -key key.pem
-WWW

The OpenSSL TLS extension acquired memory, and attempted
analysis and decryption with Zbot. In the first test run, decrypt
analysis duration for the correct artefacts to be identified was pro-
jected to be approximately 34 hours. By excluding keys and IVs
more than 1 KB apart in memory extracts, this duration reduced
to 15 minutes with the result that the combination of memory
and decrypt analysis required a total of 38 minutes when the test
was re-run. Although performance exceeded brute-force, crypt-

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 150

analytic, and side-channel approaches, the duration may be in-
sufficient for practical application in live scenarios. Furthermore,
the duration was substantially longer than experiments with, for
example, the OpenSSL library, warranting further analysis.

Two factors cause the increased duration. The first is the 8-byte
explicit IV segment obtained from an Application Data Message.
For Zbot, the first explicit IV segment was x0000000000000001
as illustrated in the highlighted section of the Wireshark packet
capture of Figure 7-4. This byte sequence occurs considerably
more frequently in memory extracts than randomly generated ex-
plicit IVs.

Figure 7-4: Zbot Application Data Message

The second factor is masquerading. To evade detection, mal-
ware applications may camouflage their activities and one such
mechanism is masquerading as a benign application, sometimes
known as ‘process hollowing’. In the Windows environment, ex-
amples of benign applications used for masquerading include the
Edge browser and Windows Explorer. When Zbot masqueraded
as Windows Explorer, the data collection component extracted
265 read/write memory files totalling 73.2 MB for each separate
extraction.

So, when the explicit IV was used in searching for possible 4-

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 151

byte implicit IV segments, 578,629 possible instances were found.
Entropy measure thresholds reduced the candidate key block set
size to 23,361. By comparison, an experiment with the OpenSSL
client application yielded only 3 candidate implicit IVs and 79
candidate keys. Large sets of candidate keys and IVs take longer
to analyse.

7.4 Windows Library Extension Design

Memory extract features suggested the existence of a more effi-
cient alternative. Using the session key and IV logged by the
OpenSSL server, a search of malware client application memory
yielded interesting facts: the key occurs frequently in different ex-
tract files; memory extract files sizes containing the key are within
specific ranges; and two unusual ASCII strings are present near
encryption key locations in the memory extract files.

The repeated occurrence of the key in memory extracts may be
due to protection of essential data or the absence of data cleansing.
After the TLS handshake, when client and server keys have been
generated by a pseudo-random generator, keys and implicit IVs
may be copied to record data structures for simplified access by
encryption processes. The malware may also copy cryptographic
artefacts to multiple locations to ensure access. Alternatively, the
malware writer may copy the artefacts for different purposes but
fail to cleanse. This feature is not used in the new extension.

Sizes of memory extract files containing encryption keys ranged
between 2 MB and 4 MB. Consistent with prior MemDecrypt SSH
and TLS investigations, these sizes probably originate from ap-
plication memory allocation requests (‘malloc’) for cryptographic
data structures to hold the encryption and decryption fields, such
as keys, encrypt/decrypt flags, key length, and mode. As illus-
trated in Figure 7-5 which maps the number of segments above a
4.5 threshold (Y-axis) against memory extract sizes (X-axis), the

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 152

distribution of high-entropy regions in malware application mem-
ory is uneven, which suggests that prioritising regions for memory
analysis might improve the performance of the candidate IV and
key discovery process.

Figure 7-5: Windows Explorer High-entropy Regions

The presence of specific ASCII strings in memory extracts
containing keys is more significant. The strings are ‘3LSS’ and
‘KSSM’, or in big-endian format ‘SSL3’ and ‘MSSK’. A researcher
identified ‘MSSK’ in the Windows security policy application, Lo-
cal Security Authority Subsystem Service (LSASS), as a possible
acronym for ‘MicroSoft Symmetric Key’ or ‘Microsoft Software
Symmetric Key’ [277]. ‘SSL3’ may refer to SSLv3, the deprecated
forerunner of TLS. Possible fields identified in the undocumented
LSASS data structure included encryption data structure sizes,
TLS version, and the encryption key.

The field identified by that researcher as a probable IV field is
inconsistent with memory extracted by MemDecrypt. In memory
extracts, the implicit IV was located approximately 20 bytes after
the ‘3LLS’ string, and the key approximately 30 bytes after the
‘KSSM’ string. Although random occurrences are possible, these

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 153

ASCII strings can provide good indicators for the identification
of candidate memory extracts containing cryptographic artefacts
when Windows security libraries are used.

An extension was constructed to accommodate these features
to support the decryption of TLS communications from executa-
bles that use Windows security libraries. These libraries are as-
sumed to be employed when TLS Application Data messages con-
tain the explicit IV value x0000000000000001. Additional tech-
niques, such as the identification of executable linked libraries,
could be used to validate this assumption. For the extension, ex-
tract file sizes are banded to prioritise medium-sized files and then
searched for the ASCII strings. Memory segments near the string
locations in the same extracts and with Shannon entropies above
the threshold are identified as candidate keys and IVs.

The memory analysis process for the Windows library exten-
sion is shown in Algorithm 7.1. The Algorithm’s banding is wider,
and the maximum distances in memory between ’3LSS’ and a can-
didate IV, and ’KSSM’ and a candidate key, larger than the em-
pirically observed values. This allows for potential data structure
changes such as may result from operating system upgrades. If
the Windows library extension fails to find cryptographic arte-
facts, the TLS extension provides a slower alternative.

7.5 Windows Library Extension Evaluation

Experiments were executed to evaluate the Windows library ex-
tension. Each malware sample was executed on a Windows 10
client, virtual machine data extracted, and logs collected from the
Ubuntu server with OpenSSL debugging disabled. Decrypts were
validated by evaluating compliance with HTTP 1.1. Complying
decrypts were also checked through comparison with the OpenSSL
server logs.

The first client Application Data message for the Zbot, Gozi,

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 154

Algorithm 7.1: Windows Library TLS Memory Analysis
Data: Extracts folder, entropy thresholds, keysize
Result: Z = candidate keys, Y = candidate IVs
for file in folder do

if 1 MB < size(file) < 8MB then
Band1 += file;

end
if 0 MB < size(file) < 1MB then

Band2 += file;
end
if 8 MB < size(file) then

Band3 += file;
end

end
IVsize = 4;
for each file in Bands 1-3 do

if ‘KSSM’ in extract then
start = location (‘3LSS’);
for i = start to start + MaxIVdistance inc by 4 do

s = extract[i:i+4];
if entropy(s) > threshold(IVsize) then

Y += s
end

end
Start = location ‘KSSM’;
for i = start to start + MaxKeydistance increment by 4 do

s = extract[i:i+keysize];
if entropy (s) > threshold(keysize) then

Z += s;
end

end
end

end
where MaxIVdistance and MaxKeydistance are the maximum search
distances from the ASCII string locations for IV and keys
respectively

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 155

and TorrentLocker samples decrypted with 100% success on each
test run. An example of Zbot decrypt analysis output is illustrated
in Figure 7-6. Further confirmation is provided by the OpenSSL
server log shown in Figure 7-7.

Figure 7-6: Zbot Decrypt Log

As previously observed, the probability of obtaining GET and
POST with incorrect cryptographic artefacts is low (approximately
2 in 3255) so false positives are unlikely. Table 7-2 shows exam-
ples of decrypt output for all three malware samples. Host names
and GET request image names varied for different test runs. Gozi
decrypts also yielded POST as well as GET requests.

Analysis component durations for each malware sample con-
firmed the benefit of using aWindows cryptographic library-specific
extension. As Table 7-3 shows, the maximum elapsed duration for
both memory analysis and decrypt analysis completion was below
one second. These results followed from the reduced candidate
cryptographic artefact set sizes, as candidate IV set sizes now
ranged between 3 and 6, and candidate encryption key set sizes
between 79 and 483.

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 156

Figure 7-7: Zbot Server Log

7.6 Conclusions

Valid decrypts were obtained with high probability within 1 sec-
ond so the extension may be applicable in software-initiated sce-
narios. Furthermore, it can be inferred that MemDecrypt rapidly
decrypts secure TLS communications between malware clients ex-
ecuting on Windows clients and their controllers despite the small

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 157

Table 7-2: Malware Decrypt Analysis Output Examples

Malware Decrypt

Zbot GET /images/iWjLmuDOy7/XYiI3c6Yc19CBsArB
/rO6Z4SdMsmUI/_2FtdYcDlyk/LoNJcQlukRof2E/
wEtt4hPTStlxvgVkkzKsg/60jtn5ijtM8aubv/YKQoZ
fCXiA4x01o/rjcmP9NhrPGMZrGeb/mWLp7cs9z/83p8s
ChdoB_2FBMuejFT/IP3nyBFsFoV/U.jpeg HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0;
Windows NT 10.0; Win64; x64)
Host: aineiounfafjnafjwnaefoiajwnf.net
Connection: Keep-Alive
Cache-Control: no-cache

TorrentLocker POST /topic.php HTTP/1.1
Accept: */*
Host: orbfoz.drinkmilks.org
Content-Length: 176
Cache-Control: no-cache

Gozi GET/images/SZK2b21jT4lHGlPQ/dzUZdQ7R6GQ9vDq/
_2Bubb8ji761TySLT2/0hh3OGhrh/Gp933q_2
BuLnl3Zz6zem/PlUvBGkYtrVJ8DUn8vN/LcmmaA101Yc
rEmAU5RwlEy/zK8Z9xa06n3R/g0EFUOhv/8sDfI2Goa38
03Voj6biFmRG/JDejp7Gffn/y7.jpeg HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0;
Windows NT 10.0; Win64; x64)
Host: wjenqwdqwdwdqwd.com
Connection: Keep-Alive
Cache-Control: no-cache

sample size. Although malware writers have implemented cus-
tomised security software, errors have led to analysts developing
resolutions [278], so, instead, known cryptographic libraries may
be commonly used. The Windows library presents a good oppor-
tunity for malware writers as it is pre-loaded with the Windows
operating system. Use of alternatives, such as the OpenSSL li-
brary, might require additional downloads thereby increasing the
risk of detection.

The framework decrypts single malware requests, which may

CHAPTER 7. DISCOVERING MALWARE ACTIVITY 158

Table 7-3: Malware Extension Analysis Durations (secs)

Memory Analysis Decrypt Analysis
Maximum 0.21 0.41
Minimum 0.18 0.03
Mean 0.17 0.16
Standard Deviation 0.03 0.18

not be conclusive. The lack of longer decrypted sessions results
from the basic configuration as the OpenSSL test server responds
with an HTTPS ’OK’ message to most TLS requests. In the
absence of an expected response, malware may terminate or cease
further communications with the controller. Decryption may not
necessarily provide immediately usable information, particularly
where the plaintext includes a secondary encryption layer as with
TorrentLocker. However, having discovered the key and IV, a
complete session is decryptable.

Rapid decryption of live TLS malware traffic offers significant
opportunities. For instance, by permitting the malware to com-
municate with its real controller and managing impact to local en-
vironments, deeper knowledge of client-controller interactions may
be obtained and contribute to enhanced malware defences. More
importantly, by acquiring memory and using it to decrypt sus-
pect communications, it may be possible to discover ransomware
keys or stolen banking details in communications without prior
knowledge of the malware’s existence.

Chapter 8

Deriving ChaCha20 Key Streams
From Targeted Memory Analysis

8.1 Introduction

For encryption, ChaCha20 is currently the only alternative to AES
that is supported by both SSH and TLS 1.3. Concerns with the
lack of an AES alternative, should a major vulnerability be dis-
covered, as well as the security and speed of ChaCha20, have led
to its proposed adoption for other protocols such as IPSec [279].
The Google decision to use ChaCha20 in preference to RC4 for
Chrome TLS communications on Android smartphones [99] may
encourage further interest in use of the algorithm.

To date, ChaCha20 has resisted effective decryption. Researchers
have been unable to develop effective cryptanalytic techniques for
ChaCha20 key discovery [102]. Cache-timing attacks, which are
principally reliant on S-Box access, are ineffective. ChaCha20 keys
may be discovered through monitoring power or electromagnetic
signals with sufficient resources [280]. This thesis presents the
first study into decrypting live secure communications that use
ChaCha20 encryption through memory analysis.

A ChaCha20 extension was designed and constructed to inves-
tigate decrypting SSH and TLS 1.2. Context for the extension
is provided with a brief description of the ChaCha20 algorithm,

159

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 160

followed by a discussion of common ChaCha20 implementations
for SSH and TLS protocols [99]. A description of the ChaCha20
extension design and construction for memory and decrypt anal-
ysis components follows. Experiments were conducted with both
SSH and TLS 1.2 and these results are presented and discussed.

8.2 Background

Whereas block algorithms encrypt fixed blocks of plaintext, stream
algorithms generate key streams, which are typically XOR-ed byte-
wise with plaintext to generate ciphertext [92]. This generally
makes stream algorithm software-only implementations demon-
strably faster than equivalent block algorithms [98], although pos-
sibly more difficult to implement [77]. The following subsections
describe ChaCha20 and its features in SSH and TLS implementa-
tions.

8.2.1 ChaCh20 Description

Stream and block algorithms have both been used in secure pro-
tocols. However, with vulnerabilities leading to the planned dep-
recation of the RC4 stream algorithm for protocols such as SSH
[96] and TLS [95], alternative stream algorithms have been sought.
The ChaCha20 stream algorithm with the Poly1305 authenticator
[79] has been adopted in secure protocol implementations, such as
OpenSSH [97] and OpenSSL [222].

ChaCha20 generates key streams of 64-bytes from a key, nonce,
and counter. For reasons of performance and security, inputs to
ChaCha20 key stream generation are independent of plaintext or
ciphertext [100], like other eSTREAM proposals [281], but unlike
stream algorithms such as Helix.

ChaCha20 enables parallel ciphertext generation with conse-
quent performance improvement. 20 rounds of mathematical cal-

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 161

culations are performed with XOR, addition, and rotation opera-
tions using as inputs, four 4-byte constants, a pseudo-random 32-
byte key, a 4-byte counter, and a 12-byte nonce. The 4-byte con-
stants are 0x61707865, 0x3320646e, 0x79622d32, and 0x6b206574,
or, in ASCII, ‘apxe’, ‘3 dn’, ‘yb-2’, and ‘k et’. In ChaCha20 these
strings are concatenated. The counter, which typically starts at 0
or 1, increments for each 64-byte plaintext block [79].

8.2.2 ChaCha20 Implementations

SSH and TLS implementations comply with the ChaCha20 and
Poly1305 for IETF Protocol RFC [79]. The RFC is based on Bern-
stein’s ChaCha20 algorithm proposal [101], a variation of the ear-
lier Salsa20 algorithm [100]. However the number of key streams,
and nonce and counter generation differ between SSH and TLS
ChaCha20 implementations.

In the SSH chacha20-poly1305@openssh.com implementation,
memory is allocated to hold a data structure comprising key stream
input fields, the 64-byte key stream itself, and an index pointer.
The packet lengths are encrypted separately from the remainder
of the payload so four structures are required: two for encrypting
outgoing lengths and payloads, and two more for incoming en-
crypted data. The memory contents of the concatenated constant
string are ‘expand 32-byte k’. The nonce is a sequence number,
and counters for the encrypted packet lengths and payloads are
zero and unity respectively.

The OpenSSL implementation of Chacha20-Poly1305, which
follows the IETF RFC ChaCha20-Poly1305 Cipher Suites for Trans-
port Layer Security (TLS) specification [98], has different features.
As TLS does not encrypt packet lengths, two memory structures
are used: one for encrypting outgoing messages, the other for de-
crypting incoming messages. Another difference is that the nonce
is an XOR of the sequence number and the initialisation vector

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 162

generated during the initial handshake when the algorithm keys
are obtained. Memory used for ChaCha20 encryption and decryp-
tion process parameters is temporary, as the encryption structure
is assembled from other sources when required.

8.3 ChaCha20 Extension Design

The ChaCha20 extension design details are presented in the fol-
lowing paragraphs. For AES encryption, SSH and TLS MemDe-
crypt framework extensions were constructed for data collection,
memory analysis, and decrypt analysis. The ChaCha20 data col-
lection extensions are identical to the AES extensions for each
protocol so only a brief description is included for completeness.

Data Collection The component captures network packets and
extracts volatile memory of the targeted virtual machine. SSH
and TLS sessions are analysed and packets retained for later ex-
amination. The trigger for extraction of target volatile memory
is detection of a protocol message signalling completion of the
protocol handshake phase. The messages are ‘New Keys’, and
‘Change Cipher Specification’ or ’Application Data’, for SSH and
TLS version 1.2, respectively.

When the messages are transmitted, the sending party advises
it has sufficient material to generate cryptographic artefacts. The
artefacts are likely to be memory-resident so memory can be ex-
tracted for any subsequent outgoing message in the network ses-
sion. Volatility plugins and LibVMI routines enable process iden-
tification and memory extraction for Windows clients and Ubuntu
servers, respectively.

Memory Analysis Candidate ChaCha20 cryptographic artefacts
can be discovered in memory extracts. Initially, the component

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 163

searches for the constant string ‘expand 32-byte k’ to discover can-
didate ChaCha20 data structures. In view of its length, the string
is unlikely to exist in memory segments that are not ChaCha20
structures.

Nevertheless, as a precautionary measure, a second step as-
sesses whether the 32-byte memory segment after the constant
string in a candidate base structure is a candidate key by eval-
uating its Shannon entropy. If the entropy exceeds the 32-byte
entropy threshold, the data structure comprising key, nonce, and
counter is a candidate cryptographic artefact group.

Decrypt Analysis Cryptographic artefact groups discovered by
the memory analysis component are input parameters in decrypt
analysis. In each instance, the candidate key and nonce group
is used to decrypt and validate using similar approaches to those
used in the AES SSH and TLS extensions. For TLS, decrypts
are analysed to establish compliance with the TLS 1.2 protocol
specifications.

For SSH, the groups are used to decrypt incoming and outgoing
packet lengths and payloads. The packet length groups are iden-
tified when the decrypted packet length meets Equation 8-1 for
short packets, typically in the authentication and channel set-up
phases. This equation is identical to that used for AES encryption
algorithms. For larger packets, a modified equation supports SSH
packet reassembly.

packet data length =

decrypted packet length +

size(packet lengthfield) +

size(MACfield)

(8-1)

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 164

8.4 ChaCha20 Extension Implementation

This section presents implementation details for the ChaCha20
extension. For each component, the details for both SSH and
TLS are described where differences exist.

The data collection component inspects virtual machine net-
work traffic and extracts memory. The ChaCha20 MemDecrypt
extension identifies ChaCha20-Poly1305 as a valid algorithm for
SSH and TLS and retains the details for memory analysis. In
other respects, the implementation is similar to the SSH and TLS
extension implementations when AES is the encryption algorithm.

The memory analysis extension implements bespoke code to
obtain ChaCha20 candidate cryptographic artefacts. Each mem-
ory extract file is searched for the constant string. If the entropy
of the following 32-byte block exceeds the threshold, a base struc-
ture is presumed to be identified and the key, nonce, and counter
fields are retained as a group for decrypt analysis. The memory
analysis approach is shown in Algorithm 8.1.

The decrypt analysis component iterates through key, nonce,
and counter groups and verifies the decrypt in accordance with
the protocol specification.

For SSH decrypt analysis, the first four encrypted bytes in
packets with encrypted payloads are decrypted using the Python
Chacha20poly1305 package with counter value zero [282]. For the
valid packet length group, the first four bytes represent the packet
length and Equation 8-1 holds. For the valid payload group, the
decrypted padding length must lie between 4 and 255 as specified
in the SSH Transport Layer Protocol [232]. When the payload
group is valid, the remaining encrypted message payloads are de-
crypted, and examined for compliance with the SSH authentica-
tion and channel set-up specifications [233] [234].

For TLS decrypt analysis, the discovered cryptographic arte-
fact groups are used to decrypt Application Data messages. De-

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 165

Algorithm 8.1: ChaCha20 Memory Analysis
Data: Extracts folder, entropy threshold
Result: Z = candidate artefacts
for extract in folder do

i = 0;
while not extract EOF do

i := locate ‘expand 32-byte k’ in extract;
if i > 0 then

if entropy extract[i+16:i+48] > threshold then
Z += key, nonce, and counter;
i += 64;

else
i += 16;

end
end

end
end

crypt compliance with the HTTP 1.1 specification [249] identifies
the correct cryptographic artefacts. Once artefacts are found,
encrypted payloads are ingested and decrypted, and the nonce
incremented for each new message.

For both SSH and TLS 1.2, valid decrypts are written to file
for user inspection. The decrypt analysis processes used to dis-
cover the valid candidate groups for SSH and TLS are shown in
Algorithm 8.2.

8.5 Evaluation

Separate experiments were carried out to assess ChaCha20 exten-
sion effectiveness and performance with SSH and TLS 1.2 network
sessions. For SSH, the extension was evaluated by performing a
series of experiments with variable file sizes and operating sys-
tems, and, for TLS 1.2, by performing a series of experiments
with different operating systems. The experimental set-up is de-

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 166

Algorithm 8.2: ChaCha20 Cryptographic Artefact Discovery
Data: candidate artefact sets
Result: Y = valid key, Z = valid nonce
if protocol = ’SSH’ then

for key, extract nonce in retained keys, nonces do
delta = (extract application data packet – 1st application
data packet);
new nonce = extract nonce – delta;
possible length = decrypt 1st 4 bytes with key, new nonce,
and counter=0;
if equation 2 valid then

SSHlengthcryptoFound = True;
if SSHlengthcryptoFound then

plaintext = decrypt (payload, key, new nonce,
counter=1);
if validate(plaintext) then

Y ←− key1;
Z ←− nonce;
break;

end
end

end
end

end
if protocol = ’TLS’ then

for key, extract nonce in retained keys, nonces do
delta = (extract application data packet – 1st application
data packet);
new nonce = extract nonce – delta;
plaintext = decrypt (payload, key, new nonce, counter=1);
if validate(plaintext) then

Y ←− key;
Z ←− nonce1;
break;

end
end

end

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 167

scribed briefly followed by a presentation of results for Windows
clients and Ubuntu servers.

8.5.1 Experimental Set-up

The base MemDecrypt physical test environment was supplemented
with additional software to support secure protocol communica-
tions. Experiments were executed on the Windows client, which
connected to the Ubuntu server. For SSH, the PuTTY suite [235]
provided SSH client functionality and openssh-server server func-
tionality. For TLS 1.2, OpenSSL 1.1.0g provided both client and
server functionality.

Similar to AES experiments, for SSH evaluation, the PuTTY
pscp program was executed from the Windows command line us-
ing requests of the form:

pscp -P nnnn ‘filename’ name@ipaddress:/home/name

where nnnn is the target port, ’filename’ is the file being trans-
mitted, name is a user on the target Ubuntu server, ipaddress
is the target server IP address, and /home/name is the Ubuntu
server target folder for the uploaded file. An Ubuntu service was
started from the command line to listen for client SSH requests
with commands of the form:

/usr/sbin/sshd -f /root/sshd_config -d -p nnnn

where nnnn is the listening port number and sshd_config con-
tains configuration details. To enforce ChaCha20, sshd_config
contained the line ciphers chacha20-poly1305@openssh.com

For TLS client and server experiments, OpenSSL command-
line utilities were executed from the command line. The OpenSSL

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 168

server emulated a web server with the command:

openssl s_server -accept 443 -cert crt.pem -key key.pem -WWW

where crt.pem and key.pem are server certificate and private
key file, respectively. The client connected to the OpenSSL server
with a command of the form:

openssl s_client -cipher CIPHER -connect a.b.c.d:443

where CIPHER stipulates the algorithms for encryption, key
exchange, and authentication, e.g. ECDHE-RSA-CHACHA20-
POLY1305, and a.b.c.d, the OpenSSL server IP address. User
input entered on the client command-line simulated browser re-
quests, such as: GET / HTTP/1.1, Host: a.b.c.d, Accept-Encoding:
gzip, deflate, Accept: */*.

8.5.2 Experimental Results

ChaCha20 base structures were found in client and server volatile
memory for SSH and TLS. In SSH experiments, four base struc-
tures were discovered in both Windows and Ubuntu application
memory. An example of two such structures is illustrated in the
highlighted section of Figure 8-1.

In TLS experiments, one base structure was discovered for
ECDHE-RSA-CHACHA20-POLY1305. An example of this struc-
ture is illustrated in the highlighted section of Figure 8-2.

The base structure discoveries led to key stream generation and
rapid decryption. Complete SSH sessions including user names,
passwords, file names, and uploaded file contents were obtained.
Only outgoing TLS traffic was decrypted. This difference between
SSH and TLS results relates to their respective implementations.

PuTTY/OpenSSH ChaCha20 data structures are heap-resident

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 169

Figure 8-1: ChaCha20 SSH Base Structure in Memory

Figure 8-2: ChaCha20 TLS Base structure in Memory

so memory extracts for successful decryption are not necessarily
linked to client SSH message transmission. By contrast, OpenSSL
ChaCha20 base structures are stack-resident, so ephemeral, and
may therefore be overwritten. Consequently, full SSH sessions

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 170

were decrypted whereas only outgoing TLS sessions were decrypted.
The use of additional triggers for TLS memory extraction may
lead to full TLS session decryption.

A sample decrypt for a complete SSH session is shown in Figure
8-3. Example TLS analysis component logs, including an Appli-
cation Data Message decrypt, are shown in Figure 8-4.

Figure 8-3: ChaCha20 SSH Decrypt Output Example

Figure 8-4: ChaCha20 TLS Memory & Decrypt Analysis Logs

ChaCha20 memory and decrypt analysis components completed
rapidly. Memory analysis durations were less than 0.5 (SSH) and
0.1 (TLS) seconds as shown in Table 8-1. Although memory anal-
ysis was independent of file size, decrypt analysis durations were

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 171

roughly proportionate to the volume of encrypted traffic, which
for SSH file transfer is a consequence of uploaded file size. The
SSH analysis duration results are illustrated in the graph shown
in Figure 8-5.

Table 8-1: ChaCha SSH & TLS Memory Analysis Durations

SSH TLS
Maximum 0.407 0.027
Minimum 0.007 0.011
Mean 0.144 0.021

Standard Deviation 0.153 0.006

Figure 8-5: ChaCha20 SSH Analysis Durations vs File Size

8.6 Conclusions

Implementations of ChaCha20-Poly1305 encryption using com-
monly used applications and libraries for SSH and TLS commu-
nications are vulnerable to being decrypted with a single mem-
ory extract. Secure communications in other environments where
ChaCha20 is used for encryption, such as Android smartphones
[99], may also be vulnerable when memory is acquired.

CHAPTER 8. DERIVING CHACHA20 KEY STREAMS 172

A possible limitation occurs if implementations separate the
constant string and the remainder of the ChaCha20 array. This
can be achieved by copying the constant string segments to reg-
isters and delaying array assembly until required for encryption
or decryption by encrypting the constant string, or randomly seg-
menting it. A more effective approach may be assembling the
base structure on the stack, as for OpenSSL, and then ensuring
stack contents are cleared immediately after the encryption pro-
cess. Cryptographic artefacts can still be discovered by searching
for high-entropy segments but the process is over 4 minutes slower
because of the increased candidate artefact set sizes.

The ChaCha20 extension decrypts SSH and TLS protocol traf-
fic with high probability and with durations under 1 second, so is
able to decrypt software-initiated sessions. As with other MemDe-
crypt extensions, identification of small sets of cryptographic arte-
facts may allow for the artefacts to be retained along with network
sessions for later decryption. This may benefit entities, such as
cloud vendors, where it may be illegal to decrypt communications
without sanction.

Chapter 9

Conclusions and Future Work

Increased use of encrypted tunnels for malicious activity moti-
vated this research. This led to research questions being proposed
regarding the decryption of secure communications. The ques-
tions encompassed reviewing the effectiveness of existing decryp-
tion methods; whether new decryption methods could be devel-
oped; and whether the new methods could usefully decrypt the
secure communications of live virtual machines. The questions
can be answered by reflecting on key conclusions of the investi-
gations, the achievement of the aim and objectives, contributions
made by the thesis, and potential future work based on the inves-
tigations and the constructed framework.

9.1 Key Conclusions

The primary thesis conclusion is that commonly-used encryption
algorithm implementations leave cryptographic artefact traces in
memory. The thesis developed a framework which applied novel
approaches to determine small sets of candidate initialisation vec-
tors or other cryptographic data for different protocols and encryp-
tion algorithms. This enabled small sets of candidate encryption
keys to be identified. With small artefact set sizes confidential
data exchanges were rapidly decrypted.

173

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 174

Rapid decryption enables the details of securely communicated
malicious activity to be obtained during network sessions which
may be of assistant to researchers and analysts. The detailed key
conclusions are:

• Insider attackers can use SSH protocol implementations to
extract confidential data. The MemDecrypt framework de-
crypts SSH secure file copy sessions for AES and ChaCha20
with different key lengths, and uploaded file sizes across Win-
dows and Ubuntu operating systems in less than 16 seconds.

• For TLS version 1.2, MemDecrypt decrypts HTTP-over-TLS
sessions that use a common open-source library for AES and
ChaCha20 with different key sizes, Windows operating sys-
tems, as well as Ubuntu in most scenarios in less than 12
seconds. MemDecrypt also decrypts HTTP-over-TLS traffic
where client and server negotiate TLS version 1.3 in less than
13 seconds.

• Windows malware clients, such as bots and ransomware, in-
creasingly use TLS channels to beacon with controllers. Al-
though process hollowing makes the TLS protocol approach
more difficult, implementation traces enable the cryptographic
artefacts to be discovered and communications to be de-
crypted. Outgoing botnet and ransomware traffic is decrypted
in under 1 second.

9.2 Achievement of Aim and Objectives

The thesis aim was to deliver a framework that enabled decrypting
the secure communications of live virtual machines. The imple-
mented MemDecrypt framework has been applied to decrypting
SSH and TLS secure sessions for different implementations, en-
cryption algorithms, and operating systems. The thesis objectives

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 175

that supported this aim are considered briefly:

• The review of cryptographic mechanisms used in secure pro-
tocols identified AES and ChaCha20 to be algorithms of most
interest.

• The survey of methods for discovering cryptographic arte-
facts in memory found that only encryption keys were dis-
covered. Encrypting with the commonly used AES-CTR and
ChaCha20 algorithms requires IVs so plaintexts were not ob-
tained.

• The review of existing methodologies for accessing live vir-
tual machine network traffic and memory established that
virtual machine monitors can intercept and analyse packets
travelling across the virtual network bridge and obtain se-
mantically useful memory extracts.

• A framework was designed to decrypt encrypted network
traffic. To enable the framework to be extensible to other
technologies, protocols, and operating systems, the frame-
work design has three interlocking components: network traf-
fic and read/write memory capture; memory analysis to dis-
cover small sets of candidate cryptographic artefacts; and
decrypt verification.

• A base framework was implemented on the Xen Project hy-
pervisor using Python packages and bespoke software to sup-
port the decryption of network traffic emanating from Win-
dows clients and Ubuntu servers.

• A framework extension was implemented to investigate the
SSH protocol and the SFTP sub-system, In the experiments,
complete sessions for all variations were decrypted with greater
than 99.99% certainty.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 176

• The framework was extended for TLS versions 1.2 and 1.3.
Although experiments with OpenSSL decrypted HTTPS traf-
fic with greater than 99.99% certainty in less than fifteen
seconds, the analysis exceeded thirty minutes for malware
clients. An additional extension was constructed for clients
using Windows encryption libraries. Experiments with real
malware clients successfully decrypted malware client com-
munications in less than one second.

The final section of the current chapter proposes future work using
the framework.

9.3 Key Contributions

The principal thesis contributions result from the construction of
a framework which incorporates algorithms for extraction, mem-
ory analysis, and decrypt validation. The contributions are sum-
marised in the following items:

• Development of a framework to access virtual machine re-
sources, identify small sets of candidate cryptographic arte-
facts, and decrypt encrypted sessions efficiently with minimal
impact on the target device. The framework can be extended
to other target environments, applications, protocols, and al-
gorithms.

• Determined that MemDecrypt can rapidly decrypt SSH com-
munications from Windows client and Ubuntu server virtual
machines. As SSH has been used as a medium for data ex-
filtration [5], the framework can assist in defending against
such attacks, which are difficult to detect and increasingly
common [68].

• Determined that MemDecrypt rapidly decrypts TLS commu-
nications from Ubuntu server and Windows client virtual ma-

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 177

chines. HTTPS is commonly used for benign on-line transac-
tions between clients and web servers and malicious commu-
nications, such as malware applications communicating with
external controllers [9]. Rapid decryption of HTTPS traffic
can determine the nature of the malicious activity and assist
in developing countermeasures.

• Constructed an extension to decrypt communications from
Windows client malware, such as bots or ransomware. Spe-
cific features of Windows cryptographic library data struc-
tures enabled communications to be decrypted even when
malware hijacked a benign application. This can benefit an-
alysts concerned with tracing malware activity and security
application providers interested in intercepting and prevent-
ing such breaches.

• Developed and proved that TLS and SSH secure commu-
nications using the ChaCha20 stream encryption algorithm
are decryptable. Two common ChaCha20 implementations
leave memory traces enabling rapid decryption. This knowl-
edge may enable developers to adopt measures to protect
ChaCha20 cryptographic artefacts.

9.4 Future Work

Future work is proposed to address gaps in these investigations
and suggest potential research areas where the framework might
be used.

9.4.1 Investigative Gaps

This thesis focused on constructing a framework to support the
decryption of secure communications protocols in virtualised en-

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 178

vironments. Choices were made regarding the protocols, protocol
applications, and encryption algorithms to be investigated.

Although SSH and TLS are extensively used, and are known
to conceal malicious activities, other protocols could be usefully
investigated. For example, there are alternative tunnelling proto-
cols, such as IPSec, L2TP, PPTP, which may be used individually
or together, as well as application protocols, such as OpenVPN,
which is layered on TLS.

For each analysed protocol, commonly used applications were
chosen for experiments. Although these implementations were
found to be vulnerable, SSH and TLS capabilities are offered
through a wide range of alternatives. Additional experiments can
establish whether cryptographic artefacts traces can be discovered
in the memory of these applications. As discovered in SSH exper-
iments, pre-testing with alternative applications can also dramat-
ically reduce analysis durations.

AES-CTR/AES-GCM and ChaCha20 appear to be the encryp-
tion algorithms of most current interest for secure communica-
tions. The only other algorithm currently permitted in TLS 1.3 is
AES-CCM (Counter with Cipher Block Chaining - Message Au-
thentication Code), which uses counter mode for encryption and
block chaining in authentication [283] and so is expected to de-
cryptable. SSH is presently not as restricted so further options
could be analysed.

9.4.2 Potential Research Areas

The framework can assist in preventing traces of cryptographic
artefacts being discovered in memory. A defined methodology
for the construction of secure communications applications and li-
braries may be a useful research area. Such a methodology might
include compiler or operating system considerations as well as ap-
plication construction steps. In this scenario, the framework could

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 179

serve as a test harness to identify vulnerabilities before application
release.

MemDecrypt can also provide a basis for improving defences
against malicious activity. As the impact of such activity may
be short-lived, high performance is essential. Implementation in
a low-level compiled language such as C, faster memory extrac-
tion, pipelining between components, and multi-threading are all
performance enhancement measures.

Framework utility is limited by being implemented on Xen. In-
vestigating the practicality of migrating the framework to other
hypervisors, such as ESXi, Hyper-V, and KVM/QEMU can im-
prove defences for a wider population. Assessing MemDecrypt
ability to function successfully with moving virtual machines may
also be beneficial.

Although the thesis focus has been on virtualised environments,
the framework can apply where memory can be acquired such as
the volatile memory of Android smartphones. As they use Linux,
memory acquisition tools such as the Linux Memory Extractor
(’LiME’) application [70] may suffice. However, LiME depends
on specific Linux version compiled kernel modules, smartphone
support, and kernel level execution. These requirements are chal-
lenging but alternatives such as AMExtractor [71], which requires
kernel execution privilege but no compilation, are less restrictive.
TrustDump [72] may also be appropriate but minimal testing has
been carried out. Commercial tools, such as Cellebrite, claim to
extract memory from Android devices without any target modifi-
cation although scenarios for usage are restricted [73].

Internet of Things (IoT) devices also commonly run Linux
[284]. For IoT, variations in device type and Linux versions pose
potentially greater challenges than smartphones. Nevertheless, so-
lutions that support live acquisition from Android smartwatches,
as well as smartphones, have been proposed [285]. IoT device
memory may also be acquired by flashing memory, running Linux

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 180

dump commands, or accessing device circuitry [286]. Further-
more, memory access with commercial tools, such as Cellebrite
UFED Physical Analyzer, has also been demonstrated [287]. As
IoT devices frequently communicate with cloud-based servers, mem-
ory acquisition of virtualised machines may present an easier op-
tion [284].

MemDecrypt may offer significant opportunities in defending
against malware activity. Discovering the plaintext of encrypted
malware traffic can support the development of tools to parse the
traffic and generate responses that hoodwink the attacker. The
framework could also support more powerful client defences. For
instance, if memory is acquired from a suspect application running
in a client anti-virus sandbox, plaintext knowledge may assist in
terminating the application before it causes localised damage.

Bibliography

[1] H. Chen, C. E. Beaudoin, and T. Hong, “Securing online
privacy: An empirical test on internet scam victimization,
online privacy concerns, and privacy protection behaviors,”
Computers in Human Behavior, vol. 70, pp. 291–302, 2017.

[2] K. Finley, “Half the Web Is Now Encrypted. That Makes
Everyone Safer,” 2017, [Online; accessed 15-Jan-2018].
[Online]. Available: https://www.wired.com/2017/01/half-
web-now-encrypted-makes-everyone-safer/

[3] Google, “HTTPS encryption on the web,” 2018, [On-
line; accessed 15-Dec-2018]. [Online]. Available: https:
//transparencyreport.google.com/https/overview?hl=en

[4] P. Chen, L. Desmet, C. Huygens, P. Chen, L. Desmet,
C. Huygens, A. Study, A. Persistent, and T. Bart, “A
Study on Advanced Persistent Threats,” in IFIP Interna-
tional Conference on Communications and Multimedia Se-
curity. Springer Berlin Heidelberg, 2014, pp. 63–72.

[5] A. Duncan, S. Creese, and M. Goldsmith, “An overview of
insider attacks in cloud computing,” Concurrency and Com-
putation: Practice and Experience, vol. 27, no. 12, pp. 2964–
2981, 2015.

[6] P. Black, I. Gondal, and R. Layton, “A survey of similari-
ties in banking malware behaviours,” Computers & Security,
vol. 77, pp. 756–772, 2018.

181

https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en

BIBLIOGRAPHY 182

[7] S. Khandelwal, “How Dutch Police Decrypted BlackBerry
PGP Messages For Criminal Investigation,” 2017, [On-
line; accessed 18-Nov-2018]. [Online]. Available: https://
thehackernews.com/2017/03/decrypt-pgp-encryption.html

[8] M. Collins, “Common sense guide to mitigating insider
threats,” Carnegie-Mellon University Pittsburgh, Tech.
Rep., 2016.

[9] B. Anderson, S. Paul, and D. McGrew, “Deciphering Mal-
ware’s use of TLS (without Decryption),” Journal of Com-
puter Virology and Hacking Techniques, pp. 1–17, 2016.

[10] P. McLaren, G. Russell, and B. Buchanan, “Mining Mal-
ware Command and Control Traces,” in 2017 Computing
Conference. IEEE, 2017, pp. 788–794.

[11] D. Gooley, “The Rise in SSL-based Threats,” 2017,
[Online; accessed 5-Jul-2018]. [Online]. Available: https:
//www.zscaler.com/blogs/research/rise-ssl-based-threats-1

[12] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of
methods for encrypted traffic classification and analysis,” In-
ternational Journal of Network Management, vol. 25, no. 5,
pp. 355–374, 2015.

[13] Z. B. Celik, R. J. Walls, P. McDaniel, and A. Swami, “Mal-
ware Traffic Detection using Tamper Resistant Features,” in
MILCOM 2015-2015 IEEE Military Communications Con-
ference. IEEE, 2015, pp. 330–335.

[14] N. Moustafa and J. Slay, “The Significant Features of the
UNSW-NB15 and the KDD99 Data Sets for Network Intru-
sion Detection Systems,” in 2015 4th International Work-
shop on Building Analysis Datasets and Gathering Experi-
ence Returns for Security (BADGERS). IEEE, 2015, pp.
25–31.

https://thehackernews.com/2017/03/decrypt-pgp-encryption.html
https://thehackernews.com/2017/03/decrypt-pgp-encryption.html
https://www.zscaler.com/blogs/research/rise-ssl-based-threats-1
https://www.zscaler.com/blogs/research/rise-ssl-based-threats-1

BIBLIOGRAPHY 183

[15] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sci-
ences Militaires, vol. 9, pp. 5–38, 1883.

[16] R. Verdult, “The (in) security of proprietary cryptography,”
Ph.D. dissertation, Radboud University Nijmegen, 2015.

[17] N. Ferguson, B. Schneier, and T. Kohno, Cryptography engi-
neering: design principles and practical applications. John
Wiley & Sons, 2010.

[18] Electronic Frontier Foundation, Cracking DES: Secrets of
Encryption Research, Wiretap Politics & Chip Design.
O’Reilly Media, 1998.

[19] The Electronic Frontier Foundation, “DES Challenge III
Broken in Record 22 Hours,” 1999, [Online; accessed
17-Oct-2018]. [Online]. Available: https://www.eff.org/
effector/12/1

[20] Federal Register, “Announcing Approval of the Withdrawal
of Federal Information Processing Standard (FIPS) 46-3,
Data Encryption Standard (DES); FIPS 74, Guidelines
for Implementing and Using the NBS Data Encryption
Standard; and FIPS 81, DES Modes of Operation,”
Federal Register, Tech. Rep., 2005. [Online]. Available:
https://www.federalregister.gov/documents/2005/05/19/
05-9945/announcing-approval-of-the-withdrawal-of-federal-
information-processing-standard-fips-46-3-data

[21] M. Matsui, “Linear cryptanalysis method for DES cipher,”
in Advances in Cryptology – EUROCRYPT ’93, vol. 765 of
Lecture Notes in Computer Science. Springer, 1994, pp.
386–397.

[22] B. D. Carrier and J. Grand, “A hardware-based memory
acquisition procedure for digital investigations,” Digital In-
vestigation, vol. 1, no. 1, pp. 50–60, 2004.

https://www.eff.org/effector/12/1
https://www.eff.org/effector/12/1
https://www.federalregister.gov/documents/2005/05/19/05-9945/announcing-approval-of-the-withdrawal-of-federal-information-processing-standard-fips-46-3-data
https://www.federalregister.gov/documents/2005/05/19/05-9945/announcing-approval-of-the-withdrawal-of-federal-information-processing-standard-fips-46-3-data
https://www.federalregister.gov/documents/2005/05/19/05-9945/announcing-approval-of-the-withdrawal-of-federal-information-processing-standard-fips-46-3-data

BIBLIOGRAPHY 184

[23] E. Hess, N. Janssen, B. Meyer, and T. Schütze, “Information
Leakage Attacks Against Smart Card Implementations of
Cryptographic Algorithms and Countermeasures:a Survey,”
in EUROSMART Security Conference, vol. 130, 2000, pp.
55–64.

[24] B. Schatz, “BodySnatcher : Towards Reliable Volatile Mem-
ory Acquisition by Software By BodySnatcher : Towards re-
liable volatile memory acquisition by software,” in DFRWS
2007 USA Proceedings. Elsevier, 2007, pp. 127–134.

[25] S. Vömel and F. C. Freiling, “A survey of main memory ac-
quisition and analysis techniques for the windows operating
system,” Digital Investigation, vol. 8, no. 1, pp. 3–22, 2011.

[26] S. Vömel and F. C. Freiling, “Correctness, atomicity, and
integrity: Defining criteria for forensically-sound memory
acquisition,” Digital Investigation, vol. 9, no. 2, pp. 125–
137, 2012.

[27] M. Gruhn and F. C. Freiling, “Evaluating atomicity , and
integrity of correct memory acquisition methods,” Digital
Investigation, vol. 16, pp. S1–S10, 2016.

[28] F. Pagani, O. Fedorov, and D. Balzarotti, “Introducing the
Temporal Dimension to Memory Forensics,” ACM Trans.
Priv. Secur., vol. 22, no. 2, pp. 9:1–9:21, Mar. 2019.

[29] F. Freiling, T. Groß, T. Latzo, T. Müller, and R. Palutke,
“Advances in Forensic Data Acquisition,” IEEE Design &
Test, vol. 35, no. 5, pp. 63–74, 2018.

[30] T. Vidas, “Volatile Memory Acquisition via Warm Boot
Memory Survivability,” in 2010 43rd Hawaii International
Conference on System Sciences. IEEE, 2010, pp. 1–6.

BIBLIOGRAPHY 185

[31] L. Zhang, L. Wang, R. Zhang, S. Zhang, and Y. Zhou,
“Live Memory Acquisition through FireWire,” Lecture Notes
of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, vol. 56, pp. 159–167,
2011.

[32] A. Froomkin, “The Metaphor Is the Key: Cryptography, the
Clipper Chip, and the Constitution,” University of Pennsyl-
vania Law Review, vol. 143, no. 3, pp. 709–897, 1995.

[33] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest We Remember: Cold Boot Attacks
on Encryption Keys,” Communications of the ACM, vol. 52,
no. 5, pp. 91–98, 2009.

[34] M. Russinovich and A. Richards, “ProcDump
v9.0,” 2017, [Online; accessed 10-Feb-2019]. [Online].
Available: https://docs.microsoft.com/en-us/sysinternals/
downloads/procdump

[35] W. J. Liu, “Process Hacker,” 2016, [Online;
accessed 10-Feb-2019]. [Online]. Available: https:
//processhacker.sourceforge.io/

[36] AccessData, “FTK Imager,” 2018, [Online; ac-
cessed 10-Feb-2019]. [Online]. Available: http:
//marketing.accessdata.com/ftkimager4.2.0

[37] Comae, “Comae Toolkit,” 2018, [Online; accessed 10-Feb-
2019]. [Online]. Available: https://my.comae.io/tools

[38] FireEye, “Memoryze,” 2018, [Online; accessed 10-Feb-2019].
[Online]. Available: https://www.fireeye.com/services/
freeware.html

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
http://marketing.accessdata.com/ftkimager4.2.0
http://marketing.accessdata.com/ftkimager4.2.0
https://my.comae.io/tools
https://www.fireeye.com/services/freeware.html
https://www.fireeye.com/services/freeware.html

BIBLIOGRAPHY 186

[39] M. Cohen, “WinPMEM,” 2018, [Online; accessed 10-
Feb-2019]. [Online]. Available: https://github.com/google/
rekall/tree/master/tools/windows/winpmem

[40] K. Nance, M. Bishop, and B. Hay, “Virtual Machine Intro-
spection: Observation or Interference?” IEEE Security &
Privacy, vol. 6, no. 5, pp. 32–37, 2008.

[41] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs.
Lightweight Virtualization: A Performance Comparison,” in
2015 IEEE International Conference on Cloud Engineering.
IEEE, 2015, pp. 386–393.

[42] R. Iphofen, “Safety is more important than
privacy,” Times Higher Education,” https://
www.timeshighereducation.com/features/safety-is-more-
important-than-privacy, 2016, [Online; accessed 29-Jan-
2019].

[43] G. R. Lucas Jr, “Privacy, Anonymity, and Cyber Security,”
Amsterdam Law Forum, vol. 5, p. 107, 2013.

[44] Z. Bauman, D. Bigo, P. Esteves, E. Guild, V. Jabri, D. Lyon,
and R. B. Walker, “After Snowden: Rethinking the Impact
of Surveillance,” International Political Sociology, vol. 8,
no. 2, pp. 121–144, 2014.

[45] W. B. Tesfay, P. Hofmann, T. Nakamura, S. Kiyomoto, and
J. Serna, “PrivacyGuide: towards an Implementation of the
EU GDPR on Internet Privacy Policy Evaluation,” in Pro-
ceedings of the Fourth ACM International Workshop on Se-
curity and Privacy Analytics. ACM, 2018, pp. 15–21.

[46] A. Beech, L. Yaxley, and G. Roberts, “Face-
book, Google obliged to decrypt online messages

https://github.com/google/rekall/tree/master/tools/windows/winpmem
https://github.com/google/rekall/tree/master/tools/windows/winpmem
https://www.timeshighereducation.com/features/safety-is-more-important-than-privacy
https://www.timeshighereducation.com/features/safety-is-more-important-than-privacy
https://www.timeshighereducation.com/features/safety-is-more-important-than-privacy

BIBLIOGRAPHY 187

to help Government fight terrorism,” 2017, [On-
line; accessed 10-Nov-2018]. [Online]. Available:
http://www.abc.net.au/news/2017-07-14/facebook-google-
to-be-forced-to-decrypt-messages-fight-terrorism/8707748

[47] R. Iphofen, “Ethical Issues in Surveillance and Privacy,” in
Hostile Intent and Counter-Terrorism. CRC Press, 2017,
pp. 59–71.

[48] D. Kahn, The Codebreakers: The Comprehensive History
of Secret Communication from Ancient Times to the
Internet. Scribner, 1996. [Online]. Available: https:
//books.google.com.au/books?id=SEH_rHkgaogC

[49] H. O. Yardley, The American Black Chamber. Naval Insti-
tute Press, 2013.

[50] W. C. Banks, “Cyber espionage and electronic surveillance:
Beyond the media coverage,” Emory Law Journal, vol. 66,
p. 513, 2016.

[51] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta et al., “Imperfect forward secrecy:
How Diffie-Hellman fails in practice,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2015, pp. 5–17.

[52] J. Ball, “NSA monitored calls of 35 world lead-
ers after US official handed over contacts,” pp. 2–4,
2013, [Online; accessed 17-Sep-2018]. [Online]. Avail-
able: http://www.theguardian.com/world/2013/oct/24/
nsa-surveillance-world-leaders-calls

[53] UN General Assembly, “Universal Declaration of Human
Rights,” UN General Assembly, 1948.

http://www.abc.net.au/news/2017-07-14/facebook-google-to-be-forced-to-decrypt-messages-fight-terrorism/8707748
http://www.abc.net.au/news/2017-07-14/facebook-google-to-be-forced-to-decrypt-messages-fight-terrorism/8707748
https://books.google.com.au/books?id=SEH_rHkgaogC
https://books.google.com.au/books?id=SEH_rHkgaogC
http://www.theguardian.com/world/2013/oct/24/nsa-surveillance-world-leaders-calls
http://www.theguardian.com/world/2013/oct/24/nsa-surveillance-world-leaders-calls

BIBLIOGRAPHY 188

[54] M. Cayford and W. Pieters, “The effectiveness of
surveillance technology: What intelligence officials are
saying,” The Information Society, vol. 34, no. 2, pp.
88–103, 2018. [Online]. Available: https://doi.org/10.1080/
01972243.2017.1414721

[55] R. Graham, “How Terrorists Use Encryption,” CTC
Sentinel, vol. 9, no. 6, pp. 20–25, 2016. [Online]. Available:
www.ctc.usma.edu/sentinel/

[56] J. McLaughlin, “Apple Faces 12 Other Requests to Break
Into iPhones,” 2016, [Online; accessed 10-Feb-2019].
[Online]. Available: https://theintercept.com/2016/02/23/
new-court-filing-reveals-apple-faces-12-other-requests-to-
break-into-locked-iphones/

[57] R. Crozier, “Govt’s decryption bill can only lead
to ’systemic weaknesses’ - Security - iTnews,” sep
2018, [Online; accessed 10-Nov-2018]. [Online]. Avail-
able: https://www.itnews.com.au/news/govts-decryption-
bill-can-only-lead-to-systemic-weaknesses-512390

[58] Zscaler, “Zscaler ThreatLabZ Reveals Malicious Content
Delivered Over SSL/TLS Has More Than Doubled
in Six Months,” 2017, [Online; accessed 29-Jan-2019].
[Online]. Available: https://www.zscaler.com/press/
zscaler-threatlabz-reveals-malicious-content-delivered-over-
ssltls-has-more-doubled-six-months

[59] S. Barker, “2018 sees surge in encrypted attacks, malware &
ransomware,” 2018, [Online; accessed 6-Sep-2018]. [Online].
Available: https://securitybrief.com.au/amp/story/2018-
sees-surge-encrypted-attacks-malware-ransomware/

[60] T. Morgenstern, “Watch Out for These Two Data
Exfiltration Channels,” 2017, [Online; accessed 8-Jul-

https://doi.org/10.1080/01972243.2017.1414721
https://doi.org/10.1080/01972243.2017.1414721
www.ctc.usma.edu/sentinel/
https://theintercept.com/2016/02/23/new-court-filing-reveals-apple-faces-12-other-requests-to-break-into-locked-iphones/
https://theintercept.com/2016/02/23/new-court-filing-reveals-apple-faces-12-other-requests-to-break-into-locked-iphones/
https://theintercept.com/2016/02/23/new-court-filing-reveals-apple-faces-12-other-requests-to-break-into-locked-iphones/
https://www.itnews.com.au/news/govts-decryption-bill-can-only-lead-to-systemic-weaknesses-512390
https://www.itnews.com.au/news/govts-decryption-bill-can-only-lead-to-systemic-weaknesses-512390
https://www.zscaler.com/press/zscaler-threatlabz-reveals-malicious-content-delivered-over-ssltls-has-more-doubled-six-months
https://www.zscaler.com/press/zscaler-threatlabz-reveals-malicious-content-delivered-over-ssltls-has-more-doubled-six-months
https://www.zscaler.com/press/zscaler-threatlabz-reveals-malicious-content-delivered-over-ssltls-has-more-doubled-six-months
https://securitybrief.com.au/amp/story/2018-sees-surge-encrypted-attacks-malware-ransomware/
https://securitybrief.com.au/amp/story/2018-sees-surge-encrypted-attacks-malware-ransomware/

BIBLIOGRAPHY 189

2018]. [Online]. Available: https://www.cyberbit.com/
blog/endpoint-security/data-exfiltration-channels/

[61] C. Rossow and C. J. Dietrich, “Provex: Detecting Botnets
with Encrypted Command and Control Channels,” in In-
ternational Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, vol. 7967 of Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg,
2013, pp. 21–40.

[62] C. Macropoulos and K. M. Martin, “Balancing Privacy and
Surveillance in the Cloud,” IEEE Cloud Computing, vol. 2,
no. 4, pp. 14–21, 2015.

[63] N. Sullivan, “Introducing TLS 1.3,” 2016, [On-
line; accessed 3-Sep-2018]. [Online]. Available: https:
//blog.cloudflare.com/introducing-tls-1-3/

[64] A. Brodie, “Overview of TLS v1.3,”
2018, [Online; accessed 10-Dec-2018]. [On-
line]. Available: https://www.owasp.org/images/9/91/
OWASPLondon20180125_TLSv1.3_Andy_Brodie.pdf

[65] P. G. Sarkar and S. Fitzgerald, “Attacks on SSL a com-
prehensive study of BEAST, CRIME, TIME, BREACH,
LUCKY13 & RC4 biases,” Internet: https://www. isecpart-
ners. com/media/106031/ssl_attacks_survey. pdf [June,
2014], 2013.

[66] Y. Sheffer, R. Holz, and P. Saint-Andre, “RFC 7457 - Sum-
marizing Known Attacks on Transport Layer Security (TLS)
and Datagram TLS (DTLS),” Internet Engineering Task
Force, 2015.

[67] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Per-
alta, R. Perlner, and D. Smith-Tone, Report on Post-

https://www.cyberbit.com/blog/endpoint-security/data-exfiltration-channels/
https://www.cyberbit.com/blog/endpoint-security/data-exfiltration-channels/
https://blog.cloudflare.com/introducing-tls-1-3/
https://blog.cloudflare.com/introducing-tls-1-3/
https://www.owasp.org/images/9/91/OWASPLondon20180125_TLSv1.3_Andy_Brodie.pdf
https://www.owasp.org/images/9/91/OWASPLondon20180125_TLSv1.3_Andy_Brodie.pdf

BIBLIOGRAPHY 190

Quantum Cryptography. National Institute of Standards
and Technology, 2016.

[68] S. Aditham and N. Ranganathan, “A System Architecture
for the Detection of Insider Attacks in Big Data Systems,”
IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 6, pp. 974–987, 2018.

[69] N. Zhang, R. Zhang, K. Sun, W. Lou, Y. T. Hou, and
S. Jajodia, “Memory Forensic Challenges Under Misused
Architectural Features,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 9, pp. 2345–2358, 2018.

[70] J. Sylve, “LiME - Linux Memory Extractor,” https://
github.com/504ensicslabs/lime, 2019, [Online; accessed 29-
Jan-2019].

[71] H. Yang, J. Zhuge, H. Liu, and W. Liu, “A Tool for
Volatile Memory Acquisition from Android Devices,” in
IFIP International Conference on Digital Forensics, vol.
484. Springer,Cham, 2016, pp. 365–378.

[72] H. Sun, K. Sun, Y. Wang, and J. Jing, “Reliable and Trust-
worthy Memory Acquisition on Smartphones,” IEEE Trans-
actions on Information Forensics and Security, vol. 10,
no. 12, pp. 2547–2561, 2015.

[73] "Cellebrite", “Advanced Extraction Service,” https:
//www.cellebrite.com/en/services/advanced-extraction-
services, 2018, [Online; accessed 29-Jan-2019].

[74] P. McLaren, G. Russell, W. J. Buchanan, and Z. Tan, “De-
crypting Live SSH Traffic in Virtual Environments,” Digital
Investigation, vol. 29, pp. 109–117, 2019.

[75] B. Schneier, Secrets & Lies. Wiley, 2000.

https://github.com/504ensicslabs/lime
https://github.com/504ensicslabs/lime
https://www.cellebrite.com/en/services/advanced-extraction-services
https://www.cellebrite.com/en/services/advanced-extraction-services
https://www.cellebrite.com/en/services/advanced-extraction-services

BIBLIOGRAPHY 191

[76] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, “A dynamic
prime number based efficient security mechanism for big
sensing data streams,” Journal of Computer and System Sci-
ences, vol. 83, no. 1, pp. 22–42, 2017.

[77] A. Klein, Stream Ciphers. Springer, 2013.

[78] K. M. Martin, Everyday Cryptography:Fundamental Prin-
ciples and Applications, 2nd ed. Oxford University Press,
2017.

[79] Y. Nir and A. Langley, “RFC 8439 - ChaCha20 and Poly1305
for IETF Protocols,” Internet Engineering Task Force, 2018.

[80] L. R. Knudsen and M. J. Robshaw, The Block Cipher
Companion. Springer Science & Business Media, 2011.
[Online]. Available: http://link.springer.com/10.1007/978-
3-642-17342-4

[81] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: Methods and Techniques,” National Institute of
Standards and Technology, Tech. Rep., 2001.

[82] P. Ducklin, “Anatomy of a password disaster –
Adobe’s giant-sized cryptographic blunder,” 2013,
[Online; accessed 18-Nov-2018]. [Online]. Available:
https://nakedsecurity.sophos.com/2013/11/04/anatomy-
of-a-password-disaster-adobes-giant-sized-cryptographic-
blunder/

[83] K. Bhargavan and G. Leurent, “On the Practical (In-
) Security of 64-bit Block Ciphers Collision Attacks
on HTTP over TLS and OpenVPN,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 456–
467. [Online]. Available: https://eprint.iacr.org/2016/
798{%}0Ahttps://eprint.iacr.org/2016/798.pdf

http://link.springer.com/10.1007/978-3-642-17342-4
http://link.springer.com/10.1007/978-3-642-17342-4
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://eprint.iacr.org/2016/798{%}0Ahttps://eprint.iacr.org/2016/798.pdf
https://eprint.iacr.org/2016/798{%}0Ahttps://eprint.iacr.org/2016/798.pdf

BIBLIOGRAPHY 192

[84] C. Kowalczyk, “Modes of Block Ciphers,” 2017,
[Online; accessed 15-Jan-2019]. [Online]. Avail-
able: http://www.crypto-it.net/eng/theory/modes-of-
block-ciphers.html

[85] D. A. McGrew and J. Viega, “The Security and
Performance of the Galois/Counter Mode (GCM) of
Operation,” in International Conference on Cryptology in
India. Springer, 2004, pp. 343–355. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-30556-9_27

[86] P. Rogaway, “Evaluation of Some Blockcipher Modes of Op-
eration,” Cryptography Research and Evaluation Commit-
tees (CRYPTREC) for the Government of Japan, 2011.

[87] E. Biham and A. Shamir, Differential cryptanalysis of the
Data Encryption Standard. Springer Science & Business
Media, 2012. [Online]. Available: http://link.springer.com/
content/pdf/10.1007/978-1-4613-9314-6.pdf

[88] NIST, “Announcing the Advanced Encryption Standard
(AES),” NIST, Tech. Rep., 2001.

[89] J. Daeman and V. Rijmen, The Design of Rijndael.
Springer-Verlag Berlin Heidelberg GmbH, 2002.

[90] W. J. Buchanan, S. Li, and R. Asif, “Lightweight cryp-
tography methods,” Journal of Cyber Security Technology,
vol. 1, no. 3-4, pp. 187–201, 2018. [Online]. Available:
https://doi.org/10.1080/23742917.2017.1384917

[91] J. Daemen and V. Rijmen, “The Rijndael Block Cipher:
AES Proposal,” NIST, Tech. Rep., 2003.

[92] A. Biryukov, “Block Ciphers and Stream Ciphers: The State
of the Art,” IACR Cryptology ePrint Archive, vol. 2004/094,
2004.

http://www.crypto-it.net/eng/theory/modes-of-block-ciphers.html
http://www.crypto-it.net/eng/theory/modes-of-block-ciphers.html
http://link.springer.com/10.1007/978-3-540-30556-9_27
http://link.springer.com/content/pdf/10.1007/978-1-4613-9314-6.pdf
http://link.springer.com/content/pdf/10.1007/978-1-4613-9314-6.pdf
https://doi.org/10.1080/23742917.2017.1384917

BIBLIOGRAPHY 193

[93] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaef-
stathiou, “A survey of lightweight stream ciphers for em-
bedded systems,” Security and Communication Networks,
vol. 9, no. 10, pp. 1226–1246, 2016.

[94] G. Paul and S. Maitra, “Permutation After RC4 Key
Scheduling Reveals the Secret Key,” in International Work-
shop on Selected Areas in Cryptography, vol. 4876 of Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg,
2007, pp. 360–377.

[95] A. Popov, “RFC 7465 - Prohibiting RC4 Cipher Suites,”
Internet Engineering Task Force, 2015.

[96] L. Camara, “Deprecating RC4 in Secure Shell (SSH),” https:
//tools.ietf.org/id/draft-ietf-curdle-rc4-die-die-die-10.html,
2018, [Online; accessed 29-Jan-2019].

[97] OpenBSD, “OpenSSH,” 2018, [Online; accessed 10-Feb-
2019]. [Online]. Available: https://www.openssh.com/

[98] A. Langley, W. Chang, N. Mavrogiannopoulos,
J. Strombergson, and S. Josefsson, “ChaCha20-Poly1305
Cipher Suites for Transport Layer Security (TLS),” NIST,
Tech. Rep., 2016.

[99] Ianix, “ChaCha Usage and Deployment,” https:
//ianix.com/pub/chacha-deployment.html, 2019, [On-
line; accessed 29-Jan-2019].

[100] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers,” in
New Stream Cipher Designs. Springer,Berlin, Heidelberg,
2008, vol. 4986 of Lecture Notes in Computer Science, pp.
84–97.

[101] ——, “ChaCha, a variant of Salsa20,” in SASC: The State
of the Art of Stream Ciphers, vol. 8, 2008, pp. 3–5.

https://tools.ietf.org/id/draft-ietf-curdle-rc4-die-die-die-10.html
https://tools.ietf.org/id/draft-ietf-curdle-rc4-die-die-die-10.html
https://www.openssh.com/
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html

BIBLIOGRAPHY 194

[102] KDDI Research Inc., “Security Analysis of ChaCha20-
Poly1305 AEAD,” https://www.cryptrec.go.jp/exreport/
cryptrec-ex-2601-2016.pdf, 2017, [Online; accessed 29-Jan-
2019].

[103] D. J. Bernstein, “Extending the Salsa20 nonce,” in Symmet-
ric Key Encryption Workshop 2011, 2011.

[104] P. Crowley and E. Biggers, “Adiantum: length-preserving
encryption for entry-level processors,” IACR Transactions
on Symmetric Cryptology, pp. 39–61, 2018.

[105] D. Desai, “What’s hiding in encrypted traf-
fic? Millions of advanced threats,” 2019,
[Online; accessed 11-Feb-2019]. [Online]. Avail-
able: https://www.zscaler.com/blogs/research/whats-
hiding-encrypted-traffic-millions-advanced-threats

[106] A. K. Khan and H. J. Mahanta, “Side Channel Attacks and
Their Mitigation Techniques,” in 1st International Confer-
ence on Automation, Control, Energy and Systems - 2014,
ACES 2014. IEEE, 2014, pp. 1–4.

[107] C. Giraud, “DFA on AES,” in Advanced Encryption Stan-
dard – AES, vol. 3373 of Lecture Notes in Computer Science.
Springer,Berlin,Heidelberg, 2004, pp. 27–41.

[108] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential
Fault Analysis of the Advanced Encryption Standard Using
a Single Fault,” IFIP International Workshop on Informa-
tion Security Theory and Practices, pp. 224–233, 2011.

[109] J. Takahashi and T. Fukunaga, “Differential Fault
Analysis on AES with 192 and 256-Bit Keys,” IACR
Eprint archive, pp. 7–12, 2010. [Online]. Available:
https://eprint.iacr.org/2010/023.pdf

https://www.cryptrec.go.jp/exreport/cryptrec-ex-2601-2016.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2601-2016.pdf
https://www.zscaler.com/blogs/research/whats-hiding-encrypted-traffic-millions-advanced-threats
https://www.zscaler.com/blogs/research/whats-hiding-encrypted-traffic-millions-advanced-threats
https://eprint.iacr.org/2010/023.pdf

BIBLIOGRAPHY 195

[110] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures : the Case of AES,” in Topics in Cryptol-
ogy – CT-RSA 2006, vol. 3860 of Lecture Notes in Computer
Science. Springer,Berlin,Heidelberg, 2005, pp. 1–25.

[111] Y. Lyu and P. Mishra, “A Survey of Side-Channel
Attacks on Caches and Countermeasures,” Journal of
Hardware and Systems Security, vol. 2, pp. 33–50, 2018.
[Online]. Available: https://link.springer.com/content/pdf/
10.1007{%}2Fs41635-017-0025-y.pdf

[112] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Mi-
croarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware,” Journal of Cryptographic Engi-
neering, vol. 8, no. 1, pp. 1–37, 2018.

[113] O. Aciiçmez, Ç. Koç, and J.-P. Seifert, “Predicting Secret
Keys Via Branch Prediction,” in Cryptographers’ Track at
the RSA Conference. Springer, 2007, pp. 225–242.

[114] E. Käsper and P. Schwabe, “Faster and Timing-Attack Re-
sistant AES-GCM,” Cryptographic Hardware and Embedded
Systems-CHES 2009, pp. 1–17, 2009. [Online]. Available:
https://cryptojedi.org/papers/aesbs-20090616.pdf

[115] “Intel® Data Protection Technology with
AES-NI and Secure Key,” [Online; ac-
cessed 10-Sep-2018]. [Online]. Available: https:
//www.intel.com.au/content/www/au/en/architecture-
and-technology/advanced-encryption-standard--aes-/data-
protection-aes-general-technology.html

[116] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differen-
tial power analysis,” Journal of Cryptographic Engineering,
vol. 1, no. 1, pp. 5–27, 2011.

https://link.springer.com/content/pdf/10.1007{%}2Fs41635-017-0025-y.pdf
https://link.springer.com/content/pdf/10.1007{%}2Fs41635-017-0025-y.pdf
https://cryptojedi.org/papers/aesbs-20090616.pdf
https://www.intel.com.au/content/www/au/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://www.intel.com.au/content/www/au/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://www.intel.com.au/content/www/au/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://www.intel.com.au/content/www/au/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html

BIBLIOGRAPHY 196

[117] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-measures for Smart
Cards,” in Smart Card Programming and Security. E-smart
2001, vol. 2140 of Lecture Notes in Computer Science.
Springer,Berlin,Heidelberg, 2001, pp. 200–210.

[118] D. Genkin, A. Shamir, and E. Tromer, “Acoustic Crypt-
analysis,” Journal of Cryptology, vol. 30, no. 2, pp. 392–443,
2017.

[119] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Chan-
nel Cryptanalysis of Product Ciphers,” Computer Security
— ESORICS 98, vol. 1485 of Lecture Notes in Computer
Science, pp. 97–110, 1998.

[120] C. Maartmann-Moe, S. E. Thorkildsen, and A. Årnes, “The
persistence of memory: Forensic identification and extrac-
tion of cryptographic keys,” Digital Investigation, vol. 6, pp.
132–140, 2009.

[121] A. Tsow, “An Improved Recovery Algorithm for De-
cayed AES Key Schedule Images,” in Cryptography. SAC
2009, vol. 5867 of Lecture Notes in Computer Science.
Springer,Berlin,Heidelberg, 2009, pp. 215–230.

[122] H. Riebler, T. Kenter, C. Plessl, and C. Sorge, “Recon-
structing AES key schedules from decayed memory with
FPGAs,” in Proceedings - 2014 IEEE 22nd International
Symposium on Field-Programmable Custom Computing Ma-
chines, FCCM 2014. IEEE, 2014, pp. 222–229.

[123] W. Lin and D. Lee, “Traceback attacks in cloud - Pebble-
trace botnet,” in Proceedings - 32nd IEEE International
Conference on Distributed Computing Systems Workshops,
ICDCSW 2012, 2012, pp. 417–426.

BIBLIOGRAPHY 197

[124] T. Klein, “All your private keys are belong to us: Extracting
RSA private keys and certificates from process memory,” pp.
1–7, 2006.

[125] F. Rocha and M. Correia, “Lucy in the Sky without Dia-
monds: Stealing Confidential Data in the Cloud,” Proceed-
ings of the International Conference on Dependable Systems
and Networks, pp. 129–134, 2011.

[126] Y. Nakano, A. Basu, S. Kiyomoto, and Y. Miyake, “Key Ex-
traction Attack Using Statistical Analysis of Memory Dump
Data,” in International Conference on Risks and Security of
Internet and Systems. Springer, 2014, pp. 239–246.

[127] A. Shamir and N. V. Someren, “Playing ‘Hide and
Seek’ with Stored Keys,” Financial cryptography, pp.
1–9, 1999. [Online]. Available: http://link.springer.com/
chapter/10.1007/3-540-48390-X_9

[128] B. Taubmann, C. Frädrich, D. Dusold, and H. P. Reiser,
“TLSkex: Harnessing virtual machine introspection for de-
crypting TLS communication,” Digital Investigation, vol. 16,
pp. S114–S123, 2016.

[129] S. Sentanoe, B. Taubmann, and H. P. Reiser, “Virtual Ma-
chine Introspection Based SSH Honeypot,” in Proceedings
of the 4th Workshop on Security in Highly Connected IT
Systems. ACM, 2017, pp. 13–18.

[130] T. Garfinkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS’03), vol. 1, pp. 253–285, 2003.

[131] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares:
An Architecture for Secure Active Monitoring Using Virtu-

http://link.springer.com/chapter/10.1007/3-540-48390-X_9
http://link.springer.com/chapter/10.1007/3-540-48390-X_9

BIBLIOGRAPHY 198

alization,” in Proceedings - IEEE Symposium on Security
and Privacy. IEEE, 2008, pp. 233–247.

[132] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srini-
vasan, J. Rhee, and D. Xu, “DKSM: Subverting Virtual Ma-
chine Introspection for Fun and Profit,” in Proceedings of the
IEEE Symposium on Reliable Distributed Systems. IEEE,
2010, pp. 82–91.

[133] J. Shi, Y. Yang, C. Li, and X. Wang, “SPEMS: A Stealthy
and Practical Execution Monitoring System Based on VMI,”
in Cloud Computing and Security. ICCCS 2015, vol. 9483 of
Lecture Notes in Computer Science. Springer,Cham, 2015,
pp. 147–156.

[134] F. Rodríguez-Haro, F. Freitag, L. Navarro, E. Hernánchez-
sánchez, N. Farías-Mendoza, J. A. Guerrero-Ibáñez, and
A. González-Potes, “A summary of virtualization tech-
niques,” Procedia Technology, vol. 3, no. February 2014, pp.
267–272, 2012.

[135] S. Zhang, X. Meng, L. Wang, L. Xu, and X. Han, “Secure
Virtualization Environment based on Advanced Memory In-
trospection,” Security and Communication Networks, vol.
2018, pp. 1–16, 2018.

[136] P. Chen, C. Huygens, L. Desmet, and W. Joosen, “Advanced
or not? A comparative study of the use of anti-debugging
and anti-VM techniques in generic and targeted malware,”
IFIP Advances in Information and Communication Tech-
nology, vol. 471, pp. 323–336, 2016.

[137] S. T. King, P. M. Chen, Y. M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch, “SubVirt: Implementing malware
with virtual machines,” in Proceedings - IEEE Symposium
on Security and Privacy, vol. 2006. IEEE, 2006.

BIBLIOGRAPHY 199

[138] Y. Oyama, “Trends of anti-analysis operations of malwares
observed in API call logs,” Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1, pp. 69–85, 2018.

[139] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware
Detection Through VMM-Based “Out-of-the-Box” Semantic
View Reconstruction,” in Proceedings of the 14th ACM
conference on Computer and communications security.
ACM, 2007, pp. 128–138. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1315245.1315262

[140] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,
“Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection,” in Proceedings - IEEE Symposium on Secu-
rity and Privacy, vol. 1. IEEE, may 2011, pp. 297–312.

[141] E. Bauman, G. Ayoade, and Z. Lin, “A Survey on
Hypervisor-Based Monitoring,” ACM Computing Surveys
(CSUR), vol. 48, no. 1, pp. 1–33, 2015.

[142] Microsoft, “Windows 10 release information,” 2018,
[Online; accessed 5-Nov-2018]. [Online]. Avail-
able: https://www.microsoft.com/en-us/itpro/windows-
10/release-information

[143] Y. Fu, J. Zeng, and Z. Lin, “HYPERSHELL: A Practical
Hypervisor Layer Guest OS Shell for Automated in-
VM Management,” in 2014 USENIX Annual Technical
Conference, 2014, pp. 85–96. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2643634.2643644

[144] Y. Fu, Z. Lin, K. W. Hamlen, L. Khan, and B. Thurais-
ingham, “Bridging the Semantic Gap in Virtual Machine
Introspection via Binary Code Reuse,” Ph.D. dissertation,
University of Texas, 2016.

http://portal.acm.org/citation.cfm?doid=1315245.1315262
http://portal.acm.org/citation.cfm?doid=1315245.1315262
https://www.microsoft.com/en-us/itpro/windows-10/release-information
https://www.microsoft.com/en-us/itpro/windows-10/release-information
http://dl.acm.org/citation.cfm?id=2643634.2643644
http://dl.acm.org/citation.cfm?id=2643634.2643644

BIBLIOGRAPHY 200

[145] R. Wu, P. Chen, P. Liu, and B. Mao, “System Call Redirec-
tion: A Practical Approach to Meeting Real-world Virtual
Machine Introspection Needs,” in Proceedings - 44th An-
nual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014. IEEE, 2014, pp. 574–
585.

[146] Volatility Foundation, “Volatility,” https://
www.volatilityfoundation.org/, 2016, [Online; accessed
29-Jan-2019].

[147] M. Cohen", “Rekall Memory Forensic Framework”,” http:
//www.rekall-forensic.com/, 2017, [Online; accessed 29-Jan-
2019].

[148] LibVMI, “LibVMI Project,” http://libvmi.com/, 2013, [On-
line; accessed 29-Jan-2019].

[149] J. Hizver and T.-c. Chiueh, “Real-Time Deep Virtual Ma-
chine Introspection and Its Applications,” ACM SIGPLAN
Notices, vol. 49, no. 7, pp. 3–14, 2014.

[150] D. Zhan, L. Ye, B. Fang, X. Du, and S. Su, “CFWatcher: A
Novel Target-based Real-time Approach to Monitor Critical
Files using VMI,” in 2016 IEEE International Conference
on Communications, ICC 2016. IEEE, 2016, pp. 1–6.

[151] A. Cohen and N. Nissim, “Trusted detection of ransomware
in a private cloud using machine learning methods leveraging
meta-features from volatile memory,” Expert Systems with
Applications, vol. 102, pp. 158–178, 2018.

[152] A. More and S. Tapaswi, “Virtual machine introspection:
towards bridging the semantic gap,” Journal of Cloud Com-
puting, vol. 3, no. 1, pp. 1–14, 2014.

https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
http://libvmi.com/

BIBLIOGRAPHY 201

[153] M. Botacin, P. L. D. Geus, and A. Grégio, “Who watches
the watchmen: A security-focused review on current state-
of-the-art techniques, tools, and methods for systems and bi-
nary analysis on modern platforms,” ACM Computing Sur-
veys, vol. 51, no. 4, pp. 69:1–69:34, 2018.

[154] K. Kourai and S. Chiba, “HyperSpector: Virtual Distributed
Monitoring Environments for Secure Intrusion Detection,”
in Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments. ACM,
2005, pp. 197–207. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1065006

[155] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “De-
tecting Past and Present Intrusions through Vulnerability-
Specific Predicates,” ACM SIGOPS Operating Systems Re-
view, vol. 39, no. 5, p. 91, 2005.

[156] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis,” in Proceedings of the 14th
ACM conference on Computer and communications security
(CCS ’07). ACM, 2007, pp. 116–127.

[157] B. Hay and K. Nance, “Forensics Examination of Volatile
System Data Using Virtual Introspection,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 3, pp. 74–82, 2008.

[158] A. Lanzi, M. Sharif, and W. Lee, “K-Tracer: A System for
Extracting Kernel Malware Behavior,” in Proceedings of the
16th Network and Distributed System Security Symposium
(NDSS ’09), 2009, pp. 163–169.

[159] C. Benninger, S. W. Neville, Y. O. Yazir, C. Matthews, and
Y. Coady, “Maitland: Lighter-Weight VM Introspection to
Support Cyber-Security in the Cloud,” in Proceedings - 2012

http://dl.acm.org/citation.cfm?id=1065006
http://dl.acm.org/citation.cfm?id=1065006

BIBLIOGRAPHY 202

IEEE 5th International Conference on Cloud Computing,
CLOUD 2012. IEEE, 2012, pp. 471–478.

[160] C. Harrison, D. Cook, R. McGraw, and J. A. Hamilton,
“Constructing a cloud-based IDS by merging VMI with
FMA,” in Proc. of the 11th IEEE Int. Conference on Trust,
Security and Privacy in Computing and Communications,
TrustCom-2012. IEEE, 2012, pp. 163–169. [Online].
Available: http://ieeexplore.ieee.org/document/6295971/

[161] Y. Fu, W. C. Rd, and Z. Lin, “EXTERIOR: Using Dual-VM
Based External Shell for Guest-OS Introspection, Configu-
ration, and Recovery,” in Proceedings of the 9th ACM SIG-
PLAN/SIGOPS international conference on Virtual execu-
tion environments. ACM, 2013, pp. 97–110.

[162] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang,
“NICE: Network Intrusion Detection and Countermeasure
Selection in Virtual Network Systems,” IEEE Transactions
on Dependable and Secure Computing, vol. 10, no. 4, pp.
198–211, 2013.

[163] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster,
S. Vogl, and A. Kiayias, “Scalability, Fidelity and Stealth
in the DRAKVUF Dynamic Malware Analysis System,” in
Proceedings of the 30th Annual Computer Security Applica-
tions Conference, ser. ACSAC ’14. ACM, 2014, pp. 386–
395.

[164] A. Fattori, A. Lanzi, D. Balzarotti, and E. Kirda,
“Hypervisor-based malware protection with AccessMiner,”
Computers & Security, vol. 52, pp. 33–50, 2015.

[165] J. T. Saxon, B. Bordbar, and K. Harrison, “Efficient Re-
trieval of Key Material for Inspecting Potentially Malicious

http://ieeexplore.ieee.org/document/6295971/

BIBLIOGRAPHY 203

Traffic in the Cloud,” in 2015 IEEE International Confer-
ence on Cloud Engineering. IEEE, 2015, pp. 155–164.

[166] C. W. Tien, J. W. Liao, S. C. Chang, and S. Y. Kuo, “Mem-
ory Forensics using Virtual Machine Introspection for Mal-
ware Analysis,” in 2017 IEEE Conference on Dependable
and Secure Computing. IEEE, 2017, pp. 518–519.

[167] H. Upadhyay, H. A. Gohel, A. Pons, and L. Lagos, “Windows
Virtualization Architecture For Cyber Threats Detection,”
in 2018 1st International Conference on Data Intelligence
and Security (ICDIS). IEEE, 2018, pp. 119–122.

[168] D. Zhan, H. Li, L. Ye, H. Zhang, B. Fang, and
X. Du, “A Low-overhead Kernel Object Monitoring Ap-
proach for Virtual Machine Introspection,” arXiv preprint
arXiv:1902.05135, 2019.

[169] U. Sen, “Hidden Tear,” Istanbul, 2015, [Online; accessed 8-
Jan-2018]. [Online]. Available: https://github.com/goliate/
hidden-tear

[170] “Tripwire,” [Online; accessed 10-Jan-2018]. [Online]. Avail-
able: https://www.tripwire.com/

[171] G. Xiang, H. Jin, D. Zou, X. Zhang, S. Wen, and F. Zhao,
“VMDriver: A Driver-based Monitoring Mechanism for Vir-
tualization,” in Proceedings of the IEEE Symposium on Re-
liable Distributed Systems. IEEE, 2010, pp. 72–81.

[172] J. Grimm, I. Ahmed, V. Roussev, M. Bhatt, and M. Hong,
“Automatic mitigation of kernel rootkits in cloud environ-
ments,” in International Workshop on Information Security
Applications. Springer, 2017, pp. 137–149.

[173] Y. Wen, J. Zhao, H. Wang, and J. Cao, “Implicit Detec-
tion of Hidden Processes with a Feather-Weight Hardware-

https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://www.tripwire.com/

BIBLIOGRAPHY 204

Assisted Virtual Machine Monitor,” in Information Security
and Privacy. ACISP 2008, vol. 5107 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2008, pp.
361–375.

[174] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “VMM-based Hidden Process Detection and
Identification using Lycosid,” in Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments - VEE ’08. ACM,
2008, p. 91. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1346256.1346269

[175] D. N. Patil and B. B. Meshram, “Windows Physical Mem-
ory Analysis to Detect the Presence of Malicious Code,”
in Recent Findings in Intelligent Computing Techniques.
Springer, 2019, pp. 3–13.

[176] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. C. Mitchell, “A Layered Architecture for Detecting Ma-
licious Behaviors,” in Recent Advances in Intrusion Detec-
tion. RAID 2008, vol. 5230 of Lecture Notes in Computer
Science. Springer,Berlin,Heidelberg, 2008, pp. 78–97.

[177] C. Zheng, M. D. Preda, J. Granjal, S. Zanero, and F. Maggi,
“On-Chip System Call Tracing: A Feasibility Study and
Open Prototype,” in 2016 IEEE Conference on Commu-
nications and Network Security, CNS 2016. IEEE, 2017.

[178] S.-W. Hsiao, Y. S. Sun, and M. C. Chen, “Virtual Machine
Introspection Based Malware Behavior Profiling and Family
Grouping,” arXiv preprint arXiv, vol. 1705.01697, pp. 1–13,
2017.

[179] S. Javaid, A. Zoranic, I. Ahmed, and G. G. Richard III, “At-
omizer: Fast, Scalable and Lightweight Heap Analyzer for

http://portal.acm.org/citation.cfm?doid=1346256.1346269
http://portal.acm.org/citation.cfm?doid=1346256.1346269

BIBLIOGRAPHY 205

Virtual Machines in a Cloud Environment,” in 6th Layered
Assurance Workshop, vol. 6, 2012, p. 57.

[180] D. Tian, X. Xiong, C. Hu, and P. Liu, “Defeating
buffer overflow attacks via virtualization,” Computers
and Electrical Engineering, vol. 40, no. 6, pp. 1940–
1950, 2014. [Online]. Available: http://dx.doi.org/10.1016/
j.compeleceng.2013.11.032

[181] K. Leach, C. Spensky, W. Weimer, and F. Zhang,
“Towards Transparent Introspection,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7476647/

[182] “Open vSwitch,” 2017, [Online; accessed 8-Jan-2019].
[Online]. Available: http://openvswitch.org/

[183] “Snort,” 2017, [Online; accessed 8-Jan-2019]. [Online].
Available: https://www.snort.org

[184] The Tcpdump team, “Tcpdump/Libpcap,” 2018, [On-
line; accessed 8-Jan-2019]. [Online]. Available: http:
//www.tcpdump.org/

[185] F. Grehl, “ESXi Network Troubleshooting
with tcpdump-uw and pktcap-uw,” 2015, [On-
line; accessed 10-Sep-2018]. [Online]. Avail-
able: http://www.virten.net/2015/10/esxi-network-
troubleshooting-with-tcpdump-uw-and-pktcap-uw/

[186] J. Shi, Y. Yang, J. He, C. Tang, and Q. Li, “Design of
a comprehensive virtual machine monitoring system,” in
CCIS 2014 - Proceedings of 2014 IEEE 3rd International
Conference on Cloud Computing and Intelligence Systems.
IEEE, 2014, pp. 510–513. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7175789

http://dx.doi.org/10.1016/j.compeleceng.2013.11.032
http://dx.doi.org/10.1016/j.compeleceng.2013.11.032
http://ieeexplore.ieee.org/document/7476647/
http://openvswitch.org/
https://www.snort.org
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.virten.net/2015/10/esxi-network-troubleshooting-with-tcpdump-uw-and-pktcap-uw/
http://www.virten.net/2015/10/esxi-network-troubleshooting-with-tcpdump-uw-and-pktcap-uw/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7175789
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7175789

BIBLIOGRAPHY 206

[187] R. Stephens, Beginning software engineering. John Wiley
& Sons, 2015.

[188] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajara-
jan, “A Survey on Security Issues and Solutions at Different
Layers of Cloud Computing,” Journal of Supercomputing,
vol. 63, no. 2, pp. 561–592, 2013.

[189] T. Armerding, “The 18 biggest data breaches of the 21st
century,” 2018, [Online; accessed 20-Dec-2018]. [Online].
Available: https://www.csoonline.com/article/2130877/
the-biggest-data-breaches-of-the-21st-century.html

[190] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halder-
man, “Mining Your Ps and Qs: Detection of Widespread
Weak Keys in in Network Devices,” in Presented as part
of the 21st USENIX Security Symposium USENIX Security
12), 2012, pp. 205–220.

[191] R. von Mises, “On the Foundations of Probability and Statis-
tics,” Annals of Mathematical Statistics, vol. 12, pp. 50–60,
1940.

[192] S. A. Terwijn, “The Mathematical Foundations of Random-
ness,” in The Challenge of Chance. Springer International
Publishing, 2016, pp. 49–66.

[193] J. von Neumann, “Various techniques used in connection
with random digits,” in Monte Carlo Method, A. House-
holder, G. Forsythe, and H. Germond, Eds., 1951.

[194] M. S. Turan, “Recommendation for the entropy sources used
for random bit generation,” NIST, Tech. Rep., 2018.

[195] C. Cachin, “Entropy Measures and Unconditional Security
in Cryptography,” Ph.D. dissertation, ETH Zurich, 1997.

https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

BIBLIOGRAPHY 207

[196] C. E. Shannon, “A Mathematical Theory of Communica-
tion,” Bell system technical journal, vol. 27, no. 3, pp. 379–
423, 1948.

[197] J. L. Massey, “Guessing and entropy,” in Proceedings of
1994 IEEE International Symposium on Information The-
ory. IEEE, 1994, p. 204.

[198] D. Davis, “The Top 5 Enterprise Type 1 Hypervisors You
Must Know,” 2013, [Online; accessed 3-Sep-2018]. [Online].
Available: http://www.virtualizationsoftware.com/top-5-
enterprise-type-1-hypervisors/

[199] J. Horalek, O. Marik, S. Neradova, and S. Zitta, “Virtual-
ization tools analysis mapped into RING 0,” in Emerging
eLearning Technologies and Applications (ICETA), 2014
IEEE 12th International Conference on, vol. 2500. IEEE,
2014, pp. 151–156.

[200] B. Yenké, A. A. Abba Ari, C. Dibamou Mbeuyo, and D. A.
Voundi, “Virtual Machine Performance upon Intensive Com-
putations,” GSTF Journal on Computing, vol. 4, no. 3, pp.
98–107, 2015.

[201] S. Nanz and C. A. Furia, “A Comparative Study of Program-
ming Languages in Rosetta Code,” in Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Confer-
ence on, vol. 1. IEEE, 2015, pp. 778–788.

[202] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues,
Security Threats, and Solutions,” ACM Computing Surveys,
vol. 45, no. 2, pp. 1–39, 2013.

[203] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Dee-
gan, P. Loscocco, and A. Warfield, “Breaking Up is Hard to

http://www.virtualizationsoftware.com/top-5-enterprise-type-1-hypervisors/
http://www.virtualizationsoftware.com/top-5-enterprise-type-1-hypervisors/

BIBLIOGRAPHY 208

Do : Security and Functionality in a Commodity Hypervi-
sor,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 189–202.

[204] L. YamunaDevi, P. Aruna, D. Sudha Devi, and N. Priya,
“Security in Virtual Machine Live Migration for KVM,” in
Proceedings of 2011 International Conference on Process
Automation, Control and Computing, PACC 2011. IEEE,
2011, pp. 1–6.

[205] F. Grehl, “VMware ESXi 3.5 - 6.7 Hypervisor Size
Comparison,” 2018, [Online; accessed 10-Sep-2018]. [Online].
Available: https://www.virten.net/2018/04/vmware-esxi-
3-5-6-7-hypervisor-size-comparison/

[206] VMware, “vSphere ESXi Bare-Metal Hypervisor,” 2016,
[Online; accessed 10-Sep-2018]. [Online]. Available: http:
//www.vmware.com/products/esxi-and-esx.htmlhttps:
//www.vmware.com/products/esxi-and-esx/overview

[207] L. Poggemeyer, P. Short, N. Schonning, L. Iwer, and
S. Cooley, “Supported Windows guest operating systems for
Hyper-V on Windows Server,” 2017, [Online; accessed 10-
Sep-2018]. [Online]. Available: https://docs.microsoft.com/
en-us/windows-server/virtualization/hyper-v/supported-
windows-guest-operating-systems-for-hyper-v-on-windows

[208] S. Cooley, J. Terry, and H. Juarez, “Hyper-V Architecture,”
2018, [Online; accessed 11-Sep-2018].

[209] K. Davies, P. Short, L. Iwer, and L. Poggemeyer, “System
requirements for Hyper-V on Windows Server,” 2016,
[Online; accessed 10-Sep-2018]. [Online]. Available: https://
docs.microsoft.com/en-us/windows-server/virtualization/
hyper-v/system-requirements-for-hyper-v-on-windows

https://www.virten.net/2018/04/vmware-esxi-3-5-6-7-hypervisor-size-comparison/
https://www.virten.net/2018/04/vmware-esxi-3-5-6-7-hypervisor-size-comparison/
http://www.vmware.com/products/esxi-and-esx.html https://www.vmware.com/products/esxi-and-esx/overview
http://www.vmware.com/products/esxi-and-esx.html https://www.vmware.com/products/esxi-and-esx/overview
http://www.vmware.com/products/esxi-and-esx.html https://www.vmware.com/products/esxi-and-esx/overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/supported-windows-guest-operating-systems-for-hyper-v-on-windows
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/supported-windows-guest-operating-systems-for-hyper-v-on-windows
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/supported-windows-guest-operating-systems-for-hyper-v-on-windows
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/system-requirements-for-hyper-v-on-windows
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/system-requirements-for-hyper-v-on-windows
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/system-requirements-for-hyper-v-on-windows

BIBLIOGRAPHY 209

[210] W. Roersma, “Hyper-V 2012 and 2012 R2 live vir-
tual machine memory acquisition and analysis,” 2014,
[Online; accessed 10-Sep-2018]. [Online]. Available:
http://www.wyattroersma.com/?p=87

[211] "Xen Project", “Xen Project Software Overview”,” https:
//wiki.xenproject.org, 2018, [Online; accessed 27-Nov-2018].

[212] “KVM,” [Online; accessed 11-Sep-2018]. [Online]. Available:
http://www.linux-kvm.org/page/Main_Page

[213] “QEMU,” [Online; accessed 11-Sep-2018]. [Online]. Avail-
able: http://wiki.qemu.org/Main_Pagehttp://www.qemu-
project.org/

[214] VMware, “VMware API and SDK Documentation,”
2018, [Online; accessed 10-Sep-2018]. [Online]. Available:
https://www.vmware.com/support/pubs/sdk_pubs.html

[215] Kerkhoff Technologies, “NetFilterQueue,” https://pypi.org/
project/NetfilterQueue, 2017, [Online; accessed 29-Jan-
2019].

[216] P. Biondi", “Scapy”,” https://scapy.readthedocs.io/en/
latest/, 2017, [Online; accessed 29-Aug-2018].

[217] B. D. Payne, “pyvmi – A Python adapter for LibVMI,”
https://github.com/libvmi/libvmi-backup/tree/master/
tools/pyvmi, 2013, [Online; accessed 29-Jan-2019].

[218] F. Block and A. Dewald, “Linux memory forensics: Dissect-
ing the user space process heap,” in DFRWS 2017 USA Pro-
ceedings of the Seventeenth Annual DFRWS USA, vol. 22.
Elsevier, 2017, pp. S66–S75.

[219] A. Socała and M. Cohen, “Automatic profile generation for
live Linux Memory analysis,” Digital Investigation, vol. 16,
pp. S11–S24, 2016.

http://www.wyattroersma.com/?p=87
https://wiki.xenproject.org
https://wiki.xenproject.org
http://www.linux-kvm.org/page/Main_Page
http://wiki.qemu.org/Main_Page http://www.qemu-project.org/
http://wiki.qemu.org/Main_Page http://www.qemu-project.org/
https://www.vmware.com/support/pubs/sdk_pubs.html
https://pypi.org/project/NetfilterQueue
https://pypi.org/project/NetfilterQueue
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://github.com/libvmi/libvmi-backup/tree/master/tools/pyvmi
https://github.com/libvmi/libvmi-backup/tree/master/tools/pyvmi

BIBLIOGRAPHY 210

[220] M. Cohen, “Rekall Agent User Manual,” Rekall, Tech. Rep.,
2017.

[221] M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art
of Memory Forensics: Detecting Malware and Threats in
Windows, Linux, and Mac Memory. John Wiley & Sons,
2014.

[222] OpenSSL Software Foundation, “OpenSSL: Cryptography
and SSL/TLS toolkit,” https://www.openssl.com/, 2018,
[Online; accessed 29-Jan-2019].

[223] D. C. Litzenberger, “Python Cryptography Toolkit (py-
crypto),” 2013, [Online; accessed 12-Feb-2018]. [Online].
Available: https://pypi.python.org/pypi/pycrypto

[224] K. Reitz, “Cryptography,” 2016.

[225] H. Kario, “Chacha20poly1305”,” https://github.com/
ph4r05/py-chacha20poly1305, 2019, [Online; accessed
15-Jan-2019].

[226] S. Stolfo, S. M. Bellovin, and D. Evans, “Measuring Secu-
rity,” IEEE Security & Privacy, vol. 9, no. 3, pp. 60–65,
2011.

[227] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Du-
bin, A. Dvir, and O. Pele, “Analyzing HTTPS Encrypted
Traffic to Identify User Operating System, Browser and
Application,” in Consumer Communications & Networking
Conference (CCNC), 2017 14th IEEE Annual. IEEE, 2017,
pp. 1–6.

[228] ComputerProfile, “VMware by far the largest
in the server virtualisation market,” 2017,

https://www.openssl.com/
https://pypi.python.org/pypi/pycrypto
https://github.com/ph4r05/py-chacha20poly1305
https://github.com/ph4r05/py-chacha20poly1305

BIBLIOGRAPHY 211

[Online; accessed 10-Jan-2019]. [Online]. Avail-
able: https://www.computerprofile.com/analytics-papers/
vmware-far-largest-server-virtualisation-market/

[229] D. J. Barrett, R. E. Silverman, and R. Silverman, SSH, the
Secure Shell: the definitive guide. O’Reilly Media, 2009.

[230] B. Hay and K. Nance, “Circumventing Cryptography in Vir-
tualized Environments,” in Malicious and Unwanted Soft-
ware (MALWARE), 2012 7th International Conference on.
IEEE, 2012, pp. 32–38.

[231] T. Ylonen and C. Lonvick, “RFC 4251 - The secure shell
(SSH) protocol architecture,” Internet Engineering Task
Force, 2005.

[232] ——, “RFC 4253 - The secure shell (SSH) transport layer
protocol,” Internet Engineering Task Force, 2005.

[233] ——, “RFC 4252 - The secure shell (SSH) authentication
protocol,” Internet Engineering Task Force, 2005.

[234] ——, “RFC 4254 - The secure shell (SSH) connection pro-
tocol,” Internet Engineering Task Force, 2005.

[235] S. Tatham, “PuTTY,” https://
www.chiark.greenend.org.uk/~sgtatham/putty/latest.html,
2018, [Online; accessed 29-Jan-2019].

[236] J. Galbraith and O. Saarenmaa, “SSH file transfer protocol,”
Internet Engineering Task Force, 2006.

[237] "SSH Communications", “SSH Client for Windows - Com-
parison”,” https://www.ssh.com/ssh/client, 2018, [Online;
accessed 29-Jan-2018].

[238] D. Roethlisberger, “"SSLsplit",” https://www.roe.ch/
SSLsplit, 2018, [Online; accessed 29-Jan-2019].

https://www.computerprofile.com/analytics-papers/vmware-far-largest-server-virtualisation-market/
https://www.computerprofile.com/analytics-papers/vmware-far-largest-server-virtualisation-market/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
 https://www.ssh.com/ssh/client
https://www.roe.ch/SSLsplit
https://www.roe.ch/SSLsplit

BIBLIOGRAPHY 212

[239] E. Rescorla, “RFC 8446 - The Transport Layer Security
(TLS) Protocol Version 1.3,” Internet Engineering Task
Force, 2018.

[240] T. Dierks and E. Rescorla, “RFC 5246 - The Transport Layer
Security (TLS) Protocol Version 1.2,” Internet Engineering
Task Force, 2008.

[241] K. McCarthy, “World celebrates, cyber-snoops cry as TLS
1.3 internet crypto approved,” 2018, [Online; accessed 5-Sep-
2018]. [Online]. Available: https://www.theregister.co.uk/
2018/03/23/tls_1_3_approved_ietf/

[242] N. Sullivan, “Why TLS 1.3 isn’t in browsers yet,” 2017,
[Online; accessed 4-Dec-2018]. [Online]. Available: https:
//blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/

[243] J. Salowey, A. Choudhury, and D. McGrew, “RFC 5288 -
AES Galois Counter Mode (GCM) Cipher Suites for TLS,”
Internet Engineering Task Force, 2008.

[244] D. McGrew, “RFC 5116 - An Interface and Algorithms
for Authenticated Encryption,” Internet Engineering Task
Force, 2008.

[245] I. Ristić, Bulletproof SSL and TLS: Understanding and De-
ploying SSL/TLS and PKI to Secure Servers and Web Ap-
plications, 1st ed. Feisty Duck, 2014.

[246] K. Moore and C. Newman, “RFC 8314 - Cleartext Consid-
ered Obsolete: Use of Transport Layer Security (TLS) for
Email Submission and Access,” 2018.

[247] P. Ford-Hutchinson, “RFC 4217 - Securing FTP with TLS,”
2005.

https://www.theregister.co.uk/2018/03/23/tls_1_3_approved_ietf/
https://www.theregister.co.uk/2018/03/23/tls_1_3_approved_ietf/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/

BIBLIOGRAPHY 213

[248] SSL Pulse, “SSL Pulse,” 2019, [Online; accessed 18-Mar-
2019]. [Online]. Available: https://www.ssllabs.com/ssl-
pulse/

[249] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “RFC 2616 - Hypertext Trans-
fer Protocol–HTTP/1.1,” Internet Engineering Task Force,
1999.

[250] Caswell, M, “OpenSSL 1.1.1 Is Released,” https://
www.openssl.org/blog/blog/2018/09/11/release111/, 2017,
[Online; accessed 29-Jan-2019].

[251] wolfSSL, “wolfSSL,” https://www.wolfssl.com/, 2018, [On-
line; accessed 29-Jan-2019].

[252] LibreSSL, “LibreSSL,” https://www.libressl.org/, 2018,
[Online; accessed 29-Jan-2019].

[253] GnuTLS, “The GnuTLS Transport Layer Security Library,”
https://www.gnutls.org/, 2018, [Online; accessed 29-Jan-
2019].

[254] Mozilla, “Network Security Services,” https://
developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS,
2018, [Online; accessed 29-Jan-2019].

[255] K.-K. R. Choo and P. Grabosky, “Cyber crime,” Oxford
Handbook of Organized Crime, 2013.

[256] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and
E. Kirda, “Cutting the Gordian Knot: A Look Under the
Hood of Ransomware Attacks,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2015, pp. 3–24.

https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://www.openssl.org/blog/blog/2018/09/11/release111/
https://www.openssl.org/blog/blog/2018/09/11/release111/
https://www.wolfssl.com/
https://www.libressl.org/
https://www.gnutls.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

BIBLIOGRAPHY 214

[257] A. S. Shekhawat, F. Di Troia, and M. Stamp, “Feature Anal-
ysis of Encrypted Malicious Traffic,” Expert Systems with
Applications, 2019.

[258] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Bot-
net Command and Control Channels in Network Traffic,”
in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), 2008.

[259] X. Ma, X. Guan, J. Tao, Q. Zheng, Y. Guo, L. Liu, and
S. Zhao, “A Novel IRC Botnet Detection Method Based on
Packet Size Sequence,” in 2010 IEEE International Confer-
ence on Communications. IEEE, 2010, pp. 1–5.

[260] B. Lin, Q. Hao, L. Xiao, L. Ruan, Z. Zhang, and X. Cheng,
“Botnet Emulation: Challenges and Techniques,” in Emerg-
ing Technologies for Information Systems, Computing, and
Management. Springer,New York,NY, 2013, vol. 236 of
Lecture Notes in Electrical Engineering, pp. 897–908.

[261] C. P. Lee, “Framework for botnet emulation and analysis,”
Ph.D. dissertation, Georgia Institute of Technology, 2009.

[262] E. Thioux, M. Amin, and O. A. Ismael, “System and method
for analysis of a memory dump associated with a potentially
malicious content suspect,” Feb. 5 2019, US Patent App.
10/198,574.

[263] “SSL Blacklist,” 2018, [Online; accessed 10-May-2018].
[Online]. Available: https://sslbl.abuse.ch

[264] “VirusShare,” [Online; accessed 18-May-2018]. [Online].
Available: https://virusshare.com/

[265] Trend Micro, “Trend Micro,” https://www.trendmicro.com/
vinfo/us/security/news/cybercrime-and-digital-threats/

https://sslbl.abuse.ch
https://virusshare.com/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/online-banking-trojan-brief-history-of-notable-online-banking-trojans
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/online-banking-trojan-brief-history-of-notable-online-banking-trojans

BIBLIOGRAPHY 215

online-banking-trojan-brief-history-of-notable-online-
banking-trojans, 2015, [Online; accessed 20-Mar-2019].

[266] R. PP, “Zeus/Zbot Trojan Attacks Credit Cards of
Banks,” 2016, [Online; accessed 13-Feb-2019]. [On-
line]. Available: https://techpp.com/2010/07/15/zeuszbot-
trojan-attacks-credit-cards-of-banks/

[267] “Trojan.Zbot,” 2016, [Online; accessed 5-Jul-2018].
[Online]. Available: https://www.symantec.com/security-
center/writeup/2010-011016-3514-99

[268] Panda, “Zeus is Still the Base of Many Current
Trojans,” 2017, [Online; accessed 10-Feb-2019]. [Online].
Available: https://www.pandasecurity.com/mediacenter/
panda-security/zeus-trojan/

[269] D. Jackson, “Gozi Trojan,” 2007, [Online; accessed 10-Feb-
2019]. [Online]. Available: https://www.secureworks.com/
research/gozi

[270] M. Alvarez, T. Agayev, and T. Darsan, “Q1
2018 Results: Gozi (Ursnif) Takes Larger
Piece of the Pie and Distributes IcedID,” 2018,
[Online; accessed 10-Feb-2019]. [Online]. Avail-
able: https://securityintelligence.com/q1-2018-results-gozi-
ursnif-takes-larger-piece-of-the-pie-and-distributes-icedid/

[271] E. Brumaghin, H. Unterbrink, and A. Weller, “Gozi ISFB
Remains Active in 2018, Leverages "Dark Cloud" Botnet
For Distribution,” 2018, [Online; accessed 10-Feb-2019].
[Online]. Available: https://blogs.cisco.com/security/talos/
gozi-isfb-remains-active-in-2018

[272] M. Garnaeva, F. Sinitsyn, Y. Namestnikov, D. Makrushin,
and A. Liskin, “Kaspersky Security Bulletin:

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/online-banking-trojan-brief-history-of-notable-online-banking-trojans
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/online-banking-trojan-brief-history-of-notable-online-banking-trojans
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/online-banking-trojan-brief-history-of-notable-online-banking-trojans
https://techpp.com/2010/07/15/zeuszbot-trojan-attacks-credit-cards-of-banks/
https://techpp.com/2010/07/15/zeuszbot-trojan-attacks-credit-cards-of-banks/
https://www.symantec.com/security-center/writeup/2010-011016-3514-99
https://www.symantec.com/security-center/writeup/2010-011016-3514-99
https://www.pandasecurity.com/mediacenter/panda-security/zeus-trojan/
https://www.pandasecurity.com/mediacenter/panda-security/zeus-trojan/
https://www.secureworks.com/research/gozi
https://www.secureworks.com/research/gozi
https://securityintelligence.com/q1-2018-results-gozi-ursnif-takes-larger-piece-of-the-pie-and-distributes-icedid/
https://securityintelligence.com/q1-2018-results-gozi-ursnif-takes-larger-piece-of-the-pie-and-distributes-icedid/
https://blogs.cisco.com/security/talos/gozi-isfb-remains-active-in-2018
https://blogs.cisco.com/security/talos/gozi-isfb-remains-active-in-2018

BIBLIOGRAPHY 216

Overall Statistics for 2016,” p. 31, 2016, [On-
line; accessed 10-Feb-2019]. [Online]. Available:
https://kasperskycontenthub.com/securelist/files/2016/12/
Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf

[273] A. Mohanta, A. Saldanha, and P. Kimayong, “The
Gozi Sleeper Cell,” 2018, [Online; accessed 10-Feb-2019].
[Online]. Available: https://forums.juniper.net/t5/Threat-
Research/The-Gozi-Sleeper-Cell/ba-p/329691

[274] C. Weller, “CyberSecurity in 120 Secs_ The Comeback
of Gozi Malware,” 2016, [Online; accessed 6-Feb-2019].
[Online]. Available: https://blog.ensilo.com/cyber-security-
in-120-secs-the-comeback-of-gozi-malware

[275] M.-E. M. Léveillé, “TorrentLocker,” ESET, Tech. Rep.,
2014. [Online]. Available: http://www.welivesecurity.com/
wp-content/uploads/2014/12/torrent_locker.pdf

[276] M.-E. M.Léveillé, “TorrentLocker: Crypto-
ransomware still active, using same tactics,”
2016, [Online; accessed 8-Feb-2019]. [Online].
Available: https://www.welivesecurity.com/2016/09/01/
torrentlocker-crypto-ransomware-still-active-using-tactics/

[277] J. M. Kambic, “Extracting cng tls/ssl artifacts from lsass
memory,” Ph.D. dissertation, Purdue University, 2016.

[278] B. Herzog and Y. Balmas, “Great crypto failures,” Virus
Bulletin 2016, 2016.

[279] Y. Nir, “ChaCha20, Poly1305, and Their Use in the Internet
Key Exchange Protocol (IKE) and IPsec,” Internet Engi-
neering Task Force, 2015.

[280] B. Jungk and S. Bhasin, “Don’t fall into a trap: Physical
side-channel analysis of ChaCha20-Poly1305,” in 2017 De-

https://kasperskycontenthub.com/securelist/files/2016/12/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://kasperskycontenthub.com/securelist/files/2016/12/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://forums.juniper.net/t5/Threat-Research/The-Gozi-Sleeper-Cell/ba-p/329691
https://forums.juniper.net/t5/Threat-Research/The-Gozi-Sleeper-Cell/ba-p/329691
https://blog.ensilo.com/cyber-security-in-120-secs-the-comeback-of-gozi-malware
https://blog.ensilo.com/cyber-security-in-120-secs-the-comeback-of-gozi-malware
http://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf
http://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf
https://www.welivesecurity.com/2016/09/01/torrentlocker-crypto-ransomware-still-active-using-tactics/
https://www.welivesecurity.com/2016/09/01/torrentlocker-crypto-ransomware-still-active-using-tactics/

BIBLIOGRAPHY 217

sign, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 1110–1115.

[281] M. Robshaw and O. Billet, “New Stream Cipher Designs,”
in New Stream Cipher Designs, vol. 4986 of Lecture Notes
in Computer Science. Springer, 2008.

[282] D. Klinec, “Chacha20poly1305,” https://github.com/
ph4r05/py-chacha20poly1305, 2018, [Online; accessed
29-Jan-2019].

[283] D. McGrew and D. Bailey, “RFC 6655 - AES-CCM Cipher
Suites for Transport Layer Security (TLS),” Internet Engi-
neering Task Force, 2012.

[284] A. Case and G. G. Richard III, “Memory forensics: The path
forward,” Digital Investigation, vol. 20, pp. 23–33, 2017.

[285] S. J. Yang, J. H. Choi, K. B. Kim, R. Bhatia, B. Saltafor-
maggio, and D. Xu, “Live acquisition of main memory data
from Android smartphones and smartwatches,” Digital In-
vestigation, vol. 23, pp. 50–62, 2017.

[286] B. P. Kondapally, “What is IoT Forensics and
How is it Different from Digital Forensics?” https:
//securitycommunity.tcs.com/infosecsoapbox/articles/
2018/02/27/what-iot-forensics-and-how-it-different-digital-
forensic, 2018, [Online; accessed 29-Jan-2019].

[287] S. Alabdulsalam, K. Schaefer, T. Kechadi, and N.-A. Le-
Khac, “Internet of Things Forensics–Challenges and a Case
Study,” arXiv preprint arXiv:1801.10391, 2018.

https://github.com/ph4r05/py-chacha20poly1305
https://github.com/ph4r05/py-chacha20poly1305
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic

Appendix A

Package Dependencies

Application Dependency
LibVMI libxc-dev

bison
flex
libtool
libxen-dev
automake
check
make
fuse
libfuse-dev
glib2.0

PyVMI LibVMI
Volatility python-crypto

python-pip
distorm3
python-openpyxl
python-dev

218

Appendix B

Hypervisor Research Review

Authors System Name Hypervisor
Garfinkel & Rosenblum Livewire VMware Workstation
Kourai & Chiba HyperSpector Custom
Joshi, King, Dunlap, & Chen IntroVirt User-Mode Linux
Jiang, Wang, & Xu VMwatcher VMware, QEMU,

Xen, and UML
Yin, Song, Egele, Kruegel, & Kirda Panorama QEMU
Bryan D. Payne, Carbone, Sharif, & Lee Lares Xen
Hay & Nance VIX Xen
Lanzi, Sharif, & Lee K-Tracer QEMU
Dolan-Gavitt, Leek, Zhivich, Giffin, & Lee Virtuoso QEMU
Benninger, Neville, Yazir, Matthews, & Coady Maitland Xen
Harrison, Cook, McGraw, & Hamilton - Xen
Fu, Rd, & Lin EXTERIOR QEMU
Chung, Khatkar, Xing, Lee, & Huang NICE Xen
Lengyel et al DRAKVUF Xen
Hizver & Chiueh RTKDSM Xen
Fattori et al AccessMiner Custom
Saxon, Bordbar, & Harrison - VMWare Fusion
Shi, Yang, Li, & Wang SPEMS Xen
Taubmann et al TLSkex Xen
Zhan, Ye, Fang, Du, & Su CFWatcher Xen
Tien, Liao, Chang, & Kuo - Xen
Upadhyay, Gohel, Pons, & Lagos - Xen
Zhan, Li, Ye, Zhang, Fang, & Du - Xen

219

Appendix C

NetScantbl Plugin Output

Figure C-1: Netscantbl Output

220

Appendix D

Malware Client Downloads

221

APPENDIX D. MALWARE CLIENT DOWNLOADS 222

Class MD5 Status/Issue
Bergat 5bfd12024dd4ef335d07306956a54026 HTTP GET fails
Bergat 8b39c7da3d444c0b5fdf25b136a6f65b No Session
Cryptowall a3c3a4acca0c8e88c23b1166c7438c92 HTTP POST Fails
Deshacop 4a6077a694df24b38adb816edcb0902e Uses UDP
Deshacop b097ed36451d0055dc06026050fdd8df Uses UDP
DomaIQ eebc815e0296787aca9052957259dfdf HTTP
Dridex 62e4f7cfa529ef63439e88ff176cc6c No Session
Dridex 9d75ff0e9447ceb89c90cca24a1dbec1 No Session
Fareit 1084b25aa5a709618146281cadfe2a41 HTTP GET fails
Fareit 1f45f04394e371b885ea16de6ba37097 HTTP GET fails
Fareit 311176f0e2708d3a388e7690263290d7 HTTP GET fails
Gozi aeb5bb78ab442bc94bb94d968754e523 Succeeded
Kazy 3f7a23acf65eb86ecc8e7492f70f6fdf Did not start
Locky 326fb6a1e746a4a299a03aa743ece109 No Session
Locky a61252e123e7fe72c5c8e7b560c89ede No Session
Locky d5412f708941c3950f9d3efa49cb0a34 No Session
Papras 1a210fd7bf7d465abe6fdb737262ce9a HTTP GET fails
Razy 0a6395e345fdf92a9b6f91fe775f28ef No Session
Sality 831a49ac7903be74524c632ada3f5cf5 No Session
Symmi 12a179ecf60c35ba474b8690fa9815be No Session
Teslacrypt 477957a9d5444dd4afa4fc01f3d8f510 No Session
Teslacrypt 90eb6fa9a801f5c125fd6816c5e4250e No Session
Trickbot 3d3e08ad3a8f3b35b9a10aa6c57b290f HTTP IP Request Fails
Upatre 0ba538e0ff0723f227b48611205d0e53 HTTP POST Fails
Vawtrak 7278ca09c39a2647b428b931cb9a0b23 HTTP fails
Virtob 070175ac1fa63c820f102cac820c1ca0 No Session
WannaCryptor 0291b0e8d72e728c5b7e5559b7493c25 No Session
WannaCryptor 3a1b0f7ee8a921a0aa24f19bab452fb9 No Session
WannaCryptor 7a3ddd634eea691850376105fb629318 No Session
WannaCryptor b581da8662097751690bb23658487c5c No TLS
Yakes 677836d62acfe363b6158227e5aeacb9 No TLS
Yakes c872b5fce8e65a701a1c5a19e3f387f5 Starts but no TLS
Zbot 2ed76f29535d897dec01e2b4fede5271 Did not start
Zbot b9e6c891dd76335b3f41f844442911e3 Did not start
Zbot eeef1e062c8011cabb23b3c833ff766a Succeeded
Zbot 389d73e184abc45e353e14ffd59b233f Did not start

Glossary

AES

Advanced Encryption Standard, a symmetric block algorithm
formerly called Rijndael, used in secure communications pro-
tocols.

AES-CBC

AES mode where the IV is typically the ciphertext of the
previous block.

AES-GCM

AES mode where Galois field authentication follows AES-
CTR for confidentiality and integrity.

bespoke

software that is specifically coded for the MemDecrypt frame-
work.

ChaCha20

symmetric stream algorithm used in secure communications
protocols.

ciphertext

obfuscated data that results from application of an encryp-
tion algorithm to plaintext.

223

Glossary 224

DES

Digital Encryption Standard, a symmetric block algorithm
used before AES.

entropy

the difficulty of predicting an observation. Shannon entropy
is the average number of bits that describe a string.

heap

memory that is dynamically allocated at run-time for process
data.

hook

technique used to modify behaviour of an operating system
or application by intercepting function calls.

HTTP

HyperText Transfer Protocol, protocol used for World Wide
Web client server communications.

hypervisor

software that creates and runs virtual machines enabling ac-
cess to the underlying physical hardware.

initialisation vector

string used in symmetric block encryption to ensure that dif-
ferent ciphertext is produced for different instances of the
same plaintext with an encryption key.

IoT

Internet of Things, embedding of Internet connectivity into
physical devices.

Glossary 225

IV

acronym for Initialisation Vector.

kernel

software associated with the operating system providing hard-
ware access and other privileged functions.

nonce

similar to Initialisation Vector but commonly used in stream
algorithms to generate key streams.

PCI

Peripheral Component Interconnect, mechanism for adding
hardware device to computer.

plaintext

information that is intelligible in some sense on which an
encryption algorithm operates to generate obfuscated data.

process

instance of a program executing in memory operating in user
and kernel modes.

process hollowing

malware technique to evade detection where a legitimate pro-
cess is created in a suspended state and legitimate code re-
placed with malicious code.

RSA

Rivest–Shamir–Adleman, an asymmetric public-key algorithm
used in secure data exchange.

Glossary 226

SHA

family of hash algorithms used for authentication.

SSH

Secure Shell Protocol, commonly used for server remote man-
agement.

TLS

Transport Layer Security Protocol, commonly used for Inter-
net client server confidentiality and integrity.

VAD

Virtual Address Descriptor, data structures used in Windows
memory management to track process virtual addresses.

virtual machine

emulation of a computer system that runs an operating sys-
tem and applications.

VMI

Virtual Machine Introspection, monitoring virtual machines
from the outside.

VPN

Virtual Private Network protocols to provide a tunnel be-
tween a client and server.

WEP

Wired Equivalent Privacy, a superseded Wireless Protocol.

XOR

bitwise operation where the output bit is 1 if and only if one
input bit is 1.

	ABSTRACT
	Introduction
	Context
	Significance
	Approach
	Research Questions
	Ethics
	Contributions
	Aims and Objectives
	Organisation of Thesis
	Publications

	Background and Theory
	Introduction
	Cryptography in Digital Networks
	Symmetric Block Algorithms
	Modes of Operation
	Algorithms
	Advanced Encryption Standard

	Symmetric Stream Algorithms
	Algorithms
	ChaCha20

	Conclusions

	Literature Review
	Introduction
	Implementation Attacks
	Memory
	Virtualised Environments

	Virtual Machine Monitoring
	Virtual Machine Introspection
	Disk Introspection
	Memory Introspection
	Network Introspection
	Monitor Frequency

	Conclusions

	MemDecrypt: A Framework for Decrypting Secure Communications
	Introduction
	Requirements Definition and Terms
	Design
	Description
	Data Collection Component
	Memory Analysis Component
	Decrypt Analysis

	Construction
	Hypervisors
	Data Collection
	Memory Analysis
	Decrypt Analysis

	Evaluation
	Test Criteria
	Test Approach
	Test Environment

	Extensibility
	Conclusions

	Determining Insider Attack Data Exfiltration
	Introduction
	SSH Protocol
	Set-up Phase
	Authentication Phase
	Connection Phase
	Secure File Transfer

	SSH Extension Design
	Data Collection
	Memory Analysis
	Decrypt Analysis

	SSH Extension Implementation
	Data Collection
	Memory Analysis
	Decrypt Analysis

	Evaluation
	Experimental Set-up
	Experimental Results
	Analysis

	Conclusions

	Decrypting Web Traffic
	Introduction
	Background
	Protocol Versions
	Handshake, Change Cipher Specification, Application Data
	Record Protocol

	TLS Extension Design
	Data Collection
	Memory Analysis
	Decrypt Analysis

	TLS Extension Implementation
	Data Collection
	Memory Analysis
	Decrypt Analysis

	Evaluation
	Experimental Set-up
	Experimental Results

	Conclusions

	Discovering Malware Activity Without Prior Knowledge
	Introduction
	Sourcing Malware Samples
	OpenSSL Extension Evaluation
	Windows Library Extension Design
	Windows Library Extension Evaluation
	Conclusions

	Deriving ChaCha20 Key Streams From Targeted Memory Analysis
	Introduction
	Background
	ChaCh20 Description
	ChaCha20 Implementations

	ChaCha20 Extension Design
	ChaCha20 Extension Implementation
	Evaluation
	Experimental Set-up
	Experimental Results

	Conclusions

	Conclusions and Future Work
	Key Conclusions
	Achievement of Aim and Objectives
	Key Contributions
	Future Work
	Investigative Gaps
	Potential Research Areas

	Package Dependencies
	Hypervisor Research Review
	NetScantbl Plugin Output
	Malware Client Downloads

