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Abstract

Digital forensics practitioners can be tasked with analysing digital data, in all its forms,
for legal proceedings. In law enforcement, this largely involves searching for contraband
media, such as illegal images and videos, on a wide array of electronic devices. Unfor-
tunately, law enforcement agencies are often under-resourced and under-staffed, while
the volume of digital evidence, and number of investigations, continues to rise each year,
contributing to large investigative backlogs.

A primary bottleneck in forensic processing can be the speed at which data is acquired
from a disk or network, which can be mitigated with data reduction techniques. The data
reduction approach in this thesis uses reduced representations for individual images which
can be used in lieu of cryptographic hashes for the automatic detection of illegal media.
These approaches can facilitate reduced forensic processing times, faster investigation
turnaround, and a reduction in the investigative backlog.

Reduced file representations are achieved in two ways. The first approach is to generate
signatures from partial files, where highly discriminative features are analysed, while
reading as little of the file as possible. Such signatures can be generated using either header
features of a particular file format, or by reading logical data blocks. This works best when
reading from the end of the file. These sub-file signatures are particularly effective on
solid state drives and networked drives, reducing processing times by up to 70× compared
to full file cryptographic hashing. Overall the thesis shows that these signatures are highly
discriminative, or unique, at the million image scale, and are thus suitable for the forensic
context. This approach is effectively a starting point for developing forensics techniques
which leverage the performance characteristics of non-mechanical media, allowing for
evidence on flash based devices to be processed more efficiently.

The second approach makes use of thumbnails, particularly those stored in the Win-
dows thumbnail cache database. A method was developed which allows for image
previews for an entire computer to be parsed in less than 20 seconds using cryptographic
hashes, effecting rapid triage. The use of perceptual hashing allows for variations between
operating systems to be accounted for, while also allowing for small image modifications
to be captured in an analysis. This approach is not computationally expensive but has the
potential to flag illegal media in seconds, rather than an hour in traditional triage, making
a good starting point for investigations of illegal media.
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Chapter 1

Introduction

The modern world is abundantly interconnected, with approximately half the population
of the planet making use of the Internet [5]. Technological advancements have placed
high resolution cameras and Internet connected mobile devices in the hands of billions
of people, which, together with the rise of social media, has positioned many consumers
as data producers, as well as data consumers. Indeed, 90% of all data in existence was
created in the last two years, at approximately 2.5 exabytes per day [6]. By 2020, it is
expected that on average 1.7MB of data will be produced every second for every person
on earth.

In a digital world, some data inevitably becomes associated with criminal activity,
either due to criminals directly exploiting new technologies, or as background evidence in
a non-computerised crime. Digital evidence requires expert analysis in order to interpret
it and avoid manipulation or unintentional destruction of evidential artefacts. For this
reason the field of digital forensics exists, with both private and public sector institutions
employing such trained individuals. However, the explosive growth in the quantity of
data generated and stored by the average person, together with an increasing number of
investigations involving digital evidence, has placed digital investigators at a disadvantage.
As a result, the ‘Golden Age’ of digital forensics has ended [7], as existing tools, software,
and processes have failed to adapt at an appropriate rate. This has left the forensics
community in a difficult position, necessitating an ongoing search for solutions [7].

1.1 Motivation

Forensics approaches which were designed for hard disks with capacities on the order
of several gigabytes have not transitioned well to terabyte scale devices, nor to the
increasingly heterogeneous digital environment. The so called volume problem in digital
forensics has been an issue for some time [8], stemming originally from dramatic increases
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Fig. 1.1 The relative increases in disk capacity versus disk read speeds between 1991 and
2008. Sourced from http://wiki.r1soft.com/pages/viewpage.action?pageId=3016608

in hard disk capacities in the late ’90s, where disk density doubled each year, gradually
slowing to 20–30% per annum increases in the modern day [9]. The volume problem is
compounded by the failure of disk read speeds to keep pace with the increases in capacity,
depicted in Figure 1.1. As the gap between read performance and capacity has increased,
the time taken to read all data on a disk has also increased. To illustrate, a typical hard
disk in 1991 could read its entire contents in a few minutes1 [10], increasing to an hour in
20032 [11], while a modern 3TB hard drive takes approximately 8 hours3 [12]. In practice,
these maximal read speeds are not sustained when producing forensic copies of a device,
which can take over 11 hours for a 3TB drive [11], prior to any actual analysis being started.
While the acquisition time may be substantially lower on Solid State Drives (SSDs), it
is still relatively expensive. Similar acquisition bottlenecks are also found in networked
environments. Network bottlenecks will likely play an increasingly large role in many
digital investigations, as more criminal activity transitions to cloud environments [13].
Such Input/Output (I/O) and bandwidth constraints mean that in many scenarios accessing
data is more expensive than processing it, such that systems must be engineered with this
I/O bottleneck in mind.

Forensic investigators are being inundated with data, not only from the impact of larger
storage capacities, but also due to the increases in the number of cases, and in the number
of devices per case [14, 15]. Unfortunately, many law enforcement departments are short
on resources and are unable to keep up with demand [16], resulting in public sector
forensics backlogs of up to 18 months in the UK (2015) [17], and four years in Ireland

1Maxtor 7040a, benchmarked at 600kB/s, takes 66.66 seconds for the 40MB version and 3.33 minutes
for the 140MB version.

2200GB at 58MB/s, drive model absent in cited work [11].
37.9 hours, 116MB/s read speed, benchmarked from a 3TB WD RED (2012).

http://wiki.r1soft.com/pages/viewpage.action?pageId=3016608
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(2016) [18]. This large lag time before digital evidence is examined creates a number of
problems. When the subject is guilty, police interviewers are placed at a disadvantage as
they lack information, while the same information may be used to prevent ongoing crimes
or locate existing victims [19]. This delay also makes it difficult to seek access to the logs
of Internet services, which are typically only retained by service providers for several
months, resulting in lost evidence. When the subject is innocent, there is a tangible loss
of equipment and access to personal data during the investigation, while social pressures
can destroy lives, occasionally resulting in suicide [20]. Additionally, defence lawyers
may not have timely access to forensics reports which are required to mount a sound legal
defence [19], unfairly prejudicing the innocent.

To begin to address the backlog problem in digital forensics, new approaches are
required. Such approaches must be substantially faster while maintaining accuracy and
should allow for investigations to be closed far more rapidly, both to account for future
increases in data, but also to begin to chip away at the years of backlogs. The efficacy and
applicability of digital forensic investigations will be shaped by the effectiveness of the
data triage and data reduction tools which are being built today.

1.2 Thesis statement

This thesis states that reduced representations of files may be used to mitigate the I/O and
bandwidth bottlenecks present in current digital investigations, leading to faster forensic
processing. Stand-in file representations, such as partial files or thumbnails, may be used
to reduce the volume of data to read from storage media, while still maintaining forensic
integrity and accuracy. Ultimately, with the current state of the digital forensics landscape,
some trade-offs may have to be made between speed and completeness if any headway is
to be made in tackling the volume problem.

This work focuses on a subset of forensics processing relating to the identification of
known contraband files, which may relate to cases involving child abuse. As the detection
of this material is prominent in the majority of public sector investigations, decreasing
the time taken to carry out this type of task will ideally improve case turnaround time and
begin to address backlogs.

1.3 Contributions and Origins of the Material

This thesis has three primary contributions:

1. The development of file type specific, partial file, signature generation techniques.
These approaches exploit properties of a given file type to produce discriminative
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signatures which can be used to rapidly detect contraband on a device. Such
signatures typically require reading 1–3%4 of a relatively small file, resulting in
substantial data reduction. Benchmarks show this approach to be particularly good
on solid state media, while also achieving substantial performance gains on hard
drives with images of reasonable size. Proofs of concept were developed for the
PNG and JPEG formats, which have been published in the ADFSL conference [1]
and journal [2], respectively.

2. A generic approach to sub-file signature generation which does not rely on file
type specific features. This approach makes use of small block data hashes from
various parts of the file, requiring as little as 4KiB of data per image to produce
unique signatures at the million image scale. The amount of data to read per file
is fixed, with an associated fixed length acquisition time, regardless of actual file
size. This approach has similar performance characteristics to the file type specific
approach, above, reducing processing times significantly. This contribution was
published as two separate papers at the IEEE Cyber Security conference: the first
paper deals with local disk benchmarks [3], while the second performs benchmarks
on networked storage devices [4].

3. A very fast thumbnail based triage technique for Windows, which has the potential
to assess a drive of any size in a matter of seconds. This approach is also poten-
tially extensible to other operating systems and may be used prior to processing
the remainder of the disk with the sub-file approaches identified above. Thumbnail
analysis was also conducted for cloud based services, with the reduced data re-
quirements facilitating faster contraband detection on cloud storage. The Windows
based triage approach has been submitted for publication in the Journal of Digital
Forensics, Security and Law.

The initial inspiration for this thesis, particularly the material in Contribution 1, came from
the work of Edmundson and Schaefer [21–24] in the field of compressed domain Content
Based Image Retrieval (CBIR), in which it was determined that JPEG compression tables
can be used to communicate information about the content of an image. The authors use
JPEG encoding tables to act as a proxy for the full image when conducting a Reverse
Image Search, finding it to be incredibly fast and surprisingly effective. Elements of
header based forensics [25–27], where metadata is used to verify the source of an image,
were also incorporated to fuse knowledge from the two distinct disciplines. The work for
Contribution 1 extends these ideas by using such metadata structures to identify a particular

4This percentage can occasionally be significantly inflated by large quantities of metadata, such as Adobe
Photoshop XMP and embedded thumbnails.
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image, rather than perform similarity searches or identify source cameras/software. The
technique is also extended to the PNG format to explore how it generalises to other file
formats. In order to make the approach agnostic to file types, an alternative method was
explored which focused on cryptographic hashing strategies for logical file subsets. This
effectively extended the work on sub-file hashing in forensics [28, 29] which previously
focused only on breaking files into blocks at physical disk sector boundaries. The latter
parts of the thesis for Contribution 3 draw more generally on the idea of using data
reduction methods in forensics [30], while making reference to the existing work in
thumbnail forensics [31, 32]. The main expansion for this contribution was to explore
the possibility of using a single hash database which can be used to detect contraband in
centralised thumbnail caches across a variety of operating system releases/versions, which
is difficult due to the lack of standardised thumbnailing approaches. The use of Perceptual
Hashing was explored for use in this context, a set of techniques which have not seen a
great deal of application thus far in digital forensics.

By synthesising knowledge and approaches from a variety of research areas, the
work in this thesis demonstrates that reduced file representations are an effective tool
for mitigating I/O bottlenecks in forensics. Substantial speed improvements in detecting
contraband will allow both forensic triage and deep analyses to be executed more swiftly,
allowing the forensic practitioner to spend more time answering investigative hypotheses
than was previously possible in the time-constrained world of public sector forensics.
Additionally, in showing that such reduced representations are robust enough for the
forensic use case, this thesis hopes to stimulate the development of new approaches to
forensics which deterministically leverage partial-files for contraband detection. The time
saved by such techniques will ideally reverse the trend of law enforcement backlogs and
allow the criminal justice system to function as it was intended.

It should be noted that physical read speed limitations are not the only bottleneck
in current digital forensics processes. Other aspects of an investigation, such as device
seizure, device/case prioritisation and device/case level analyses all contribute to the
overall turnaround time of an investigation. In complicated cases the analysis phase of the
investigation can take up to 2 months [16]. The approach in this work does not necessarily
reduce the time taken to perform extensive device analyses, however by focusing on fast
processing in the context of triage, it may be possible to seize fewer devices, or better
prioritise evidence items, which will have an effect on the time taken to conduct the entire
investigation. In cases where there are few devices and complex forensic analysis is
involved, perhaps in the case of a sophisticated user deploying anti-forensics, speeding up
the raw processing time may not be particularly helpful, as this is not the main challenge
in such an investigation. Indeed, in cases where files are encrypted, heavily modified or
otherwise obfuscated, most signature based approaches will be of little use. The work
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in this thesis, then, focuses on the case where rapid processing of contraband items can
be used to quickly direct an investigation or facilitate rapid triage, but may not be of
substantial benefit to every form of forensic investigation

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of relevant literature. It begins with a discussion of
digital forensic triage, which aims to reduce the turnaround time for an investigation
and deal with forensic backlogs. Signature generation techniques are then explored,
which are particularly relevant for contributions 1 and 2. Finally, literature on how
reduced file representations have been used in a variety of fields is examined.

Chapter 3 first outlines the requirements for an effective file signature, before discussing
sub-file signature approaches for the PNG and JPEG formats, corresponding to
contribution 1. The latter part of the chapter deals with practical concerns, such as
how these techniques may behave on future storage media, and how they could fit
into existing digital forensics processes.

Chapter 4 generalises sub-file approaches with the introduction of the file type agnostic
hashing strategies of contribution 2. This work builds on Chapter 3, with compar-
isons between the two approaches included towards the end of the chapter. These
sub-file techniques are examined for both local disk and networked storage envi-
ronments in order to better understand the performance properties of the proposed
algorithms.

Chapter 5 deviates from the sub-file approach, instead relying on existing thumbnails
which are potentially present in an operating system’s thumbnail cache, as well as
on cloud storage services. The bulk of this work focuses on rapid disk level triage
for Windows 10, but is extensible to other operating systems. A small case study on
Dropbox demonstrates the applicability of the technique on cloud storage systems,
completing the analysis for contribution 3.

Chapter 6 provides a discussion of this work and derives overall conclusions for the
thesis. This is then followed by suggestions for future work.



Chapter 2

Background and Literature Review

2.1 Introduction

With the challenges of dealing with large digital forensic datasets outlined, this chapter
explores the problem in more depth with reference to relevant literature. Section 2.2
focuses on forensics approaches which attempt to tackle the current data volume crisis,
before discussing current methods of generating contraband file signatures in Section 2.3.
Finally, Section 2.4 examines how existing reduced file representations are created, and
exploited, across several computing disciplines.

2.2 Digital Forensic Triage

2.2.1 Coping with Volume

The huge volume of data present in modern digital forensics investigations has necessitated
the formulation of coping strategies to prevent digital forensics practitioners from being
overwhelmed. Digital Forensic Triage is the collective term for such a class of strategies,
which can be defined as a way of maximising effective resources by reducing the amount
of data which needs to be examined in full [33]. This can be achieved via administrative
triage, where the seriousness of the crime and other contextual factors are used to decide
if a case is re-prioritised or dropped entirely. The alternative, technical triage, seeks
to provide rapid insight into the potential evidential utility of a particular device, such
that it can be seized for additional processing if appropriate, or omitted from deeper
analysis based on the findings of the triage process. Technical triage typically makes use
of device previews to quickly ascertain if a device has ‘low hanging fruit’ [34] evidence
items. While technical triage has drawbacks, in that a critical piece of evidence may be
missed, there is a preference among police detectives, with no forensic expertise, for rapid
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delivery of partial evidence, rather than waiting long periods for complete reports [33].
An additional benefit is that decisions are based on facts derived directly from suspect
devices, rather than being motivated by external factors.

The necessity of triage is indicative of a failure of forensic tools and processes to
adapt to the modern digital landscape [33], such that additional research is required to
prevent backlogs from growing further. Indeed, without intervention, backlogs are likely
to increase at a faster rate as the volume of investigative data is predicted to balloon further
in the future [18]. A 2014 review of the literature by Quick and Choo [15] suggested that
while some progress had been made, there is still much scope for improvement, with the
most promising areas of research for dealing with backlogs being data reduction, data
mining and intelligence analysis. A more recent survey of international practitioners
dealing with indecent images of children [16] indicated that any subsequent advances have
not helped stem the tide, with reports that processing times are still very long, with some
analyses taking up to 2 months. The resources provided to practitioners have simply not
scaled with the increase in workload [35], as the number of images and videos per device,
and the number of cases, continues to swell [15]. Indeed, the lack of sufficient numbers
of digital forensics specialists has resulted in the development of triage models which
utilise non-specialist first responders [36], reducing the workload of forensics experts and
allowing them to focus on deeper forensic analyses which better leverage their expertise.

Roussev et al. [11] suggest that forensics tools should prioritise performance as highly
as reliability and correctness, with a particular focus on the time lapse, or latency, taken to
acquire initial results. Answering the investigative questions, "who, what, when, where,
and how" [37] as early as possible is important and will shape the remainder of the
investigation and analysis.

Done correctly, technical triage can begin to fill important knowledge gaps about a
device or investigation. However, Shaw and Browne [34] note that many triage approaches
do not effectively reduce the amount of data to process, as devices which contain evidence
are ultimately still fully analysed from scratch after initial triage. The time taken on this
subsequent full analysis has associated risks, such as innocent subjects committing suicide,
or guilty parties being conferred reduced sentences due to time waited. In order to truly
begin to address the backlog, Shaw and Browne [34] suggest that evidence found during
triage should give the forensic practitioner a head start on the more complete analysis.

2.2.2 Triage Solutions

This section discusses a variety of existing approaches to evidence based, technical, triage.
The goal is typically to provide some usable forensic indicators as fast as possible, though
some techniques also facilitate faster deep analyses of a device.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

Shaw and Browne [34] describe the ‘enhanced previewing’ approach to forensic triage,
where a Compact Disc (CD) is used to boot a suspect device for analysis, with preview
items being stored on an external drive. Previewed data includes images, storyboarded
videos, text string searches, registry and chat log parsing, and other artefacts, with some
configuration for investigation type. The risk of missing information is mitigated by
processing all of the device, however, it is not clear how this can be done in a timely
fashion on large modern devices, particularly when the point of doing triage in this way is
to avoid creating unnecessary forensics copies of benign devices.

Roussev and Quates [38] assert that a primary bottleneck in the forensic analysis of
a device is the time it takes to read data from the device, which will be governed by the
read speed, or throughput, of the storage media. The authors propose an approach where a
full forensic copy of a device is produced at the same time as data is processed for triage,
using a heavily-parallel processing model. This approach essentially addresses the need
to have immediate results, while removing unproductive downtime waiting for forensic
copies for the full analysis stage. The authors present a case study using the similarity
hashing tool sdhash to correlate evidence across multiple devices. Doing this in parallel on
a powerful 24-core workstation allowed for overviews of various scenarios to be sketched
out in under 2 hours.

The bulk_extractor tool, described by Garfinkel [39] also uses a stream based approach
and processes data during forensic copying. This is achieved by implementing multiple
scanners, which process images, documents, and other textual data to extract artefacts such
as email addresses, telephone numbers, and credit card numbers. Generated histograms
provide a visual overview of potentially important information, such as the most frequently
occurring email addresses.

Taking the above parallel processing methods to their logical conclusion, Roussev
et al. [11] expand the approach to a much wider range of analyses which would be
conducted as part of a full investigation of a device. Individual analyses are handled by
a variety of worker nodes, calculating traditional cryptographic and similarity hashes,
parsing windows registry and metadata information, indexing text, and decompressing
files. Again, processing is conducted with the intention of keeping up with the rate at
which data is read sequentially from disk. Unfortunately, the authors note that only
traditional cryptographic hashing was computationally inexpensive enough to achieve this
goal in real time on a 48-core server. However, approaches which use small amounts of
data, such as registry analysis, are fast enough in practice. The authors suggest that 120–
200 cores are required to keep pace with a data stream of 120MB/s, while still requiring
the full capture duration to read every bit of data from the disk to complete processing.
Performing more expensive processing, such as perceptual hashing [40] or steganography
analysis would further inflate the CPU requirements of such a strategy, likely making
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it infeasible. Additionally, despite recent advances in processor technology, it will be
unlikely to cope with the typical 500MB/s sustained stream produced by a SATA3 SSD.
Given that this approach requires expensive equipment from already under resourced
forensics departments [16, 35], this approach may not be the most practical solution.

The rate of data streaming is a bottleneck, but it is also apparent that processing power
can be a bottleneck if complex analyses are attempted to be carried out in real time. One
method of coping with both of these challenges is to apply data reduction techniques to the
content of a particular device. Reading less data from a device cuts down on the impact
of the read speed bottleneck, while potentially reducing the complexity of later analyses.
Quick and Choo [30] propose an additional step in standard forensics processes wherein
this data subsetting is applied to either forensic images or write blocked source devices. A
logical image is created from the subset, which contains a variety of information such as
Internet history, keyword searches, Windows registry artefacts and hash database lookups.
The resulting subset is roughly 0.2% of the size of the original media and can be indexed
and processed much faster than a full device. A case study showed that this approach
allowed for the subset to be acquired from a 320GB drive in 72 seconds, while a full
forensic copy took three hours. A later expansion of this work [41] defines more clearly
which data to acquire, with the addition of items such as file system metadata, event
logs, thumbnails, chat logs, documents, media player data and other critically relevant
information. This expanded collection took a median of 14 minutes to acquire and process
in Internet Evidence Finder tool [42], which is considerably faster than the eight hours
required to produce a full forensic image for the same dataset.

A similar idea is pursued by Grier and Richard [43] wherein investigation-specific
filters are used to select data subsets to acquire. The primary difference here is that data
subsets are physical bit-level images of disk regions. Experiments yield a collection
acceleration of over 3× while still obtaining 95% of the evidence. Both Grier and
Richard [43] and Quick and Choo [30, 41] potentially miss information based on their
collection heuristics and case-specific criteria, but what is collected could be re-processed
at a later time with more comprehensive tools. One weakness of these approaches is that
they make assumptions about the content of a particular device, relying heavily on there
being an operating system installed on it. This filtered subsetting approach would not
reduce the time to analyse or collect data from secondary drives which are only used to
store media, such as those used by a NAS.

The above data reduction approaches are deterministic, in that the same subsets will
always be generated from a given device using a particular configuration. They also either
attempt to process an entire disk in some fashion or use a set of heuristics to limit which
data is captured. Young et al. [29] take an alternative approach, reducing the amount of
data to read from a disk by means of random sampling. A sample of disk sectors is chosen
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using a pseudorandom number generator, with each sector being cryptographically hashed
and compared to a database of equivalently sized block hashes for known files. In doing so,
technical triage becomes a statistically quantifiable endeavour, with known false negative
rates. Additionally, this approach is completely independent of the file system, with the
only requirement being that there is some alignment between sampled disk blocks, file
data blocks, and disk sectors. This alignment depends on the sample unit size and the
native disk sector size which was traditionally 512 bytes, but more recently 4096 bytes
(4KiB) on modern drives.

Breaking a file into blocks and using block hashes for detection purposes may result in
a number of false positives, as not all file blocks are unique to a particular file. Common,
‘non-probative’ blocks are discussed by Garfinkel and McCarrin [44], where a number
of heuristics are devised to identify such common blocks. An additional problem is the
memory space required to store these block hashes. When a single hash is used for the
entire file, traditional algorithms such as MD5 produce a fixed length digest of 128 bits,
regardless of the file size. When hashing blocks, the number of 128 bit hashes needed is
multiplied by the number of blocks in the file. For example, a 40KiB file would require
1280 bits to store all block hashes, in contrast to a single full file hash of just 128 bits.
As this approach is most useful for deciding whether or not a device should be seized, it
should be able to run on a wide variety of low specification systems. Penrose et al. [45]
reduce the memory overheads required by making use of Bloom filters to store the hash
database, allowing it to fit in the memory of legacy equipment. The cost is a small
increase in the number of false positives caused by the probabilistic nature of Bloom filters.
However, this is a quantifiable design choice and does not increase the chance of false
negatives. Benchmarks of this approach [45] show that the processing time depends on
sample size and computer specifications, ranging from seconds on modern machines with
Solid State Drives, to less than an hour in most cases with modern hard disks. By selecting
an appropriate number of samples, as little as 4MiB of data of interest can be detected with
very high probability on a large disk in a short time. More recent work [46] has sought
to further enhance block based sampling by breaking the disk into regions and sampling
consecutive blocks within each region. As regions are relatively small this minimises disk
read head seek times and reduces the total number of read operations required to sample
a device. However, this may reduce the total number of effective samples, and must be
controlled for when selecting the total number of samples/regions.

While random sampling approaches have been shown to be effective for device triage,
they only offer a minimal starting point for the full analysis which occurs afterwards, and
thus do not necessarily reduce the time taken to analyse devices which are selected from
the triage stage.
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The work described above makes it clear that there are physical and computational
limitations to current forensics methods. Disk read speeds are often a limiting factor,
however, a full analysis cannot be feasibly conducted in real time even at these limited
speeds. Data reductions strategies appear to be the most promising approach, with
several techniques allowing for reduced acquisition and processing times, at the cost
of some uncertainty. Random sampling is a promising technique for initial triage, but
the results are not easily fed into the full examination stage, and therefore would not
necessarily help in reducing backlogs caused by long device analysis times. The reduced
file representations in this thesis fall into the data reduction category, with the primary
focus being on contraband detection. It would therefore be instructive to review existing
methods for generating contraband signatures for automatic detection, which is presented
in the following section.

2.3 Signature Generation Techniques for Contraband De-
tection

Whether part of forensic triage or the full analysis stage, data signatures are integral to
the digital forensics process, being used to whitelist or blacklist previously encountered
files and to verify that the integrity of digital evidence has not been compromised. One
important use case for this kind of signature is the automatic detection of contraband
images and videos, such as those relating to child exploitation, which makes use of
large hash databases [47, 48] to detect previously encountered media. This particular
investigation type constitutes the majority of public sector investigations [13].

File signatures are typically created by calculating cryptographically secure hash
digests, producing binary signatures which are both distinct and extremely unlikely to be
shared by two input files. The traditional approach is to hash every bit of data in each
input file using algorithms such as MD5 [49] and the SHA family of algorithms [50].
However, as noted by Kornblum [51], traditional cryptographic hashes can easily be foiled
by modifying even a single bit of the input data, resulting in a completely different hash
digest. This means that criminals can make trivial modifications to avoid this kind of
detection and that very similar or re-encoded files are also not detectable without being
hashed previously in a lookup database.

In order to provide a level of tolerance for detecting slightly modified file variants, or
largely similar files, different approaches are required. Signature generation techniques
that allow for the detection of similar files are broadly labelled as approximate match-
ing methods. Breitinger et al. [52] classify approximate matching methods into three
categories:
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Cryptographic Block Hashing: Where traditional hashes such as MD5 and SHA1 are
applied to the binary data of a file which is broken into blocks, with similarity
scores being based on the number of overlapping blocks [53]. This method fails
completely if a single bit in each block is modified, but is inexpensive to employ
and can detect very small fragments of contraband files.

Bytewise Approximate Matching: Bytewise methods also work at the binary level but
are more robust to small manipulations and sector alignment issues. These ap-
proaches are suitable for detecting binary data variants and file fragments. They are
more computationally complex than traditional hashes and are limited to detecting
binary level similarities between files.

Semantic Approximate Matching: Semantic methods do not work at the binary level,
instead they derive signatures from the human-facing content of each file. For images
and videos this is equivalent to signatures based on the approximate visual properties
of the media. Using this approach it is possible to detect similar file content even
when the underlying binary data representation is significantly different.

The following subsections discuss the latter two approximate matching approaches in
more detail as they inform decisions made in this thesis when creating reduced file
representations.

2.3.1 Bytewise Approximate Matching

The weaknesses of traditional hashing led Kornblum [51] to propose Context Triggered
Piecewise Hashes (CTPH), adapting prior work in spam detection for forensics purposes.
A rolling hash is calculated from a sliding window across binary data, generating hashes
at trigger points based on the input. These trigger points essentially split the file into
chunks, which are then independently hashed using the FNV algorithm [54]. The six least
significant bits from each chunk hash are then concatenated to produce the final hash. The
similarity of two hashes is given by the weighted edit distance5, before being rescaled
and inverted. A score of zero represents ‘no homology’, while a score of ‘100 indicates
almost identical files’. The tool ssdeep [51], allows for similar files to be detected while
being resistant to small changes. Modifying a single bit in the input file represents a small
change in the overall hash, resulting in a high match score being generated. One key factor
which separates this approach from comparing block based hashes is that the triggers for
chunk hashes ignore disk block alignment, meaning that sector/block sizes do not affect
the hashes.

5Where each insertion or deletion is weighted as a difference of one, with changes weighted as three.
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Arbitrary bit manipulations may still impact the reliability of rolling hash based
techniques, as each individual chunk hash may be manipulated by changing only a single
bit in each chunk, with the impact on rolling hashes being dictated by the chunk size
and trigger conditions. An alternative strategy, exemplified by the sdhash [55] tool, is
to reduce the set of features which are used to generate data signatures. In doing so,
arbitrary changes to unimportant data, as well as false positives generated from common
data blocks, can be better mitigated when correlating similar files. Features are selected
by calculating the entropy of data in a 64 byte sliding window. Features with very high
entropy (encoding tables) and very low entropy (sparse, repetitive content) are discarded
as they do not serve to discriminate between files. The authors derived entropy thresholds
empirically to make them realistic. Bloom filters are used to store features, calculating
similarity estimates from the overlap of these discriminative features.

Extensive testing [56] of both approaches in tasks involving correlating objects, de-
tecting embedded files, heterogeneous sources and multiple file types, showed that sdhash
is generally the better performer. sdhash is capable of correlating small shared data
blocks, while ssdeep functions best when large contiguous shared blocks are present in
both files. Additionally, the scoring system used by ssdeep was shown to generate false
positives even at high scores, indicating that it is a poor similarity metric. However, several
attacks have been discovered against both approaches [57], with trigger points [58] being
exploited in ssdeep, and Bloom filter [59, 60] and feature attacks [61] against sdhash.
These weaknesses would allow many false positives to be generated, circumventing the
ability to reliably identify target files automatically.

Both ssdeep and sdhash are relatively old algorithms, published in 2006 and 2010
respectively. The area of bytewise matching has seen improvements made to both al-
gorithms over time [62], with additional rolling hash based schemes [63, 64], indexing
approaches [65, 66], and use of Field Programmable Gate Arrays (FPGAs) to improve
performance [67]. However, while there have been other techniques developed for byte-
wise matching, ssdeep and sdhash remain popular in the literature, likely due to their
support by NIST in the form of official hash sets [68]. Alternative schemes which make
use of blocks to build a representation of the file, such as SimHash [69], MinHash [70],
mvhash-B [71] and bbhash [72] have limitations, such as high runtime costs, file specific
configuration, and a poor sensitivity in duplicate detection [52, 62]. As such, they will not
be discussed in depth.

Bytewise approximate matching allows for contraband to be detected with much higher
reliability than traditional full file hashing due to bit level manipulation resistance. This
robustness is provided at the cost of complexity, however, as the database storage and
lookup costs are higher [52]. However this extra expense allows bytewise methods to
locate file fragments or media embedded in other files. When detecting similar files, this
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approach does not work well on compressed files types, such as JPEG, as pixel level
manipulations can result in large changes in the binary representation, throwing off byte
level approaches [57]. Given that a large use case for known file detection is often based
on the analysis of compressed media, this is a significant problem. The next subsection
discusses semantic approximate matching, which sacrifices calculation speed for more
robust content signatures.

2.3.2 Semantic Approximate Matching

While bytewise approximate matching schemes generate signatures and conduct file
comparisons based on the binary representation of a file, semantic approaches make use
of knowledge about the structure of a particular file type, generating signatures from the
human-facing content. Bytewise methods would be ineffective at identifying a copy of an
image which had been saved as a different file type, changing, for example, from a JPEG
file to a PNG. Semantic approaches, on the other hand, should be able to identify the
transformed image based on its perceptual, semantic, content. While semantic approximate
matching can be applied to a variety of file types, the focus of this thesis is on detecting
contraband images for forensic purposes and, as such, the semantic approaches discussed
will fall under the banner of perceptual image hashing.

Perceptual hashing approaches are inspired by the domain of Content Based Image
Retrieval (CBIR) [73], with a wide variety of features which can be used to create a hash
which is representative of the visual content. One key aspect of perceptual hashing is the
ability to compare signatures for images which are both visually identical and visually
similar. This leads to a distinction between (i) content preserving manipulations - such as
the introduction of noise, compression, scaling, rotation, cropping, and colour, contrast or
gamma adjustments, and (ii) content changing manipulations - such as moving, removing
or adding objects, modifying characteristics structures, textures or colours, and modifying
lighting conditions [40]. When used in forensics, this allows for altered contraband images
to be detected even when traditional cryptographic hashing and bytewise approximate
matching would completely fail.

Hadmi et al. [40] provide an overview of perceptual hashing techniques, using slightly
different classifications to the cryptographic; bytewise approximate; and semantic approx-
imate matching classes discussed by Breitinger et al. [52]. The authors identify a typical
pipeline for perceptual hashing: (i) Transformation - the content is spatially transformed
(e.g. colour manipulation, smoothing or rescaling) or undergoes a frequency transforma-
tion (e.g. Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT)), (ii)
Feature Extraction - feature vectors are generated from all, or a subset, of features in the
spatial or transform domain, (iii) Quantization - each component feature is reduced and
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combined into an intermediate, continuous, perceptual hash vector, which may result in
the introduction of fragility to modification, and finally, (iv) Compression or Encryption -
a fixed length final hash is generated, potentially using traditional cryptographic hashing
schemes. The authors note that common distance (dissimilarity) metrics include hamming
distance, bit error rate, and the popular similarity metric Peak of Cross Correlation (PCC).

A wide array of features have been used as the basis for generating robust image
signatures. Histograms and statistical information about the entire image may be used,
providing a high level representation which is insensitive to small, localised, changes in the
image. This can take the form of colour histograms [74], texture and edge histograms [75],
or frequency domain statistics [76]. Properties of human vision may also be exploited,
such as our insensitivity to high frequency changes in an image over a small area, a
property which is exploited by JPEG compression [77]. Low frequency properties of an
image may be used to derive a perceptual hash [78, 79], which provides robustness to
compression artefacts and other content preserving modifications. In a similar vein, coarse
image representations may be used, such as low resolution versions of the image, or the
average colour value of sub-blocks in the image [80]. Alternatively, invariant relationships
in the image may be exploited, such as those found on radial lines projected out from the
centre of the image [81]. The latter approach is resistant to rotation and scaling.

In a forensic context, perceptual hashing methods can be used to detect contraband
image variants, a prime example being Microsoft’s PhotoDNA [82] solution, which
has been licensed by a number of service providers for the large scale detection of
child abuse media [83]. A further benefit is the ability to compare reduced versions
of an image with each other. For example, image thumbnails may be compared to
their original image as long as the perceptual hash is appropriately robust to image re-
scaling. Additionally, the features chosen by perceptual hashing algorithms provides
insight into which elements of an image may be used to generate a reduced representation,
particularly when the most popular image compression format, JPEG, makes use of a
frequency domain transformation as part of its compression scheme. However„ while
identifying images with similar visual content is a non-trivial problem in itself, there
are many more requirements of an algorithm before it can be practically employed in
a forensic context. The best matching algorithm may be too slow for reasonable use in
forensics, or the signatures themselves may contain information which could result in the
reconstruction of a contraband image, which would disqualify its use. The next section
discusses additional forensics constraints for image signatures in order for them to be
feasible forensic solutions.
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2.3.3 Forensic Considerations for File Signatures

Digital Forensics investigations deal with large quantities of data, with the computational
and memory requirements of a signature generation algorithm being an important aspect of
a modern investigation. A given signature generation method may not be fit for forensics
purposes, even if it is highly accurate at detecting contraband. Breitinger et al. [52]
codify a variety of forensically relevant properties of signature generation tools in order to
evaluate them:

Compression: Compression is the ratio between the size of the input file and the repre-
sentative hash. This is important as lookup databases potentially include millions
of contraband signatures, which may make it impossible to store the table in RAM
with some schemes, significantly impacting lookup performance.

Runtime Speed: The time it takes to create signatures for individual input files. Large
feature extraction and signature creation times may render a technique impractical.

Lookup/Comparison Speed: The speed at which individual items are checked against
the known contraband database. A typical investigation may involve a large number
of comparisons, with both runtime and lookup rates dictating the scalability of a
method.

Sensitivity and Robustness: It is important that an approach be robust against common
modifications, otherwise it does not provide many benefits over traditional cryp-
tographic hashes. However, the algorithm must also be sensitive enough to detect
partial matches in cases where previously unencountered images are composites or
modified versions of a known illegal image.

Contraband databases for child exploitation contain millions of items [45, 47], making
memory efficiency, and therefore compression, important. Bloom filters have previously
been discussed [45, 53] as a mechanism for reducing the RAM footprint, but it should still
be noted that if a solution is perhaps intended to run on a suspect device for the purposes
of triage, low system specifications may become a design requirement. Processing speed
is also critical at this scale. When traditional cryptographic hashes are stored in a hash
table they have the benefit of O(1), constant time, lookups or O(log n) when stored in
binary trees [52], though lookup performance can deteriorate for very large databases [84].
Benchmarking carried out by Breitinger et al. [52] showed that bytewise approximate
techniques are slower than traditional cryptographic hashing for both extracting and look-
ing up signatures, while still being considerably faster than perceptual hashing methods.
The worst case complexity for approximate matching approaches is quadratic (O(n2)), as
it involves each file signature being compared in a pairwise fashion with all signatures in
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the database. Fortunately, there are mitigation strategies in the literature for perceptual
hashing techniques [85], which would enable such approaches to be feasible for real time
operations.

The temporal deficiencies of perceptual hashing are traded for increased domain
specific robustness to modified images, but they are unable to be used for other forensically
relevant correlations, such as detecting embedded or partial files. The results of their
evaluation left Breitinger et al. [52] to propose a model for deploying the above methods in
a forensic context, in order to best leverage the strengths of each approach. It is suggested
that traditional cryptographic hashes be used initially, followed by semantic hashing if no
matches are found. The final stage is to perform file carving and bytewise matching to
detect fragments and embedded objects.

The goal of this thesis is to reduce the time taken to detect contraband on a device,
therefore the above lookup, processing, and memory requirements are critical. This means
that, where possible, traditional cryptographic hashes should be used on data subsets,
except in cases where robust data signatures are a key aspect of the approach. The next
section discusses how reduced file representations have been used in prior work.

2.4 Utilising Reduced Image Representations

It is not always necessary to use all of the available data to achieve a particular task, indeed
using reduced representations of a file may achieve the same end result as processing an
entire file while being more efficient. A reduced representation may involve simply creat-
ing a subset of the data, as with some triage approaches in Section 2.2, or by reducing the
data via transformation, as with perceptual hashing techniques in Section 2.3.2. Another
approach may be to use file metadata in lieu of file content to make decisions, operating
on a higher layer of abstraction. This section discusses various ways in which reduced
file representations are used as a proxy for an entire file to achieve a particular task, with
literature being sampled from a variety of computing domains.

2.4.1 Reduced File Representations in Digital Forensics

Detecting the presence of contraband on a device is not the only challenge forensic
practitioners face. As the purpose of digital forensics is to facilitate legal proceedings, the
source of the image, or the integrity/modification status of the image, is often in need of
scientific verification. This can be achieved using image and signal processing techniques
to detect imperfections introduced in the manufacturing process of the physical device
which captures the image [86], however, such approaches can be very computationally
expensive, and may still be defeated by advanced forgeries [87].
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A body of work has developed which makes use of JPEG header information, as
opposed to pixel data, to determine the source device or software used to generate the
image, greatly reducing the processing complexity of the task. Quantization tables, the
primary source of the lossy aspect of JPEG compression, may be used as a feature for
this purpose. While the JPEG standard [77] provides default base quantization tables,
which can be scaled to different ‘quality factors’, digital cameras, and software such
as Adobe Photoshop, often make use of their own custom tables. These custom tables
allow for the optimisation of image quality based on the characteristics of the camera or
software processing method. As a result, they encode information about the source of
the image, which can be used to identify the origin [25, 88–90]. The results of this work
suggest that while quantization tables are not unique enough to identify a single source,
they can serve as a crude mechanism for detecting images which have been processed
by software or to reduce the list of possible sources. In some cases quantization tables
may be optimised based on the visual properties of the image [89] (dubbed adaptive
quantization tables), theoretically providing more discriminating information about the
pixel data in that particular JPEG. However, to be useful such adaptive tables would
have to be computed by the image creation software and embedded in the image prior to
examination.

Quantization tables can be combined with other header features to produce more robust
signatures. Gloe [27] provides an analysis of the fusion of quantization tables and ordered
data structures, such as file markers, thumbnails and Exchangeable Image File Format
(EXIF) metadata, for forgery detection. The primary observation is that the ordering and
formatting of elements in the JPEG header can be used as a feature, with different software
tools for editing images, or modifying image metadata, behaving differently at this low
level. Using this approach, it is possible to identify the software which has been used
to modify an image, the circumvention of which requires a high level of programming
expertise.

Kee et al. [26] make use of additional features to detect manipulated camera images.
Features are extracted from the data contained within quantization tables, EXIF metadata,
image dimensions and thumbnails. The additional data produces signatures which were
empirically shown to be effective at identifying image provenance for 1.3 million Flickr
images, with 62% of signatures allowing the identification of a single camera, 80% to
three or four cameras, and 99% to a unique manufacturer, respectively. Several features,
such as Huffman tables and EXIF metadata were stored in compressed representations,
using only the number of Huffman codes of each length and counts of EXIF fields. EXIF
metadata was shown to be the most discriminative feature for the dataset used.

JPEG headers are a rich source of information, but only constitute a small part of
the file data, allowing for a very small portion of the file to be used to reduce expensive
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computation. The above work suggests that small slices of data can be forensically useful
at the file level. Indeed, this can be seen in the block based hashing schemes discussed
earlier in Section 2.3. This presents an opportunity to exploit such file features to reduce
the amount of data which is required to carry out basic forensics analyses, which could
provide a means to mitigate a source of forensic bottlenecks.

The next section briefly discusses how metadata based approaches, similar to those
discussed above, may be used in the context of email spam detection. The literature in
this area may suggest further ways in which reduced file representations may be exploited
in a wider forensics context.

2.4.2 Reduced File Representations in Spam Detection

Advances in the field of spam classification led to a change in spammer behaviour around
2005, when a significant shift began from text based spam to image based spam, rendering
text based Bayesian classifiers ineffective [91]. Additionally, spammers programmatically
generated noisy and randomised images, defeating cryptographic hash based detection [91].
New approaches were needed to identify spam images, with some approaches using
Optical Character Recognition (OCR) to extract text to be used in Bayesian classifiers, or
by basing features on colour and texture statistics [92]. However, spam detection needs
to be scalable to work with high volume email servers, and pixel based techniques are
computationally expensive, necessitating the adoption of more efficient approaches.

To enable fast classification, Krasser et al. [93] make use of a subset of image metadata,
deriving features from the image dimensions, aspect ratio, file type, file size, image area
and compression factor. These features are used to train both Support Vector Machine
(SVM) [94] and decision tree classifiers, intended to be deployed as an initial filtering
stage in the detection process. Dredze et al. [95] make use of similar features but include
more metadata features, such as bit depth and EXIF data, as well as more expensive edge
and colour information when training classifiers. However, EXIF metadata features were
found to be the most useful, particularly when optimising for speed with dynamic feature
selection. Uemura and Tabata [96] design a two stage process, incorporating similar
metadata features into a traditional Bayesian filter model, with text analysis as the first
stage, and image metadata the second. Liu et al. [97] utilise image header information as
part of a triple layer system, where the first stage analyses email header data, the second
stage image header data, with the third stage performing costly pixel domain analyses.

An important feature to note is that while metadata based approaches are fast, they
may lack some accuracy, resulting in the development of a tiered approach, similar to the
hashing process model developed by Breitinger et al. [52]. As such, fast metadata based
approaches have the potential to filter out a large portion of data cheaply, such that more
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robust but expensive methods can be used on what is left. The next section discusses the
use of reduced representations in the context of Content Based Image Retrieval.

2.4.3 Reduced File Representations in Content Based Image
Retrieval

The header features used in forensics and spam detection contexts are somewhat removed
from the pixel content of an image and rely heavily on image metadata. However, it
is possible for an image to undergo significant modification while altering little of this
metadata. In the field of Content Based Image Retrieval, where image matches are
determined based on the content of the media, some approaches directly exploit the fact
that modern media files are stored in a compressed format, deriving features from the
compression domain and avoiding costly pixel data processing [21]. Such approaches
may be applied to both images and video files [98], and are capable of producing average
performance on par with pixel domain techniques, while taking less than 15% of the time
to extract the necessary features [21].

Most published work in this area focuses on using features of the JPEG file format,
which relies heavily on the Discrete Cosine Transform (DCT) for its compression, with
quantization tables being applied to the resulting DCT matrices to effect lossy compression.
Using these coefficients it is possible to generate histograms of the pixels encoded in the
DCT matrix [99–102], which typically correspond to an 8×8 pixel block. These may
also utilise texture features encoded in the DCT [99, 100, 102, 103], and are capable of
outperforming histogram based pixel domain techniques in retrieval tasks, while reducing
processing complexity by an order of magnitude [99, 101]. As global image features,
which are derived from the image as a whole, lose fine grained detail and are insensitive
to localised changes, the image may be divided into several sub-images to enhance
CBIR, which can then be used to generate feature strings, based on properties such as
the relationships between the average colour of each sub-image [80, 104]. A different
approach, espoused by Schaefer and Edmundson [105], treats compressed JPEG data
as a stream of DCT coefficients, which is approximately how the data appears on disk.
Features are then derived from the differences between DCT encoded pixel blocks without
having to reassemble the DCT matrix.

Header Based Image Retrieval

The compressed domain techniques above operate using the entire image file, sparing
computation by avoiding costly operations, but still requiring that the entire file be read
and processed to obtain all DCT coefficients. However, it is possible to obtain reasonable
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retrieval performance by extracting features from the JPEG header alone, while also
further reducing computational load.

While the majority of JPEG compression stems from the quantization applied to
the DCT matrix, an additional level of compression is provided by using Huffman en-
coding and differential encoding on the DCT coefficients when saving them to disk.
Both quantization tables and Huffman tables appear in the JPEG header, prior to pixel
data, and therefore only require a very small fraction of the file to be read for feature
extraction. Adaptive, or optimised, quantization tables have been used to rank images
for retrieval [106], inexpensively performing on par with the worst of the compressed
domain retrieval methods [107]. Similar to how quantization tables may be optimised
based on the content of the image [89, 106], Huffman tables may also be optimised to
achieve more effective compression. This optimisation, and effective re-compression of
the image data, allows these tables to be used as a proxy for image content when deriving
image representations, as it will communicate coarse statistical properties of the image.
Huffman based retrieval has been explored, using the ordering of elements [23] in the
table, or the lengths of the encoding strings [108, 24] as features, achieving relatively
good retrieval performance while offering a 30-fold speed improvement over full file
compression domain techniques, and 150-fold over pixel domain techniques [24]. Both
quantization and Huffman based methods have been utilised as a pre-filtering method
for data reduction, with more expensive retrieval methods operating on the remaining
subset [22], which retained retrieval performance while greatly reducing query time.

In a forensic context, the cost of pre-processing images, requiring that the entire
file be read, is at odds with the intended goal of reducing analysis times. However,
Huffman and quantization tables are a potential source of useful forensic information,
either when comparing images, or in identifying their source, at low computational
complexities. Indeed, a common motivation for using reduced image representations is
that they substantially reduce computational complexity for a variety of tasks. Header
based methods also allow for small fractions of files to be read, providing an additional
reduction in I/O overhead, which can be potentially be exploited in the forensic detection
of contraband.

2.5 Review of Chapter

Digital forensics must keep pace with new advancements in technology, however this has
not been a trivial task, with the information age leading to the generation of boundless
volumes of data across heterogeneous platforms. The failure to cope with this explosion
of data in digital forensics has necessitated the use of digital forensics triage, in an
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attempt to maximise the use of resources, and reduce investigative backlogs. From the
literature in Section 2.2, two general approaches to reducing investigative turnaround
were discussed: parallel processing, and data reduction. Parallel processing techniques
are still fundamentally limited by the read speed of the storage device, while combining
the acquisition and processing stages of an investigation. Data reduction methods, on
the other hand, reduce both data acquisition times and computational complexity by
working with subsets of the evidence, and therefore appear more promising for improving
forensic performance. Data reduction approaches essentially represent a trade-off between
accuracy and speed, which may have to be accepted if the forensic volume problem is to
be overcome.

As contraband detection is a critical part of public sector investigations, and the focus
of this thesis, Section 2.3 discussed the various signature generation techniques which
can be leveraged for automatic contraband detection. Semantic hashing approaches were
discussed as a means of combating the fundamental weakness of traditional hashing when
applied to modified files. However, this incurs a computational cost, and does not allow for
the detection of file fragments. Bytewise approximate matching methods are suitable for
detecting file fragments and small binary modifications, but would prove little use when
images have undergone global changes. Future approaches to signature generation should
be robust to trivial file modifications, while minimising the computational complexity
required for both signature extraction and signature lookups.

Finally, Section 2.4 discussed the use of reduced image representations, where image
metadata, headers, or image compression features may be used for a variety of purposes.
Certain reduced representations may efficiently effect the data reduction introduced in
Section 2.2, while allowing for robust signatures to be generated, by processing only a
subset of a file, or by exploiting existing file structures which provide information pertain-
ing to the image. Ideally, such a signature generation approach should also be resistant to
small file modifications, but may chose to forgo this in favour of the performance benefits
offered by traditional cryptographic hashing these reduced representations.

One final consideration is the prevalence of networked and cloud storage in recent
years, which has been identified as a growing concern in forensics [15, 18] as criminals
are increasingly utilising cloud storage to store illegal media [13]. This type of forensics
is still in its infancy, and necessitates logical, file level, acquisitions [109], as opposed
to traditional low level physical acquisitions. An additional concern is that forensics
done over a network may take much longer due to bandwidth and network throughput
limitations [110]. This scenario should be kept in mind when developing new forensic
tools, as cloud storage forensics would similarly benefit from the previously discussed
data reduction approaches.
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2.6 Conclusions

The volume problem in digital forensics is far from being solved, with additional work
being required to bridge the gap between the needs of practitioners, and the reality of the
modern investigation. The work in this thesis makes use of reduced file representations
which reduce the amount of data to read from disk. File features are chosen carefully
to represent a favourable trade-off in terms of uniqueness, false positive rates, and pro-
cessing speeds. Additionally, as the approaches in this work are based on logical, file
level, acquisitions, they should be applicable in other constrained environments, such
as networked and cloud storage, where only file level access may be possible. The next
chapter discusses the first of three approaches taken in this work, which focuses on the
creation of file type specific sub-file signatures.



Chapter 3

File Type Specific Sub-file Signatures

3.1 Introduction

This chapter investigates creating file type specific signatures for contraband detection,
where features of a particular file format are used to discriminate between files of that type.
Existing work, which makes use of file type specific features, has typically done so for the
purposes of identifying the type of a file [28], or for forensically reconstructing carved
files [111]. One work makes use of the structure of MP4 files in order to extract high
entropy blocks for detecting known video files being transmitted across a network [112],
but does so by processing the entire file at the macroblock level and applying the max-hash
algorithm [67]. In contrast, the work in this chapter creates signatures which can identify
a particular file while processing as little of the file as possible.

Two approaches will be discussed which make use of JPEG and PNG file headers to
create forensically viable file signatures. The techniques are inspired by prior work in
spam filtering, compressed domain retrieval and header based forensics, as discussed in
Section 2.4. While this header based approach may work for many forensically relevant
file types, JPEG and PNG were chosen for a proof of concept as they are currently the
most popular lossy and lossless image compression formats, respectively.

Existing data reduction approaches in forensics (Section 2.2) make use of disk level
random sampling or subsetting heuristics. In contrast, the work presented in this chapter
effects data reduction at the file level, allowing for the deterministic processing of all files.
Analysing a portion of every file alleviates concerns that files have been missed, while
also reducing the amount of data to read from the disk. File headers constitute a very
small part of an image file, and typically contain the information required to compress
and render the image. The actual portion of a file which needs to be processed to extract
such headers, and therefore generate signatures, is evaluated empirically for each file type
(Section 3.4.4 and Section 3.5.4).

25
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3.2 Requirements of Sub-file Signatures

Several requirements and useful properties of effective contraband signatures have been
identified from prior work in evaluating forensic signature generation [52]:

1. Uniqueness / Discriminating Power: In order for a file signature to be used ef-
fectively as a means of detecting contraband, it should aim to be unique. This
effectively means that the false positive rate should be as close to zero as possible.
However, the use of less discriminating signatures may be mitigated with a hierar-
chical processing approach, where more accurate techniques are used to evaluate
potential hits.

2. Robustness: While not a strict requirement, signatures should ideally be tolerant
of trivial file modifications, such as flipping an arbitrary bit or introducing content
preserving modifications.

3. False Negatives: If no modification to the original file has been introduced, the
file should be detected with 100% accuracy. This is the minimum bar required to
compete with traditional full file hashing.

4. Generation Speed: In order for a sub-file signature to be useful, signature gener-
ation should be significantly faster than processing the entire file (as with full file
hashing). This represents the effective reduction in processing time, and therefore
places an upper bound on the effect the approach has on reducing backlogs.

5. Lookup Speed: Fast signature extraction is useless if it is not paired with equally
fast database lookups. Ideally, this should be constant time (O(1)) or logarithmic
time (O(log n)), which is the case for traditional hashing approaches [52], as the
slower similarity hashing schemes have been shown not to keep up with disk read
speeds [11].

6. Compression/Signature Length: Signatures must be as small as possible, and
ideally be a fixed length. This potentially allows databases to be stored in RAM to
facilitate fast lookup speeds, while allowing many records to be stored before the
database gets too big for main memory.

The evaluation of the signature generation techniques described in this thesis takes each
of these properties into account, with a particular focus on generation speed, lookup per-
formance, and discriminating power. The baseline that sub-file approaches are compared
against is the full file hashing approach, as this is the standard method used when detecting
contraband media.



CHAPTER 3. FILE TYPE SPECIFIC SUB-FILE SIGNATURES 27

Dataset File
Type No. Files Mean Size Median Size

KiB MiB KiB MiB

Flickr 1 Million JPEG 1000000 124 KiB 0.12 MiB 117 KiB 0.11 MiB
Govdocs JPEG 109233 336 KiB 0.33 MiB 79 KiB 0.08 MiB
Govdocs Optimised JPEG 109228 326 KiB 0.32 MiB 76 KiB 0.07 MiB
Govdocs PNG PNG 108885 1426 KiB 1.39 MiB 344 KiB 0.34 MiB
Bing (Collected) PNG 6469 381 KiB 0.37 MiB 132 KiB 0.13 MiB

Table 3.1 Details of the datasets used in this chapter.

3.3 Description of Datasets

In order to evaluate the proposed techniques, it was necessary to gather large, real world,
datasets. This was important as files which are generated from a single source may not be
sufficiently representatives of real world files. No actual contraband images were used,
however the proposed approaches should generalise to images containing any content.

Details of the datasets used in this chapter are provided in Table 3.1. The Flickr 1
Million [113] and Govdocs [114] datasets are both publicly available, while Govdocs
Optimised and Govdocs PNG are modifications of the original. The Govdocs Optimised
dataset uses optimised Huffman tables generated using the jpegtran [115] tool, while the
Govdocs PNG dataset re-encodes the original JPEG images to the PNG format using the
python PIL library [116]. Some files failed to process, resulting in slightly smaller modified
datasets. The Bing dataset was a supplementary dataset collected by issuing queries to
the Bing search API. Details of how the dataset modifications and Bing collection were
produced are available in Appendix A.1. No modifications in the binary or pixel domain
were made to the images, except those specified above.

Optimising Huffman tables in JPEGs could potentially be done in a number of ways,
however the method employed here, using jpegtran, employs the standard approach found
in the libjpeg library [117], from the creators of the JPEG specification. Therefore there is
a reasonable expectation that most optimised Huffman tables will be created using the
same approach. Using Python’s PIL library to encode JPEGs to PNG means that the
transformed dataset will be homogeneous in nature, with each image possessing similar
header and encoding properties. While data found on a typical hard drive is unlikely to be
homogeneous in this way, this dataset makes the features of each image less distinctive,
making signature generation more challenging. If the partial file approach in this chapter
performs adequately on such a dataset it can be expected to perform well in real world
scenarios, such that this compromise is acceptable.
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Fig. 3.1 The increase in the resolution of mobile phone cameras over time. Sourced from:
https://petapixel.com/2017/06/16/smartphone-cameras-improved-time/

3.3.1 File Size Considerations

It should be noted that the file sizes of the datasets are much lower than may be expected
in a real investigation involving contraband. The Flickr 1 Million dataset in particular
is very small due to its source, the Flickr website, which is an image hosting platform.
As it is in their best interest to reduce file sizes for hosting purposes, these images have
been processed to reduce file sizes. The Bing dataset was collected from the general
Web, meaning that many images were chosen specifically for Web consumption, and are
therefore likely to be on the smaller end of the scale. Finally, Govdocs is a collection
created from government websites, and contains a wide range of file sizes, from tens of
bytes to tens of mebibytes. The mean file size is skewed upwards due to a small portion of
very high resolution images from NASA, however the median file size is very small.

Over the last decade the typical photograph has increased dramatically in size, partially
due to the increasing pervasiveness of high speed broadband and WiFi, but also due to
advances in camera technology. Figure 3.1 depicts the trend for the resolution of mobile
phone cameras to increase over time. A brief analysis of 500 photos taken with the author’s
Samsung Galaxy S6, which utilises a 16 megapixel camera6, showed a mean file size of

624bit sRGB JPEGS at 72dpi, with a resolution of 5312×2988

https://petapixel.com/2017/06/16/smartphone-cameras-improved-time/
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4.5MiB. It is likely that most images produced by cameras, mobile or otherwise, in the
last 10 years should have file sizes on the order of mebibytes, rather than kibibytes.7.

Effectively, the performance benchmarks carried out in this thesis are likely to represent
the worst case performance scenario for sub-file hashing when compared to full file
hashing. Sub-file approaches only require a tiny fraction of a file to generate a signature,
while full file hashing reads every byte of the file. The larger the file, the smaller the
proportion of the file which has to be read by the sub-file hashing technique. This means
that using smaller than average files results in a less pronounced performance gap between
sub-file and full file approaches than may be anticipated in a real investigation. If the
relative performance of sub-file signatures is adequate for these small file sizes, their utility
can only be expected to improve on a dataset of modern high resolution photographs.

3.4 Sub-file PNG Signatures From Early File Features

This section describes a technique for identifying known images encoded in the Portable
Network Graphics (PNG) [118] format based on signatures which are created using only
information from approximately 1% of the file. Features are extracted from early portions
of the file, focusing on elements which are used to render the image. This approach
allows for a highly distinct signature to be created and reduces the quantity of data
needing to be processed by 99%. The PNG format is used on over 70% of websites [119],
appearing more frequently than the JPEG format, making it a good target for forensics
processing efforts. Additionally, as the PNG format is lossless it is a better container
choice for animated/artificial images with large homogeneous areas, as JPEG compression
introduces obvious artefacts.8 This work on PNG signatures has been published at the
2017 ADFSL Conference [1].

The remainder of this section will discuss the PNG format, in order to better understand
potential sources of signature data in the header, subsequently discussing the features
selected for signature generation in this work. The approach is then evaluated against the
criteria in Section 3.2, finishing with a brief closing discussion. Supplementary materials,
including code snippets, are found in Appendix C.
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Fig. 3.2 The layout of a PNG file. Critical chunks in red (within dotted lines), ancillary
chunks in blue, with textual and timestamp chunks omitted for clarity.

3.4.1 The PNG File Format

The general layout of a PNG file is shown in Figure 3.2. PNG files begin with an 8
byte signature, containing the ASCII bytes for ‘PNG’, as well as various line ending and
transmission integrity bytes. All file content thereafter, both metadata and compressed
pixel data, is stored in a ‘chunk’ structure.

Chunks are self-contained, storing their own length, data payload, and a checksum to
detect corrupted data. Four letter ASCII labels are provided to easily distinguish between
chunk types, which are referred to throughout this section.

Labels beginning with upper case characters, depicted in red in Figure 3.2, refer to
‘critical’ chunks, which form the minimal set which an encoder and decoder should support.
‘Ancillary’ chunks, depicted as blue, need not be supported, and may be safely ignored, or
omitted, without preventing the image from being rendered. However, such omissions
mean that the image may not appear as originally intended, potentially displaying without
transparency and backgrounds, or rendering with a skewed colour spectrum.

There are 18 chunk types defined in the international standard [118], with 4 critical
chunks and 14 ancillary chunks. The critical chunks are: IHDR, containing header metadata,
which is required immediately after the signature; IEND, required as the final chunk to

7Based on estimates using the online tool: https://toolstud.io/photo/megapixel.php The tool
underestimates the size of the Galaxy S6 photos, and suggests that 5 megapixels JPEGs should be around
1MiB in size.

8This may be particularly relevant in the UK and other countries which also classify artificial child abuse
images as illegal, thus making it of interest in such investigations.

https://toolstud.io/photo/megapixel.php
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complete the file; IDAT, one or more of which store compressed pixel data; and PLTE,
which stores the colour palette and is only required for the indexed colour mode.

Ancillary chunks in the specification correspond to colour space information (cHRM,
gAMA, iCCP, sBIT, sRGB), pixel dimensions and aspect ratio (pHYs), suggested palette
(sPLT), miscellaneous information for the suggested background (bKGD), colour histogram
(hIST), transparency information (tRNS), textual information (iTXt, tEXt, zTXt), and
timestamp information (tIME). Additionally, custom chunk types can be included by the
encoder for use with specific applications, as with Adobe Photoshop’s proprietary chunks.
With the noted exception of the beginning and end chunks, there are only loose constraints
placed on the order or location of chunks in the file. Most chunks are required to be present
before the first IDAT chunk (see Figure 3.2), with the exception of textual information,
which may be present at any point in the file prior to IEND.

PNG supports five colour modes, which include greyscale and truecolour, both with
additional modes which include an alpha channel, and the indexed colour mode. Colour
modes are set in the IHDR, with optional reference colour points (cHRM) and profiles (ICCP)
in other chunks. Transparency is supported either by means of the alpha channels or by
preselected colours which indicate transparency.

Compression of pixel data is achieved by per scan line prediction and the DEFLATE
compression standard, which is stored in the zlib format [120]. This data is contained in
one or more IDAT chunks in the PNG.

3.4.2 Extracting PNG Signatures

Determining which features were to be used for signature generation involved a manual
survey of the chunks in the PNG specification, but also required some empirical work.
Several features are not used very often in practice, and it was therefore necessary to
determine which header chunks appear consistently in real world use.

One difficulty in carrying out this work was the lack of available large scale PNG
datasets, with most image retrieval and forensics datasets focusing heavily on images
of the JPEG format. To address this, a collection of 6469 PNG images (2.36 GiB) was
collected from the Bing search engine, as described in Appendix A.1. This provided a
set of real world PNGs from a wide variety of websites and software sources. However,
the Bing dataset was relatively small, and a thorough analysis necessitated a much larger
corpus. The Govdocs PNG dataset was created to allow analysis at scale, converting the
original JPEG images to the PNG format using the Python Pillow 3.1.1 [116] library.
Three images which failed to convert, and a single corrupt PNG, were discarded. The
PNG dataset (148 GiB) is larger than its original JPEG counterpart (35 GiB), with file
sizes ranging from 170 bytes to 38.2MiB. Diversity in the dataset makes it easier to
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generate highly discriminative signatures, as different software tools and varied encoding
parameters produce different low level features. As the PNG dataset is produced by the
same encoder, its properties are homogeneous, meaning that it is effectively a worst case
scenario for analysing the discriminating power of the sub-file signature.The selected
features, and their associated chunks, are discussed in detail below.

Header Features

The initial intention was to leverage specific features with potentially high discriminating
power, such as colour histograms (hIST), colour palettes (PLTE) and low resolution
image scans from interlaced PNGs (early IDAT). These features, when present, essentially
provide built-in coarse image representations, much like those used by CBIR methods
(Section 2.3.2). However, none of these features were used frequently in the heterogeneous
Bing dataset (7.2% paletted images and 2.9% interlaced, with no instances of the histogram
chunk), such that a more general approach was taken.

The PyPNG [121] python module was used to extract features from PNG chunks prior
to the first IDAT chunk. This was achieved by using the Preamble method of the PNG
Reader class, which processes image metadata from a common subset of PNG chunk types.
The chunk types considered, and their associated features, are provided in Table 3.2. When
discussing header features in this section, it is in reference to these chunks. Derivative
features, such as the number of planes or the alpha flag, are omitted, as their information
is contained in the colour type. Code snippets are provided in Appendix C.1.

Ideally, features should only be extracted from the subset of chunks which contribute
to the rendering of the image, ancillary or otherwise. Such features are safe from arbitrary
tampering without affecting the way the image displays. Notable omissions for the header
features include those containing textual information, timestamps, ICCP colour profiles,
standard RGB colour space flags, and proprietary Adobe Photoshop chunks, none of
which are obtained using the above python method.

As the IHDR chunk is required to be in every image, it was evaluated in isolation from
other metadata chunks, serving as a minimal header baseline. To facilitate inter-image
comparisons, all features were concatenated into a single string, which allows for simple
string equality to determine whether two images have the same feature vector. As the
PyPNG function used simply returns a dictionary of objects, the order of items is not
preserved as it appears in the file.

Chunk Order

Gloe [27] noted that image encoders for the JPEG format are not necessarily consistent
with the order in which they include metadata structures, such that the order of elements
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Feature Chunk Description

File Signature N/A ‘Magic number’ from the file.

Height IHDR Image height in pixels.

Width IHDR Image width in pixels.

Bit Depth IHDR No. of bits per sample or palette index.

Colour Type IHDR Colour mode flag (See Section 3.4.1).

Filter Method IHDR Filter method byte, standard only uses 0 for adaptive.

Interlacing IHDR Image interlacing byte, 0 if no interlacing, 1 for
Adam7 interlacing.

Compression
Method

IHDR Compression method byte, PNG standard only uses 0
for Deflate.

Palette PLTE 1–256 RGB palette values if present, otherwise None.

Background Colour bkGD Default background colour, otherwise None.

Transparency tRNS Simple transparency alpha value, single colour value,
or None.

Gamma gAMA Four byte floating gamma value.

Unit is Metre pHYs 1 byte flag indicating if the unit of measurement is
metre.

X-Axis Pixels per
Unit

pHYs X-axis aspect ratio or metric size information.

Y-Axis Pixels per
Unit

pHYs Y-axis aspect ratio or metric size information.

Significant bits sBIT Stored the original number of significant bits for
lossless recovery.

Table 3.2 PNG Header features and their associated PNG chunks.
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can be used as a discriminating feature. As noted previously with regards to chunk
placement constraints (see Section 3.2), this is also true in the PNG specification [118].
The IHDR and IEND chunks must be first and last respectively, however, other chunks have
loose, or no, ordering constraints. For example, the gAMA and sBIT chunks must appear
before both the PLTE and IDAT chunks but could appear in either order.

To determine the potential effectiveness of chunk orders as a feature, all chunk types
were aggregated into an ordered list to two depths in the file: i) All chunks in the file,
and ii) Chunks up to the first IDAT chunk. By varying how far into the file is processed,
it is possible to determine how much of the file must be analysed for this feature to be
useful, if at all. All chunk types, including proprietary and textual metadata chunks, were
included, with subsets not being considered due to the initial experimental performance.

Again, to facilitate simple equivalence comparison, and integration with other features,
ordered lists are transformed into strings. In this case the order of chunks is preserved as
part of the feature vector, such that any change of the chunk order in the file is captured by
this feature.

Small Block Data Hashes

PNG header chunks are immediately followed by an IDAT chunk, which contains com-
pressed image data. This makes it probable that the first data block of the file contains all
of the information necessary to extract the signature, except in cases where there are many
metadata blocks in the file header. A small portion of scan data is included as a feature by
calculating SHA256 hashes of the first n bytes of the first IDAT chunk, for varying sizes of
n. This effectively provides a hash of the first few scan lines of the image.

Additionally, traditional cryptographic hashes were calculated from partial files to
act as a baseline for comparison and to determine the relative merits of analysing the file
structure. In this case, n bytes from the beginning of the file are used to generate hashes
using SHA256.

When the value of n is less than, or equal to, the length of the hash digest it would
produce (32 bytes), the raw data is included in the signature instead of the hash digest,
saving a small amount of needless processing.

IDAT Length

The size of each IDAT chunk normally corresponds to the size of the memory buffer used
by the encoder [118], though they need not be of a constant length. As the beginning of
each chunk stores its own length only the first few bytes are required to obtain the size of
a chunk. This means that the length of the first IDAT chunk, immediately following the
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header metadata, may be used as a proxy for the likely buffer size of the encoder, and as a
discriminating feature.

The length of the first IDAT chunk was obtained by inspecting the atchunk property of
the PyPNGReader class immediately after calling the Preamble method. This returns a
tuple, the first of which is the length of the chunk.

Combining Features

As all features above can be easily represented as a string, simply concatenating individual
features together, in an ordered fashion, allows for a single signature which can be
compared quickly. This also allows the signatures for known files to be looked up in the
same way that traditional cryptographic file hashes are utilised, with O(1) complexity
from a hash table.

Equivalence Classes

Equivalence classes are generated by recording a list of all images which have identical
feature strings. The number of files in a given list corresponds to the size of the equivalence
class. This provides a granular measure of how unique a given signature is and allows for
the identification of groups which possess the same signature. A class size of 1 indicates
that the signature is unique for all files, a class size of 2 contains 2 files which possess
the same signature, and so on. An example of hypothetical equivalence class groups is
provided in Figure 3.3.

If 95% of the items in a dataset were grouped into equivalence classes of size 1, this
would mean that 95% of file signatures are unique. Class sizes larger than 1 can be seen
as a form of clustering, where equivalent items are grouped together. Large class sizes,
e.g. 100, indicate that there are many images which produce the same signatures, likely
due to some shared source (such as camera or software) or shared property among all
images in that class (e.g. all using the same encoding tables and metadata structures).
When evaluating a signature most of the dataset should be in a class size of 1 for high
discrimination.

Offset Acquisition

In order for the above information to be derived the required data has to be read from
the storage media. As such, the closer to the beginning of the file the above features are
located, the smaller the proportion of the file which has to be analysed. The IDAT is the
anchor point for all of the above features, as all header features must appear before it, and
scan data appears immediately after it. As such, the byte offset of the first IDAT chunk is
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Fig. 3.3 Example equivalence classes. One class of size 2, and two classes of size 3. No
file may appear in more than one equivalence class.

used to evaluate how much of the PNG file needs to be processed for these signatures to
be generated.

3.4.3 Evaluation of Discriminating Power

An evaluation of the discriminating power of each feature is provided in isolation, before
exploring the potential of combining features. The best case scenario for each feature
is that it generates a unique signature for each file, i.e., an equivalence class of 1 for all
images. Timed benchmarks, comparing the Sub-file approach with full file hashing, is
provided in Section 3.4.4.

Chunk Orders

There is a wide range of possible chunk types, with the potential for individual applications
to include proprietary chunks. The order in which these chunks appear may be used as a
feature to discriminate between images. Table 3.3 shows the results of creating equivalence
classes of all chunk types for the entire file.

Even utilising all chunks in the file, this feature performs poorly across both datasets,
with only 17.9% unique signatures for Bing images, and 0.1% for Govdocs PNG images.
Chunk ordering in the Govdocs PNG dataset barely has any discriminating power due to
the homogeneity of how the files are constructed. In some cases JPEG metadata, such as
ICCP profiles were retained during PNG conversion, but such incidences do not provide
much information in the absence of additional ancillary chunks. The Bing dataset has
more variety due to additional metadata blocks and encoding differences, though there
are still only a small number of critical chunks included in the specification, limiting the
usefulness of this feature.
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The performance of chunk orders falls further if only chunks up to the first IDAT are
considered, with the number of unique signatures dropping to 2.4% on the Bing dataset.
These results suggest that the majority of the discriminating information is provided by
the number of IDAT chunks included in the file, as well as any metadata chunks which are
interleaved with scan data, or found after it.

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2-5 6-10 11-100 >100

Bing

All Chunks Order 1159 (17.9%) 1017 (15.7%) 329 (5.1%) 959 (14.8%) 3007 (46.5%)
IDAT Length 3907 (60.4%) 130 (2.0%) 14 (0.2%) 245 (3.8%) 2175 (33.6%)

Govdocs PNG

All Chunks Order 121 (0.1%) 364 (0.3%) 402 (0.4%) 4341 (4.0%) 103657 (95.2%)
IDAT Length 13501 (12.4%) 6266 (5.8%) 6 (<0.1%) 0 89118 (81.9%)

Table 3.3 Equivalence classes for chunk type orders and IDAT lengths for Govdocs PNG
and Bing.

IDAT Length

The length of the first IDAT chunk can be used to gain information about the number
of potential data chunks in the PNG, as well as information about the encoder, without
needing to analyse the entire file. The performance of this feature varies wildly between
datasets (Table 3.3), with 60.4% unique signatures for the Bing dataset, but only 12.4%
for the Govdocs PNG dataset. As the Govdocs PNG dataset was produced using a single
encoder, the behaviour of this feature on this dataset essentially reflects the behaviour of
the Pillow library. In this case, the encoder limits the length of IDAT chunks to 64KiB,
with larger files being divided into multiple chunks of this size or less. Unique signatures
are produced by files which are smaller than this upper limit, with the distribution depicted
on the bottom of Figure 3.4.

In the Bing corpus, IDAT lengths range from 104 bytes to 8.77MiB, the distribution
of which is provided in the top half of Figure 3.4. These results indicate that many
encoders opt not to limit chunk sizes, which is possible as the maximum chunk size in the
specification is 231−1 bytes (2GiB) [118]. Large spikes in the Bing distribution are likely
caused by the use of the same encoding library, or those using similar, content independent
buffer presets.
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Fig. 3.4 The distribution of IDAT lengths for both datasets, plotted on logarithmic axes.
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Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5
Bing

IHDR Only 4638 (71.7%) 482 (7.4%) 153 (2.4%) 116 (1.8%) 50 (0.8%) 1032 (15.9%)
Header Features 5106 (78.9%) 444 (6.9%) 135 (2.1%) 92 (1.4%) 65 (1.0%) 629 (9.7%)

Govdocs PNG

IHDR Only 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)
Header Features 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)

Table 3.4 Equivalence classes for the IHDR and complete PyPNG preamble features.

The IDAT chunk length is not a suitable standalone feature, as it is sensitive to the
encoder used. However, it performs well enough to be used in combination with other
features. Additionally, this feature could be useful in future work as part of a process to
identify particular encoders or applications which created a given PNG, similar to prior
work on JPEGs [25, 88–90].

Header Feature Distinctness

While many of the features described in Table 3.2 have a relatively narrow range of values,
with several being composed of a single byte, their combination provides potential to
discriminate between images.

The equivalence classes generated by using features extracted by the PyPNG preamble
method are given in Table 3.4. Using all features in Table 3.2, 78.9% of the Bing dataset
possessed a unique signature. Less than 10% of images were in a class of five or greater,
with the largest class consisting of 76 images, meaning that there are relatively few large
clusters of equivalent signatures. Using the same encoder in the transformed Govdocs
dataset, header features are still unique 25% of the time, which is perhaps higher than
expected. Performance does not suffer much on the Bing dataset when only the IHDR
chunk, which must be present in every PNG, is considered, with no measurable difference
being made on the Govdocs PNG dataset.

While these features are not enough to uniquely identify images in the dataset, they
are reliably found immediately after the PNG file signature and contribute a good deal of
discriminating information. As such, they prove good candidates for combination with
additional features. Additionally, it should be noted that not all ancillary chunks which
are provided in the specification are processed by PyPNG, and, as such, performance may
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IDAT
Block Size

(B)

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5

Govdocs PNG
8 72981 (73.4%) 13932 (14.0%) 5895 (5.9%) 3304 (3.3%) 2305 (2.3%) 10468 (9.6%)
16 107257 (98.6%) 1152 (1.0%) 252 (0.2%) 84 (<0.1%) 45 (<0.1%) 95 (<0.1%)
32 108670 (99.8%) 86 (<0.1%) 42 (<0.1%) 20 (<0.1%) 5 (<0.1%) 62 (<0.1%)
64 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
128 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
256 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
512 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)

1024 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
2048 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
4096 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)

Table 3.5 Equivalence classes for varying block sizes of IDAT chunk data SHA256 hashes
for the Govdocs PNG dataset.

be improved slightly by including these additional chunk types, at the cost of fragility to
arbitrary chunk data.

Small Block IDAT Hashing

Small portions of the scan data may be used to discriminate between images. Equivalence
classes for blocks of varying sizes for the Govdocs PNG dataset are provided in Table 3.5,
where the block size is the number of bytes, n, which are hashed from the beginning of
the first IDAT chunk. In some cases, the block size is larger than the size of the content
of the first IDAT chunk, in which case the actual length of the chunk is used for the hash.
However, this did not occur frequently, with only 200 instances when n = 4KiB. Both
datasets performed similarly, as such, Bing data is omitted here.

In this experiment, small values of n were sufficient to produce highly distinct sig-
natures. As few as eight bytes of data produce a unique SHA256 hash digest for 73.4%
of images in the dataset, with no substantial benefit beyond 32 bytes, where 99.8% of
signatures were unique.

An examination of equivalence classes for the larger block sizes shows that duplicate
hashes are caused by images which have large contiguous arrays of bytes with the value
zero. As PNG is a lossless format, it can represent large areas of contiguous, identical,
values without artefacts, both for solid colour and transparent backgrounds. In these cases,
when the same background value is used, matching hashes will be generated as the value
of n may be too small to reach the differentiating data in the foreground. That is, while
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Fig. 3.5 Example PNG likely to generate false positives with small IDAT hashes. This is
due to homogeneous areas at the top of the image, highlighted by the red box.

this technique is generally effective, it may produce false positives with logo style images.
An example image which may generate false positives using this approach is provided in
Figure 3.5.

Small Block File Hashing

Rather than hashing the whole file, or data contained solely in the IDAT chunks, the first n
bytes of the file were hashed to serve as a baseline. Table 3.6 shows the results of these
small block hashes. Again, performance was consistent across datasets.

Block hashes prove to be very distinct, though this strategy was not as successful as
IDAT hashing for very small block sizes. Hashing the first 8 and 16 bytes in the file created
the same signatures for all images in the dataset. When the block size reaches 32 bytes,
file hashes perform identically to features extracted from the IHDR chunk (Table 3.4), as
they likely contain the same content.

Hashing the first 2048 bytes of the files produced duplicate hashes more often than 16
bytes of IDAT data. A full disk sector (4KiB) still performs worse than 32 bytes of the
first IDAT on Govdocs PNG but produces unique values for the Bing corpus. The relative
performance of IDAT and File hashes is depicted graphically in Figure 3.6.

Multiple Feature Aggregation

With the exception of 4KiB file hashing on the Bing dataset, no single feature tested
distinguished all distinct images. To further improve file discrimination, multiple feature
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Start of
File Block

Size (B)

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5

Govdocs
PNG

8 0 0 0 0 0 108885 (100%)
16 0 0 0 0 0 108885 (100%)
32 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)
64 104814 (96.3%) 898 (0.8%) 408 (0.4%) 356 (0.3%) 215 (0.2%) 2194 (2.0%)

128 105034 (96.5%) 846 (0.8%) 381 (0.3%) 320 (0.3%) 175 (0.2%) 2129 (2.0%)
256 105034 (96.5%) 846 (0.8%) 381 (0.3%) 320 (0.3%) 175 (0.2%) 2129 (2.0%)
512 105447 (96.8%) 778 (0.7%) 345 (0.3%) 276 (0.3%) 160 (0.1%) 1879 (1.7%)
1024 105474 (96.9%) 762 (0.7%) 339 (0.3%) 276 (0.3%) 155 (0.1%) 1879 (1.7%)
2048 105474 (96.9%) 762 (0.7%) 339 (0.3%) 276 (0.3%) 155 (0.1%) 1879 (1.7%)
4096 108670 (99.8%) 84 (<0.1%) 42 (<0.1%) 20 (<0.1%) 0 69 (<0.1%)

Table 3.6 Equivalence classes for SHA256 hashes of the first n bytes of the file, ignoring
file structure. Govdocs PNG dataset.

Fig. 3.6 The number of unique IDAT and File hashes for each block size for the Govdocs
PNG dataset.
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Fig. 3.7 The number of unique signatures for each feature and dataset. The dotted line
indicates where all unique images have unique signatures.
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strings were concatenated together to form a single signature. A graphical overview of
the relative effectiveness of single and combined features for both datasets is provided in
Figure 3.7.

As noted above, chunk type ordering was not a strong feature by itself, and provided
minimal utility when combined with additional features. However, chunk orders can be
acquired at a very low expense, while extracting other, more discriminative, features.

The best performance is achieved when combining small IDAT data block hashing
with IHDR features and the length of the first IDAT chunk, with only a small number of
bytes required from the scan data. This combination was able to distinguish between
images in the dataset just as well as 4KiB file hashes, while providing resistance to
arbitrary modifications of non-critical metadata, such as textual information. It also has
the benefit of only processing data which is required of every PNG file, which is essential
for rendering the image. False positives produced using this combined approach are
typically caused by homogeneous areas of pixel data at the top of the image, as previously
discussed for Figure 3.5, while others were caused by nearly identical images which were
not cryptographic hash matches.

The signatures produced are small, between 35 and 42 bytes using 16B of IDAT data,
and between 51 and 58 bytes using 32B of IDAT or the SHA256 digest. This signature
size achieves a good level of compression, with the length being smaller than larger
cryptographic hash digests, such as SHA512 (64 bytes). As the PyPNG signatures are
variable length, it may be worthwhile hashing the signature strings with an algorithm such
as SHA256 to produce smaller, fixed length, digests.

3.4.4 Lookup Performance Evaluation

Algorithm 1: PyPNG Signature
Input: PNG File
Output: PNG Signature
signature = String(readIHDR());
while chunk.type != IDAT do

chunk.type = nextChunk();
end
signature += String(chunk.length);
signature += String(chunk.data[0:32]);
return signature

Based on the findings in this work, it is possible to conclude that highly distinct PNG sig-
natures may be derived from the mandatory IHDR chunk when combined with information
found at the start of the first IDAT chunk. This contains encoding information about the
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IDAT Offset (Bytes)

Percentile 10% 25% 50% 75% 90% 95% 97.5% 99% 99.999%

Bing 37 74 113 956 2753 2774 8826 33,812 2,587,401
Govdocs PNG 37 37 37 37 37 2658 2658 2658 30181

Table 3.7 Percentile offsets (in bytes) for the beginning of the first IDAT chunk in both
the Govdocs PNG and Bing datasets.

image, as well as dimensions, and a proxy for the memory buffer size, with a tiny portion
of scan data to rule out very similarly encoded images with the same dimensions. Using
this method, a tiny fraction of the file may be used to create a signature for a PNG file,
while also ignoring easily stripped, non-essential, metadata modifications. Pseudocode for
signature creation using these features is provided in Algorithm 1.

What follows in this section is an analysis of the potential performance improvements
of this approach over full file hashing, beginning with quantifying how much of a typical
PNG file needs to be acquired to create these signatures.

Typical IDAT Offsets

The location of the first IDAT chunk in a PNG is the point at which the header information
stops, and the pixel data scans begin. It therefore serves as a good indicator of how much
of the file needs to be read with the proposed Sub-file approach. Its location varies with
the quantity of metadata included in the file. If there are few chunks included between the
IHDR and first IDAT block, it can appear very early in the file, with the smallest offset in
both datasets being 37 bytes. When many chunks are included, pixel data can start deep in
the file, with 2.5MiB of data being present before the IDAT in the worst case in the Bing
corpus and 103KiB in Govdocs PNG. However, as noted, the transformed Govdocs corpus
does not contain much ancillary metadata as it is a transformation from JPEG, with the
vast majority of IDAT blocks starting at 37 bytes. Table 3.7 shows the IDAT byte offsets at
various percentiles for both datasets.

The distribution of IDAT offsets in the Bing corpus is very long tailed, with a median
of just 113 bytes, and mean of 4158 bytes. As the mean file size is 381KiB, the features
discussed can be acquired by only reading approximately 1% of the file for images in
the Bing dataset, with far less being required for Govdocs PNG (0.01%). 96.9% of Bing
images had an IDAT marker appear within the first 4096 bytes (99.9% for Govdocs PNG),
with 60% of files (92% for Govdocs PNG) requiring a mere 160 bytes to reach the IDAT. As
modern storage media make use of 4KiB disk blocks, this means that most PNG signatures
were acquired by reading a single disk block. This is a very small overall proportion of the
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relatively small files in these datasets, such that early file features represent a substantial
reduction in disk overhead, while also producing a highly discriminative signature.

While this is a good level of discrimination, even on homogeneous datasets (99.8%
unique signatures), it is not accurate enough to avoid false positives at the million image
scale.9 However, the utility of this approach lies in being able to filter out large portions
of data, with potential hits being verified with more accurate, and costly, methods, such as
traditional cryptographic hashing or similarity hashing. In doing so, the amount of data to
be processed can be reduced by two orders of magnitude, from 100GiB to 1GiB, or less.
Assuming this technique is substantially faster, it can still be used in a tiered processing
system for data reduction. The next section discusses timed benchmarks carried out to
evaluate speed improvements.

Timed Benchmarks

To quantify the potential speed improvements, several timed benchmarks were performed
using the larger Govdocs PNG dataset, directly comparing the PNG sub-file approach in
Algorithm 1 with the traditional full file hashing approach. The SHA256 algorithm was
used for all cryptographic hashing, as this is the smallest hash from the popular crypto-
graphic hashing families which has not been compromised.10 However, as cryptographic
hashes are inexpensive to calculate compared to fetches from storage media, this added
overhead should not have any bearing on the results. As signatures in both the sub-file
and full file hashing schemes are strings, they can both be stored in hash tables for O(1)
lookup. The benchmarks, therefore, primarily focus on the I/O bottleneck of the device.
All code is written in Python 2.7, with code snippets available in Appendix C.1.

Two computers were used to evaluate performance: i) a workstation - i5-4690k, 16GiB
DDR3 RAM, Western Digital Red 4TB HDD, Crucial MX300 525GB SSD, and ii) laptop -
i7-5500U, 8GiB DDR3 RAM, Samsung 840 EVO 500GB SSD (OS). Storage benchmarks
are provided in Appendix B.1. Both machines were tested with different thread counts
and file read orders to assess the impact on storage throughput and relative performance.
Three file orderings were used: i) normal, provided by the Python os.listdir command,
which gives the ordering used by the file system, ii) the reverse ordering of the normal
ordering, and iii) random ordering, created by generating random sorts of the normal list.
Files were copied in the same order to all drives with no fragmentation. Benchmarks were
carried out on Windows 10 64bit, with memory caches being cleared between runs using
the EmptyStandbyList tool [122]. Benchmarks were run automatically in sequence using
a script, as in Appendix C.1, with cache clearing meaning that sequential runs should not

9Which is the scale of frequently used contraband datasets.
10Both MD5 and SHA1, while commonly used in forensics, have been shown to be weak against attack.
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Fig. 3.8 Summary of benchmark results for the Sub-file PyPNG approach and Full File
Hash (Fullhash) for different configurations. Improvement factors on the right indicate
how many times faster the Sub-file approach is. Only normal ordering was used for EXT4
runs as ordering did not make a difference.

have an impact on each other. Experiments were repeated three times on the desktop and
10 times on the laptop, which is more susceptible to background processing interference.11

Reported times represent the mean total time to extract the signature and store it in a
python dictionary, with the times to enumerate files with os.listdir not included. A
summary of the benchmark results is provided in Figure 3.8, with a breakdown of more
detailed results thereafter.

SSD Performance
On solid state media, there is a clear performance advantage for the sub-file PyPNG
approach, graphed for the workstation in Figure 3.9 and the laptop in Figure 3.10. Both
approaches benefit from increasing the thread count from 1 to 8, with a smooth downwards
curve in total time taken as threads are added on both devices. However, the file ordering
made little to no difference, which is to be expected given the nature of SSDs, which have
no mechanical seek times or spinning platters.

At 8 threads, the sub-file approach proved to be 12× faster on the workstation, and
18× faster on the laptop, as summarised in Figure 3.8. The large gulf between approaches
is not caused by CPU bottlenecks, as full file hashing only reached 40% CPU utilisation on

11This is due to the smaller number of CPU cores on the laptop, as well as the fact that the drive is running
the operating system.
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Fig. 3.9 A comparison of the relative performance of the Sub-file and Full File Hashing
approaches on the workstation’s NTFS formatted SSD. Mean time over three runs. Error
bars are provided, but are very small and not clearly visible.

Fig. 3.10 A comparison of the relative performance of the Sub-file and Full File Hashing
approaches on the laptop’s NTFS formatted SSD. Mean time over ten runs. Errors bars
provided, but are only substantial for the normal Fullhash runs.
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the workstation, and 70% on the laptop. Rather, the effective data reduction of reading 1%
of the file results in substantial benefits, despite the relatively low small block performance
of both SSDs when compared to their sequential throughput (Appendix B). The differences
between the relative performance on the workstation and the laptop are likely due to the
slightly better random 4KiB read performance at low queue depths on the laptop SSD.

HDD Performance

Fig. 3.11 A comparison of the relative performance of the Sub-file and Full File Hashing
approaches on the workstation’s NTFS formatted hard disk drive. Error bars are provided,
but are very small and not clearly visible

Performance on the workstation’s hard drive, depicted in Figure 3.11, indicates that the
behavioural characteristics of the underlying storage media can have a large impact. On
the hard disk, random ordering was substantially slower than the normal read order, with
reverse times falling in the middle. As the hard disk has to physically spin to each data
region, introducing mechanical delays, this is to be expected. However, this also has the
effect of decreasing the relative benefit of the sub-file approach, which holds a reduction of
3× for the normal ordering at 8 threads, but only 1.7× for the random ordering. The same
mechanical latencies also effectively increase the total time it takes to fetch a small data
blocks, with very low random 4KiB read performance relative to the sequential throughput
of the hard disk (Appendix B). For this reason, while full file hashing at 8 threads was
4.6× slower on the HDD relative to the SSD, the sub-file approach suffers at 19× penalty.
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Despite this drastic cut in performance, the sub-file approach is still appreciably faster on
this dataset.

File System Overheads

Fig. 3.12 A comparison of the relative performance of the Sub-file and Full File Hashing
approaches across the NTFS and EXT4 file systems on the workstation’s SSD. Error bars
are provided, but are very small and not clearly visible

An additional experiment carried out using the workstation’s SSD with Ubuntu 15.04
shows that the file system also plays a large part in overall performance. The same
experimental setup was used as with Windows, with the exception of how the cache
was cleared12, while making use of bash scripts instead of shell scripts to automate the
benchmarks. One limitation of this approach is that the Linux ntfs-3g driver is used
for the NTFS volume, which introduced small overheads for NTFS, while EXT4 ran
via the native driver. The impact of this, and other overheads, is discussed in depth in
Section 3.6.3.

Figure 3.12 depicts the relative performance of the same SSD formatted with both
NTFS and EXT4. At 8 threads EXT4 performs better for both approaches, netting a
10% performance increase for full file hashing, with a much larger increase of 410%
for the sub-file approach. This indicates that there are potentially substantial file system
overheads when looking up files indexed by the file system, which in this case is simulated
by the ntfs-3g driver. By reducing these overheads, the sub-file approach receives a

12Cached were cleared on Ubuntu using the command:
sudo sh -c ‘echo 3 > /proc/sys/vm/drop_caches’
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dramatic reduction in overall file access times, and therefore a substantial performance
improvement, resulting in a massive 45× performance increase over full file hashing
on EXT4 at 8 threads. This allowed over 100,000 files to be processed in less than 8
seconds, when compared to the the 332 seconds for full file hashing. A brief benchmark
comparing the sub-file approach to reading a single 4KiB block for each file was also
carried out on EXT4. This benchmark showed that the sub-file signature performance
is typically 80%–90% of the speed of reading the first 4KiB of each file, though this
decreases slightly at 16+ threads.

3.4.5 Tiered Filtering Benchmarks

As this sub-file approach is not 100% accurate, it would be prudent to confirm positive
hits in some manner, as to avoid false positives during an investigation. One way of doing
this is to verify a positive hit using full file hashing, as depicted in Figure 3.13. This
confirmation approach is similar to the hierarchical models used in spam filtering [97],
where more expensive processes are carried out after cheap initial passes.

Fig. 3.13 PNG confirmation hashing. Verify positive hits using the more expensive full
file hashing approach.

Table 3.8 shows the impact of full file confirmation hashing on the sub-file PNG
approach for various hit rates. 1% hit rate means that 1% of files in the corpus generated a
positive hit. The higher the hit rate, the more files must be fully hashed, meaning that the
ratio of contraband plays a part in how performant this approach is. A hit rate of 1% does
not make much of an impact on processing speeds, with the sub-file approach retaining
over a 10× performance increase over hashing all files on SSDs, and 3× on the HDD. At
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Device Threads
Sub-file
Time (s)

Hit Rate
(% Contraband)

Fullhash
Time (s)

1% 10% 33%
Workstation
NTFS HDD

8 564.9
581.7
(2.9×)

733.5
(2.3×)

1126.4
(1.5×)

1686.3

Workstation
NTFS SSD

8 30.0
33.7

(10.8×)
66.4

(5.5×)
151.2
(2.4×)

363.9

Laptop
NFS SSD

8 38.6
43.2

(10.7×)
84.7

(5.4×)
191.9
(2.4×)

460.4

Workstation
EXT4 SSD

8 7.3
10.6

(31.4×)
40.4

(8.2×)
117.7
(2.8×)

331.6

Table 3.8 Fullhash confirmation impact on Sub-file PNG. 1%, 10% and 33% of corpus
assumed to generate a positive hit, respectively. Calculated by adding the appropriate
percentage of Fullhash time to the Sub-file approach, and therefore ignores the benefits of
caching. Relative improvement factors in brackets.

a hit rate of 33%, which is likely extreme, the sub-file approach is still between 50% and
180% faster than hashing all files.

One important thing to note is that this confirmation can be done in idle time after
the main processing has finished. This would allow for a trade-off of accuracy and initial
results, allowing this approach to retain very high effective triage speeds.

3.4.6 Outcome

The contributions of this section are three-fold. The first is a breakdown of the features of
the PNG format which appear early in the file, and an identification of those features which
can be used in signature generation. The second is an evaluation of the discriminative
power of PNG header and small data block features, with a view to creating signatures
for unique objects. Finally, this research demonstrates the potential for highly accurate,
and efficient, file signature creation which may be used as part of a pre-filtering scheme to
reduce investigation processing times. It has also been shown that various storage media
and file system technologies impact the relative performance of this sub-file approach.

By processing the header of a PNG, it is possible to generate signatures which are
99.8% unique, even on homogeneous datasets. As only 1%, or less, of the file is needed,
this effects a data reduction of 100-fold, at the cost of some inaccuracy. Images encoded
using the same encoder, and those using solid backgrounds are the most likely to generate
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false positives, however these can be verified afterwards using full file hashing, while still
retaining most of the performance benefit.

The best case performance increase was 3× on an NTFS HDD, 18× on an NTFS SSD,
and 45× on an EXT4 SSD, with an associated reduction in CPU load (see Appendix C.2.1).
These results suggest future storage technologies could be similarly exploited, with the
potential for very fast sub-file detection using NVMe/M.2. devices which have drastically
improved random 4KiB read performance compared to SATA based devices. Higher small
block throughput would allow this method to approach its theoretical improvement of
100×, which is currently reduced by disk and file system overheads.

Sub-file signature generation appears to be a promising approach for future forensics,
however there is still much work to be done. The following section explores the potential
to use a similar sub-file, header based, approach, on images of the JPEG format.

3.5 Sub-file JPEG Signatures Using Optimised Huffman
Tables

The JPEG still picture compression standard [77] is the most popular lossy compression
system used for images at the time of writing. JPEG images can be found everywhere, from
photographs taken by cameras, to thumbnail caches, and images on the Web. JPEG has
resisted being replaced by newer, technically superior, schemes such as JPEG 2000 [123],
due to its near universal adoption. For this reason JPEG images are incredibly important
for contraband based forensics investigations.

This section describes how JPEG compression metadata, found in the file header, may
be used to generate highly distinct signatures, while only requiring 1–3% of a relatively
small JPEG file to be read. This is achieved by deriving signatures from optimised
Huffman tables which are used at the entropy encoding stage in JPEG compression,
and is inspired by work in content based image retrieval [23, 108, 24]. While optimised
Huffman tables are not used in every image, there has been a recent trend towards optimally
encoding images of the JPEG format, such as those published recently by Mozilla [124]
and Google [125]. The work carried out in this section has previously been published in
the ADFSL Journal (JDFSL) [2].

The remainder of this section begins with an overview of JPEG compression, before
describing how these sub-file JPEG signatures are produced in Section 3.5.2. Evalua-
tion of the discriminating power and benchmark performance follow in Section 3.5.3.
Supplementary materials, including code snippets, are found in Appendix D.
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Fig. 3.14 The structure of a sample JPEG as it is stored on disk. The metadata section
may be long, and it is abbreviated here for clarity.

3.5.1 JPEG Compression Overview

The JPEG standard is a lossy compression technique for reducing the file size of images.
The standard leverages properties of human vision in order to provide the best trade-off in
perceived image quality to compression ratio, with several stages of compression being
utilised.

During compression, images are typically converted to the YCbCr colour space, sep-
arating the luminance and chrominance channels, the latter of which may be optionally
sub-sampled. The result is then divided into 8×8 pixel blocks, which are transformed to
the frequency domain using the Discrete Cosine Transform (DCT) to produce a matrix of
64 coefficients. The coefficient at the top left of the matrix, known as the DC (Direct Cur-
rent), represents the mean colour value of the block, while the remaining 63 coefficients,
which are known as AC (Alternating Current), contain horizontal and vertical frequency
information. As most of the human sensitive aspects of the signal are concentrated in
the top-left of the matrix, which hosts the low frequency coefficients, much of the higher
frequency information may be discarded, or represented more coarsely. This is achieved
by quantization, with the JPEG quantization table mapping the relative compression ratios
of each DCT coefficient. The standard provides a generic quantization table, which can be
scaled to vary image quality.
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The quantization process results in many AC coefficients becoming zero. A run-length
encoding scheme is then applied which compresses these runs of zeroes efficiently.13

Additionally, as the average colour (DC) of each 8× 8 block is expected to change
gradually throughout the image, differential coding is used to efficiently compress the
colour differences between blocks. The coefficient compression utilises variable length
encoding schemes, with the data stored as a set of bit length and value pairs. This
information is further encoded using single byte codes, which in turn represent the
magnitude of the DC, or combined magnitude and run-length for the AC coefficients. As
these codes are repeated frequently, Huffman encoding can be used to compress their
representation to variable length bit strings. This allows for frequently occurring codes to
be represented in perhaps two or three bits, instead of a byte. The JPEG standard provides
a default mapping of these Huffman bit strings for the AC and DC byte codes. However,
for more efficient compression, a per image optimised Huffman table may be generated
based on the actual occurrences of these codes, resulting in smaller file sizes.

Figure 3.14 depicts the beginning of a sample JPEG image. Immediately following
the JPEG start marker are the application markers which specify the particular JPEG
form format (such as JFIF, EXIF) and miscellaneous metadata, such as title, comments,
camera settings, camera model, or editing software information. This is then followed
by decompression information composed of the quantization and Huffman tables. The
most basic (baseline) JPEG makes use of two quantization tables, one for luminance,
and another for chrominance, with four Huffman tables for the combinations of AC/DC
and luminance/chrominance. Both Huffman and quantization tables are mapped to data
components through the use of identifiers, which provides some flexibility. Huffman
tables are followed by the actual image scan data, which is stored sequentially, from the
top of the image to the bottom. An alternative format, the progressive JPEG, may contain
multiple image scans, starting with low resolution versions of the image and increasing in
steps, allowing for images to increase in quality as they are loaded on the Web. Progressive
JPEGs may contain more Huffman tables, which are used for each individual scan.

Mozilla’s MozJPEG [124] introduces tweaks to the encoding process by modifying the
original JPEG libraries while remaining compliant with the specification. The technique
uses optimised Huffman tables. All images are converted to the progressive JPEG format,
and new quantization table presets are provided to better accommodate high resolution
images. Google’s Guetzli [125] takes a more aggressive approach, with coarse quantization
presets, Huffman table optimisation and post processing the DCT coefficient matrix.
Guetzli produces sequential images, rather than using progressive JPEGs.

13This uses a zig-zag pattern from top left to bottom right, as depicted in Appendix Figure D.1
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3.5.2 Extracting JPEG Signatures

Unlike with the PNG format, much research has been carried out on JPEG images, for
a wide range of purposes. This existing work meant that the process of identifying
discriminative elements for signature generation in the JPEG format did not need to start
from scratch. Prior work in digital forensics (Section 2.4.1) has shown that compression
metadata can be used as a mechanism for detecting modified images and their source
software/camera. Content based image retrieval has made use of optimised quantization
tables and Huffman tables for the purposes of reverse image searching (Section 2.4.3),
which suggests that these optimised tables encode substantial information about the image.
Optimised tables are not included with every image (as will be discussed in Section 3.5.3),
with optimised quantization tables being particularly problematic to identify due to the
wide variety of existing base quantization tables and scalar variants. Taking this into
account, optimised Huffman tables were chosen as the sole source of discriminating power
in this work. Huffman tables are often the last item included in the header of a JPEG, as
depicted in Figure 3.15. This means that, as with the PNG approach in Section 3.4, the
image file only needs to be read up to the compressed image scan data. Again, typical
values for the offset of the Huffman tables were determined empirically (see Section 3.5.3).

As JPEG is a very popular image format, there were many large datasets available to
use. Three datasets were chosen for this work. The first, the Flickr 1 Million dataset [113],
contains 1 million JPEGs with optimised Huffman tables. This dataset was chosen because
of its large scale and diverse image content, but it also serves as an example of a corpus
which is constituted entirely of optimised Huffman JPEGs.14 The second dataset is the
original Govdocs JPEG corpus [114], which contains approximately 109,000 JPEGs.
Govdocs was made available largely for forensics research, and contains a wide variety of
image encoding parameters and content. This dataset does a better job of representing
real world files, as the Flickr corpus is pre-processed by the Flickr hosting platform.
The third dataset is a modified version of Govdocs, where all images were optimised
using the jpegtran [115] utility, with the -copy all and -optimize flags. Five images
failed the optimisation, and were omitted (See Appendix Figure A.1). All images were
converted to baseline JPEG during optimisation, with all images in both the Flickr and
Govdocs Optimised datasets using the YCbCr colour space. The unmodified Govdocs
dataset contains mixed colour and types and JPEG types. Duplicate images were not
removed from these datasets. File size details are provided in Table 3.1.

14With the unexplained exception of three images, 621224.jpg, 636616.jpg, 646672.jpg, which required
optimisation.
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Fig. 3.15 The portions of a JPEG used for traditional cryptographic hashing and Huffman
comparison.

Optimised Huffman Tables

As described in Section 3.5.1, Huffman tables are used in JPEG to entropy encode DCT
magnitude/run-order codes, further compressing the data stream. By assigning short bit
strings to frequently occurring terms, the overall number of bits required to store the DCT
codes can be reduced significantly.

The JPEG standard provides suggested Huffman tables, which were derived from an
empirical analysis of a sample of 8-bit JPEGs. However, this is suboptimal as the DCT
code distributions will vary based on the content of the image. Optimised Huffman tables,
then, are the image specific mappings of these bit strings to the DCT codes, based on
their actual frequency of occurrence in that image. The end result is a more efficient
compression of the data stream.

While the standard Huffman tables included in the specification have to list mappings
for all AC and DC codes, a given image may not make use of all DCT codes. This means
that the optimised Huffman table may contain fewer entries, as it only provides those
which are required to encode that image. It is therefore not only the mapping of bit strings,
but the absence of certain codes, which can be used to discriminate between optimised
Huffman tables.

Extracting Huffman Tables

Structures in the JPEG format are preceded by markers which consist of two bytes, which
always begin with 0xFF, with the second byte indicating the type of marker. These markers
serve as a roadmap for the decoder, which is necessary as each segment is typically not of
a fixed length.
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Fig. 3.16 An example Huffman table as it appears on disk. In table types, Y corresponds
to the luminance channel, while C corresponds to the chrominance channels (Cb/Cr)

An example Huffman table is provided in Figure 3.16. Huffman tables are essentially
stored as two arrays, the first containing the number of Huffman codes of each bit length,
while the latter lists the corresponding DC and AC byte codes in the table. These arrays
are all that is needed to reconstruct the entire Huffman decode tree. Pseudo-code for
generating Huffman signatures is provided in Algorithm 2, showing that an ordered
concatenation of all length/value arrays is all that is required to generate a Huffman
signature.

In practice, there are many existing libraries for parsing JPEGs. The Libjpeg [117]
library was selected to extract the Huffman tables using C++. Once the de-compression
object is initialised, all header data up to the start of scan, including the Huffman tables,
can be acquired by calling the jpeg_read_header function. This header information
also includes other useful data for this work, such as JPEG type and colour space. At this
point, the file has been processed up to the Start of Scan (SOS) marker, which indicates
the beginning of the compressed data streams.

The Huffman signature is then extracted from the jpeg_decompress_struct by
extracting the arrays for DC and AC tables respectively, ordered by the table type ID.
For the purposes of the experiment, matching Huffman signatures were verified using
SHA256 digests on the full file to determine if they were true matches.

Properties and Limitations

Optimised Huffman tables provide coarse information about the relative frequencies of
DCT codes in the compressed data stream, and therefore communicate some information
about the frequency domain representation of the source image. As such, signatures
derived from the DCT codes are robust to metadata modification and some small modifi-
cations to image content.



CHAPTER 3. FILE TYPE SPECIFIC SUB-FILE SIGNATURES 59

Algorithm 2: Generate Huffman Signature. Order tables by type to avoid issues
with ordering on disk.

Input: JPEG File
Output: JPEG Signature
huffmanTables= {};
marker = nextMarker();
/ / Loop until SOS marker
while (marker != 0xFFDA) do

/ / Check for Huffman marker
if (marker == 0xFFC4) then

length = readBytes(2);
type = readBytes(1);
/ / read remaining length after length/type bytes
htable = readBytes(length-3);
huffmanTables[type]=toString(htable);

end
marker = nextMarker();

end
/ / Order by table type: 0x00, 0x01, 0x10, 0x11
orderedKeys = order(huffmanTable.keys());
signature = ‘ ’;
for (key in orderedKeys) do

signature += huffmanTable[key];
end
return signature

A limitation of this technique is that both images must have been encoded using the
same quantization tables, colour space, and channel sub-sampling. If this is not the case
the images will contain a different distribution of DCT byte codes, resulting in different
Huffman tables when optimised.

Progressive JPEGs use multiple scans at different resolutions, potentially resulting in
many more Huffman tables than baseline JPEGs. As such, encoding the same image as
both baseline and progressive JPEG will result in a mismatched number of tables, though
the tables from the baseline image may be very similar to the tables for coarse progressive
scans. Huffman tables will appear before each scan in progressive JPEG, such that they
will be found throughout the file.

The process of generating optimised Huffman tables involves inspecting the corre-
sponding DC and AC streams, and counting DCT code frequencies. The most frequently
occurring items are assigned the smallest Huffman codes. The jpegtran utility in the
Libjpeg package may be used to create optimised images from unoptimised JPEGs with
the -optimize option. However, this requires the entire file to be processed, and intro-
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duces substantial overhead. Therefore, while it is possible to acquire optimised tables for
any given image, Huffman table comparison is best suited to images which are already
optimised.

Offset Acquisition

As with PNG signatures, the earlier the header ends in the file, the more effective this
sub-file approach will be. To explore this, the offset of the Start of Scan (SOS) marker
was acquired after reading the JPEG header by calling the stdio::ftell function and
then subtracting the remaining bytes in the src input buffer to get the correct offset.

3.5.3 Evaluation of Discriminating Power

If Huffman tables are to be used to identify particular images in a large dataset, they must
contain enough discriminating power to do so. To this end, the Huffman signatures for all
images in the Flickr 1 Million dataset were used to construct equivalence classes, grouping
together images with the same signature. A class size of n indicates that n images possess
the same signature, with a class size of 1 indicating a unique signature. No alterations
were made to the binary or pixel content of images in the datasets, such that reported
results are absent of intentional modifications. However, there are instances of very similar
image files in the datasets which provide information about how the approach will be
affected by intentional modification.

Huffman Distinctness in Flickr 1 Million

Flickr 1 Million Equivalence Classes

Size 1 (Unique) 2 3 4 5
No. Images Huffman 999250 726 18 4 5
No. Images SHA256 Duplicates N/A 722 18 4 5
No. Images Huffman, No SHA Dupes 999250 4 0 0 0

Table 3.9 The number of images belonging to equivalence classes of each size for the
Flickr 1 Million dataset. A class size of n indicates that there are n images with the same
signature.

The Flickr 1 Million dataset contains many sets of duplicates, with a total of 746
images having at least one other image in the dataset with identical binary data (see
Table 3.9). Once duplicates were removed from the results all but two pairs of images
were found to possess unique Huffman signatures. This shows that this fast signature
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generation technique has almost a zero percent false positive rate at scale when searching
for identical images.

Indeed, the two sets of JPEGs with matching Huffman tables in this collection are
almost identical and in reality differ by a small number of pixels. Image differences were
visualised using the Resemble.js library [126], with differences highlighted in Figure 3.17.
In the first case, 4 pixels are different as a semi-colon is added to the text rendered in
the image, while in the second case one version of the image has two letters transposed.
As the matching pairs also use the same quantization tables, such differences are small
enough to result in the same optimised Huffman tables being generated.

Fig. 3.17 Highlighted image differences for image pairs with matching Huffman tables in
the Flickr 1 Million dataset. Images 985964.jpg and 986229.jpg are represented on the
left, 431419.jpg and 431931.jpg on the right.

This result shows that optimised Huffman tables possess a great deal of discriminating
power, with only two pairs of nearly identical images possessing the same Huffman
signature in a dataset of 1 million images. Indeed, this may be seen as a positive property,
as the signature can be tolerant to slight changes within the image.

Huffman Distinctness in Govdocs Variants

Colour Space YCbCr YCCK CMYK RGB Greyscale

No. Images 95783 3 0 9 13443

Table 3.10 The number of images for each colour space option in the optimised Govdocs
corpus.
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Two versions of the Govdocs dataset were used: i) the unaltered original dataset, and
ii) a version where all images have had their Huffman tables optimised, and converted to
baseline JPEGs, using jpegtran. The former is used to derive representative statistics
for how common particular types of JPEG are in the wild, while the latter provides a
secondary test dataset for optimised Huffman distinctness. It is important to estimate
usage of different JPEG configurations in the open world as this will inform the findings of
this work. Most datasets are curated and somewhat homogeneous, either in their content,
source or post-processing, which means they are not an adequate means of gauging how
often particular JPEG features are used. The Govdocs dataset has been acquired from
online sources, and while the domains were limited to US government websites, they offer
a more accurate, though slightly dated, representation of real world JPEGs than many
other datasets. A small number of JPEGs generated errors when optimising or extracting
Huffman tables and other information, and those were omitted from this analysis.

The unaltered Govdocs corpus is heterogeneous, with a mix of JPEG modes, colour
spaces and origin software. Of approximately 109,000 images, only 6809 JPEGs (6.2%)
use the progressive format, with the remainder using the baseline JPEG format. 37,879
(34.7%) baseline JPEGs use default Huffman tables, and, as such, produce the same
signature when extracted. 39,035 images (35.7%) contained Adobe application markers,
which may either use optimised or pre-defined Huffman tables. The predominant colour
space is overwhelmingly YCbCr, as shown in Table 3.10.

Prior to optimisation, 39,328 (36%) of the unmodified Govdocs images have a unique
Huffman signature, which is 55.1% of images not using default Huffman tables. The
remaining images are primarily grouped into very large classes, with 23,706 images
belonging to groups of equivalent Huffman tables with 1000 or more members, the
largest class containing over 10,000 images. This indicates that, even in the presence of
many JPEGs using pre-defined tables, Huffman analysis can be used as the sole method of
identifying images more than 1/3rd of the time. That is, this corpus suggests that optimised
Huffman tables are used as often as default tables, however the authors argue that the
trend is towards optimised JPEGs, and indeed the Govdocs corpus itself is relatively old.
The software developed by Mozilla [124] and Google [125] may be an indication that
optimised images will appear more frequently on the Web, where page load times and
data transfers are relatively expensive compared to other domains.

One caveat is that images taken by the same camera are likely to make use of the same
Huffman tables if the camera does not employ image level optimisation. However, with
the processing power available on modern devices, and inflating file sizes, optimisation
may become more common in the future.

The optimised Govdocs dataset provided similar results to the Flickr 1 Million dataset
(see Table 3.11), in that images with matching Huffman tables were either identical in the
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Optimised Govdocs Equivalence Classes

Size 1 (Unique) 2 3 4 5
No. Images Huffman Only 108539 684 6 0 0
No. Images SHA256 Duplicates N/A 676 0 0 0
No. Images Huffman, No SHA Dupes 108539 8 6 0 0

Table 3.11 The number of images belonging to equivalence classes of each size for the
optimised Govdocs dataset. A class size of n indicates that there are n images with the
same signature.

binary domain, or demonstrate small variations of the same image. In one case, the image
content was identical, but a textual description was added in the metadata of one image,
changing the SHA256 hash of the file. Both equivalence classes of size three contained
variations of the same base image (i.e. all six images were nearly identical, but produced
two distance sets of Huffman tables), with very small annotation differences. Another
example of almost identical images is provided in Figure 3.18, where an arrow changing
place is the only difference in the content.

When combining both datasets into one corpus of over 1.1 million images, no new
equivalence classes were found. This confirms that Huffman tables are very distinct when
JPEGs are optimised for their content.

3.5.4 Lookup Performance Evaluation

Optimised Huffman tables are distinct at the million image scale, while providing some
tolerance for image content modifications. Data reduction is effected by reading only the
image header, ideally resulting in faster processing times for optimised images. What
follows in this section is an analysis of the potential performance increases of this approach
on datasets with relatively small files.

Typical Start of Scan Marker Offsets

Statistics for the position of the Start of Scan marker are depicted in Table 3.12 for all
three JPEG datasets, with a visual representation for Flickr and unmodified Govdocs in
Figure 3.19. As the SOS marker appears after the Huffman tables, the data shows that
very few 4096 byte media blocks are required to read those Huffman tables. In the case of
the Flickr dataset, a single block read suffices for 96.6% of the dataset, with three blocks
being sufficient for 99.6% of images. The figures are slightly higher for the Govdocs
corpus, which contains more metadata, where nine blocks are required to acquire 99% of
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Fig. 3.18 Example matching Huffman tables from the optimised Govdocs dataset. Borders
around images added for emphasis. The only difference between the images is the
placement of the arrow.

Huffman tables. In both cases, the distribution is long tailed, with the majority of images
requiring a single block.

Using mean values for marker offsets and file lengths, 1.6% of the file must be read on
average to acquire the SOS marker in the Flickr 1 Million dataset, while both Govdocs
datasets require 1.2% of the file to be processed. However, when considering that 4096
bytes may be the minimum transfer size on modern storage media, the figure for the Flickr
dataset rises to 3.2%, while Govdocs remains all but unchanged. Using Huffman based
sub-file signatures, a small fraction of the file is all that is required to be read, as opposed
to the entire file for traditional hashing.

Number of Codes and Table Lengths

The maximum number of DCT byte codes possible in the baseline JPEG format is 348
(12 per DC, 162 per AC table). However, the maximum number of codes observed for an
optimised JPEG in this work was 277, suggesting that the number of codes may be used
as a heuristic to distinguish between optimised and pre-defined tables. However, as can
be seen in Figure 3.20, not all pre-defined tables use all codes. The spikes in the bottom
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Dataset Percentile (B) Mean (B)
50 75 95 99 99.9

Flickr 1 Million 973 3560 3599 9060 28866 2054
Govdocs 623 4181 23926 36128 51658 4205
Govdocs Optimised 417 3972 23863 36205 51426 4080

Table 3.12 Start of Scan offsets in bytes for all datasets.

Fig. 3.19 Log-log distribution of Start of Scan offsets for Flickr 1 Million and unmodified
Govdocs. Optimised Govdocs is almost identical to the original, and is therefore omitted.

graph of Figure 3.20, at 174 and 249 codes, are caused by images produced by Adobe
Photoshop’s ‘save for web’ settings, which optimise entropy encoding using alternative
mechanisms. However, based on this data, images with less than 300 codes are very likely
to make use of optimised JPEGs.

Ignoring Huffman table markers, the length of the Huffman table may be calculated
by summing the number of entries in the value and length vectors for each table. The
maximum possible number of codes is 348 for baseline JPEGs, plus 16 bytes of marker
and metadata for each of the four Huffman tables (64 bytes), for a total of 412 bytes.15

15However, if the baseline JPEG uses greyscale colour, it only requires a single DC and AC table
(luminance only), for a total of 206 bytes.
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Fig. 3.20 Distributions for the number of DCT codes in each dataset. Flikr 1 Million the
top, Optimised Govdocs in the middle, and unmodified Govdocs at the bottom.

The maximum length found for an optimised JPEG in this work is 300 bytes, with a mean
of 191 bytes for the Flickr dataset.

Using this observation, it is possible to identify images with a high degree of certainty
which use unoptimised tables. Additionally, this table length information indicates the
number of bytes which are required to be stored for JPEG Huffman signatures. To
reduce storage, these signatures themselves could be hashed using a cryptographic hashing
mechanism with fixed length digests.

3.5.5 Timed Benchmarks

Benchmarks compare the Huffman sub-file method against traditional full file hashing
using the SHA256 algorithm. Benchmark times correspond to the duration for extracting
signatures from a list of files, without storing the signatures or performing database
lookups. The time to enumerate files on the disk is also not included in the total. As
PNG benchmarks explored the performance characteristics of accessing files in different
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orderings, only the normal file order provided by Python’s os.listdir function was used
in these benchmarks. In order to assess the IO costs of accessing small pieces of the file
from the storage media, an additional benchmark was performed which read the first 4KiB
of each file without any processing, to act as a minimal disk baseline.

The same two computers as the PNG benchmarks in Section 3.4.4 were used to
evaluate performance: i) a workstation - i5-4690k, 16GiB DDR3 RAM, Western Digital
Red 4TB HDD, Crucial MX300 525GB SSD, and ii) laptop - i7-5500U, 8GiB DDR3 RAM,
Samsung 840 EVO 500GB SSD (OS). Storage benchmarks are provided in Appendix B.1.
Again, several multi-threading options were used. Testing was limited to the Flickr
1 Million dataset, as this is both the largest dataset, and the worst case performance
scenario (with the mean file size being 1/3 that of Govdocs, such that the header is a larger
proportion of the file). Benchmarks were carried out on Ubuntu 15.04 64bit, with memory
caches being cleared between runs.16 Benchmarks were run automatically in sequence
using a script, similar to those in Appendix C.1. As caches were cleared between runs,
and background processing controlled for, there should be no bias between iterations.A
C++ application was compiled in g++ (version 4.8.4) using Boost 1.55 for thread pools,
libjpeg62 for JPEG parsing, and OpenSSL for cryptographic hashing (SHA256). Files
were copied to the test drives sequentially, with no fragmentation, in OS order. Volumes
were then mounted read only for benchmarking.

A summary of timed benchmark results and improvement factors is depicted in
Figure 3.21, with a breakdown of more detailed results thereafter.

HDD Performance
The Huffman based sub-file method saw no improvement when analysing Flickr 1

Million on the HDD. This can be attributed to the small file sizes of this dataset, as
discussed in Section 3.3.1. These file sizes are perhaps less than 1/8th of the size we
can expect from a relatively modern camera. As the small block (random 4KiB) read
performance of mechanical media is very low, this leads to processing which is no faster
than sequentially reading the entire file in this dataset. However, performance gains can
be expected on larger files, as suggested by the PNG benchmarks on slightly larger files in
Section 3.4.4.

Another key property of sub-file approaches is that they appear to have mixed results
when making use of highly threaded approaches on hard disk drives. Adding small
numbers of threads can either slightly improve or degrade performance, while high thread
counts of 16+ generate too many non-sequential requests for efficient HDD access. This
is also the case for the full-file hashing approach, as well as the sub-file PNG approach
(see Figure 3.8). However this is not surprising, as the most efficient method for reading a

16Again using the command: sudo sh -c ‘echo 3 > /proc/sys/vm/drop_caches’
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Fig. 3.21 Summary of benchmark results for the Sub-file Huffman approach, Full File
Hash (Fullhash), and First 4KiB file reads for different configurations. Normal file ordering
was used in all cases.

hard disk is a single sequential pass, as noted in the literature on digital forensics triage
(Section 2.2).

SSD Performance: NTFS and EXT4 (Linux)
Once again, substantial performance gains were seen when utilising solid state media,
which are better suited to random access patterns. Figure 3.22 show results for Huffman
signature extraction and full file hashing. Results are compared across both the EXT4
and NTFS file systems on Linux to better control for background processing and keep
the experiment consistent. However, as previously noted in the PNG experiments, the
ntfs-3g driver introduces overheads, which allows for the exploration of the impact of
slower file systems on the sub-file approach, even if it is artificial in this case.

Both file systems scale well to two threads, however NTFS performance appears
to plateau at this stage, while the EXT4 file system performance improves even up to
32 threads. When comparing Huffman signature extraction to full file hashing on the
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Fig. 3.22 Comparison of the relative performance of Huffman and Hash signature extrac-
tion to reading the first 4K file block, across the EXT4 and NTFS file systems. EXT4
performance is close to using raw LBA block addresses.

Fig. 3.23 Comparison of the relative performance of Huffman and Hash signature extrac-
tion to reading the first 4K file block, across two computers. The Laptop SSD possesses
better random 4K Read performance and higher IOPS.
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workstation, a speed increase of 2.5× was achieved on NTFS, and up to 5.7× on EXT4.
EXT4 producing better overall performance is consistent with the results of benchmarking
the PNG sub-file approach, as depicted in Figure 3.12.

As both the JPEG Huffman and PNG sub-file approaches only require a single 4KiB
disk block for most files, their performance should be roughly equivalent. However, the
mean file size of Flickr 1 Million is approximately 1/10th of the size of the Govdocs PNG
dataset, with the median file being roughly 1/3rd of the size. Despite this, reasonable
performance gains are still possible with the sub-file approach on SSDs. As the file size
decreases, more emphasis is placed on disk and file system overheads, which appear to
make a significant difference for both small and large files alike.

To explore the best-case performance of the sub-file Huffman approach, the First
4KiB of each file was read, without further processing. This allowed the Huffman marker
parsing and infrequently large file headers, to be ruled out as a bottleneck. This data is also
included in Figure 3.22. For both file systems, Huffman extraction performance mirrored
4KiB file read performance very closely, typically with less than 10% additional overhead.
This suggests that Huffman signature extraction is close to the theoretic limits of fractional
file access via the file system, with additional costs taking the form of additional block
reads when the header stretches more than a single 4KiB disk block.

Disk and File System Overheads
The relatively poor performance of NTFS could be attributed to overhead within the file
system, which does not scale well with many concurrent accesses. As this experiment
was conducted on Linux, a verification run was completed on Windows to rule out the
Linux ntfs-3g driver as a bottleneck. On Windows, better performance was achieved on
NTFS for both sub-file hashing and full file hashing, particularly when the thread count
was higher than two. However, these results are accurate for the benchmarks conducted
on the Linux platform, and the PNG benchmarks in Section 3.4.4 show a performance
difference in favour of EXT4, despite running the NTFS benchmarks on Windows 10.

File system overheads were explored by obtaining the logical block addresses (LBA)
for each file and running the experiment with physical addresses, rather than looking
up each file in the file system. When the initial pre-processing was not included in the
recorded time, benchmark times using the LBA addresses performed nearly identically
to those of EXT4. This suggests that EXT4 has minimal overhead for file access when
compared with NTFS on Linux, but also that pre-processing the NTFS Master File
Table ($MFT) can alleviate driver performance overheads, at the cost of upfront initial
processing.

When a storage device with higher random 4KiB read performance is used, the relative
performance of Huffman extraction to full file hashing also improves. This is depicted in
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Figure 3.23, which compares the same signature generation techniques and 4KiB reads
across both the workstation and laptop machines. The laptop SSD has higher small
block throughput with low queue depths (40.74 MB/s on Laptop vs. 28.60 MB/s on
the workstation), which is of benefit to the sub-file approach despite the less performant
CPU. This difference is particularly evident when comparing the Huffman and 4KiB
read performance in Figure 3.23, with 37% improved performance on the laptop, for an
improvement of 3× over full file hashing.

Partial file access performance with HDDs are dominated by seek time, with transfer
time being less of a factor. However as file sizes increase the relative performance would
be expected to improve, both for mechanical media and solid state devices. SSDs have
much smaller effective seek times, and thus the proposed technique holds significantly
more appeal for flash media. In modern systems flash media are becoming increasingly
common, particularly in the laptop arena, in addition to already dominating the mobile
device market. The observation that partial file access scales well on this type of media
opens the door for flash storage optimised approaches to digital forensics, which may well
be the dominant storage technology for personal computers in the near future.

3.5.6 Confirmation Hashing

Device Threads
Sub-file
Time (s)

Hit Rate
(% Contraband)

Fullhash
Time (s)

1% 10% 33%

Workstation
NTFS HDD

8 1227.0
1266.9
(3.1×)

1626.0
(2.5×)

2555.8
(1.6×)

3990.3

Workstation
NTFS SSD

8 278.3
285.3
(2.4×)

347.6
(2.0×)

590.0
(1.4×)

692.7

Laptop
NTFS SSD

8 203.8
209.8
(2.9×)

264.2
(2.3×)

405.0
(1.5×)

604.3

Workstation
EXT4 SSD

8 59.8
62.6

(4.6×)
88.3

(3.2×)
154.7
(1.8×)

285.3

Table 3.13 Fullhash confirmation impact on the Huffman sub-file approach. 1%, 10% and
33% of corpus assumed to generate a positive hit, respectively. Calculated by adding the
appropriate percentage of Fullhash time to the Sub-file approach, and therefore ignores
the benefits of caching. Relative improvement factors in brackets.
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From the evaluation of discriminating power in Section 3.5.3, optimised Huffman
tables were shown to be highly discriminative, and essentially unique at the million image
scale. In cases where images produced the Huffman table, in every case it was because
images were almost identical, such that no image was a true false positive. This provides
greater discriminating power than the PNG signatures in Section 3.4, which would produce
roughly 1900 false positives at the million image scale on a homogeneous dataset.

The results of this experiment suggest that it is not necessary to perform follow-up
confirmation hashing for Huffman signatures, as they are highly accurate and also allow
for minor image modifications. However, figures are provided in Table 3.13 for this
scenario.

On a dataset of such small files, confirming hashes on 1/3rd of the dataset drops the
benefit of Huffman signatures to 40–80%. However, as the Huffman based approach has
similar characteristics to the sub-file PNG approach, the relative benefit of this approach
should increase with file size, even when performing confirmation hashing.

3.5.7 Outcome

The main contribution of this section is an inexpensive method for creating signatures of
JPEG files. Huffman tables are present in the header of every JPEG, with the signature
generation method in this work exploiting Huffman tables which have been optimised
for maximal compression, which is an increasingly common encoding technique used
on the Web. An analysis of the distinctness of such signatures is provided, as well as an
examination of the portion of the file which must be processed to extract them. Finally,
the method is evaluated with timed benchmarks comparing the extraction process to a
traditional hashing method.

Similar to the PNG sub-file signatures in Section 3.4, Huffman based signatures can
be acquired in most cases by reading a single 4KiB disk block, requiring 1–3% of the file
even on the small file sizes of the Flickr 1 Million dataset. These signatures only produced
matching Huffman tables for nearly identical images at the million image scale, and as
such provide a robust mechanism for identifying contraband images.

While the small file sizes rendered no performance increase on the HDD, SSD perfor-
mance was 2.5–3× that of full file hashing on NTFS, reaching 5.7× on EXT4, despite the
very small files sizes. As this method is again bound to random 4KiB disk performance
and file system lookup performance, it is expected that the approach will perform better
on future storage technologies. Additionally, increasing file sizes will see a correspond-
ing performance increase in-line with the PNG sub-file approach, as they both process
approximately the same amount of data with little CPU overhead.
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3.6 Sub-file Signatures in Practice

Sub-file signatures appear to be capable of high levels of discrimination and perfor-
mance, even on very small file sizes. The remainder of this chapter further discusses the
implications and characteristics of file type specific sub-file signatures.

3.6.1 Extending to Additional File Types

Both sub-file approaches in this chapter are used to show that file specific sub-file ap-
proaches, which utilise the structure of that file type, have potential. It was not feasible to
develop an approach for all file types, however, there are essentially two main strategies
which arose from the work in this chapter.

The first, used for the PNG signatures, is to extract discriminating power from features
of the file type which are always, or commonly, present. Ideally the modification of
these features should result in the content of the file being changed in some way, either at
the rendering, or compression, stage. This provides a degree of robustness to arbitrary,
content-preserving, metadata manipulation. Using this approach, even if the file format
does not contain an appropriate number of high entropy, highly discriminating features, a
reliable signature may still be extracted from the combination of these common pieces of
information.

The second approach, used for the JPEG Huffman signatures, is to identify a potential
high entropy source of information within the file type, which is somehow related to the
content of the file. Ideally, this should be something which can be construed as a coarse
representation of the file content. Optimised Huffman tables serve this role, as they are
calculated based on image statistics. Other sources of such high entropy data include low
resolution scans of the image (such as in progressive JPEG), compression dictionaries and
colour maps. If a file type possesses one of these high entropy sources in the file header,
then it may be possible to use it as a single discriminating feature for signature generation.
This approach also has the benefit of being somewhat sensitive to content manipulation in
the body of the file, rather than the header.

When extending the sub-file approach to other file types, the process should ideally start
with the latter signature generation technique, making use of coarse content representations.
Relating the signature to the content of the file in some way provides a level of assurance
which is not necessarily implied by a combination of low entropy features. However, as
most media files of forensic interest will be compressed in some way, the likelihood of
there being a significant number of compression domain features to use is reasonably
high. When applied to larger media, such as video files, the amount of data to be read
can increase significantly, while still remaining a small percentage of a typical file. In
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this case, both header data and a number of data blocks may be used to generate the
signature, while still providing substantial performance gains. For example, features may
be derived from early keyframes in the video, or the motion vectors included in the MPEG
specification [127]. This thesis was scoped to focus on image forensics, and as such an
approach for video files, or other MIME types17 such as audio, was not developed. It is
likely that an appropriate approach for larger media files may have to look at encoding
information throughout the entire file, processing it as a stream, rather than simply looking
at the file header. The reason for this is that as the file gets larger, the header and early
data becomes less representative of the overall content of the file, which may result in
lower accuracy for files which are not binary duplicates. This would require a slightly
different approach to that taken in this thesis.

While optimised Huffman tables are currently not used in every modern JPEG, the
move to optimise images in this way is an indicator that JPEG compression is no longer
sufficient. The standard is decades old and lacks support for modern features, such as high
bit depth, HDR, and alpha channels. JPEG compression also results in larger file sizes than
necessary, with blocky artefacts and reduced fidelity. Indeed, the Apple iPhone switched
to a newer image standard, High Efficiency Image Format (HEIF) [128], to combat
the growing footprint of high resolution images on mobile devices. The compression
employed by these new standards offers an opportunity to extract signatures from features
which are key components of the file type. For instance, JPEG 2000 [123] makes use of
multiple resolutions, which can be used to extract thumbnail style representations from the
beginning of the file. Other formats, such as HEIF, make use of intra-coding techniques
originally developed for video codecs, relying heavily on prediction. In these cases, as
with PNG, there may not be a representation of the full content at the beginning of the
file, but low cost signatures may be extracted from prediction features, though this may be
more useful for semantic hashing schemes than data reduction approaches.

A final concern is the mechanism for comparing signatures. To prevent computational
complexity, features comparison should ideally be based on hashable feature vectors or
strings, as this allows for O(1) lookups in a hash table. If the similarity of features is
instead required, then solutions such as bloom filter comparisons may be appropriate, as
with the hash comparisons made by sdhash [38].

3.6.2 Discriminating Power and File Features

The level of discrimination achieved by a sub-file signature derived from file format
features cannot be generalised from this work, and is entirely dependant on what elements

17https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_
types

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
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are present in a given file type. The approach taken for PNGs shows that a handful of
features may be combined to produce highly discriminative signatures (Figure 3.7), and
that small portions of scan data are also a powerful feature (Figure 3.6). However, the
discrimination performance for PNG is not sufficient for standalone deployment on very
large image sets, and would generate 20,000 false positives for every 10 million images.
The cost of increasing the uniqueness of the signature here, is to read more scan data, or
to derive features from non-critical parts of the file, which are not related to the content of
the image. This would then reduce the robustness of the approach to arbitrary metadata
manipulations which do not change how the image is rendered. If the use case is simply a
faster method for detecting binary level duplicates, then the PNG approach can likely be
extended for greater accuracy by reading more pixel scan data, or including additional
metadata features. However, if arbitrary, content preserving, metadata changes can trivially
break such approaches, perhaps the forensics community should aim higher, targeting a
minimum level of robustness against small-scale, arbitrary, manipulations.

The work on JPEG demonstrates that certain compression metadata may be enough
to uniquely identify a given image in a dataset of millions of images (Figure 3.9), while
also providing resistance to EXIF metadata modification, or small content manipulations
(Figure 3.17). However, optimised Huffman tables are not the default for every JPEG
and cannot be used without pre-processing on many existing images. When focusing
purely on obtaining fast results, this additional processing may negate the benefit of the
approach, as the entire JPEG would have to be read to generate the optimised table, at
which point traditional cryptographic hashes could be used for the same IO cost. However,
optimised Huffman tables are still useful when the IO overhead is less of a concern
and an inexpensive signature is required which is tolerant of small scale manipulations.
Unfortunately, as this is a feature derived from image statistics, it will not detect images
which use different encoding parameters, such as a different quality level (quantization
mask scaling), as the DC codes generated for the Huffman table will have different
distributions. In this sense, the approach is brittle to a particular kind of content-preserving
manipulation.

Ultimately, signatures generated using either approach on other file types will have
to make trade-offs in terms of discriminative power, performance, and robustness. If
the criteria for such signatures can be formalised, it is likely that a conforming sub-file
signature can be generated for most file types. The hierarchical processing deployed
in spam detection is another reason to be optimistic about this general approach. If the
signature is only intended to filter images, rather than identify them, then an accuracy
of 90% is viable, as long as there is a substantial overall performance benefit when
verification stages are taken into account.
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3.6.3 Data Reduction and Storage Technologies

Theoretically a data reduction of 100-fold should net a corresponding performance in-
crease. However, this is never going to be the case in practice, both due to limitations of
physical processing, and overheads introduced by storage media and file systems. This
was evident for benchmarks in both the PNG and JPEG approaches, where the relative
performance benefit was much greater on solid state media. The minimum file access
overheads are significant, and reduce the benefits of accessing a tiny fraction of file data.
This may be described by a cost model for each file transaction:

TransactionCost = Index_Overhead +Storage_Overhead +Data_Trans f er_Cost
(3.1)

For large files, the cost of transferring an entire file should overwhelm the cost of
looking it up in the file system (index), as well as any storage overheads associated with
locating the disk blocks in question, and moving read heads, if applicable. As the effective
file size decreases, or less data is read from the file, the cost of transferring the data is
proportionally less, such that it may be overwhelmed by the overheads. Indeed, this
coarse model reflects the behaviour of the sub-file benchmarks in this chapter. The relative
sub-file performance increases with file size, as the full file hashing transfer cost becomes
very high, while slower storage media and file system overheads hinder the performance
of sub-file approaches.

Storage_Overhead is a generalisation of many low level storage media behaviours, but
it can be captured well enough by the random 4KiB read performance of a device. This is
because sub-file techniques most commonly only require a single 4KiB disk block, and
match the performance of reading the first 4KiB of each file closely. As random 4KiB
performance increases relative to sequential throughput, the relative benefit of reading
fractional files increases. This is evident from both the differences between HDD and
SSD performance, and the improved relative performance of the laptop SSD over the
workstation SSD.

Table 3.14 depicts the effective throughput of the sub-file and fullhash methods across
each of the benchmarked machines and datasets. The effective sub-file throughput for
NTFS on SSDs is lower than the disk benchmarks with a request queue depth of one,
achieving roughly 6% of the maximal 4KiB throughput for the device. EXT4 SSD
benchmarks for the workstation show a significant improvement when the file system
overhead is reduced, achieving 25–40% of the maximum 4KiB throughput. Full file
hashing also suffers a penalty on NTFS, achieving 40–60% of the maximum sequential
throughput on the device, as opposed to 85% on EXT4. It is also clear that file size



CHAPTER 3. FILE TYPE SPECIFIC SUB-FILE SIGNATURES 77

Maximal Effective Read Speed (MiB/s)

Device Approach Effective Raw Disk Benchmark Effective
% of Max

Q1 Q32

Workstation
NTFS HDD

Sub-file JPEG 3.6
0.56 1.9

189.5%
Sub-file PNG 0.8 42.1%

Fullhash JPEG 110.2
128 128

86.1%
Fullhash PNG 91.9 71.8%

Workstation
SSD NTFS

Sub-file JPEG 14.5
38.8 226.6

6.4%
Sub-file PNG 13.8 6.1%

Fullhash JPEG 199.8
496.9 524.6

38.1%
Fullhash PNG 416.6 79.4%

Workstation
SSD EXT4

Sub-file JPEG 87.1
38.8 226.6

38.4%
Sub-file PNG 58.3 25.7%

Fullhash JPEG 448.9
496.9 524.6

85.6%
Fullhash PNG 457.2 87.2%

Laptop
SSD NTFS

Sub-file JPEG 20.1
27.3 254

7.9%
Sub-file PNG 15.6 6.1%

Fullhash JPEG 212.7
412.6 509.4

41.8%
Fullhash PNG 329.3 64.6%

Table 3.14 The effective read speeds of the benchmarked approaches compared with
device benchmarks. The sub-file total data is estimated at 4KiB per file, while fullhash
uses the entire size of the dataset. Q1 and Q32 represent device request queue depths of 1
and 32, respectively.

impacts effective file system overheads, with the larger PNG files resulting in much higher
sequential throughput than for JPEGs. On the hard disk, the cost of the file system is much
less pronounced due to the slow mechanical read heads. Additionally, larger file size is
actually detrimental here to relative throughput performance, possibly because a single
buffered read on the mechanical media can capture more than a single file when they are
very small.

With these observations it is possible to speculate about how these sub-file techniques
would perform on more advanced storage technologies in the future, given that they
provide a performance benefit over full file hashing even when using a small fraction
of the theoretical 4KiB throughput. By comparing the ratio of random 4KiB (queue
depth 1 (Q1)) performance to sequential throughput (queue depth 32 (Q32)), it should be
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possible to determine a worst-case performance scenario for the sub-file approach. On the
workstation SSD, Q1 4KiB throughput is approximately 7% of the maximal sequential
throughput. Benchmarks of more recent SSDs using the M.2 connector and the NVMe
protocol [129] show roughly a 5% for the sustained 4KiB throughput as a percentage of
contiguous sequential read speeds.18 In this case, we may expect sub-file techniques on
the NVMe device to perform slightly worse, as it seems the ratio is slightly less favourable.
However, the NVMe protocol was designed as a NAND flash replacement for the SATA
protocol, and as a result, has fewer overheads. This increase in efficiency may effectively
reduce the Storage_Overhead, and result in a net performance gain, despite the worse
ratio. A completely different scenario is given by a drive which makes use of the Intel
Optane technology19 [129]. In this case, the random 4KiB throughput is 31% of the
maximum sequential throughput, suggesting that sub-file performance on this device
could overwhelmingly outperform full file hashing at any file size.

The benchmark in this work makes use of small files, but also operates on unfrag-
mented, sequential files. We can therefore expect full file hashing to be a strong baseline,
as contiguous data benefits full file hashing, and small files are to the relative detriment of
sub-file approaches. Given that sub-file methods perform better than this baseline, with
this low overall disk utilisation, file system overhead, it is likely that real world perfor-
mance will outshine the benchmarks in this chapter. Indeed, the fragmented sequential
throughput of NAND SSDs is significantly lower than for contigous data, though the Intel
Optane technology appears unaffected [129].

There are many factors which affect the performance of the sub-file technique, with
nuances which are not captured by Equation 3.1. However, it is clear that the focus of
future storage technologies is not magnetic media, and such devices may offer a better
performance trade-off than current technologies. Additionally, file system overheads may
be reduced in the future as operating systems and file systems optimise for non-mechanical
media.

3.6.4 Applicability to Networked Device Contraband Detection

Both of the PNG and JPEG sub-file signatures discussed in this chapter process a stream of
data looking for particular markers. When the markers are found, only a small amount of
data needs to be collected before the signature can be generated. As such, both techniques
may be used to detect contraband on a network data stream, where the data can be observed
until the appropriate file markers are discovered. If there is too much data to be processed,

18Samsung 960 Pro 512GB, 114 MiB/s sustained 4KiB, vs. 2226 MiB/s sustained sequential.
19ADATA XPG SX8200 240GB, 661 MiB/s and 2125 MiB/s for sustained 4KiB and sequential throughput,

respectively.)
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the stream can be sampled for the appropriate markers, triggering the collection of the
data stream for a brief period. Assuming packets order can be reconstructed, it should
be simple to extract the necessary features for signature creation This process avoids the
relatively expensive process of hashing data blocks from the entire stream, with effective
data reduction around two orders of magnitude.

When detecting contraband on a remote device [130], this approach allows for a small
subset of the data to be sent across the network, in cases where forensics processing cannot
be carried out directly on the remote device. However, as these sub-file approaches are
stream based, this will involve many small data requests/seeks across the network when
traversing the file. This is particularly problematic when carrying out an investigation
across the Internet, as large packet round trip times introduce a substantial overhead. This
scenario is explored in more detail for the generic sub-file approach in Section 4.5.

3.6.5 Digital Forensics Processes

Sub-file techniques offer significant speed improvements when processing a device for
contraband. In a digital investigation, this reduction in processing time would be best
utilised in the triage stage of an investigation, where fast results are critical (see discussion
in Section 2.2). Sub-file approaches operate at the logical file level, rather than the physical
disk level, and therefore requires the file system to be mounted. This means that random
disk block sampling approaches, working at the physical level, are not directly compatible
with sub-file methods. However, the file system level data reduction used by Grier and
Richard [43] would be a good counterpart for this approach, for two reasons: i) Data
subsetting in Grier and Richard is achieved by applying heuristics after parsing file system
metadata. This results in a set of logical files, which can then be immediately processed
using the appropriate sub-file approach. ii) Since the file system metadata is parsed in order
to subset files on the disk, LBA addresses for files can be extracted for little additional cost
while the heuristics are applied. This would allow files to be accessed without excessive
file system overheads, and can achieve performance akin to EXT4 on NTFS partitions,
regardless of operating system.20 While the sub-file approaches described in this chapter
could process all relevant files on a disk, this would mean that many innocuous files would
also be processed, such as application icons and other images built into the operating
system or mundane applications. By applying this approach to the subset of data most
likely to be relevant, both approaches can work in tandem to generate rapid results. The
combination of techniques also has the benefit of being applicable to a live system, write
blocked disk, or forensic image.

20Based on benchmarks carried out for Section 3.5.4
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Whether used for triage, or to speed up a full forensic analysis on a disk image,
confirmation hashing may be employed if the sub-file signature is not deemed accurate
enough. In this case it would be recommended to carry out confirmation hashes, or
other verification steps, after all relevant files have been processed. This allows for the
best compromise between fast results and robustness, allowing the analyst to quickly get
an idea of the state of contraband on the device. Alternatively, experiments could be
conducted to optimise the time to process both sub-file hashes and full file hashes on files
which show positive hits. This could exploit caching technology on disk, as the entire file
does not need to be re-read, or some of the file may already be in the read buffer. The
sub-file portion may also be stored in memory along with a map of the LBA addresses,
such that redundant reads are not performed for the full file hashing stage.

3.7 Conclusions

This chapter explored the possibility of creating robust, and accurate, sub-file signatures
for the forensic detection of contraband media. Two general approaches were taken, with
an implementation for the two most popular image formats on the Web.

The first approach, applied to PNGs, combines a number of low entropy header
features in the file to create a signatures. These signatures were shown to be 99.8%
accurate on a worst-case homogeneous dataset, with false positives being generated by
solid background colours. Even on a dataset of relatively small files, significant speed
improvements were found over traditional full file hashing, particularly on SSDs and
the EXT4 file system. The second approach, applied to the JPEG format, uses coarse
content representations, again found in the file header, to generate signatures which were
essentially unique at the million image scale. An analysis of false positives showed that
they were actually modified versions of the same file, and would therefore still relevant
to an investigation. This approach reads roughly the same amount of data, with similar
performance characteristics to the PNG approach.

Both techniques were evaluated against the contraband signature criteria from Sec-
tion 3.2 throughout the chapter, and have proven to be fit for the task. A particular
property of these approaches is that they are bound to small block disk performance,
and are therefore better suited to NAND flash storage media. This work effectively lays
the foundation for future forensics techniques which take advantage of the properties of
modern non-mechanical media, which may be the key to dealing with forensic backlogs
in the future.



Chapter 4

Generic Sub-file Signatures

4.1 Introduction

The sub-file techniques in Chapter 3 are file type specific, and require an in-depth knowl-
edge of all relevant file types to generate discriminative signatures. In contrast, the work
in this chapter sets out to create sub-file signatures which are file type independent, which
should work equally well on all files without knowledge of their structure. Small pieces of
the file are hashed in lieu of the entire file, with the approach being somewhat similar to
block-based hashing techniques in the literature [29, 44–46]. The work presented here
differs in that the goal is to reduce the amount of data to read from disk, with hashes being
performed at the logical file level, instead of the physical disk level.

Rather than focus on a stream-based approach, which allows for non-essential file
information to be skipped, or treated appropriately, the approach taken in this chapter is
block-based, and simply samples the file from a particular offset. In practice, this can be
achieved by sampling arbitrary blocks in the file, but for the purposes of this work only
the beginning and end of the file was considered. Despite being file type agnostic, datasets
in this chapter contain both JPEG and PNG files, such that the discriminatory power and
generalisability of the technique can be evaluated, as well as providing a variety of file
sizes to work with.

Block-based sub-file generation alleviates some of the overheads and difficulties of
the file-specific approach, as it should generalise to all file types, including those yet to
be adopted. Ideally, as few blocks as necessary should be read from the disk to effect the
same kind of data reduction achieved in Chapter 3, and attain the associated speed benefits.
The work in this chapter is also evaluated in terms of the criteria identified in Section 3.2.

81
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Dataset File
Type No. Files Mean Size Median Size

KiB MiB KiB MiB

Flickr 1 Million JPEG 1000000 124 KiB 0.12 MiB 117 KiB 0.11 MiB
Govdocs PNG PNG 108885 1426 KiB 1.39 MiB 344 KiB 0.34 MiB
Flickr Subset JPEG 25000 118 KiB 0.12 MiB 112 KiB 0.11 MiB
Flickr Subset PNG PNG 25000 295 KiB 0.29 MiB 295 KiB 0.29 MiB
Govdocs Sub. PNG PNG 25000 535 KiB 0.52 MiB 152 KiB 0.15 MiB

Table 4.1 Details of the datasets used in this chapter.
The full Flickr 1 Million and Govdocs PNG datasets are used for the local disk experiments
in Sections 4.3 and 4.4, while 25,000 image subsets were used for the network storage
experiments in Section 4.5.

4.2 Description of Datasets

The local disk experiments in Sections 4.3 and 4.4 make use of the full Flickr 1 Million
and Govdocs PNG datasets discussed in the previous chapter. Section 4.5 explores the
performance of generic sub-file approaches in networked environments, which have
much lower throughput than local storage devices. As such, Section 4.5 makes use of
25,000 image subsets of the Flickr 1 Million and Govdocs PNG datasets in order to
make experiment run time manageable, and to save on cloud storage costs. Details of
the datasets are provided in Table 4.1. No modifications in the binary or pixel domain
were made to the images, with the exception of converting Flickr images to PNG for one
of the subsets. Subsets were chosen to create three distinct datasets with increasing file
sizes to demonstrate file size scaling performance of sub-file approaches in networked
environments.

The first subset, Flickr Subset, is composed of the first 25,000 Flickr 1 Million images
in numerical file order (0.jpg, 1.jpg, 2.jpg .. 24999.jpg), and is 2.81 GiB total. No
modification was made to these files. The second subset, Flickr Subset PNG, is the
same 25,000 images converted to PNG to increase their file size, totalling 7.04 GiB total.
Once again, the Python Pillow library [116] was used for conversion to the PNG format.
The final collection is the first 25,000 images of the Govdocs PNG dataset, as listed by
Python’s os.listdir function, and is the largest subset at 12.7 GiB. Further details are
provided in Appendix A.2. The same file size considerations apply from Section 3.3.1, as
all datasets possess a median file size under 350 KiB, with the mean file size of all subsets
under 550 KiB.
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4.3 Generating block-based Sub-File Signatures

Signature generation in Chapter 3 essentially focuses on identifying potential sources of
entropy in a given file type. In contrast, the approach taken here is to develop strategies for
hashing small pieces of a file to generate a unique hash digest for that file. This technique
was previously touched on during the analysis of PNG small block hashes in Section 3.4.3.
What follows is a more in-depth examination of a variety of sub-file hashing strategies.
The work in this Section, and Section 4.4, has been published at the IEEE Cyber Security
2018 Conference [3]. Supplementary materials are found in Appendix E.

4.3.1 Sub-file Hashing Strategies

Three distinct sub-file approaches were used in this work, with the generalised form
containing a parameter, n, indicating the number of bytes constituting a read block. This
data is then hashed using the SHA256 algorithm to produce a file signature.

First n: Read n bytes from the beginning of the file. This was exemplified by 4KiB and
80KiB for n in this section.. 4KiB was chosen as it represents the fastest possible
sub-file hash, corresponding to the smallest read unit on contemporary storage drives
for both solid-state and mechanical media. It is also a reasonable approximation for
the performance of prior sub-file signature generation schemes in Chapter 3. The
higher boundary of 80KiB (20×4KiB data blocks) corresponds to approximately
2/3 of the mean file size of images in the Flickr 1 Million dataset, and is chosen to
represent the largest chunk of a file which could still be considered to be ‘sub-file’
for most images. These read blocks are always expected to be byte aligned with
modern hard disk sectors and SSD pages, which are 4096 bytes.

Last n: Read n bytes from the end of the file, exemplified by 4KiB and 12KiB for n in
this section. The former value is chosen to maximise speed, while the latter was
chosen to highlight the performance trade-off when the size is increased slightly
by one or more disk blocks. These read blocks are not expected to align with
disk sectors or SSD pages often (1/4096 of the time), and in practice two or four
sectors/pages, respectively, would be accessed by the underlying storage media.

First n+Last n: Read n bytes from both the start and the end of the file, resulting in
a total of 2n bytes being read from disk. This technique is used both as a method
to potentially improve discriminative power, but also to highlight block retrieval
performance characteristics of non-contiguous data blocks. n is 4KiB in this work,
and was chosen to represent the most effective performance/discrimination trade-off.
This results in 8KiB of data to hash, and often three disk sectors/SSD pages to be
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accessed by the storage media.21 This strategy is abbreviated to First+Last n for the
remainder of this thesis.

Prior work on block-based hashing [29, 44–46] operates at the physical level, which
requires that file-disk block alignment be accounted for. This is important as different
devices may use different block sizes, with 512 bytes being the traditional hard drive sector
size, though hard drives since 2011 have transitioned to the Advanced Format, which
makes use of 4KiB (4096 byte)22sectors (with legacy 512-byte block emulation) [131].
The block hashing strategies described above operate at the logical file level, and therefore
it is not important if hashed data falls on particular disk block boundaries, except when
considering the performance characteristics of the approach. While the First n approach
should be block aligned, and therefore generate the same block hashes as prior work, Last
n is not expected to be block aligned, and produces different block hashes. The difference
in what data is hashed is depicted in Figure 4.1.

It should also be noted that the robustness of the above sub-file hashing strategies
and prior block-based hashes differs. In prior work, adding a single byte to a file would
shift the alignment of data in all blocks, changing all subsequent block hashes for the file.
In contrast, the sub-file strategies are only affected when the hashed data is modified in
some way, as absolute disk alignment is ignored. Additionally, slack data at the end of
the disk block which is not marked as part of the file in the file system will also not be
included in the sub-file hash, though arbitrary data which is appended logically will still
be included. This means that while non-essential data may be considered in the sub-file
hash, the signature is still more robust than traditional full file and block-based hashing
approaches. By using cryptographic hash digests directly, signatures are also fixed length,
and can take advantage of constant time, O(1), lookups.

Avoiding Reading from the Middle of a File - Offset shifting

An important omission above is that none of the strategies sample from an arbitrary point
in the middle of the file - where middle is defined as some point which does not overlap
with the beginning or end of the file. Whether picking an offset within the logical file,
or on a physical disk, it is trivial to modify the content of the offset by prepending data
prior to the offset, shifting all of the data along by however many bytes were added. This
means that simply adding in some EXIF data to an image file, or adding a single null byte
somewhere in the header, would mean that strategies based on sampling from a particular

21Always one block for First 4KiB, and one or two blocks for Last 4KiB
22Some non-consumer SAS drives may make use of wider "4kn" sector sizes, which includes 4112, 4160,

and 4224 byte sectors. These larger sectors will provide additional space for error correcting code, but do
not appear to be used in consumer hardware.
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Fig. 4.1 Hashed data comparison of sub-file Last 4KiB and traditional block hashing.
Each outer rectangle represents a disk block (HDD sector, SSD page). The last 4KiB
hashes the last logical 4KiB of file data, while physical level block hashing ignores the
End of File (EOF) and hashes the entire physical block, including any slack space.

offset would be defeated. As the goal of the above sub-file approaches is to be fast, but
also mitigate small, arbitrary changes, this would be unacceptable.

The Last n approach avoids the offset problem by calculating the offset to be read
from the end of the file, such that adding data prior to this point will have no effect on the
hashed data. While this approach could be used for hashing locations in the middle of a
file, these offsets could be shifted in the other direction by adding arbitrary data after the
proposed offset, rather than before it, resulting in the same problem. Of course, the Last n
strategy is not immune to this problem, as adding data to the very end of the file will shift
the intended data, however this means that the appended information has to be in a very
specific place, making it both detectable and arguably less likely.

4.3.2 Evaluation of Discriminating Power

A fundamental property of a file signature is that it is unique when used for file identi-
fication, or almost unique when employed for filtering schemes. The higher the degree
of discriminating power, the fewer false positives which either have to be verified by
automated or manual means. Table 4.2 shows the number of unique signatures for each
sub-file hashing strategy on each dataset, not including full file hash duplicates (SHA256).
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Number of Unique Signatures

Dataset First 4KiB First 80KiB First+Last
4KiB Last 4KiB

Flickr 1 Million
(no Fullhash
duplicates)

970633
(97.10%)

999349
(99.97%)

999622
(100%)

999622
(100%)

Govdocs PNG 108670
(99.80%)

108824
(99.94%)

108885
(100%)

108885
(100%)

Table 4.2 The number of unique signatures for various sub-file hashing strategies across
both datasets. First 80KiB is included to show that even reading a substantial part of the
beginning of the file does not produce unique values. Duplicate files, as determined by
full file SHA256 digests, are omitted.

Hashing 4KiB of data from the beginning of the file generates discriminative sig-
natures, however, it does not produce unique signatures for either dataset. Indeed, this
method previously proved less effective than hashing 4KiB of compressed pixel data in
Section 3.4.3. Reaching farther into the file, 80KiB of data still does not provide a unique
signature, though it gets close, with over 99.9% unique digests on both datasets. The prob-
lem appears to be twofold: i) Files with large amounts of non-distinct metadata, such as
repeated colour profiles and camera metadata, can cause many images to contain the same,
or very similar header files. As headers may extend hundreds or thousands of kibibytes,
this means that some small block hashes inevitably produce the same digest.23 ii) As
noted for images of the PNG format (Section 3.4.3), solid background or transparency can
produce the exact same signature if the discriminating pixel content is not reached by the
hashed block.

For these reasons, the First n strategy is not effective for producing unique signatures,
though it may be adequate in some environments where homogeneous file headers are not
a concern. Instead, this approach should be seen as a performance baseline when using a
block size of 4KiB, as it was employed during the overhead evaluations in the previous
chapter.

In contrast, reading as few as 4KiB from the end of the file generated unique signatures
for both datasets, precluding the need to process larger blocks from the end of the file.
The explanation for the difference in performance between reading from the start and
end of the file can be found in the nature of compressed file structures. Compressed
files typically put metadata first, followed by the compressed data stream, which may be

23As Huffman tables typically appear at the end of the header, this is still possible even with optimised
Huffman tables.
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terminated by an end of file marker (as with JPEG’s 0xFFD9). The last 4KiB, then, should
be almost entirely composed of compressed file data. As the very nature of compression is
to increase information density, compressed data streams are typically very high entropy.
This high entropy stream is very unlikely to be produced by unrelated images, resulting in
a highly distinct signature.

While the performance evaluation below, in Section 4.4, sets a minimum of 4KiB for
the value of n, far fewer bytes can be used to generate discriminative signatures in these
datasets. The Last 16 bytes of each file in the Govdocs PNG dataset generated unique
signatures for all but a single pair of images24, while 32 bytes produces unique signatures
for the entire dataset. Unique values for the Flickr dataset were produced when reading
between 1024 and 2048 bytes from the end of the file. This means that, even for one
million images, less than 4KiB of data is required to produce a unique signature at this
scale. However, the remainder of this chapter continues with a minimum size of 4KiB,
setting more than the bare minimum level of accuracy, at the expense of a slight drop in
performance.25

The First+Last 4KiB strategy also generates unique signatures as it contains the Last
4KiB, with the possibility that it may scale better to tens, or hundreds, of millions of files.
For the purposes of performance analysis, the First+Last n technique is included both to
show the effective performance of the technique, but also as a means of highlighting the
behavioural characteristics of retrieving multiple, non-contiguous, data blocks from a file.

As a final sanity check, the Last 4KiB approach was tested on the University of
Southern California’s Videotake dataset [132], which contains 1924 videos, with a mixture
of MP4 and MOV formats. Some files failed to download at the time, resulting in a subset
of 1866 images being tested. All videos which were not full file hash duplicates produced
a unique Last 4KiB signature, which, while limited, shows that the discriminatory power
is not limited to the JPEG and PNG formats.

4.4 Performance on Local Storage Media

In order to evaluate the potential processing speed improvements of each sub-file hashing
strategy, a direct comparison is made with traditional full file hashing using the SHA256
algorithm. Benchmarks were carried out on the same workstation from the evaluations in
Chapter 3 (i5-4690k, 16GiB DDR3 RAM, Western Digital Red 4TB HDD, Crucial MX300
525GB SSD). As before, neither drive hosted the Operating System, and both the NTFS

24897530.png and 919147.png
25Reading 2KiB of each file would result in a single disk block being read 1/2 of the time, while a 4KiB

block will only align with the block boundary 1/4096 of the time, therefore requiring two blocks 4095/4096
of the time.
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and EXT4 file systems were evaluated. The code was written in Python, and executed in
the Python 2.7.12 interpreter on Ubuntu 16.04 LTS. SHA256 hashes were calculated using
Python’s hashlib library, which is implemented in C. Datasets were copied to the drives
sequentially, and file orders were determined by Python’s os.listdir function. Volumes
were mounted with the -ro,noatime flags to prevent modification (see Appendix E.1.1
for full list of flags). In copying files to an empty drive sequentially, and using their
ordering provided by the file system, sequential read performance is maximised. This
ensures a strong baseline performance from full file hashing. Multiple thread counts were
used, experiments were repeated three times and memory caches were cleared between
runs.26 Reported times do not include file enumeration times from os.listdir. Code
snippets are provided in Appendix E.1.

4.4.1 Timed Benchmarks

Sub-file hashing strategies must be appreciably faster than full file hashing to be useful,
and should be effective across different media types and file sizes. Each hashing strategy
was applied to both the Flickr 1 Million and Govdocs PNG datasets. Performance metrics
are provided in Table 4.3 for the Flickr 1 Million dataset, and Table 4.4 for Govdocs
PNG. The left-hand column for each technique indicates the mean total time (seconds) for
processing the dataset, while the right-hand side contains relative performance factors to
full file hashing. The Fullhash technique has no performance factor, as it would simply be
compared to itself.

The First 80KiB strategy was omitted as it has little to gain over reading the First
4KiB of the file, while 12KiB of data from the end of the file was tested to determine
the impact of additional small data blocks on the most promising technique. Hard disk
data is provided only for NTFS runs with a single thread, as multiple threads decrease
performance in some cases, and sequential access is critical to maximal throughput on
hard disks.

Several factors affecting the performance of techniques in Chapter 3 are used to aid in
the evaluation of these sub-file hashing strategies, below.

Drive Type

Shadowing the results of Chapter 3, the drive type, and its small block, random 4KiB,
read performance are the most important performance factors. Disk overhead properties
are essentially the same whether reading from the start or end of a file. On the HDD, these
overheads overwhelm the data transfer costs (previously discussed in Section 3.6.3), such

26Again using the command: sudo sh -c ‘echo 3 > /proc/sys/vm/drop_caches’
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Sub-file Benchmarks: Flickr 1 Million
Mean hash Time (s) and Relative Performance Factor to Fullhash

FS /
Drive Threads First 4KiB First+Last 4KiB Last 4KiB Last 12KiB Full-

hash
1 307.3 2.6 703.3 1.2 481.3 1.7 571.8 1.4 813.0
2 287.1 2.4 619.5 1.1 408.5 1.7 491.4 1.4 678.3

NTFS 4 275.7 2.5 542.6 1.3 347.5 2.0 448.7 1.5 690.8
SSD 8 270.2 2.7 488.7 1.5 305.5 2.4 405.7 1.8 724.1

16 270.4 2.7 493.2 1.5 309.2 2.4 410.7 1.8 735.0
32 271.6 2.8 524.9 1.5 319.7 2.4 411.6 1.9 766.7
1 257.8 3.4 502.7 1.8 282.0 3.1 393.4 2.2 882.8
2 139.3 4.1 282.0 2.0 153.2 3.7 225.6 2.5 565.0

EXT4 4 82.7 4.5 169.2 2.2 90.8 4.1 137.6 2.7 370.3
SSD 8 55.6 4.9 114.3 2.4 59.0 4.6 88.9 3.1 273.9

16 45.6 5.8 89.5 2.9 42.7 6.1 63.3 4.1 262.1
32 44.3 5.9 81.2 3.2 37.9 6.8 59.8 4.3 259.1

NTFS
HDD 1 1593.2 0.8 1587.0 0.8 1605.6 0.8 1621.3 0.8 1284.9

Table 4.3 Generic sub-file benchmark results for the Flickr 1 Million Dataset. Mean
time to read and hash (SHA256) on the left, colour coded performance factors relative to
Fullhash on the right.

Sub-file Benchmarks: Govdocs PNG
Mean hash Time (s) and Relative Performance Factor to Fullhash

FS /
Drive Threads First 4KiB First+Last 4KiB Last 4KiB Last 12KiB Full-

hash
1 30.7 25.1 94.0 8.2 48.5 15.9 55.8 13.8 770.3
2 27.9 21.4 74.4 8.0 39.1 15.2 47.6 12.5 595.3

NTFS 4 27.4 22.3 57.6 10.6 36.6 16.7 43.6 14.0 609.8
SSD 8 26.9 22.1 49.2 12.1 31.4 18.9 40.0 14.8 593.4

16 26.8 22.1 50.0 11.9 32.5 18.3 40.2 14.8 593.8
32 27.7 22.0 53.0 11.5 33.6 18.1 40.8 14.9 609.0
1 28.8 25.7 53.6 13.8 31.0 23.8 43.0 17.2 739.3
2 15.3 32.7 30.0 16.6 17.0 29.4 24.4 20.5 500.1

EXT4 4 9.0 39.7 18.0 19.8 10.0 35.7 14.9 24.0 357.8
SSD 8 6.0 54.2 12.0 26.8 6.5 49.9 9.5 33.9 323.1

16 4.8 65.9 9.2 34.3 4.6 68.6 6.6 47.6 315.2
32 4.7 66.6 8.0 38.7 4.4 70.6 5.8 53.4 310.5

NTFS
HDD 1 691.6 2.6 818.9 2.2 665.9 2.7 673.6 2.6 1776.8

Table 4.4 Generic sub-file benchmark results for the Govdocs PNG Dataset. Mean time to
read and hash (SHA256) on the left, colour coded performance factors relative to Fullhash
on the right.



CHAPTER 4. GENERIC SUB-FILE SIGNATURES 90

that it makes little difference if the block size is 4KiB or 12KiB, or where the blocks are
located in the file. No benefit on the hard disk was provided over full file hashing by any
of the sub-file hashing techniques on the Flickr 1 Million dataset, while Govdocs PNG
performance was between 2.2× and 2.7× faster.

As expected, the sub-file strategies perform much better on the SSD relative to full file
hashing. The different strategies also separate in performance more clearly on this kind of
media. Reading the First 4KiB of the file is the fastest approach overall, with Last 4KiB
shadowing it closely, only suffering around a 10–15% performance overhead. In some
cases Last 4KiB is slightly faster, however this may simply be due to how blocks were
organised on the EXT4 partition, which allowed for slightly higher parallel access to the
end blocks of files by chance.27

First+Last 4KiB falls considerably behind the other approaches, and is about twice
as slow as Last 4KiB in the worst cases. In spite of this, First+Last still manages a small
performance increase over full file hashing on the small Flickr files, with solid benefits on
the larger PNGs. Reading an extra two blocks from disk with Last 12KiB incurs a penalty
of around 20–35% over Last 4KiB. This suggests that most of the difference between First
4KiB and Last 4KiB is due to the extra disk blocks which are accessed by misaligned
logical data at the end of the file.

Overall, the behaviour of the Last 4KiB approach closely mirrors the performance of
the sub-file approaches in the previous chapter, but generally appears to be slightly faster
overall. This is likely due to the block-based approach, which reads the blocks as a unit,
rather than processing a stream, which necessitates slight delays between acquiring blocks
as file markers are parsed.

File Size

File sizes also have a very large impact on performance, which is particularly clear now
that the same techniques are being run on datasets with substantially different file sizes.
The mean file in the Govdocs PNG dataset is roughly 11× larger than in Flickr 1 Million,
which is reflected in the large difference in sub-file performance on both datasets. This
can make the distinction between being effective on hard disk drives, or being slower
than simply reading the entire dataset sequentially (given an unfragmented dataset). The
difference is also very pronounced on SSDs, with the relative benefit of Last 4KiB over
full file hashing reaching 6–7× on Flickr, and an impressive 70× on Govdocs PNG. The
gulf in performance is of the same order of magnitude as the size difference of the datasets.

27SSDs are composed of multiple NAND modules which can be accessed in parallel by the flash controller.
Larger SSDs are typically slightly faster than smaller drives, as they have more modules to access in parallel.
If certain blocks are more evenly spread across the NAND modules, then they will be faster to access in
parallel.
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This is very encouraging, as even the Govdocs PNG dataset contains relatively small files
when compared to high-resolution camera images. The relationship between the different
hashing strategies remains the same as file size increases, with Last 12KiB falling between
Last 12KiB and First+Last 4KiB.

The performance scaling of sub-file techniques with file size is of particular importance,
and is explored in more detail in Section 4.4.2.

File System and Overheads

The sub-file techniques in both the current and the previous chapter have shown EXT4 to
outperform NTFS at higher thread counts, particularly on Linux, which appears to have
a less performant NTFS driver implementation. The idea of file system overheads was
previously explored in Section 3.6.3, However, the benchmarks in Table 4.3 and Table 4.4
facilitate further insight. The total amount of data in the Flickr dataset is 118 GiB, with
148 GiB in the Govdocs PNG dataset, spread across one million images and 108,885
images, respectively. The total time taken to fully hash all files in the Govdocs PNG
dataset takes slightly longer than the Flickr dataset on both file systems. This means that
the cost of hashing an extra 30 GiB of data in the PNG dataset overwhelms the cost of
accessing 908,885 additional files. The opposite is true for sub-file hashing strategies. As
the minimum overhead of accessing a file is the primary limitation of sub-file approaches,
ten times as many files results in ten times the processing time, regardless of the total
amount of data in the dataset.

As these benchmarks were conducted on Linux, processing is about twice as fast on
EXT4 than NTFS, however this gap should close substantially when processing NTFS
partitions on Windows. Though, as previously discussed, parsing the $MFT for LBA
addresses can overcome this limitation on Linux. Despite the driver overhead, the NTFS
performance of Last 4KiB is still significantly faster than full file hashing in all cases.

4.4.2 Performance Scaling With File Size

As file size has such a large influence on the performance of sub-file hashing strategies, it
was explored in more detail by acquiring per-file benchmark estimates. In order to control
for the potential variance in measuring small IO operations, files were grouped into size
bins of width 8192 bytes28, discarding bins with fewer than eight files. The average times
for full file hashing and Last 4KiB were then calculated from each bin on the SSD with
the EXT4 file system. Figure 4.2 depicts a scatter plot of mean per-file times for each bin.

28i.e. the first bin contains all files of size 1 byte to 8192 bytes, the next bin contains files from 8193 bytes
to 16384, and so on.
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Fig. 4.2 File size plotted against hash time for Last 4KiB and full file hashing techniques.
Mean file times are shown for file size bins of 8192 bytes, carried out single threaded on
the SSD with EXT4.

File Size Fullhash Time Last 4KiB
Improvement Factor

(Flickr) 123 KiB 2.5 ms 7.9×
400 KiB 5.4 ms 17.0×
800 KiB 9.6 ms 30.1×

1 MiB 12.0 ms 37.4×
(Gov. PNG) 1.4 MiB 16.2 ms 50.8×

10 MiB 108.4 ms 339.4×

Table 4.5 Linear Regression predictions for the time taken to read and hash full files of
various sizes, with the relative benefit of Last 4KiB hashing. Figures are derived from the
same data as Figure 4.2 using the SSD with EXT4. Improvement factor is calculated by
dividing the Fullhash time by the constant time to acquire and hash Last 4KiB (0.32ms).
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The time taken to acquire the Last 4KiB of each file is essentially a fixed cost which
does not scale with file size, with a mean of 0.32ms in this experiment. Full file hashing,
on the other hand, unsurprisingly scales linearly with the size of the file, easily taking tens
of milliseconds to process when file sizes are in the mebibytes.

Linear regression was then used to generate a predictive model to obtain hash times
and their respective Last 4KiB performance factors, depicted in Table 4.5. The equation
for these predictions, where x is the byte size of the file, is as follows:

Fullhash_time(s) = 1.02196×10−8x+1.23139×10−3 (4.1)

These predictions match up fairly well with the SSD EXT4 benchmarks with 32
threads, and therefore serve as a reasonable indicator of performance. Files with 10MiB
of data, which may include very high-resolution JPEGs, uncompressed images, or short
videos, would enjoy a performance increase factor over 300×. This level of scaling means
that when file sizes are in the Mebibytes, sub-file hashing strategies should perform much
better than full file hashing, regardless of storage device or file system.

4.4.3 Confirmation Hashing

The Last 4KiB strategy generated unique signatures for all unique files across both datasets,
however, some conditions may change this, with homogeneous data, similar files, or very
large volumes of images. This can be tackled by reading more data from the end of the file,
as with the Last 12KiB approach, or using the less performant First+Last 4KiB strategy.
In some use cases it may still be prudent to fully hash the entire file to confirm the original
detection assessment. In order to assess the impact of confirmation hashing, worst case
scenario estimates are provided in Table 4.6 for 1%, 10% and 33% confirmation rates.
These estimates ignore disk or memory caching for the file, which in reality may reduce
the confirmation overhead.

Even at a 33% confirmation rate, where 33% of files are fully hashed, the only scenario
which is slower than full file hashing is on the hard disk with Flickr 1 Million. The best
case for Govdocs PNG and EXT4 is still 220% faster than fully hashing all files, with the
worst SSD case for Flickr on NTFS still being 20% faster.

As with the sub-file Huffman technique, confirmation hashing need not be carried out
at the initial detection stage, and can be conducted during idle processing times. It is also
important to reiterate that, based on the discrimination results in Section 4.3, the evidence
suggests that the Last 4KiB approach does not need this verification step.
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Dataset/
Device

Threads
Last 4KiB
Time (s)

Hit Rate
(% Positive Hits)

Fullhash
Time (s)

1% 10% 33%

Flickr 1 Million
NTFS
HDD 1 1605.6

1618.4
(0.8×)

1746.9
(0.7×)

2174.8
(0.6×)

1284.9

NTFS
SSD 32 319.7

327.4
(2.3×)

404.0
(1.9×)

659.3
(1.2×)

766.7

EXT4
SSD 32 37.9

40.5
(6.4×)

66.4
(3.9×)

152.7
(1.7×)

259.1

Govdocs PNG
NTFS
HDD 1 665.9

683.7
(2.6×)

861.4
(2.1×)

1453.0
(1.2×)

1776.8

NTFS
SSD 32 33.6

39.6
(15.4×)

100.5
(6.1×)

303.3
(2.0×)

609.0

EXT4
SSD 32 4.4

7.5
(41.4×)

38.6
(8.1×)

141.9
(2.2×)

310.5

Table 4.6 Fullhash confirmation impact on the Last 4KiB sub-file approach. 1%, 10% and
33% of corpus assumed to generate a positive hit, respectively. Calculated by adding the
appropriate percentage of Fullhash time to the Sub-file approach, and therefore ignores
the benefits of caching. Relative improvement factors in brackets.

4.4.4 Comparison with File Type Specific Sub-file Signatures

The Last 4KiB approach and the file-specific approaches in the previous chapter have
similar behavioural characteristics. Both approaches are close to the performance of the
least costly logical sub-file access (reading the first disk block of a logical file), meaning
that they introduce little performance degradation, while producing useful file signatures.
For eight threads on the workstation’s EXT4 SSD, Last 4KiB reaches a performance
factor of 4.6× for Flickr 1 Million, and 49.9× for Govdocs PNG, while the stream based
approaches achieve 4.8× and 45.7×, respectively. At higher thread counts on Flickr,
Last 4KiB pulls slightly ahead of the Huffman approach, with 6.8× vs. 5.7×. The slight
advantage in performance for Last 4KiB is likely because it reads a maximum of two
disk blocks, while the streaming approaches occasionally have to process very large file
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headers. In this sense, the fixed upper limit on the cost of reading the Last 4KiB means
that it will perform more consistently, regardless of the dataset.

The Last 4KiB approach also has the benefit of being highly discriminative, as it
focuses on reading very high entropy compressed data from the end of the file. However, if
a given file type does not end with compressed data, this approach will be far less effective.
file-specific approaches, on the other hand, should be able to extract a reasonably effective
signature from any file type, potentially at the cost of reading a slightly larger proportion
of the mean file. The stream based approach also has the benefit of skipping irrelevant
data which does not contribute to the perceptual content of an image file, while the Last
4KiB approach blindly hashes whatever data happens to be in the logical block. However,
all sub-file approaches appear to be more robust than traditional hashing approaches, for
both full file hashing, and block-based hashing.

The primary argument for using file-specific approaches is that they can extract
signatures from features which are somehow representative of the entire file, as with
optimised Huffman tables. This semantic link between signature and file content is more
intuitive, and theoretically robust, than simply identifying high entropy offsets. However,
when the use case is simply to identify exact file duplicates, there appears to be no reason
not to favour the Last 4KiB approach, particularly as it does not produce any false positives
in these datasets.

4.4.5 Outcome

The main contribution of Sections 4.3 and 4.4 is the development of a generic sub-file
hashing approach which produces unique signatures at the million image scale. These
signatures essentially offer constant time complexity for both extraction and lookup times,
in a manner which scales very favourably to large file sizes. Hashing the Last 4KiB of each
file produced a 70× performance increase over full file hashing on SSDs, again showing
that substantial reductions in forensic processing time are possible on non-mechanical
media.

The analysis of local media is not the only use case for contraband detection techniques.
For this reason, the block-based sub-file approach is evaluated for networked storage media
in the next section, before discussing the wider applicability of this approach to digital
forensics in Section 4.6, with concluding remarks for the chapter in Section 4.7.
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4.5 Generic Sub-file Approaches on Networked Storage
Media

The forensic use case assumed thus far has been the analysis of local computers, or hard
drives, where the forensic analyst has physical access to the device. However, cloud
computing is increasingly a problem for forensics investigations [15, 18], as more and
more illegal activity migrates to off-site servers. Indeed, the volume problem in forensics,
which is the motivation for the literature discussed in Section 2.2, is no less pronounced in
investigations of cloud and networked corporate assets. One example of this is the 2012
Megaupload case, where 150 terabytes of data was seized by the FBI [133]. It is therefore
important that new forensics techniques are flexible enough to address problems generated
in cloud and networked environments, particularly as targeted cloud forensics is in its
infancy [109].

The work in this section explores the merits of applying the block-based sub-file
signature approach to networked storage, both on a Local Area Network (LAN), and
across the Internet to a virtual machine hosted on a cloud platform. The logical, file level,
nature of this approach lends itself well to the current cloud landscape, as Roussev et
al. [109] note that logical acquisition is the norm for current cloud based investigations.
Similarly, as network based investigations will be limited by network bandwidth [110],
data reduction approaches should prove promising for reducing bottlenecks. The work
in this Section has also previously been published at the IEEE Cyber Security 2018
Conference [4], separately from the work in Sections 4.3 and 4.4. Supplementary materials
are found in Appendix E. What follows is a brief discussion of current remote acquisition
techniques in forensics, before describing the experimental set-up and results.

4.5.1 Remote Acquisition

The most common approach to analysing an electronic device is to isolate the storage
media by physically removing it, then connecting it to a write blocker to acquire data from
it. However, it may not be practical to seize large volumes of equipment due to physical
storage limitations, easily damaged equipment, conflicting business requirements, or the
inability to obtain cloud based devices. In these cases the fallback is to remotely collect
evidence over a network connection for later analysis.

Scanlon and Kechadi [134] describe the Remote Acquisition Forensics Tool (RAFT),
which makes use of a modified Ubuntu Live CD to acquire evidence and send it to
a forensic server over the Internet. This approach is intended to expedite the forensics
process by reducing the time taken to seize and physically transport evidence, but is limited
by the bandwidth of the available Internet connection. There is also the requirement that
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the analysed machine be booted via the live CD. A similar approach is taken in Koopmans
and James [135], which uses a similar live CD to execute automated hash lookups and
string searches for the purposes of forensic triage. Collated evidence is transferred to a
forensic server using NFS, with similar bandwidth limitations.

A proactive approach to evidence gathering may be taken by the server host in order to
facilitate fast forensic analysis. Homem et al. [136] describe the Live Evidence Information
Aggregation (LEIA), which makes use of a hypervisor on client machines and a peer-
to-peer network for distribution, with cloud based storage back-ends. Known hashes
and compression are used to reduce the amount of data to be acquired and the system is
designed for scalable data aggregation and analysis. All systems to be analysed must run
the hypervisor and connect to the peer-to-peer network for distributed processing.

In some cases it may not be practical to power off core business resources, meaning that
evidence has to be acquired on running servers without modification to the infrastructure.
Sealey [130] discusses a remote forensic acquisition process on live servers using the
Encase Enterprise Edition software from Guidance Software. A servlet application is
copied to a device, which then extradites data across the network. This method has
the added benefit of not requiring physical access to the machine or to other networked
devices.

A cloud specific approach, aimed at acquiring cloud storage services, such as Dropbox
and Google Drive, is discussed by Roussev et al. [137]. This method takes advantage of
the Application Programming Interface (API) endpoints exposed by cloud providers for
client applications and third party integration. API based approaches allow for a more
complete snapshot of evidential data, and can access revision history and content which
has not been synced to the local device.

A key factor with all network based acquisition methods is the bandwidth available
for uploading evidence. Many existing approaches rely on running software directly
on the machine which is being investigated, with data reduction being achieved by pre-
processing data locally on the device. In contrast to these approaches, the work in this
section examines the case where a common interface is available for data being served
from a file server, but does not assume that the examiner has physical access or can execute
live programs on the device. Additionally, cloud based storage is treated as a logical,
network mapped drive, making no assumptions about the availability of an API.

4.5.2 Experimental Set-up

The speed at which forensic evidence can be acquired from a networked device is de-
pendent on the available network throughput, be it the speed of the local network, or the
bandwidth of an Internet connection. Reducing the amount of data which is sent over the
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network will reduce the impact of this bottleneck, potentially resulting in lower processing
times. The generic, block-based, sub-file hashing strategies in this chapter can effect data
reduction while only requiring that a standard network storage protocol is available on the
device.

Two sub-file strategies were chosen for these experiments: i) Last n, with values of
n corresponding to 4KiB, 8KiB, 12KiB and 16KiB to assess the impact of various data
block sizes on the network bandwidth bottleneck. ii) First+Last n, with the value of 4KiB
for n, is chosen to assess the trade-off between data block size and data location, which
may have different characteristics across a network. The First n strategy is omitted as it
has been shown to be less discriminative at scale.

Three datasets were used, corresponding to the 25,000 image subsets in Table 4.1.
Subsets were chosen to allow for manageable experiment run-time and cloud storage
costs, with each subset increasing the file sizes to assess the file scaling performance of
networked acquisitions. For both sub-file techniques, if the file size is smaller than the
requested block data the entire file is requested and hashed. Early experiments showed
that additional overheads from checking file sizes for all files caused overheads which
slowed the acquisition process. As file sizes are rarely smaller than the read blocks, it is
faster to catch any read exceptions for these very small files, rather than request the size of
all files.29

Two experimental scenarios were chosen to reflect typical methods of accessing files
across a network. i) Via a LAN connection, with both a 1Gbps and 100Mbps connections
being tested, and ii) a VPN connection over the Internet to a remote file server, with a
100Mbps symmetric connection for the client. The LAN server in the first scenario was
on an isolated network and connected to the client using a high performance switch, while
the Internet server was hosted on a London based Digital Ocean droplet and accessed via
a university network. Both scenarios are depicted in Figure 4.3.

Fig. 4.3 Experimental set-up for block-based sub-file benchmarking of networked storage.

29There was little to no performance degradation from checking file sizes on local disks, however.
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Timed benchmarks were performed for both scenarios using the Samba and NFS
file serving technologies in order to assess their potential impact on the performance of
sub-file hashing strategies. As neither Samba nor NFS provides encrypted transport, a
VPN tunnel is required in order to securely access files across the Internet. As such, in
order to maintain a realistic access scenario, OpenVPN [138] was used to create a secure
connection. All software was left with default configurations from a fresh install. Table 4.7
provides hardware specifications and software versions for both scenarios. While not all
enterprise storage solutions are expected to make use of SSDs, as with the servers in this
work, they are expected to have high performance, enabling them to serve many users
simultaneously.

Benchmark code was written in Python 2.7, using the built-in hashlib library to
generate SHA256 hashes for data blocks. File read orders were determined using Python’s
os.listdir function, and volumes were mounted read only by the client. The client
machine ran Windows 7 Enterprise, while servers made use of Ubuntu. This setup made
use of NFS version three, while the servers were capable of running version four. Reported
times do not include file enumeration from os.listdir. The mean value of three repeated
runs was taken for each set of parameters, with client side memory caches being cleared
before each run30. The same code was used for both local and network based generic
sub-file benchmarks, with the exception of directory names for scripts, with snippets
provided in Appendix E.1.

Preserving File Access Times

As the client device is not interacting with the target file system directly, instead interfacing
with a layer of abstraction in the form of a file server, no guarantees can be made that file
system metadata will remain unchanged. Despite the Windows client having read only
access, the default configurations in this experiment caused file access times to be modified
in the EXT4 directories containing the test data. Without access to the server configuration
it cannot be verified that modification will not occur. It is therefore recommended that
available file metadata be collected prior to remotely hashing files on a file server to
prevent the loss of potentially useful forensic information.

4.5.3 Timed Benchmark Results

As there are many variables the analysis of benchmark results focuses on the various
factors affecting performance. Generally speaking, trends hold across network connection
types and file server software. An overall summary of the performance of the sub-file

30Using the same EmptyStandbyList tool [122] from the PNG experiments in Section 3.4
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Machine Specification Software

Client
Workstation

HP EliteDesk 800 G1
i5-4590s, 4GiB RAM

Windows 7 Enterprise 64bit
NFS v3 client
OpenVPN Client
(AES 256/SHA256,
no compression, 2048bit key)

LAN Server
(Hypervisor)

2× Intel Xeon E5-2697v4
384 GiB RAM
RAID 10
10× 840 EVO 1TB SSD

vSphere 6.5.0
ESXi 6.5.0

LAN
Virtual
Machine

ESXi 6.5+ Virtual Machine
1 Virtual CPU, 2GiB RAM
500GB SSD storage (EXT4)

Ubuntu 17.04 LTS
Samba server 4.3.11-ubuntu
NFS server 1.2.8-9.2ubuntu2

Internet Server
Digital Ocean $10 Droplet
1 Virtual CPU, 2GiB RAM
50GB SSD storage (EXT4)

Ubuntu 16.04 LTS
Samba server 4.5.8-ubuntu
NFS server 1:1.2.8-9ubuntu12.1

Table 4.7 Specifications of the equipment and software set-up for the networked generic
sub-file benchmarks.

techniques relative to full file hashing is provided in Table 4.8, while a visual comparison
between techniques is provided in Figure 4.6.

Thread Count and File Server

Multi-threaded file requests can maximise the throughput from an IO device, such that
it is always kept busy with concurrent requests. The thread scaling performance of file
serving protocols will be limited by the software implementations on both client and
server, as well as the physical limitations of the network and underlying physical storage
configuration.

Figure 4.4 shows the thread scaling performance of both NFS and Samba for the
Govdocs PNG dataset on the 1Gbit LAN and Internet connections. This graph is repre-
sentative of the behaviour for all tested connection set-ups and datasets, with Last 4KiB
being chosen to represent all sub-file approaches for clarity.

The thread scaling of NFS is much more pronounced than Samba, typically performing
relatively poorly for 1–2 threads, and surpassing Samba thereafter. This holds for both the
sub-file and full file hashing approaches, which both begin to level off around 4 threads.
Samba’s implementation appears to be single threaded, which is a limiting factor when
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Fig. 4.4 The impact of thread count on the performance of the Last 4KiB and Fullhash tech-
niques for the Govdocs PNG dataset on the 1Gbit LAN and 100Mbit Internet connection.
Relative values are representative for all three datasets and LAN configurations.
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increasing the number of concurrent requests. Despite this, both file servers see a benefit
in all cases of up to 32 threads over the Internet, and 16 threads over the LAN connection,
with performance degrading slightly at 32 threads over LAN. In all tested cases, the
sub-file approach typically receives 2–3× the benefit of increasing from 1–32 threads than
full file hashing.

These results show that a minimum of four threads should be used when hashing files
from NFS and Samba servers, and that NFS outperforms Samba for both approaches at
high thread counts. It should be noted that the overheads introduced by the network file
system technologies are likely more complicated than those of local device file systems.
In the networked case, the file server is a layer of abstraction on top of the file system used
by the disk volume. The server also has to reply to external requests via its own protocol,
which may be another source of overhead, with the implementation of both the client and
server potentially introducing another potential bottleneck.

Performance Scaling With File Size

Fig. 4.5 The scaling of the 32 thread performance of Last 4KiB and Fullhash across each
dataset for the 1Gbit LAN connection. Data points are for mean times and mean file sizes
for each dataset. Relative values are representative for all network configurations.
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One of the benefits of the sub-file signature approach in this work is that their process-
ing costs should be independent of file size. That is, reading a 4KiB chunk of a file should
take the same length of time regardless of the size of the file. Figure 4.5 shows this to be
the case for both of the network file serving protocols. This observation also holds for the
First+Last 4KiB approach.

Full file hashing appears to scale linearly with file size on networked file systems,
which is in line with the observations made for local disks in Section 4.4.2. This linear
scaling means that the gap in performance between full file hashing and sub-file approaches
increases with file size, with the time difference already being substantial at the mean
file size of 535KiB for the Govdocs PNG subset. For larger files, such as high-resolution
photos, or even video files, sub-file approaches would again tend towards a tiny fraction
of the processing time of full file hashing.

This file size scaling effect is amplified as the total throughput of the network is
reduced. Going from 1Gbit to 100Mbps on the LAN connection increased full file hashing
times by approximately 10×, while Last 4KiB only suffered a 2–3× performance penalty,
with a 3–6× penalty for Last 16KiB. Full file hashing is typically bandwidth constrained
at high thread counts, while the sub-file approaches are limited by the per-file response
time of the entire request, with latencies accumulating all the way from the disk drive to
file server response. However, increasing the block size used in the sub-file approaches
also has a corresponding bandwidth penalty, which is discussed further in the following
section.

Sub-file Hashing Techniques Compared

Figure 4.6 depicts the processing times for sub-file approaches across each connection
type and file server. When bandwidth is not the primary bottleneck, the performance of
all sub-file approaches converges at 32 threads, as in Figure 4.6a. When bandwidth is
a limiting factor, as with Figure 4.6b, the volume of data to be transferred becomes a
bottleneck, with each additional 4KiB block in the Last n technique resulting in a small
performance penalty. The 8KiB of data hashed by First+Last 4KiB places its performance
between Last 8KiB and Last 12KiB on Samba, while being very close to Last 8KiB
performance on NFS.

However, as noted in Section 4.5.3, bandwidth is not the only limiting factor, with
the total round trip of each transaction, i.e. from the client request to the client receiving
the data for each file, having a particular impact on sub-file approaches. Figure 4.6c for
the 100Mbit Internet connection shows behaviour more similar to the 1Gbit LAN (3a)
scenario than to the equivalent 100Mbit bandwidth of the LAN connection (3b). A single
transaction may involve multiple round trip requests at the file system level, as file handles
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Fig. 4.6 Sub-file techniques compared across connection types. Samba on the left, NFS
on the right. Mean times are the same across all datasets.
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are opened, and file seeks are performed. As a result, the fraction of the transaction which
is attributed to transferring the small data blocks is proportionally less. This difference
is not attributable to the underlying storage media as both the LAN and Internet servers
were theoretically able to saturate their network connections, with 4KiB random read
performance from the SSD storage measured at 1.1Gbit/s and 175.7Mbit/s respectively,
using the iops tool [139].

The cost of each transaction also explains why the Internet connection is an order of
magnitude slower in acquiring data than the 100Mbit LAN scenario, despite having the
same theoretical bandwidth. The fixed cost for a single request is increased due to the
packets needing to be routed across the Internet, and thus the minimum file access time
for any block size is increased. Given that the data block size is no longer an issue in this
case, larger block sizes may be used, potentially increasing accuracy, at no effective cost
in processing time. The opposite is true in heavily bandwidth constrained environments,
where the smallest data block should be used.

Sub-file Hashing vs. Full File Hashing

Dataset Technique Samba Performance Factor NFS Performance Factor

1Gbit
LAN

100Mbit
LAN

100Mbit
Internet

1Gbit
LAN

100Mbit
LAN

100Mbit
Internet

Flickr Last 4KiB 3.72 10.20 3.13 6.18 18.29 6.77
Last 16KiB 3.75 5.42 2.75 4.23 6.77 5.07

First+Last 4KiB 3.95 6.81 2.79 4.94 13.06 7.55

Flickr PNG Last 4KiB 6.31 23.45 6.13 14.84 45.54 14.75
Last 16KiB 6.37 12.46 5.25 10.17 16.84 10.30

First+Last 4KiB 6.70 15.64 5.49 11.87 32.51 16.39

Govdocs PNG Last 4KiB 9.44 41.62 10.22 26.43 82.37 24.27
Last 16KiB 9.52 22.10 8.99 18.10 30.46 18.37

First+Last 4KiB 10.01 27.76 9.14 21.13 58.81 27.79

Table 4.8 A table of relative performance factors to Fullhash for each technique. Values
presented are for 32 threads.

A performance summary of the tested sub-file techniques relative to full file hashing is
provided in Table 4.8 for all 32 thread configurations.

All sub-file approaches prove viable in all scenarios, with the gigabit LAN and Internet
connection performance being roughly equivalent for all sub-file methods, approximately
3–10× depending on the dataset for Samba, and 5–25× for NFS. However Last 4KiB
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Fig. 4.7 Sub-file techniques compared with full file hashing each dataset. Only shown for
1Gbit LAN on Samba.

has the clear advantage when bandwidth is the limiting factor as with the 100Mbit LAN
connection, reaching up to 41× on Samba, and 82× on NFS. Increasing the data block
size to 16KiB results in roughly half the performance in this scenario, while First+Last
4KiB is typically around 2/3 of the speed.

Sub-file hashing strategies are capable of substantial reductions in the time taken to
detect contraband on a networked file server, even on the relatively small file sizes used
here. Figure 4.7 shows the relative cost of hashing each dataset, where file sizes roughly
double in between datasets. An estimate based on this figure would suggest that the mean
file would have to be tens of KiB for the sub-file approach to perform as well as full file
hashing, when bandwidth is not a constraint. This is likely unrealistic in real-world use,
and suggests that the sub-file technique is always beneficial when accessing files logically
over a network connection. However, if this approach is to be used as part of an API based
approach, it is likely that additional overheads will be introduced, which may affect the
applicability of the technique for small file sizes. That being said, as storage performance
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continues to increase, and overheads are reduced, the burden will be increasingly placed
on the overall network bandwidth, which is where the Last 4KiB technique is particularly
effective.

4.5.4 Confirmation Hashing

1Gbit LAN NFS Performance Factor

Technique Hit Rate Flickr
Flickr
PNG

Govdoccs
PNG

Last 4KiB

0% 6.18 14.84 26.43
1% 5.82 12.92 20.90

10% 3.82 5.97 7.25
33.3% 2.02 2.50 2.70

Last 16KiB

0% 4.23 10.17 18.10
1% 4.01 9.23 15.33

10% 2.97 5.04 6.44
33.3% 1.76 2.32 2.58

First+Last 4KiB

0% 4.94 11.87 21.13
1% 4.71 10.61 17.45

10% 3.31 5.43 6.79
33.3% 1.87 2.40 2.63

Table 4.9 The impact of confirming detected contraband with full file hashing at detec-
tion rates of 1%, 10% and 33.3%. Values are only shown for NFS on the 1Gbit LAN
connection.

Sub-file approaches are designed for fast contraband detection when dealing with large data
volumes, while providing a high degree of accuracy. While not strictly necessary for these
sub-file approaches, a full file hashing verification step can be performed when contraband
is detected. As such, the projected worst case scenarios for confirmation hashing at various
rates are provided in Table 4.9 for completeness. Again, these suggested detection rates
are likely much higher than the base rate of detection in real cases. The performance
impact of confirmation hashing increases with file size, however even with a high detection
rate of 33% sub-file processing is still 2–3× faster than full file hashing.

4.5.5 Outcome

This section demonstrates that sub-file hashing strategies can be used to rapidly investigate
remote networked storage. Experiments were performed on Samba and NFS servers over
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the Internet and two LAN configurations, showing up to an 82× performance increase
over full file hashing on standard resolution image files. Sub-file techniques were shown to
perform better on NFS than Samba, with limited bandwidth over a 100Mbit LAN creating
a dramatic gulf in performance between sub-file and full file hashing approaches.

The physical storage media is typically the performance bottleneck for forensic pro-
cessing. However, in a world where large quantities of data are being stored remotely
on cloud services, network performance may present itself as a frequent bottleneck in
the forensic process. Sub-file hashing can be used to greatly decrease the time taken to
perform an investigation over a network, which is particularly important when dealing
with hundreds of terabytes of data on large scale storage networks.

4.6 Generic Sub-file Signatures in Practice

This chapter has shown that generic, block-based, sub-file signatures are both highly
discriminative, to the point of being unique in large datasets, and substantially faster than
full file hashing, particularly on SSDs and over network connections. The remainder of
the chapter discusses the implications of this approach for real-world use cases.

4.6.1 Discriminating Power and Data Reduction

The Last 4KiB technique successfully discriminates between all unique files in two large
datasets by exploiting high entropy compressed data streams, which typically run until
the end of the file. This approach should work for any compressed file type, except those
which potentially end with a large amount of low entropy data in a file footer. However,
the author is not aware of any such file formats at this time, meaning that this approach
has good generalisability. When comparing hashes generated by very similar files, some
matches may be made on non-identical files if the data towards the end of the file is the
same. This is analogous to the problem encountered when hashing PNG data blocks in
Section 3.4.3. However, this depends on the nature of the changes, as some compression
schemes may have knock-on effects from file modifications. One example of this is how
optimised Huffman tables change depending on the content of the file. If the last few
scan lines in the image remain the same, but the rest of the image changes, then the
frequency of DCT codes would change, resulting in a different Huffman table and an
altered compression stream. Such modification would cause the Last 4KiB approach, as
well as any other technique based on binary identity or similarity, to fail. This technique
essentially operates at the compression level, meaning that a re-compressed, or re-encoded,
file with the exact same perceptual content would not be detected. That is, the hash is
related to a small portion of the file content, but not directly to the perceptual content.
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The Last 4KiB approach effects slightly better data reduction than the JPEG and
PNG approaches in Chapter 3, as no more than 4096 bytes are read from disk, even if
it is effectively spread across two disk blocks. This is equivalent to around 3% of the
mean Flickr 1 Million JPEG, and 0.3% of the mean Govdocs PNGs. Of course, file
access overheads are essentially unchanged from the discussion in Section 3.6.3, meaning
that the effective performance benefits over full file hashing are capped by the storage
technology. Increases in storage random 4KiB read performance will have a corresponding
improvement in performance for both generic and file type specific sub-file approaches.

4.6.2 Network Based Detection

The block-based approach to sub-file hashing works well when accessing files via a
network file system. The nature of the approach means that, as long as the means of
accessing files across a network allows for fractional, logical, file access, this method
should reduce file processing times significantly. However, the underlying assumption
is that the protocol overheads are relatively low, and that they do not overwhelm the
benefits of reading small parts of a file. The technique could also be applied to other
file serving technologies, such as FTP and WebDAV, though the impact of overheads for
those technologies would have to be empirically verified. A brief examination of the
potential improvements on cloud storage platforms, exemplified by Dropbox, showed that
it was possible to use the http range operator to get partial files when making a request
to the Dropbox API. However, the overheads of accessing individuals files in this way
mitigated the majority of the benefit. At 8 threads on the Govdocs PNG subset, Last 4KiB
only effected at 30% improvement over full file hashing. However, there may be ways of
reducing these overheads, and further work is required.

When monitoring a network stream, the generic sub-file approach is likely not going to
be very useful. This is because the Last 4KiB technique needs to capture the last 2 blocks
of file data by chance when sampling from the stream. When a file contains n data blocks,
this means that there are n-2 blocks in the file which are not the Last 4KiB of the file, such
that the larger the file, the lower the probability of capturing the appropriate file segment.
In practice, packet sizes are typically much smaller than 4KiB, with a standard Maximum
Transmission Unit (MTU) size of 1500 bytes (1.465KiB) meaning that each 4KiB of
file data is approximately three packets on a network. The file marker-based approaches
in Chapter 3 are therefore more appropriate for this use case. Alternatively, traditional
block-based hashing, where all blocks in the file are hashed should also work, as it can
monitor all parts of the file, even if some of the blocks are repeated across files [44]. This,
again, assumes that there are no block alignment issues with packet sizes, or that file
blocks can be reconstructed.
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4.6.3 Digital Forensics Process

From the standpoint of a forensic investigation, the majority of the discussion pertaining to
file-specific sub-file approaches (Section 3.6.5) also applies to generic sub-file techniques.
Signature generation techniques in both chapters require logical file access, and would
be most effective in the triage stage of an investigation, paired with the data reduction
approach from Grier and Richard [43]. The main difference appears to be the higher
potential discrimination from the Last n approach, particularly when the block size is
increased. This would mean that there is likely no need to perform confirmation hashing
when detecting contraband, though MD5 and SHA1 hashes would likely still be of use
when reporting findings. Additionally, as the Last n approach should work on all, or most,
media files, it is perhaps more practical for real-world investigations, while the JPEG
approach requires a specific type of JPEG, and PNG files require verification.

File size considerations are still important on hard disk drives, as very small files
receive little benefit. However, with careful handling of read orders, it is possible that
the Last 4KiB approach may be used on all files on a device without any performance
degradation. On solid-state media, it seems that Last 4KiB will be faster in every scenario,
and would therefore be deployable on all evidential devices.

Finally, as with any new signature generation technique, new contraband databases
would have to be constructed from source images. This would mean both having access
to an existing corpus of illegal images to generate signatures for comparison, and also
generating signatures for newly discovered files. However, this is no more of a problem
than updating file hashes to use a newer cryptographic hash, or similarity hash, such as
those discussed in Section 2.3.

4.6.4 Non-forensic Use Cases

All sub-file approaches have the potential to be used for detecting identical files in
non-forensics contexts. One such use case is that of file de-duplication, particularly
across a network for large scale corporate storage. In this case, it would be prudent to
perform confirmation hashing to guarantee that the file is not a small modification of the
original.31 This is an effective way of quickly identifying duplicate files while requiring
minimal bandwidth. Of course, this approach is unnecessary if block-level de-duplication
technologies are used when storing files [140].

Similarly, sub-file signatures may be useful for detecting copyrighted media, however,
they are less useful in this space as the focus is likely shifted towards identifying perceptual,
semantic, content, rather than binary level features.

31In a forensic context, a small variant of the original is still relevant to the investigation, but it is an
important distinction for file de-duplication.
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4.7 Conclusions

This chapter has successfully developed generic sub-file hashing strategies for contraband
detection, which can significantly reduce processing times on local and remote storage
media. Signatures generated from the end of each file were shown to be unique for
two large datasets, while only requiring 1–3% of a small file to be read. These sub-file
techniques perform similarly to the file-specific approaches in Chapter 3, while extending
to a much wider range of file types.

In a world where high-resolution digital cameras and Internet connections are incred-
ibly pervasive, digital investigators are struggling to keep up. The sub-file approaches
proposed in this chapter present a means for an investigator to significantly reduce the
amount of data which is required to be processed, and boost processing speeds by orders
of magnitude on large files. Even on relatively small files, there was a measured benefit
of up to a 70× processing time reduction on an SSD, and up to 80× over a network
connection. Sub-file approaches are accurate, and process all relevant files, allowing for a
high degree of confidence and speed. These strategies were evaluated favourably against
the criteria in Section 3.2, and can help alleviate investigative backlogs which are crippling
law enforcement agencies across the UK.



Chapter 5

Thumbnail-based Contraband
Detection

5.1 Introduction

Solutions to the volume problem in forensics are essentially split into two categories:
i) Parallel processing at disk read speed, and ii) Data reduction approaches. The sub-file
approaches in Chapters 3 and 4, focus on file level data reduction, and in doing so also
define an alternative method of processing files at "disk speed". In contrast, most data
reduction approaches operate at the disk level, rather than the file level, such that many
of the files on a given storage media are never processed. Disk level data reduction is
achieved in the literature by randomly sampling from the disk [29], or by deriving samples
from file system metadata using heuristics for selection [43]. An alternative approach in
this chapter effects rapid forensic triage by exploiting centralised thumbnail stores on the
Windows operating system. This allows contraband to be detected while only requiring a
tiny fraction of the disk to be read, processing a single point of the file system for each
user on a device.

Windows operating systems generate image previews by downscaling an image to
create a smaller version, a thumbnail, which is then stored in a cache for later use. These
thumbnails are typically displayed when utilising a file system browser, such as Windows
Explorer. Since Windows Vista, these caches have been stored in a centralised location
for each user, with sizes on the order of hundreds of mebibytes, regardless of the capacity
of the disk. Thumbnails are essentially a reduced representation of the full-sized image,
and can be used as a proxy when searching for contraband. The thumbnail cache itself
acts as a reduced representation of images on a computer, allowing for very fast initial
disk triage to be performed at a low cost, in a matter of seconds.

112
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The primary focus of this work is the Windows 10 thumbnail cache. Existing work
in this area, discussed below in Section 5.2, focuses on cataloguing the behaviour of
thumbnails on previous Windows versions, but does not explicitly use them for triage
purposes. This chapter updates the existing information on thumbnail caches to include
the Windows 10 operating system and provides a comparison of differences between
thumbnails on different Windows versions. Two methods of exploiting these caches are
then discussed, before examining how thumbnail analysis may be useful on cloud storage
services.

5.2 Thumbnail Forensics

Before examining how thumbnail caches can be used for rapid contraband detection, a
brief overview of the existing literature is provided below. The first section discusses
thumbnail caches on Windows, followed by forensic work done on centralised caches in
other operating systems.

5.2.1 Centralised Thumbnail Caches in Windows

Morris and Chivers [31] note that a paradigm shift for storing thumbnails occurred between
Windows XP and Windows Vista, with a centralised thumbcache structure for each user
replacing the thumbs.db files in each directory. This means that instead of thumbnails
being found in the same directory as their source files, they are now located in a per-user
store, located at:
[Drive]:/Users/[Username]/AppData/Local/Microsoft/Windows/Explorer/

Separate database files store thumbnails of various sizes, named thumbcache_xxx.db,
where xxx specifies the maximum thumbnail dimension for each side. For Windows Vista
and Windows 7, these are 32×32, 96×96, 256×256, and 1024×1024, though thumbnails
need not be square. Each cache entry contains some metadata and the thumbnail image
itself, which is usually stored in either the JPEG, BMP, or PNG format. Cache entry IDs
are mapped back to their source file via the thumbcache_idx.db file. Images viewed with
the Windows Explorer preview pane generate 1024 pixel thumbnails unless the images
are small enough to fit a smaller thumbnail size. 256 pixel thumbnails correspond to extra-
large icons, with smaller sizes being used for smaller previews. Thumbnail generation
is not limited to images, with documents such as PDFs and file system directories also
having thumbnail preview options. Directory previews look like an open folder with
multiple pages, each corresponding to an item in the directory. Viewing a directory icon
may trigger thumbnail creation for files within the directory without the user previewing
them directly. Additionally, entries are created for files on removable media in centralised
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thumbnail cache. Thumbnails may be removed from the system using the Disk Clean-up
utility built-in to Windows, and thumbnail generation can be disabled using group policies.

Windows 8 expands on the thumbnail dimensions included in previous versions, adding
16×16, 48×48, and WIDE thumbnails to support additional start menu functionality [141].
Additionally, iconcache_x.db files were added, with corresponding dimensions matching
all thumbcache files.

Parsonage [142] explores the behaviour of thumbnail generation on Windows Vista
and Windows 7 further, finding that legacy thumbs.db files are still being generated
when accessing files using the Universal Naming Convention (UNC), which specifies a
hostname, share name, and optional file path. Additionally, they note that thumbnails may
be created in a variety of circumstances which do not involve the original source image
being opened or viewed in thumbnail mode. This includes thumbnails being automatically
generated based on the two most recently modified files in a directory, for use by the
directory preview. Thumbnails are also generated as a result of dragging and copying files,
even when such activities are cancelled by the user.

Prior work has not described the changes made to the thumbcache in Windows 10,
which is presented here in Section 5.3. Additionally, this chapter discusses the differences
in thumbnails generated across Windows versions in Section 5.5.2.

5.2.2 Centralised Thumbnail Caches in Other Operating Systems

Centralised thumbnail caches are not used exclusively in Windows operating systems.
Morris and Chivers [143] discuss the centralised thumbnail caches used in versions 9.10
and 10.04 of the Kubuntu and Ubuntu operating systems, respectively. Thumbnails are
stored in the user’s home directory in ~/.thumbnails32, which is composed of three
sub-directories: fail, large, and normal. All thumbnails are of the PNG format, and
correspond to 128×128 pixels for normal thumbnails, and 256×256 for large. Thumbnails
which are unable to be generated are tracked using the ‘fail’ sub-directory. In contrast to
Windows, these thumbnail caches have no index, instead, thumbnails are simply stored
in these sub-directories, with MD5 hashes of the source URI for filenames, allowing for
fast thumbnail lookups. These thumbnails contain the modified times of the original files,
such that updated originals signal that the thumbnail must be rebuilt. Importantly, as the
thumbnail cache in Ubuntu is just a directory, it may be used by third-party programs, thus
there is a possibility that some thumbnails may be stored with different parameters from
those generated by the operating system.

Thumbnail generation, storage, and extraction for the Android operating system are
explored by Leom et al. [144]. The thumbnail cache for the built-in Gallery application is

32This appears to have moved to ~/.cache/thumbnails in more recent releases of Ubuntu.

~/.cache/thumbnails
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located at:
/sdcard/Android/data/com.google.android.gallery3d.cache/imgcache.0
and is composed of a single file which contains thumbnails of 200×200 and 640×480
pixels in the JPEG format. Larger thumbnails are generated for most pictures when they
are created using the camera application, while smaller thumbnails are created when
viewing images in the Gallery application.

Finally, Newcomer and Martin [145] describe the per-user thumbnail caches found
on Mac OS X. Thumbnails for the Spotlight and Finder applications are provided by the
QuickLook technology and are generated for many file types. Different thumbnail sizes are
used depending on the finder viewing mode. The directory containing the cache is located
in /private/var/folders/<2random>/<30random>/C/com.apple.QuickLook.
thumbnailcache for versions 10.7 and 10.8, with the ‘C’ in the path being switched for
‘–Caches–’ on the older 10.5 and 10.6 OS. Each user has their own directory in folders
consisting of two random lowercase characters, potentially including an underscore,
followed by a subdirectory of 30 random characters. It is unclear if this is actually
stochastic or deterministically generated by a hashing function. An SQLite database,
index.sqlite is used to store information on the location of each source file, as well as the
location of its thumbnail, which is indexed by referencing its offset in the corresponding
thumbnail.data binary file containing thumbnail image data.

5.3 The Windows 10 Thumbnail Cache

While the Windows 10 thumbnail cache remains in the same location as its predecessors,
several changes have been made to the files used to store the thumbnails. A complete list of
thumbcache files for a Windows 10 user is depicted in Figure 5.1. The 1024×1024 thumb-
nail database was removed, replaced by 768×768 and 1280×1280 pixel thumbnails, with
very large 1920×1920 and 2560×2560 thumbnails also being added. Wide thumbnails
also have an extra file named thumbcache_wide_alternate.db, while completely new items
are included in the thumbcache_exif.db, thumbcache_custom_stream.db, and respective
iconcache files. The thumbcache_exif.db database appears to contain thumbnails which
are embedded in source JPEGs, converted to use the quantisation tables of the other
thumbnail databases. Example thumbcache entries, as displayed by the Thumbcache
Viewer application [146] are provided in Figure 5.2.

This work focuses on the 96×96 and 256×256 thumbnails caches, as they are the most
commonly generated, corresponding to small/medium/large and extra-large thumbnail
previews. Thumbnails with dimensions of 96 are stored as bitmaps, while those with
256 pixel dimensions are stored as JPEGs. Version 1709 of Windows 10 (October 2017)

folders
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Fig. 5.1 A screenshot of thumbcache files present on Windows 10. Files added in Windows
10 are indicated with boxes. iconcaches and thumbcaches of dimensions 1024×1024 were
removed for Windows 10.

Fig. 5.2 A screenshot of the Thumbcache Viewer application on a Windows 10 thumbcache.
Data Checksum is a CRC64 of the entire thumbnail file, while Cache Entry Hash is the ID
returned by the GetThumbnail method, and also serves internally as the file name. The
truncated Location is the file path to the thumbcache file.
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enforced a limit of less than 500MiB on each of these cache files33, this limitation
appears to have been lifted on later versions (tested on 1803, April 2018). In place
of this file size limitation the cache is regularly cleared by the SilentCleanup task in
Windows [147], which runs the built-in Disk Cleanup utility, cleanmgr.exe, with the
/autoclean %systemdrive% parameters, resetting the cache and moving old database
files to a ThumbCacheToDelete directory. The behaviour of SilentClean can be modified
such that the thumbcache does not reset when it runs by making a change to the Windows
registry. Further work is required to test if old thumbnails which have not been accessed
for extended periods of time are removed, but the current assumption is that they are not.

Even where both the 96-pixel and 256-pixel thumbcaches are at the size limits imposed
by Windows 10 version 1709, this corresponds to less than 1GiB of data to process per-
user. That is, for a single user with a 1TB drive, the worst case for this approach requires
that only 0.1% of the disk is sequentially read. Assuming a sequential read speed of
100MiB/s34„ this would take approximately 10 seconds to acquire, as opposed to the 3
hours required to read the entire terabyte disk. This value will rise slightly if additional
thumbnail sizes are processed, or the device has multiple user accounts.

5.4 Dataset Creation

The primary focus of this work is Windows 10, however thumbnails were also examined
for the Windows Vista and Windows 7 operating systems to facilitate comparison between
versions. The Flickr 1 Million dataset [113], composed of 1 million JPEG images, was
used to explore thumbcache forensics at scale. However, no existing tool allowed for
Windows thumbnails to be generated automatically, nor were there any existing datasets
of Windows thumbnails available. In order to address this, a method was developed to
extract Windows thumbnails for each Flickr image on each platform, as described below
in Section 5.4.1. While this approach allowed for the generation of 96 and 256 pixel
thumbnails on Windows 7 and Windows 10, only 256 pixel thumbnails were automatically
generated on Windows Vista.35 To compensate for this, a small number of 96 pixel
thumbnails were examined manually for Vista. No modifications in the binary or pixel
domain were made to the images.

33Maximum values of 350MiB for 96-pixel thumbnails and 460MiB for 256-pixel thumbnails were ob-
served, which were verified by users on the community forum at https://answers.microsoft.com/en-us/
windows/forum/windows_10-files/after-fall-update-windows-10-puts-a-maximum-size/
6ad0a1e7-38c0-4547-9b8b-f7f3906c3a12).

34For reference, a modern consumer HDD can sustain sequential read speeds of approximately 150-
200MiB/s, while consumer SATA3 SSDs peak around 500MiB/s.

35This appears to be caused by the Windows Vista API not properly supporting the thumbnail dimensions
argument.

https://answers.microsoft.com/en-us/windows/forum/windows_10-files/after-fall-update-windows-10-puts-a-maximum-size/6ad0a1e7-38c0-4547-9b8b-f7f3906c3a12
https://answers.microsoft.com/en-us/windows/forum/windows_10-files/after-fall-update-windows-10-puts-a-maximum-size/6ad0a1e7-38c0-4547-9b8b-f7f3906c3a12
https://answers.microsoft.com/en-us/windows/forum/windows_10-files/after-fall-update-windows-10-puts-a-maximum-size/6ad0a1e7-38c0-4547-9b8b-f7f3906c3a12
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5.4.1 Thumbnail Dataset Generation for Large Datasets

In order to acquire data to analyse at scale, the Windows shell API was utilised to generate
thumbnails for images by accessing the IThumbnailCache interface and calling the
GetThumbnail method.36 This can be used to force the generation of a new thumbnail,
or obtain one which has already been cached for an image. A parameter allows for the
size of the thumbnail to be controlled, though only one size at a time may be requested.
The API then returns a memory mapped bitmap, regardless of the format the thumbnail is
stored in (BMP or JPEG). As a result, without knowing which function Windows uses
to save the memory mapped image to a particular file type, it is non-trivial to recreate
the exact binary data stored in the thumbcache from the object the API returns. That is,
thumbnails saved to disk in this fashion will not be identical with those stored in the cache
itself, and cannot be used directly for cryptographic hash based contraband detection.

To work around this issue, thumbnails can be obtained directly by parsing each
thumbache_xxx.db file after calling GetThumbnail. This is achieved by keeping track of
the IDs returned by each call to GetThumbnail and extracting items in the cache with
matching IDs. These IDs appear as ‘Cache Entry Hash’ in Figure 5.2, and are derived
from a hash function using the volume GUID, NTFS FILEID, file extension, and last
modified time [148]. For efficiency, the thumbcache_xxx.db should not be parsed after
each thumbnail is generated. Instead, several hundred, or thousand, thumbnails should be
generated at a time, with all of them being recovered from the thumbcache_xxx.db in a
single pass. However, a small enough batch size should be chosen such that thumbnails
are not overwritten before they are recovered, with a batch size of 5000 proving effective
in this work.

The end result of this processing is a dataset composed of the exact binaries stored
by Windows in the thumbcache database files. This dataset can then be further processed
to generate contraband lookup databases, as described in Section 5.5. The code used to
automatically extract thumbnails from a directory is available on Github [149]. A pertinent
partial code snippet is included in Appendix F.1.

5.5 Detecting Contraband Thumbnails Using
Cryptographic Hashing

With a dataset of thumbnails in the format used by the Windows thumbcache, a lookup
database may be created by calculating cryptographic hash digests, such as SHA256, for
each thumbnail. When examining a Windows computer, each thumbcache_xxx.db file

36https://msdn.microsoft.com/en-us/library/windows/desktop/bb774628.aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/bb774628.aspx
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may then be parsed, and each entry in the cache hashed and checked against this database.
This could either be done in memory while parsing thumbcache files, or after extracting
thumbnail images to a directory.

Section 5.5.1 discusses the possibility of augmenting this approach using CRC64
checksums which are already present in the thumbcache files, while Sections 5.5.2 and
5.5.3 discuss pragmatic concerns for this approach.

5.5.1 Intermediate Lookups Using Embedded Checksums

The Windows thumbnail cache stores CRC64 checksums for each thumbnail, depicted
as ‘Data Checksum’ in Figure 5.2. This presents the opportunity to use these embedded
checksums in a lookup database in the same manner as cryptographic hashes, except that
they need only be parsed as strings from the thumbcache, rather than calculated from
binary data at runtime.

To create a CRC64 lookup database, the Windows thumbnail checksum can be gen-
erated by calculating a CRC64 for the first 1024 bytes, a second CRC64 checksum for
all remaining bytes and then XORing both values to produce the final checksum. This
algorithm was identified from the source code of the Thumbcache Viewer [146] and
verified manually by comparing the output and embedded checksums in the thumbcache.

However, these checksums are more likely to have hash collisions than cryptographic
hashing algorithms [150]. While no collisions were observed for Windows 10’s 256
pixel thumbnails, they did occur for the 96 pixel bitmaps. Three pairs and a triplet of
non-identical 96 pixel thumbnails possessed the same CRC64 checksum while producing
different SHA256 digests.

As the CRC64 algorithm produces clashes at the million image scale, CRC64 matches
should be verified using a cryptographic algorithm, such as SHA256. In this sense, the
CRC64 checksum can be utilised in the same manner as the PNG signatures in Section 3.4,
acting as an initial filter for files. This would be faster than computing SHA256 hashes for
all thumbnails in the thumbnail cache, but would require a hash and checksum pair to be
stored for each thumbnail in the lookup database.

5.5.2 Thumbnail Differences Between Windows Operating Systems

Thumbnails from the same version of Windows were shown to be consistent across two
computers for both Windows 7 and Windows 10, which also held when using virtual
machines. This was verified by extracting thumbnails for all images in the Flickr 1 Million
dataset for multiple computers and verifying that SHA256 image hashes were identical
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between machines. As such, hardware differences should not cause thumbnails to be
generated differently.

However, an examination of the thumbnails produced by Windows Vista, Windows
7, and Windows 10, showed that binary identity cannot be relied upon across different
Windows versions, even when produced on the same computer. Differences can be
explained in terms of the Windows API used to generate the thumbnails by the operating
system, which can undergo change over time, such as when a new operating system is
released. Based on prior Windows API version numbering, major changes to the API
occur when a new operating system is released, and as such, thumbnail cache behaviour is
likely to remain stable within a given version of Windows.

The following discussion examines thumbnail differences between Windows ver-
sions in some detail, with findings that could potentially have implications for everyday
investigations.

96 Pixel Thumbnail Differences

All 96 pixel thumbnails are stored in the BMP format in the cache, however, they are
not generated in an identical fashion between Windows versions. Following the standard
64 byte BMP file header, Windows Vista and 7 use the 40 byte BITMAPINFOHEADER for the
Bitmap Information Header, while Windows 10 uses the longer 124 byte BITMAPV5HEADER.
Additionally, while Windows Vista and Windows 7 use no compression, Windows 10
makes use of bitfields compression, meaning that the raw binary data will not be directly
comparable to prior Windows releases. Pixel data for thumbnails, after extraction from the
BMP format, was shown to be frequently identical across Windows versions, however this
was not the case for the entire dataset. Figure 5.3 depicts an instance where two Windows
versions produce different bitmap data for the same input image, with differences being
highlighted by the resemble.js library [126].

A further complication is the aspect of the image used to produce the thumbnail in the
first place. Windows 7 was observed to derive the 96 pixel thumbnails from embedded
EXIF thumbnails when available, rather than from the full-sized image. This can produce a
thumbnail preview with a different aspect than the full-sized image, as the EXIF thumbnail
is not always updated when an image is cropped or otherwise edited [151]. An example
of this phenomenon is provided in Figure 5.4, where elements of the uncropped image
are present in the EXIF and Windows 7 thumbnails, but are no longer present in the
full-sized version. This behaviour was present for thumbnails generated by both the API
calls and manual inspection of 96 pixel thumbnails on Windows 7, but was not reproduced
in Windows Vista or Windows 10. Curiously, the 256 pixel thumbnails in Windows 7
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Fig. 5.3 An image diff of the Windows 7 and 10 thumbnails (96 pixel) generated for
2.jpg in the Flickr 1 Million dataset. Diff produced using the resemble.js library. Pixel
differences in pink highlight that each Windows version may create slightly different
thumbnail outputs.

are not generated from the embedded EXIF thumbnail, meaning that a user would see
different image previews when switching between thumbnail sizes in Windows Explorer.

256 Pixel Thumbnail Differences

256 pixel thumbnails are stored in the JPEG format, which allows for varied compression
parameters. Images across all three operating systems were found to use the default
Huffman tables provided in the JPEG specification, however there are differences in the
quantisation tables used. Windows Vista and Windows 7 share the same quantisation tables,
while Windows 10 uses a table with finer quantisation on the higher DCT frequencies,
resulting in higher image quality. This means that binary identity is lost as the thumbnails
effectively have different quality settings. However, despite using the same quantisation
tables, Windows Vista and Windows 7 also produce different binaries, with no images
in the Flickr 1 Million dataset producing the same SHA256 digest across versions due
to pixel differences. The reason for this difference cannot be attributed to the header and
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Fig. 5.4 A comparison of 49530.jpg from the Flickr dataset with its embedded EXIF
thumbnail, Windows 7 thumbnail, and Windows 10 thumbnail. Image dimensions pro-
vided. Windows 7 uses embedded EXIF thumbnails to generate the 96 pixel thumbcache
entries, which are not necessarily updated when an image is cropped or otherwise modified.

compression settings, which are identical on Windows 7 and Vista. The difference, then,
must be attributed to the thumbnail API, introduced either in the rescaling of the image, or
in the encoding of the JPEG.

A comparative overview of both thumbnail types is provided for the three tested
Windows versions in Figure 5.5.

5.5.3 Dealing With Differences: Version Specific Databases

As the thumbnails produced by different versions of Windows frequently contain different
binary data, it is not possible to create a universal lookup database from thumbnails gener-
ated on a single Windows release. For traditional cryptographic hash based lookups, one
or more databases need to be created by generating thumbnails for each Windows variant.
This would mean either a single unified lookup database, or a set of OS specific thumb-
nail databases, which may also contain CRC64 checksums. Additionally, thumbnails of
each dimension must be hashed separately, increasing the total number of databases and
fingerprints.

While this may add to overall maintenance overheads, its use for triage means that
less commonly encountered operating systems need not be accommodated. Instead, the
database could be maintained for the most popular, or most recent, Windows releases,
which would make up the bulk of a typical investigator’s workload.
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Fig. 5.5 A comparison of thumbnail images for Windows Vista, Windows 7, and Windows
10. Chrominance quantisation tables are omitted for brevity.

5.5.4 Timed Benchmarks

To be effective, thumbnail-based triage must be very fast. As such, timed benchmarks
were executed to assess the potential of this approach.

The first 10 images (0.jpg to 9.jpg) from the Flickr 1 Million collection were chosen
to serve as known lookup items, with the corresponding 96 and 256 pixel thumbnails
being used to generate SHA256 and CRC64 fingerprints. To create a realistically sized
lookup database, a further 4,999,990 randomly generated SHA256 and CRC64 strings
were included, creating four lookup databases of 5 million fingerprints each. This value
was chosen to be in line with prior work discussing the real size of law enforcement
databases [45]. Databases were loaded into memory for constant time lookups. In practice,
this constant lookup time meant that there was no measurable difference between the
lookup times for databases containing 10 items and 5 million items.

Two thumbnail cache files were then populated using the GetThumbnail method (as
described in Section 5.4.1), with the first 10,000 images in the Flickr 1 Million dataset
(integer file name order) being cached for thumbcache_96.db and the first 25,000 for
thumbcache_256.db. These quantities were chosen as they are near the maximum observed
capacities of these files, while avoiding thumbnails being overwritten. This resulted in
cache files of 257MiB and 362MiB, respectively, which were then copied to avoid further
manipulation.

Two machines were selected to perform the comparison: i) The same workstation
from the previous local disk experiments (Core-i5 4690k, 16GiB DDR3, 525GB Crucial
MX300 SSD, 4TB Western Digital Red HDD), and ii) A low specification netbook (Atom
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N450, 1GiB DDR2, 160GB Western Digital HDD (OS)). This allowed representative
benchmark times to be acquired from both a relatively high specification machine, and a
slower, legacy system. Disk benchmarks are provided in Appendix B.

Benchmarks were performed on the workstation using both the HDD and SSD, while
the netbook used only its internal hard drive. Two lookup modes were tested: i) initial
CRC64 lookups, with positive hits being verified with SHA256 (CRC+), and ii) SHA256
only (SHA), as described above in Section 5.5. A single thread was used to parse the
thumbcache_xxx.db files and perform lookups in the database. The overall execution time
does not include the time taken to read lookup databases into memory, as it is assumed
that they would be contained in the forensic application’s executable in practice. Each
run was repeated 30 times, with the memory cache being cleared each time using the
EmptyStandbyList utility [122].

The median benchmark times37, shown in Table 5.1, indicate that this approach is very
fast, regardless of the storage media used, taking approximately three seconds in the worst
case on the workstation, and 11 seconds on the netbook. Initial CRC lookups offered
no benefit when using the Workstation’s hard drive, but reduced times by approximately
25% on the SSD, and 30–50% on the netbook. This is likely because the workstation is
bottlenecked by the storage read speed, rather than CPU or memory limitations, while the
netbook likely has some performance overhead when calculating hashes. As parsing the
SHA-only approach is sufficiently fast in all cases, it is likely not worth the extra memory
overhead, or database upkeep, to perform CRC lookups.

While there is no guarantee that contraband on a device will have a thumbnail in one
of the corresponding thumbcache_xxx.db files, this technique is fast enough to be used
as an inexpensive initial check in a forensics investigation. Additionally, this extraction
and processing time does not change with the size, or number, of disks present in a
device, as the time taken is related only to the number of entries present in the individual
thumbcache_xxx.db files, and the number of users on each device. This approach can
then be relied upon to be executed quickly, with the potential to immediately identify
contraband. Even if no contraband is detected, very little time has been used, providing
the opportunity to deploy additional triage techniques.

The code for benchmarking this approach is also available on the Github reposi-
tory [149].

37Median rather than mean, to account for small variance due to background processes in Windows,
particularly on the netbook.
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96px Thumbnails 256px Thumbnails

CRC+ SHA CRC+ SHA

Workstation HDD 2.22s 2.20s 3.03s 3.02s
Workstation SSD 0.60s 0.81s 0.85s 1.28s

Netbook HDD 4.80s 6.66s 5.07s 11.16s

Table 5.1 Benchmarks for the parsing and lookup times for thumbcache_96.db and
thumbcache_256.db, containing 10k and 25k images, respectively. CRC+ verifies initial
CRC64 hits with SHA256 lookups. Reported values are the median of 30 runs.

5.6 Robust Thumbnail Lookups Using Perceptual Hashes

Cryptographic hashes are simple to calculate and have constant time database lookups.
However, their rigidity in only matching exact binary content proves troublesome for the
thumbnail variations found across Windows operating system versions. One method for
de-coupling thumbnail lookup databases from specific Windows versions is to focus on
detecting thumbnails which are visually identical, rather than checking for identity in the
binary domain. This perceptual approach falls under the semantic approximate matching
category in the literature (see Section 2.3.2). Perceptual hashing [40] techniques aim to
generate robust signatures from visual features, providing tolerance to content-preserving
changes in the binary data. This would allow a full-sized image to be compared directly to
its corresponding thumbnail, regardless of thumbnail dimensions, compression differences,
or source Windows version.

Perceptual hashing approaches typically perform well even when images have been
rescaled. This means that images in the thumbcache_xxx.db files may be compared to a
database of perceptual hashes generated from the original, full-sized, contraband images.
No intermediate thumbnails, or databases, need to be generated, which frees this approach
from the operating system API. Indeed, assuming a robust perceptual hashing technique,
this method should be completely operating system indifferent, performing equally well
on Windows and non-Windows platforms.

5.6.1 Choices of Perceptual Hash: Phash and Blockhash

While there are many approaches to perceptual hashing, with their own properties and
weaknesses [52], many of the published approaches do not provide implementations. As
such, a pragmatic approach was taken where two popular perceptual hashing techniques
with open source implementations were chosen for this work. A brief description of each
perceptual hashing method is provided below.
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Phash: The Phash library [152] is an open source perceptual hashing library for perform-
ing image comparisons. However, the original codebase has not been updated in
some time. As a result, a similar, more recent, implementation was chosen in the
Python ImageHash library [153]. This library contains several perceptual hashing
approaches, including ahash (average colour hashing), dhash (gradient tracking),
whash (discrete wavelet transform), and a modification of the original Phash (dis-
crete cosine transform). Based on initial testing, the modified Phash algorithm was
chosen as it had the best performance on the thumbnail datasets. Frequency trans-
formations such as the DCT used in Phash are able to capture essential properties of
an image, and have proven to be effective in the literature.

Blockhash: The Blockhash algorithm [154] breaks an image into blocks and compares
the mean colour values between blocks to create a signature. As the original paper
does not provide an implementation, a third-party derivative implementation was
used for this research [155].

Default hash sizes for both algorithms were used (64bit for Phash, 256bit for Blockhash).
The distance between two hashes was calculated using the Hamming distance, which is
simply the sum of bit differences between signatures. The normalised Hamming distance
was then calculated by dividing this sum by the length of the hash digest. This produces a
distance between 0 and 1, where 0 indicates an identical perceptual hash, and 1 indicates
that all bits are different. Reported distances below refer to this normalised Hamming
distance.

5.6.2 Determining Distance Thresholds For Matching Images

Ideally, visually identical images should produce the same perceptual hash digest, and
hashes for almost identical images should only differ by a small number of bits. As
the thumbnails for a single source image can differ across Windows versions, having a
matching algorithm which tolerates small variations is necessary. One way to achieve this
is to set distance thresholds for what constitutes an image match, while making sure that
this threshold is small enough to avoid visually dissimilar images from being considered
a match. For example, setting the threshold to t = 0.3 would mean that images with a
perceptual hash bit difference of less than 3 in 10 would be considered a match, while
anything above this is not a match.

In order to determine an appropriate distance threshold for image matches it was nec-
essary to explore typical distances between unrelated images. Thresholds were evaluated
for the full-sized images in the Flickr 1 Million dataset by calculating pairwise distances
from each image to 50 random images in the dataset, with no repeated pairings. Duplicate
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binary files as determined by the SHA256 algorithm were not included, resulting in a
sample of slightly less than 50 million pairwise comparisons, of the potential 500 billion
comparisons.

For both perceptual hashing algorithms, the mean and median normalised Hamming
distances were almost exactly 0.5, and appear to be normally distributed. Plots for these
distributions are provided in Figure 5.6 for Phash, and Figure 5.7 for Blockhash. As
images in the Flickr dataset should be unrelated38, these comparisons should hold for any
heterogeneous dataset. This result likely reflects design choices behind the algorithms,
where two random images should produce hashes which are around 50% different on
average.

Based on this data, it is possible to derive false positive rates for various distance
thresholds for unrelated Flickr 1 Million images. In this context, a false positive occurs
when two non-identical images in the dataset register as matches for a given distance
threshold. If this occurs often, then the distance threshold is too high, however, setting the
threshold too low may exclude some legitimate matches, generating false negatives.

False positive rates in this dataset are provided for various thresholds in Table 5.2.
As there are only expected to be tens of thousands of potential thumbnails on a device,
given the SilentCleanup task [147], a relatively high false positive rate may be acceptable.
A false positive rate of 0.01% would generate approximately 5 false positives for every
50,000 thumbnails, which places a little burden on a human examiner when positive hits
are manually verified. Distance thresholds were calculated from actual data, rather than
statistically from fitting normal distributions to the curves. This means that despite having
a nearly identical mean and standard deviation, the distance thresholds for each hashing
method are quite different. This can be explained by the lower utilisation of the normalised
Hamming space by Phash, partially due to it using a lower number of bits per hash (64bit
vs 256bit). However, this is a feature of using the default hash size for Phash, and, as such,
is not corrected for statistically.

False Positive Rate 0.00001% 0.0001% 0.001% 0.01%

Phash Distance 0.1250 0.1875 0.2188 0.2500
Blockhash Distance 0.0469 0.0781 0.1172 0.1641

Table 5.2 False positive match rates and their corresponding Phash and Blockhash distance
thresholds for pair-wise comparisons in the full-sized Flickr 1 Million dataset.

38Though there is at least one case where an image has identical pixel data but a different SHA256 hash
digest.
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Fig. 5.6 Phash normalised Hamming distance distribution for the 50 million sample
comparisons of the original Flickr 1 Million dataset. Distances values appear to have
fewer discrete values than those for Blockhash, resulting in small gaps between bars.

Fig. 5.7 Blockhash normalised Hamming distance distribution for the 50 million sample
comparisons of the original Flickr 1 Million dataset.
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False Negative Rate

Phash Blockhash

Distance 0.2500 0.1641
Win10 96px 0.0494 0.0467
Win10 256px 0.0227 0.0404

Table 5.3 False negative rates for each perceptual hash algorithm when comparing full-
sized Flickr 1 Million images to their Windows 10 thumbnails. Distance thresholds are set
for a 0.01% false positive rate.

Using a false positive rate of 0.01%, the effective false negative rates for detecting
image thumbnails were calculated. A false negative occurs when a full-sized image and
its thumbnail is not considered to be a match, and is caused by the distance threshold
being set too low. In the context of an investigation, this would mean that an item of
contraband was not automatically detected, even though it is present in the thumbnail
cache. False negative rates for Windows 10 are provided in Table 5.3, with values for
Windows Vista and Windows 7 being almost identical. Both algorithms were found to miss
1 in 2000–4000 thumbnails. This can be attributed to both weaknesses in the algorithms
and characteristics of the thumbnailing process. Phash was found to be particularly
poor when detecting thumbnails with fractals or repeated patterns (Figure 5.8), while
Blockhash was poor when images possessed large areas with little to no variation in colour
(Figure 5.9).

The weakness of each algorithm may be mitigated by using both simultaneously,
and taking the lowest score from the thumbnail to the full-sized image. This effectively
decreases the false negative rate to approximately 0.002%, or 1 in 50,000. However,
even if it is assumed that there are multiple targets to detect in the thumbnail cache,
the likelihood that contraband images would be missed using these hashing methods is
perhaps too high in some contexts. However, as this method is designed for rapid triage,
and already makes assumptions about images being in the thumbnail cache, this level of
performance should be acceptable in most cases.

Unfortunately, the false negative rate cannot be reduced by simply increasing the
distance threshold, as some thumbnails were observed to have a Hamming distance greater
than 0.5 to the full-sized version, which is larger than the mean distance to a completely
unrelated image. It is conceivable that there exists a perceptual hashing algorithm which
performs better in this use case and would provide a higher degree of confidence that no
thumbnail has been overlooked. An ideal algorithm should primarily address the problem
of scale invariance, such that the same fingerprint is generated from an image regardless
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Fig. 5.8 Sample images where Phash performs poorly when comparing original image to
256px thumbnails. Distance is normalised Hamming distance.

Fig. 5.9 Sample images where Blockhash performs poorly when comparing original image
to 256px thumbnails. Distance is normalised Hamming distance.

of resizing. Ideally, all thumbnails would fall within some well defined distance of their
full-sized counterparts, such that the false negative rate is effectively zero. However, a
sufficiently low false negative rate may be tolerable, as long as it is unlikely to affect any
decision making as a result of it [156]. One further consideration is the performance of
looking up perceptual hashes in Hamming space, which is not as fast as the constant time
lookups of traditional hashing mechanisms. However, this problem has solutions in the
literature, such as multi-hash indexes [85].

No performance analysis was conducted for the perceptual hashing approach as the
tested algorithms are not necessarily ideal for this use case. Since perceptual hashing
techniques vary considerably, benchmarking these approaches may not be particularly
informative. However, parsing the thumbnail cache is very fast, and perceptual hashes
should be relatively inexpensive to extract from small thumbnail images. In practice, this
means that for most perceptual hashing approaches, the main overhead is likely to be the
complexity of looking up the hash in a contraband database.
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5.7 Rapid Contraband Detection in the Cloud

The techniques described in this chapter can act as a form of disk level data reduction on
local storage media, with a tiny fraction of a drive serving as a proxy for its content. These
approaches may also be effective for cloud storage platforms, where thumbnails and item
metadata are present. By greatly reducing the amount of data to read across the network,
significant performance gains may be achieved, as with the sub-file hashing strategies in
Section 4.5. This section first explores the possibility of using embedded metadata for
contraband detection, much like the CRC checksums found in the Windows thumbnail
cache, before discussing the possibility of using cloud storage thumbnails in lieu of full
files. Both approaches assume that credentials have been obtained for accessing the cloud
storage account, rather than relying on processing the local device cache [157].

5.7.1 Exploiting Embedded Discriminators

Cloud storage providers typically have a great deal of metadata associated with files
and directories on their platform. This metadata allows for version tracking for client
synchronisation, management of sharing/privacy properties, and provides the ability to
uniquely identify an item on the platform. Checksums may also be used to verify the
integrity of data once it has been transmitted across the network. As noted by Roussev
et al. [109], this metadata is usually hidden, but APIs provided by the cloud service can
access this information, which can be used to obtain a more complete acquisition of cloud
storage.

The traditional approach to contraband detection is to acquire all of the binary data
for a file, hash it, and then check if it exists in a database. However, when a highly
discriminative identifier is already provided in file metadata, file data does not need to be
fetched. As these discriminators are intended to track changes in a file, and are not able to
be manipulated by users without changing file content, they are reliable data signatures. A
list of cloud storage providers and their content signatures are provided below:

Google Cloud: CRC32C/MD5 – Google cloud provides both CRC32 checksums and
MD5 hashes39 for the purposes of verifying the integrity of downloaded files.
CRC32C is standardised and uses a different polynomial to CRC32, while the
standard MD5 hash is used for all non-composite objects on the platform.

Google Drive: MD5 – Files with binary data stored on Google drive have a property
named md5checksum40, which is a standard MD5 hash of the full file content.

39https://cloud.google.com/storage/docs/hashes-etags
40https://developers.google.com/drive/api/v3/reference/files

https://cloud.google.com/storage/docs/hashes-etags
https://developers.google.com/drive/api/v3/reference/files
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One Drive: CRC32/SHA1/XOR – Microsoft’s One Drive makes use of three content
hashes 41: i) crc32Hash, a standard CRC32 checksum, ii) sha1Hash, a standard
SHA1 full file hash, and iii) quickXorHash, a proprietary exclusive-OR (XOR)
based hash with a fully documented implementation. CRC32 and SHA1 hashes are
not available on OneDrive for Business, while quickXorHashes are not available on
personal accounts.

Dropbox: content_hash – Dropbox uses a non-standard hashing approach for its con-
tent_hash file property42, which is used for file verification. Files are broken into
4MiB blocks, which are hashed using the SHA256 algorithm. Block hashes are
then concatenated into a single string, which is then hashed again with SHA256 to
calculate the final hash.

All of the cloud platforms listed above make use of robust cryptographic hashes for at
least one of their content signatures, meaning that it is not necessary to rely on CRC
based checksums. These signatures can be exploited directly by an investigator without
downloading any file content, and without calculating any hashes. All that is required is
for a request to be made to the platform’s API to obtain metadata for the files in question.
This can typically be done in bulk, as with Dropbox, which returns content hashes for
each file when requesting a directory listing, as depicted in Figure 5.10. Additionally,
as most platforms use unmodified variants of hashing algorithms which are frequently
used in forensics, existing contraband databases may be used without modification. The
API response can be parsed for hash strings, which can then be compared directly with
existing databases. However, in the case of Dropbox, a new contraband signature database
would be required for this approach, as it is unlikely that an existing database has been
generated using that particular hash concatenation method.

The metadata based approach is very fast, as it requires only strings to be requested
across the network. Additionally, few API requests are needed on platforms such as
Dropbox, as hashes for all files in each directory can be queried in a single request. This
alleviates API rate limiting concerns, which may slow down the overall acquisition process
if files are retrieved individually. However, the cloud platform hashes are as fragile as
cryptographic hashes in disk based forensics, in that modifying a single bit in the file
will generate a different hash. A simple obfuscation script could render contraband files
invisible to cryptographic hash databases, such that a more robust approach may be used
as a follow-up.

41https://docs.microsoft.com/en-us/onedrive/developer/rest-api/resources/hashes
42https://www.dropbox.com/developers/reference/content-hash

https://docs.microsoft.com/en-us/onedrive/developer/rest-api/resources/hashes
https://www.dropbox.com/developers/reference/content-hash
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Fig. 5.10 A screenshot of the Dropbox API V2 response to the list_folder endpoint.
Content hashes (highlighted by boxes) are included in directory listings for easy bulk
processing.

5.7.2 Processing Cloud Thumbnails

A robust method for detecting contraband on cloud services is to make use of the thumb-
nails provided on the platform. These thumbnails are generated for the client and web
application previews, and can be accessed via the platform API. As thumbnails are a
condensed form of the complete image content, they both reduce the amount of data to be
transmitted across the network, and provide assurance about the content of the file. These
thumbnails can then be cryptographically or perceptually hashed for comparison with
contraband databases.

A small case study of the Dropbox platform was undertaken in order to understand the
potential benefits of this approach. The largest 5000 images of the Flickr 1 Million dataset
were used to create a subset for testing. This subset totals 1.57 GiB, with a mean file size
of 337.15 KiB. Files were uploaded to the Dropbox platform and accessed via the same
client workstation and 100Mbit Internet connection as the benchmarks in Section 4.5.
Where possible, requests were made using the Dropbox Python SDK [158].

Four file access strategies were benchmarked for comparison:
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Single File: Each file is downloaded individually, with a separate API request for each
file using Dropbox.files_download.

Single Thumbnail: Thumbnails of size 128 were requested separately for each file using
Dropbox.files_get_thumbnail.

Batch Thumbnail: Thumbnails were downloaded in batches of 25, which is the maxi-
mum number of files allowed by Dropbox.files_get_thumbnail_batch.

Directory Zip: The entire directory was requested as a zip file via the files/download_zip
HTTP endpoint using the Python 2.7 requests library [159]. This workaround was
required as the Python SDK timed out when requesting the entire directory.

Each approach was repeated three times, with reported times representing the mean
duration taken to acquire the data and read it into memory with no further processing.
Multiple simultaneous requests were issued with up to 32 threads for all but the zip
approach, which only makes a single request to the API.

When executing large numbers of API requests it is necessary to take note of any
rate limiting functionality employed by the endpoint server. In this case, Dropbox does
perform rate limiting but does not disclose metrics for when the limit is triggered. No
rate limiting was observed in this experiment up to 32 threads, though a brief test with
higher thread counts did result in some requests being rejected with a timeout. Code
snippets for these benchmarks are provided in Appendix F.1.2 and F.1.3. In all cases
except downloading the zip, files were first enumerated using Dropbox.files_list_folder,
with this enumeration time being counted towards the overall time. Results for these
benchmarks are provided in Figure 5.11.

Making many small requests to the Dropbox API is expensive, as each individual API
request, regardless of size, comes with its own overheads. However, the Dropbox API
has a very high rate limit and allows for many simultaneous requests over a reasonable
period of time, facilitating reduced acquisition times at high thread counts. Requesting
individual file thumbnails instead of full files resulted in a performance increase of 1.2–
1.4×. As previously discussed in Section 3.6.3, file level data reduction approaches
perform best when there is a good trade-off between the base access overhead and the cost
of transporting file data. As thumbnail file sizes should be consistent, regardless of the size
of the source file, it is expected that this performance gap would widen with larger files.
This assumes that thumbnails of the requested size are already available on the platform
and do not have to be generated as the request is made. Higher resolution images require
more processing when carrying out re-scaling operations, which may mitigate some of the
performance gains on larger files. However, as no decrease in request times was noted



CHAPTER 5. THUMBNAIL-BASED CONTRABAND DETECTION 135

Fig. 5.11 Benchmark of mean time to acquire files from a Dropbox account. Comparison
between downloading full files one at a time (File_Single) versus a single thumbnail at
a time (Thumbnail_Single) and batch thumbnail downloading (Thumbnail_Batch), and
downloading the directory as a zip file (File_Zip). Dataset is the largest 5000 files in Flickr
1 Million.

between runs, it is assumed that, at least for 128px thumbnails, they are already present
on the Dropbox platform.

Acquiring thumbnails in batches of 25 reduced transfer times substantially. Between
1 and 8 threads the batch approach was approximately 9× faster than acquiring single
files, reaching 20× at 16 threads, and 28× at 32 threads. This can be attributed to the
25-fold reduction in the number of API requests, and also to potential efficiency gains
of the Dropbox server processing multiple related files simultaneously. This approach
also compares favourably to downloading the entire directory via a zip file, which ends up
being slower than the single file approaches at high thread counts. The reason for this is
likely that zipping such a large directory requires much more memory and processing by
the cloud provider, while the other approaches simply request that existing resources be
transferred.

These results show that obtaining thumbnails, rather than full files, has the potential to
decrease overall processing times of remote cloud storage. Small benefits are provided
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when requesting thumbnails one at a time on small Flickr files, while very large benefits
are produced when accessing thumbnails in bulk on the Dropbox platform. However,
much of the improvement can be attributed to reducing the number of API requests, which
could also be achieved by batch downloading full files. Unfortunately, Dropbox does not
provide a batch file download endpoint, such that a comparison cannot be made.

5.8 Thumbnail Triage in Practice

Thumbnail-based contraband detection is promising, and allows for rapid file content
analysis. This section discusses practical concerns pertaining to this approach.

5.8.1 Thumbnail Robustness

Thumbnail-based approaches to contraband detection are afforded a slightly increased
level of robustness over processing a full image. The reason for this is that when reducing
the dimensions of an image, multiple pixels in the full image are inevitably represented by
a single pixel in the thumbnail. This means that modifying individual pixels, in an attempt
to foil full file cryptographic hashing, potentially results in no change to the thumbnail, as
the differences are averaged out. However, this added robustness cannot necessarily be
relied upon, as it may not take many modifications to change one or more pixels in the
thumbnail. Additionally, whether or not a particular modification results in changes to
thumbnail pixels is dependent on the particular thumbnailing algorithm, and how pixels
are merged. Thumbnail comparisons, then, require a small degree of tolerance, but not
necessarily complex perceptual hashing schemes when comparing thumbnails generated
by the same algorithm. This robustness is lost when comparing images between platforms,
or when the thumbnail generation approach can vary on a single platform.

5.8.2 Thumbnail Triage on Windows

The thumbnail cache on Windows operating systems can be used as a centralised catalogue
of images on a device. However, it should be reiterated that there is no guarantee that
an image which resides on a computer will be present in the thumbnail cache. The
literature [31, 142] discusses various triggering mechanisms for caching, in some cases
showing that images need not even be viewed to be present in the cache. Despite this,
Windows does not appear to pro-actively cache all images on the device, instead waiting
for some file/directory level triggering criteria. It should also be noted that if indexing
is disabled for a particular directory or device then it will not generate thumbnails or
Windows index entries, meaning that it is possible for items to be missing from the cache
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even if they have been viewed via explorer. Nonetheless, the thumbcache does appear to
hold the most recently viewed thumbnails, such that it is, at minimum, a representation of
the most recently previewed indexable, thumbnailable, items in Windows Explorer. The
cache, then, can be seen as an up-to-date sample of images viewed on the device, and
should be representative of which images have been accessed in normal use by a given
user.

The user can attempt to remove traces of images and thumbnails from a device,
affecting the sample present in the cache. Morris and Chivers [31] investigated deletion
behaviour of thumbnails on Windows 7, finding that when the original image is deleted,
the cache entry is not necessarily purged. This allows for the detection of contraband
files which are no longer present in their full form. Similarly, thumbnails for removable
media are also stored in the cache, regardless of whether or not the media is connected at
the time. In practice, this extends the sample in the cache to recently used USB storage,
networked drives, and recently deleted files. This can provide an indication that there are
external storage media which are worth seeking out, further focusing the investigation and
providing critical clues for the initial incident response.

However, the thumbnail cache itself can be cleared using the Disk Cleanup utility43

or or the scheduled SilentCleanup version of the same process [147], which temporarily
moves all thumbcache_xxx.db files to a subdirectory named ‘ThumbCacheToDelete’, with
fresh databases taking their place [31]. At some point this temporary directory is deleted,
though it is unclear how long it persists. This clean-up behaviour was also present in the
experiments on Windows 10 for this chapter, and indicates that entire cache databases
may be found in unallocated disk space, even after an attempt to purge them. As such,
during triage it would be wise to check the thumbnail cache directory for deleted versions
of ThumbCacheToDelete with a forensic preview tool.

Pseudocode for the thumbnail triage approach on Windows is provided in Algorithm 3.
After mounting the device read-only, User directories on the device are enumerated, and
the thumbcache_xxx.db files for each user are parsed in turn. Each thumbnail binary in
the database file is then hashed and compared to the contraband hash set. If records in
the database files match hashes for known contraband, the investigator can then make
use of the thumbnail ID to locate the full-sized version of the image on the computer by
referencing the Windows.edb database, which potentially contains the path to the full
sized image. [161].

A final consideration when using traditional cryptographic hashes is that of memory
limitations when running on low specification devices. Due to variations between Windows
versions, and multiple thumbnail sizes provided by the cache, lookup databases would
contain several hashes for the same source file. The inflation of the database may make

43And the more recent ‘Free up space now’ option provided Storage Sense on Windows 10 [160].
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Algorithm 3: Thumbnail Triage - Pseudocode to count number of thumbnail
database hits on a Windows machine.

Input: Evidence Drive
Output: Hit Count
hit_count = 0;
media = openReadOnly(disk);
for user in media/Users/ do

thumbcache_dir = media/Users/user/Appdata/Local
/Microsoft/Windows/Explorer/;

for thumbcache in thumbcache_dir do
/ / thumcache_dir should also include ThumbCacheToDelete
for record in thumbcache do

thumbhash = hash(record.image);
if thumbhash in contraband_db then

hit_count++;
end

end
end

end
return hit_count

it difficult to store in the main memory of many computers. A solution to this is to have
targeted databases for different versions of Windows, or to reduce memory footprints
using compressed data structures, such as bloom filters [45]. This is less of a concern for
perceptual hash databases, as a single hash for each full-size image should be adequate for
detecting thumbnails, irrespective of host platform and thumbnail dimensions.

Anti-forensics and Reliability

There are several limitations to this approach when performing triage on Windows. As the
user can delete the cache, mark directories as non-indexable, or avoid using explorer to
view files, thus avoiding caching, there is no guarantee that contraband will be represented
in the cache. Additionally, not all items are cached even when viewed in explorer. If the
user changes the file extension to a format which Windows does not create thumbnails
for, or to an unknown extension, such as .zzz, then there will be no entry in the cache.
Similarly, while Windows is fairly robust when generating previews for mismatched image
formats (e.g. a JPEG renamed to .png will still be cached), giving a video extension, such
as .mov, to an image file will cause it not to be cached, even if the video format supports
caching. The user may also choose to disable caching altogether via group policy.

As a result, while the thumbnail cache is an excellent source of evidence on a device, it
can be actively thwarted by a savvy user, and is therefore not 100% reliable as a standalone
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technique. However, the possibility of the user subverting the cache is outweighed by the
potential utility and relatively inexpensive processing required to perform such lookups.

5.8.3 Thumbnail Triage on Other Operating Systems

While this work discusses centralised thumbnail caches for the Windows operating system,
the literature indicates counterpart centralised caches on Ubuntu [143], Android [144],
and MacOS [145], which could be similarly exploited. Ideally, perceptual hashes should
be platform independent, and be directly comparable with any thumbnail cache. However,
further work is required to explore the false positive and negative rates for thumbnails on
non-Windows devices, as the thumbnail generation process may impact detection accuracy.
Performance degradation will occur if a variety of aspect ratios are used when generating
thumbnails, such as forcing squares or distorted representations of the original image
when re-scaling. In the worst case, multiple perceptual hash databases can be maintained,
selecting the most appropriate for a given platform. It is also recommended that hash
databases include signatures for embedded EXIF thumbnails, as these may be used to
create thumbnails, as with the 96 pixel thumbnails on Windows 7.

When employing traditional cryptographic hashing, the corresponding thumbnail
generation APIs for each operating system must be utilised to generate the thumbnails for
hashing. Failing this, another method for generating identical thumbnails on the platform
must be discovered to automate the process. Ongoing maintenance is also required to
verify that new operating system releases do not alter the method which is used to generate
thumbnails. However, it is likely that related distributions of an operating system generate
thumbnails in the same fashion. In this case, the labour is reduced, as, say, all Debian
based Linux distributions may behave identically. On Linux, it is possible for third-party
applications to generate thumbnails on a device, which would likely fall outside of the
scope of cryptographic hash databases. This further emphasises the place of perceptual
hashes as a generic solution to the problem of identifying contraband thumbnails.

5.8.4 Thumbnail Analysis on Cloud Platforms

Thumbnail analysis of a cloud platform behaves like the sub-file hashing approaches in
earlier chapters, effecting file level data reduction. The author is not aware of any cloud
storage platform which makes use of centralised cache stores which can be accessed
efficiently. As such, thumbnails are utilised as reduced representations of individual files,
with all files being processed in turn. This is fundamentally different from the effective
disk sampling provided by analysing the thumbnail cache on Windows devices.
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As cloud platforms already provide easily accessible file hashes (see Section 5.7.1),
the role of thumbnail analysis is second-stage contraband detection. As with the process
model in Breintinger et al. [52], multiple stages of contraband detection can be adopted.
On the cloud, the first stage is to check hashes in the metadata. At this point, known,
unmodified contraband should be detected. The second stage, thumbnail analysis, can be
used to detect modified image variants through perceptual hash lookups, while reducing
the network throughput bottleneck.

5.8.5 Thumbnail vs. Sub-file Triage

When using thumbnails on a per-file basis, as with cloud analysis, they have the same
overall effect as sub-file detection strategies, reducing file level data reads. The effective
data reduction achieved by thumbnails is slightly lower, with the mean thumbnails in
this work corresponding to 26.2KiB for 96px and 15.5KiB for 256px thumbnails on
Windows 1044, which is still a tiny fraction of a reasonably sized image. Additionally, as
thumbnails are direct representations of the full image content, they may be processed at
the pixel level, which is not feasible with the sub-file approaches described in this thesis.
In particular, heuristics such as flesh tone detection [162] may be employed to identify
potentially unknown files of interest.

The real power of thumbnail processing is when it is applied to a centralised cache.
This changes the data reduction from file level to disk level, and places thumbnail analysis
in a new class of techniques. When utilised in this fashion, processing the thumbnail
cache should be the first step in forensic triage, as it is incredibly fast. When processing
the remainder of the disk, the data reduction methodology of Grier and Richard [43] can
be used in combination with sub-file approaches to rapidly process the remainder of the
disk. Both sub-file and thumbnail-based approaches, then, are not in direct competition,
and have different benefits depending on the situation.

5.9 Conclusions

This chapter has shown that centralised thumbnail caches offer an opportunity to perform
rapid forensic triage and contraband detection, potentially saving a huge number of
investigator man hours. Cryptographic hash analysis of the Windows 10 thumbcache can
be performed in a matter of seconds, even on low-end legacy equipment. The cache itself
serves as a sample of recent images on the device, reducing processing of entire disks to a
few hundred mebibytes.

4496 pixel thumbnails are bitmaps and generate larger files than the 256 pixel JPEGs. Figures calculated
from the Flickr 1 Million thumbnails.
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While this work focuses on the Windows 10 operating system, further research will
allow the technique to be expanded to other operating systems and mobile devices. This
can be achieved by further refining the application of perceptual hashing techniques to
detect target thumbnails of any dimensions and compression ratio. Flexible thumbnail
fingerprint matching will allow for generic signature databases to be maintained, which
can be used to detect contraband swiftly across any device using centralised thumbnail
stores. Finally, thumbnail-based approaches also offer file level data reduction for cloud
investigations, particularly when they can be fetched in batches.



Chapter 6

Conclusions and Future Work

In order to tackle the volume problem in digital forensics, and begin to alleviate backlogs,
this thesis states that: reduced file representations may be used to mitigate forensic I/O
and bandwidth bottlenecks, resulting in faster forensic processing, while maintaining
forensic integrity. Law enforcement backlogs are now measured in years, which has
detrimental effects on the innocent and prevents justice from being delivered effectively to
the guilty. The work in this thesis seeks to improve investigative turnaround and facilitate
the eradication of such backlogs. This chapter discusses how each of the contributions
supports the aims of the thesis, before discussing future work.

6.1 Overview of Contributions

Reduced file representations can potentially take many forms, but the primary goal in this
thesis is always to reduce the amount of data required to identify an item of contraband,
effecting faster processing. The work in Chapter 3 explores the possibility of generating
highly distinct signatures from file type specific features, while reading as little of the
file as possible. This approach requires the careful analysis of a file type specification, as
well as an empirical study to determine which elements of the standard are actually used
in the real world. Two file types were chosen for this work, PNG and JPEG, which are
currently the most popular image formats for lossless and lossy compression, respectively.
A different signature generation strategy was employed for each file type, with the PNG
approach combining multiple low entropy features with a small chunk of image data,
and the JPEG approach directly exploiting Huffman tables, which can be construed as a
statistical image proxy. In both cases, signatures were found to be highly discriminative,
with the recommendation that the PNG approach is used as part of a filtering scheme,
requiring verification. Signatures were extracted using only 1–3% of the relatively small
files used in testing, a percentage which will decrease with larger file sizes. These

142
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approaches were benchmarked against full file hashing to determine if they have the
potential to reduce investigative processing times. It was discovered that accessing small
chunks of each file is incredibly fast on solid-state media for any file size, while benefits
on hard drives are only realised when files are not very small.

Generalising the partial file data reduction approach, Chapter 4 discusses sub-file
hashing approaches which can be applied to any compressed file type. The most successful
approach reads a fixed logical data block from the end of each file, resulting in perfect
discrimination with 4096 byte blocks on a million file dataset. This approach has the
benefit of not requiring in-depth knowledge of a particular file type, merely relying on
the entropy provided by compressed data streams. Again, this method was shown to be
particularly effective on solid-state media, with similar performance characteristics to
techniques in the prior chapter. Sub-file hashing was also shown to perform well across
both LAN and Internet connections, expanding the use case to networked and cloud
environments. The work in both Chapters 3 and 4 indicate that partial files are an effective
reduced file representation for detecting contraband, which also improves processing
times significantly in most cases. For use in triage, this approach may be combined with
file system metadata processing to sample the drive [43], allowing for a focused search.
As modern images are typically much larger than the images tested in this work, greatly
reduced processing time is expected in real-world scenarios, with projections showing
improvements of up to two orders of magnitude. The evidence indicates that partial
file approaches have the potential to reduce forensic backlogs, and directly supports the
reduced file representation thesis.

An alternative approach to address the aims of this thesis is to make use of image
thumbnails, which are reduced resolution representations of a full-sized image. Chap-
ter 5 shows that the centralised thumbnail cache on Windows operating systems can be
exploited directly for rapid disk triage. Thumbnail signatures can be generated using
either cryptographic or perceptual hashing functions. When employing the former, due
consideration must be given to the differences between operating systems, while the
latter has the potential to utilise a single lookup database for any platform. Centralised
thumbnail caches may be used as a proxy for content on an entire drive, with benchmarks
showing that tens of thousands of thumbnails may be processed in a matter of seconds.
Thumbnails are also commonly used on cloud storage services for client application pre-
views. Experiments on the Dropbox platform showed that fetching individual thumbnails
has some benefit over acquiring full files, but is most powerful when exploiting the batch
request functionality, reducing API overheads. Overall, thumbnails are a robust stand-in
for full file content, as they directly represent pixel content for a file. Thumbnail sizes
are a tiny fraction of full file sizes, effecting an excellent level of data reduction. This
method of mitigating I/O and network bandwidth is effective, particularly when dense
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thumbnail stores are easily accessible. When analysing local disk content, this approach
may be used as first stage, near instantaneous, triage. Thumbnails may be used standalone,
or may be augmented by disk level data reduction and the sub-file strategies from earlier
chapters, for a more complete disk analysis. Thumbnail approaches are an alternative way
of achieving reduced backlogs, directly addressing the aims of this thesis.

6.2 Achievement of Thesis Objectives

This thesis is focused on data reduction for the sake of reducing the quantity of data to
be read from the base storage media, which in turn alleviates a portion of the forensic
bottleneck attributed to the storage media bottleneck. To be useful in court, a forensic
technique must also be robust to the point of being reliable as evidence. Further evalua-
tion criteria were identified from the literature in Section 3.2, which elaborate on these
fundamental requirements. The techniques in Chapters 3 and 4 had such requirements
built-in by design. The work in Chapter 5 also has the same set of requirements, but as the
focus was not on signature generation, instead choosing to use existing methods, some
of the criteria are not directly applicable. What follows is a discussion of how the work
in this thesis addresses the thesis statement and the expanded evaluation criteria from
Section 3.2.

6.2.1 Uniqueness / Discriminating Power

High discriminative power is a necessary characteristic when performing automated
contraband detection. Both the file type specific and generic sub-file approaches produced
highly discriminative signatures. Optimised Huffman tables are essentially unique at the
million image scale (Table 3.9), with false positives being generated by very similar images
(Figure 3.17), which may actually be considered a strength over traditional cryptographic
hashing. Indeed, this result is not surprising given that it was work in the field of Content
Based Image Retrieval which inspired this method. The PNG approach shows that
signatures can be built from lower entropy features, but that it works best on heterogeneous
datasets. Despite this, even when the same encoder is used to generate the images 99.8%
of images in the converted Govdocs dataset produced a unique signature (Figure 3.7).
This effectively means a false positive rate of 1-in-500 images in the worst case, which
is acceptable, but best paired with a more accurate technique to perform a verification
check. The generic sub-file approach produces unique signatures when reading as little
as 4KiB of data from the end of the file (Table 4.2). This is not surprising as the end of
most compressed file types is simply a compressed, high entropy, data stream. This result
should then hold for any file type which has a similar layout, and is very promising.
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The thumbnail based approaches rely on both the discriminating power of the underly-
ing hash and the characteristics of the thumbnailing process (Section 5.5.2). Very similar
images may produce identical thumbnails by chance, but again this may be a positive
feature. Cryptographic hashes of these images will produce unique signatures as long as
the thumbnails are unique, while the perceptual hashing techniques used are somewhat at
the mercy of the thumbnail re-scaling process (Figures 5.8 and 5.9). The false negative and
positive rate can be controlled by selecting an appropriate distance threshold to determine
if a thumbnail is a match or not, with a false positive rate of 1 in 10,000 being easily
achievable (Table 5.2).

6.2.2 False Negatives and Robustness

Ideally, no illegal media should be missed when processing a disk for a forensic investiga-
tion. The risk of overlooking critical evidence has to be accepted when performing any
kind of triage or data reduction but it is critical that this risk is minimised and quantifiable.
Neither the file type specific (Chapter 3) or file agnostic (Chapter 4) sub-file signature
generation approaches will produce false negatives when matching against the original file.
This is possible because the signatures are deterministic, such that the same source file will
always produce the same output signature, and all files are processed without selecting a
sampling subset. In this respect, both sub-file approaches have the same level of assurance
as traditional cryptographic hashing. However, the sub-file approaches are able to cope
with some forms of binary or content based manipulation which cryptographic hashes
cannot deal with. This was clear from specific examples (e.g. Figures 3.5, 3.17 and 3.18)
in the dataset despite the lack of content or binary alterations to images in the dataset.
Optimised Huffman tables will not change when the metadata is modified, but will change
when the content of the image changes enough to alter the JPEG’s DCT code frequencies,
providing some level of flexibility. The PNG approach only targets metadata necessary to
render the file, along with a small portion of binary data, meaning that the file has to be
encoded differently, or the first few scanlines of the image would have to be modified to
produce a negative result. Similarly, the Last 4KiB technique will only generate a different
signature if the DCT codes or other encoding tables use to encode the image change, or if
the changes to image content affect the last 4KiB of compressed scan data.

Thumbnails on a given operating system version are produced deterministically, such
that no images will be missed using the cryptographic approach (Section 5.5.2). The
weakness of particular perceptual hashing approaches may cause false negatives, with
repeating patterns, fractals and solid background images causing problems with the tested
algorithms (Figures 5.8 and 5.9). However, the risk of false negatives may be mitigated by
combining techniques to avoid the shortcomings of both, in these experiments reducing the
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false negative rate to 1-in-50,000 (Section 5.6.2). When modifying an image the weakness
of cryptographic hashing is somewhat mitigated by the re-scaling process, meaning
that small pixel changes will likely have no effect in preventing the image from being
detected, requiring more substantial changes across the image which will be reflected in
the downscaled version. Perceptual hashing is built to tolerate such modifications, which,
combined with the thumbnailing process, results in strong tolerance for content-based
image modifications. The thumbnails are not affected by metadata or content preserving
binary changes in the original image, meaning that only content-based attacks will have
any effect on the lookup accuracy. One risk of false negatives when looking in the
cache is that an image may simply not have a corresponding thumbnail (Section 5.8.2),
however, it is argued that the speed of this approach outweighs the cost, making it always
valuable, while it also provides a good sample of recently viewed images on the machine.
Together this means that as long as the investigator has the appropriate expectations for
this approach, the risk of missing evidence is not a great concern.

6.2.3 Generation Speed and Lookup Speed

Simply reducing the amount of data to be read from the storage media is not particularly
effective unless the data can be processed as fast as it is acquired [11]. The timed
benchmarks in this thesis combine figures for the time to read the data, extract the
signature, and perform a lookup of the signature in a database. The complexity of the
lookups in all benchmarks, for sub-file and thumbnails alike, was constant time, O(1),
as they were simple string lookups in a Python dictionary or C++ unordered map. The
benchmark times, then, effectively communicate the time to read and generate signatures,
which are then compared directly to the full file hashing approach in Chapters 3 and 4. As
all sub-file approaches read approximately the same amount of data, with the exception of
the larger Last n values, they all perform very similarly (Tables 4.3, 4.4, and Figure 4.6),
with CPU bottlenecks not being a constraint in the experiments (Figure C.3). The effective
speed improvement over full file cryptographic hashing is up to 70× for 500KiB files
on SSDs, and 3× for the same files on an HDD (Tables 4.3 and 4.4). This shows that
these techniques benefit greatly from the reduced amount of data read from the underlying
storage media, while also being robust, as per Section 6.2.2.

The thumbnail approach can make use of traditional cryptographic hashing and is
therefore not directly comparable to a baseline approach. However, there is no approach
in the literature which claims to identify contraband on an HDD in under a minute,
regardless of disk size. Cryptographic hashes are fast to calculate, meaning that the main
concern is the execution and lookup speed of perceptual hashes for a unified lookup
database. Such concerns have been documented in the literature [52], showing that while
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perceptual hashes are relatively slow compared to other hashing methods, they are not
slow enough to invalidate the approach. Additionally, as the thumbnails in the cache
are already downscaled the processing time of the perceptual hashes is going to be less
onerous. Database lookup strategies are more of a concern, but there are also strategies in
the literature to avoid millions of pairwise comparisons [85].

6.2.4 Compression/Signature Length

The length of the signature is important when considering possible memory constraints at
scale. Contraband databases can contain millions of items, which should ideally be stored
in RAM for optimal lookup speeds [45]. Cryptographic and perceptual hashing techniques
typically have fixed length digests as their output, while bytewise matching schemes
are often variable length [52]. The PNG signature generation method in Chapter 3 is a
variable length as it depends on the size of the features provided in the IHDR chunk, but
was always observed to be smaller than 64 bytes, which is less than the digest length
of SHA512 (Section 3.4.3). Optimised Huffman tables for JPEGs were observed to
be typically less than 300 bytes with no compression, which would be equivalent in
length to a 2400 bit cryptographic hash (Section 3.5.4). This is perhaps too large to store
natively, but a compression technique or cryptographic digest may be generated from
the Huffman signature in order to produce a fixed, or compressed, signature for better
memory utilisation. The sub-file signatures from Chapter 4 use cryptographic hashes and
are therefore a fixed size, with the length depending on the chosen hashing algorithm.
Similarly, thumbnail signatures in Chapter 5 make use of existing cryptographic and
perceptual hashing schemes, such that they will also be fixed length. In no case does
the size of the signature scale with the size of the file, with compression being possible
to reduce memory overhead. As such, all three high-level approaches in this work are
suitable for in-memory databases for contraband detection.

6.2.5 Anti-forensics for Sub-file approaches

Signature based contraband detection is limited to locating identical, or similar, files on a
device, depending on the approach, and cannot find completely new files of interest. In the
case of traditional cryptographic hashes, flipping a single bit in the file completely changes
the hash, making them trivial to defeat with small file modifications [51]. Perceptual hashes
are more robust and can tolerate both binary and content level manipulations [40, 52], but
have their own weaknesses (Sections 2.3.1 and 2.3.2, Figures 5.8 and 5.9). The approach
in Chapters 3 and 4 reduce the risk of small file manipulations throwing off the signature
by focusing on the content, or encoding properties, of the image. As such, an attacker
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would have to modify how the image is encoded, or change the content itself, in some
way in order to affect these signatures. However, as discussed above in Section 6.2.2,
the sub-file approaches are more robust than traditional cryptographic hashing. A wider
range of attacks can be used against the thumbnail cache. As discussed in Section 5.8.2,
disabling indexing or making changes to group policies, or changing file extensions,
can cause thumbnails to never be cached for a file. Additionally, the caches themselves
may be deleted using built-in functionality of the Windows OS. A user could therefore
make thumbcache analysis impossible, preventing this form of triage. However, the
perceptual hashing and downscaling components of the thumbnail triage process make
it less susceptible to image modifications, or even re-encoded images, such that it is an
effective option when available.

When encryption is used to obfuscate the original files, the sub-file approaches in
Chapters 3 and 4 will not be able to detect contraband items unless they are decrypted first.
Thumbnail triage, however, will still be of use in this case as long as the operating system
partition is accessible (i.e. not encrypted), as thumbnails are generated for images when
they are mounted by the Windows OS, regardless of whether or not the original volume or
container was encrypted45.

6.2.6 Evaluation of Thesis Statement

All of the techniques in this thesis fulfill the relevant criteria, providing fast mechanisms
to process forensic evidence while making little or no compromise in the reliability of
evidence detection. Reduced representations often affect large speed increases when
compared to full file cryptographic hashing, and are capable of reducing processing times
by two orders of magnitude given large enough files.

6.3 Implications for Digital Forensics

In a world where storage capacities and the ability for the average user to generate
data are constantly increasing, forensic examiners require efficient tools to avoid being
overwhelmed. This thesis provides effective approaches for dealing with data volume
in forensics, without requiring vast computational resources, as with approaches in prior
work [11]. One important distinction between the data reduction approaches in this
work compared to the existing literature is that the reduction is deterministic, with the
"sampling" equivalent being done at the logical level for each file, as opposed to the disk
level. Prior work focuses on randomly selecting low-level disk blocks [29, 45], which

45That is, the volume or container must be decrypted to be mounted, meaning that the files are in plaintext
and are able to be cached.
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may miss critical evidence in the sampling process, and is also susceptible to block level
manipulations which render the hashes incapable of detecting contraband. In contrast, the
sub-file approaches in this work are more robust to file level manipulation, but also process
all files such that files with the matching signature will always be detected. However,
one downside to the logical sub-file approach is the need for a file system to be present
and intact, while random block sampling can be used on a raw disk with a damaged file
system.

Both Grier and Richard [43] and Dalins et al. [163] make use of data reduction schemes
which rely on heuristics to parse the file system for the most likely sources of information.
These solutions have the same need for an intact file system, but also effectively sample
from the disk, albeit it in a deterministic fashion. Again, this sampling may miss critical
data, particularly if the case type heuristics overlook unusual evidence. However, these
heuristic samples complement the work in this thesis very well, as they can be used as a
starting point for processing. This thesis does not propose a method for selecting the order
in which the file system should be processed, instead focusing on making the processing
of individual files faster. The above work on file system data reduction can be used to
strategically select which parts of the file system to scan first, potentially reducing the
initial time taken to detect the first pieces of contraband on a device.

A strategic approach to evidence collection and processing will be necessary to keep
pace with developments in storage technology. This thesis provides a promising starting
point for non-mechanical media, with random access, sub-file techniques performing very
well on SSDs, with expected performance to be higher on Intel Optane based devices.
However, the expansion of the storage capacity of mechanical media is also expected,
largely thanks to the HAMR technology [164] which applies heat to the read head to
effect higher areal density on a device. The road map for the technology suggests that
100TB drives will be available by 2025 [165], which may be disastrous for the field of
digital forensics unless new techniques are adopted. Based on the results of this thesis, it
seems prudent to begin contraband image investigations with analysis of the thumbnail
cache to detect easily accessible low hanging fruit. This is particularly effective as cache
does not scale in size with the disk. A strategic walk of the file system can then be used
to target sections of the disk for analyses, which can then utilise sub-file techniques for
reduced processing times. Indeed, as the HAMR technology is accompanied by a multi-
actuator technology (MACH.2) [166], a random sampling of the entire disk could also be
conducted at the same time as a focused sub-file approach, effecting a double-pronged
triage approach. It may be necessary to make trade-offs between absolute completeness
and the requirement to process devices quickly if the field is to keep pace with such
technological developments.
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6.4 Future Work

Sub-file signature approaches have been shown to be effective for multiple image formats,
however, testing has been largely limited to files of the PNG and JPEG format. While
these approaches should be effective on all media types which are relevant to contraband
detection, future work could expand on this thesis to empirically verify this. Of particular
interest are storage formats which make use of low-resolution image scans early in the
file, as with progressive JPEGs. These scans could be exploited as a proxy for the entire
file, essentially serving as a thumbnail for contraband detection.

Additional storage technologies could also be explored, however, the analysis of effec-
tive read speeds in Section 3.6.3 provides a good basis for reasoning about performance
of untested media types, such as Intel Optane devices. Instead, a more useful endeavour
would be to explore alternative approaches to forensics which make the best use of non-
mechanical storage. Much of the research in the field has assumed that the underlying
storage technology is a hard drive. However as more devices make use of flash-based me-
dia, the community should explore the opportunities afforded by the different performance
characteristics of such devices, as with the work in Chapters 3 and 4. Each new storage
technology provides an opportunity to re-evaluate best practice and optimise forensic
processes.

Finally, triage approaches utilising centralised thumbnail caches may be further de-
veloped. In order to generalise this approach, and provide a high-level of robustness and
tolerance to varied thumbnail processes, more work is required to identify applicable
perceptual hashing techniques. A perceptual hashing algorithm which is tailored for the
comparison of full-sized images and their thumbnails would allow for initial triage to
be performed in seconds on any device using a modern operating system. This would
require thumbnail datasets to be collected from a wide variety of platforms currently in
use. These datasets can then be used to evaluate existing perceptual hashes to determine
which have the fewest false positives and negatives overall, or to identify a variety of
complementing approaches. This may also require the development of a new perceptual
hashing approach, which has downscaling invariance, and also accommodates slightly
shifted aspect ratios and thumbnail aspects. A highly tolerant perceptual hash would
allow desktop computers, laptops, and mobile devices containing obvious contraband to
be detected rapidly, providing investigators with immediate, actionable, information.
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Appendix A

Dataset Creation

A.1 Chapter 3 Datasets

A.1.1 Govdocs PNG Conversion

The following script was used to convert the original Govdocs JPEG files to the PNG
format:

1 # Python 2
2 i m p o r t os
3 from s y s i m p o r t a rgv
4 from PIL i m p o r t Image , ImageEnhance
5 from copy i m p o r t copy
6 from t h r e a d _ u t i l s i m p o r t *
7

8 d e f saveAsPNG ( image , fname , o u t p a t h ) :
9 # Conve r t t h e s o u r c e f i l e t o a PNG wi th no o t h e r m o d i f i c a t i o n

10 f p a t h = os . p a t h . j o i n ( o u t p a t h , fname + ’ . png ’ )
11 t r y :
12 image . s ave ( f p a t h )
13 e x c e p t IOError , m:
14 p r i n t " Sav ing as PNG f a i l e d f o r : { } . \ nReason : { } " . f o r m a t ( fname

, m)
15

16

17 d e f g e n e r a t e m o d s ( f i l e p a t h , o u t p a t h ) :
18 # G e n e r a t e and save image m o d f i i c a t i o n s f o r a s o u r c e f i l e , s ave

them t o o u t p a t h .
19 o r i g i n a l i m a g e = Image . open ( f i l e p a t h )
20 fname , e x t = os . p a t h . s p l i t e x t ( f i l e p a t h )
21 fname = fname . s p l i t ( os . sep ) [−1]
22 saveAsPNG ( o r i g i n a l i m a g e , fname , o u t p a t h )
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23

24

25 # P a r s e commandline a r g s .
26 p a t h = ’ ’
27

28 i f l e n ( a rgv ) != 3 :
29 p r i n t " usage : < o r i g i n a l _ i m a g e s _ d i r > < o u t p u t _ d i r >"
30 e x i t ( )
31 e l i f l e n ( a rgv ) == 3 :
32 p a t h = a rgv [ 1 ]
33 o u t p a t h = a rgv [ 2 ]
34

35

36 i f n o t os . p a t h . e x i s t s ( o u t p a t h ) :
37 p r i n t " Outpu t d i r e c t o r y does n o t e x i s t : C r e a t i n g . "
38 os . m a k e d i r s ( o u t p a t h )
39

40 # Modify a l l i t e m s i n t h e pa th , s ave mods t o o u t p a t h
41 t p o o l = ThreadPoo l ( 4 )
42 c o u n t = 0
43 p r i n t " Beg inn ing c o n v e r s i o n . . . "
44 f o r s u b d i r , d i r s , f i l e s i n os . walk ( p a t h ) :
45 f o r f i n f i l e s :
46 t r y :
47 f p a t h = os . p a t h . j o i n ( s u b d i r , f )
48 t p o o l . a d d _ t a s k ( genera temods , f p a t h , o u t p a t h )
49 c o u n t +=1
50 i f c o u n t % 1000 ==0:
51 p r i n t " Conve r t ed : " , c o u n t
52 e x c e p t E x c e p t i o n :
53 p r i n t " problem p r o c e s s i n g : {} " . f o r m a t ( f )
54

55 t p o o l . w a i t _ c o m p l e t i o n ( )

Listing A.1 Code used to generate PNGs from the Govdocs dataset. Does not include
de-duplication code.

A.1.2 Difference From Original Govdocs

During the conversion four files failed to convert using the Python PIL library, and one
PNG had an invalid signature post conversion. These images, as well as the 341 binary
duplicates, as determined by SHA256, were removed from the modified Govdocs PNG
corpus.
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4 Failed to Convert:

422364.jpg 656998.jpg 657390.jpg 657911.jpg

1 Invalid Signatures After Conversion:

800992.png

341 Duplicates Removed:

002640.png 007377.png 010046.png 013735.png 015118.png 015277.png 020741.png 023261.png

025447.png 025758.png 026212.png 027143.png 028261.png 028781.png 028788.png 033480.png

033491.png 033501.png 033878.png 035425.png 035428.png 035429.png 035698.png 035711.png

035963.png 040830.png 051322.png 051575.png 054012.png 059280.png 075350.png 075525.png

076436.png 081112.png 081120.png 088427.png 089439.png 092515.png 092521.png 092554.png

092560.png 092853.png 097013.png 097015.png 099447.png 102379.png 109760.png 110742.png

112399.png 112424.png 116271.png 118532.png 123259.png 126780.png 128269.png 128270.png

128271.png 134314.png 141138.png 141140.png 143202.png 148871.png 151078.png 153343.png

157541.png 158783.png 169422.png 169431.png 169446.png 171921.png 175167.png 183029.png

186142.png 186145.png 191994.png 193151.png 193925.png 194473.png 200586.png 212149.png

227152.png 229394.png 231767.png 232902.png 233980.png 233995.png 234400.png 238224.png

242215.png 242220.png 243429.png 243496.png 244139.png 245334.png 249151.png 258948.png

258954.png 263535.png 268507.png 268522.png 268525.png 268526.png 268535.png 268536.png

268544.png 270646.png 276140.png 278118.png 281157.png 281171.png 281452.png 289382.png

290530.png 292970.png 294564.png 295387.png 298758.png 301730.png 307942.png 309251.png

311477.png 311481.png 312364.png 317063.png 320369.png 320393.png 320400.png 320404.png

320406.png 320469.png 320476.png 323509.png 330080.png 800987.png 336340.png 336457.png

336877.png 339173.png 340375.png 340869.png 342450.png 346546.png 346556.png 350026.png

350033.png 350912.png 352542.png 354082.png 356369.png 357481.png 359126.png 360131.png

362044.png 362171.png 365914.png 366063.png 369034.png 369069.png 372481.png 391374.png

397626.png 406967.png 409013.png 411553.png 416428.png 419991.png 419996.png 420002.png

424848.png 424849.png 426030.png 427438.png 431807.png 434513.png 451838.png 452550.png

461857.png 496974.png 497019.png 504002.png 517692.png 539724.png 545202.png 546945.png

593225.png 656806.png 657195.png 657383.png 657579.png 657748.png 658091.png 658093.png

658261.png 658422.png 658586.png 660548.png 661092.png 661434.png 662178.png 662542.png

663262.png 663450.png 663594.png 663774.png 663941.png 663956.png 663962.png 664118.png

664297.png 664468.png 666005.png 666008.png 666025.png 666184.png 666512.png 666832.png

666837.png 666842.png 666995.png 666996.png 667001.png 667026.png 667775.png 667787.png

667944.png 668251.png 668549.png 668556.png 668563.png 668570.png 668578.png 668579.png



APPENDIX A. DATASET CREATION 167

669170.png 669171.png 669179.png 669181.png 669192.png 669193.png 669475.png 670250.png

670258.png 670411.png 670560.png 670563.png 680636.png 684187.png 689886.png 699323.png

707828.png 711544.png 727522.png 730448.png 731138.png 731145.png 731165.png 732812.png

733836.png 734130.png 734133.png 735907.png 736494.png 739601.png 741018.png 742614.png

744600.png 750446.png 753422.png 755258.png 756595.png 759249.png 765086.png 765130.png

766497.png 767968.png 768488.png 771076.png 771480.png 771880.png 771965.png 774339.png

776333.png 777969.png 781506.png 782306.png 782499.png 785468.png 785484.png 786607.png

786874.png 787095.png 788218.png 789220.png 791965.png 793603.png 798385.png 800828.png

805080.png 816130.png 817021.png 824163.png 827857.png 834317.png 837064.png 841849.png

842559.png 842652.png 848446.png 848940.png 849413.png 849918.png 852933.png 860905.png

861030.png 861484.png 863898.png 864842.png 869082.png 874503.png 879148.png 880347.png

880466.png 886981.png 887543.png 892418.png 894046.png 897532.png 899735.png 907491.png

908342.png 908659.png 926130.png 934431.png 938845.png 941856.png 942081.png 942509.png

951476.png 967540.png 968637.png 970091.png 989083.png

A.1.3 Bing Image Collection

The Bing dataset was collected by issuing queries to to the Bing searching engine and
saving the results, with binary level de-duplication. Downloading was handled by a fork
of the Bing Image Downloader [167]. This works by obtaining query results from Bing,
parsing URLs in the results, then downloading the images from the original source page.
Results were filtered for the PNG extension prior to downloading. 107 unique queries
across a variety of topics were issued, collecting images from over 2750 unique domains.
Queries were intended to capture a wide variety of natural and synthetic images, and
included terms relating to art, scenery, music, technology, games, wildlife, and television.

A.1.4 Govdocs Optimised

This dataset is a transformation of the original Govdocs dataset, with each image be-
ing modified to include optimised Huffman tables. Optimisation makes use of the
jpegtran [115] utility, developed by the Independent JPEG Group (http://ijg.org/). All
existing markers and metadata were copied (-copy all, only the Huffman tables were
modified in the images. By default, this command outputs baseline JPEGs, converting
progressive and extended JPEGs to this format.

5 Failed to optimise

658899.jpg 656998.jpg 657390.jpg 657911.jpg 658423.jpg

http://ijg.org/
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Fig. A.1 Windows command line code to optimise the Huffman tables of all JPEGs in a
given directory. Makes use of the jpegtran utility.

A.2 Chapter 4 Datasets

This chapter uses the Flickr 1 Million and Govdocs PNG datasets as they were in Chapter 3.
Details here pertain to the 25,000 subsets used in the networked storage experiments.

A.2.1 Flickr Subset

The code snippet below was used to enumerate Flickr files in numerical order, which were
subsequently copied to a different directory.

1 # Python 2
2 f l i s t = [ ]
3 p r i n t " G e n e r a t i n g i n p u t p a t h s f o r {} f i l e s . " . f o r m a t ( a r g s . f i l e c o u n t )
4 f o r x i n x ra ng e ( 0 , a r g s . f i l e c o u n t ) :
5 fname = " { } . j p g " . f o r m a t ( x )
6 f l i s t . append ( fname )

Listing A.2 Code used to subset the Flickr 1 Million dataset in numerical order.

A.2.2 Flickr Subset PNG

This dataset was created by creating a copy of the Flickr Subset above (Section A.2.1),
before converting to PNG using the script in Section A.1.1.

A.2.3 Govdocs Subset PNG

This subset was created from the Govdocs PNG conversion in Section A.1.1. Govdocs file
names are numerical, and fixed length. As such, the Python os.listdir function was
sufficient to obtain a numerically ordered list, as they were contained in the original zip
file. This list was then sliced to obtain the first 25,000 items, which were copied to a new
directory.

A.3 Chapter 5 Datasets

Datasets in this chapter are derived from the Flickr 1 Million dataset. Images are converted
to Windows specific thumbnails, as described in Section 5.4.1. The original Flickr
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1 Million dataset is only used ‘as is’ during the comparisons of full sized images in
Section 5.6.2.

A.4 A Note on File Size Distributions

The Govdocs dataset and its derivatives have file sizes which are clearly not normally
distributed, with a long tail towards higher file sizes. However, for the sub-file experiments,
the mean file size is what is important. This is because sub-file approaches are insensitive
to fill size, while the overall amount of data to process is the primary limitation of the
full file hashing approach. File access overheads remain the same, regardless of file size
distribution. As such, while the distribution of file sizes is worth noting, it should not
affect the results of the benchmarks in Chapters 3 and 4.



Appendix B

Benchmark Configurations
B.1 Local Disk Experiments

B.1.1 Machine Configuration

Machine Specification Software

Workstation

CPU: Intel Core i5-4690k (4 Core)
RAM: 16GiB DDR3 RAM
HDD: Western Digital Red 4TB
SSD: Crucial MX300 525GB
(OS Drive not used in experiments)

Windows:
Windows 10 64 Bit
Python 2.7.12
Visual Studio 15.0.26430.16
Linux PNG/JPEG:
Ubuntu 15.04 LTS
Python 2.7.9
g++ 4.8.4
Linux Generic Sub-file:
Ubuntu 16.04 LTS
Python 2.7.12

Laptop

CPU: Intel Core i7-5500U (2 Core)
RAM: 8GiB DDR3 RAM
HDD: N/A
SSD: Samsung 840 EVO 500GB(OS)

Windows 10 64 Bit
Python 2.7.12

Netbook

CPU: Intel Atom N450 (1 Core, 2 Threads)
RAM: 1GiB DDR2
HDD: Western Digital 160GB(OS)
SSD: N/A

Windows 10 32 Bit

Table B.1 Hardware and Software configuration of the computers used in the local disk
experiments, for PNG, JPEG, Local generic sub-file and thumbnail. Both the laptop and
netbook only have a single drive running the OS, while the workstation runs the OS on a
separate drive not involved in the benchmark.
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B.1.2 Storage Media Benchmarks

Disk benchmarks as provided by the CrystalDiskMark utility [168]. Note: Values are in
MB/s rather than MiB/s, and have been converted for tables in Section 3.6.3.

Fig. B.1 Workstation storage benchmarks. SSD on the left, HDD on the right).

Fig. B.2 Laptop SSD (left) and Netbook HDD (right) storage benchmarks.
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B.2 Network Drive Experiments

B.2.1 Machine Configuration

Machine Specification Software

Client
Workstation

HP EliteDesk 800 G1
i5-4590s, 4GiB RAM

Windows 7 Enterprise 64bit
NFS v3 client
OpenVPN Client
(AES 256/SHA256,
no compression, 2048bit key)

LAN Server
(Hypervisor)

2× Intel Xeon E5-2697v4
384 GiB RAM
RAID 10
10× 840 EVO 1TB SSD

vSphere 6.5.0
ESXi 6.5.0

LAN
Virtual
Machine

ESXi 6.5+ Virtual Machine
1 Virtual CPU, 2GiB RAM
500GB SSD storage (EXT4)

Ubuntu 17.04 LTS
Samba server 4.3.11-ubuntu
NFS server 1.2.8-9.2ubuntu2

Internet Server
Digital Ocean $10 Droplet
1 Virtual CPU, 2GiB RAM
50GB SSD storage (EXT4)

Ubuntu 16.04 LTS
Samba server 4.5.8-ubuntu
NFS server 1:1.2.8-9ubuntu12.1

Table B.2 Specifications of the equipment and software set-up for the networked generic
sub-file benchmarks. This table is a copy of Table 4.7.



Appendix C

PNG Signature - Supplementary

C.1 Code Snippets

C.1.1 Cache Clearing and Repeat Experiments

It was important to clear the operating system memory cache between runs. Figure C.1 de-
picts a typical iteration of a benchmark on Windows. The EmptyStandbyList utility [122]
was used to clear both the working set and standby list of Windows. On Linux, the page-
cache, dentries and inodes were flushed by passing the appropriate flag to drop_caches, as
depicted in Figure C.2.

Fig. C.1 A typical iteration of the benchmark on Windows, with memory cache flushing.

Fig. C.2 A typical iteration of the benchmark on Ubuntu, with memory cache flushing

C.1.2 PyPNG Sub-file Signature Generation and Benchmark

The Python code below contains the code to create thread pools, handle file ordering, and
time the execution to extract sub-file PyPNG signatures. thread_utils is simply a helper
for the creation of thread pools and thread safe objects.
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1 # Python 2
2 i m p o r t png
3 i m p o r t os
4 from s y s i m p o r t a rgv
5 i m p o r t h a s h l i b
6 i m p o r t numpy as np
7 i m p o r t t ime
8 i m p o r t random
9 from t h r e a d _ u t i l s i m p o r t *

10

11

12 # IHDR f e a t u r e s u b s e t
13 f e a t u r e s = [ ’ h e i g h t ’ , ’ b i t d e p t h ’ , ’ c o m p r e s s i o n ’ ,
14 ’ w id th ’ , ’ i n t e r l a c e ’ ,
15 ’ c o l o r _ t y p e ’ , ’ s i g n a t u r e ’ , ’ f i l t e r ’ ]
16

17

18 d e f p r o c e s s F i l e ( d i r p a t h , impath , s i z e , s t r i n g s t o r e ) :
19 f p a t h = os . p a t h . j o i n ( d i r p a t h , impa th )
20 t r y :
21 f i l = open ( f p a t h , ’ rb ’ )
22 r = png . Reader ( f i l e = f i l )
23 r . p reamble ( ) # t h i s g e t s a l l o f t h e h e a d e r f e a t u r e s
24 d = r . f i l e . r e a d ( s i z e )
25 f i l . c l o s e ( )
26 i d a t l e n g t h = r . a t c h u n k [ 0 ] # l e n g t h o f f i r s t IDAT
27 i n f o = ’ ’
28 f o r f i n f e a t u r e s : # s u b s e t f e a t u r e s t o IHDR on ly
29 i n f o += s t r ( r . _ _ d i c t _ _ . g e t ( f , ’ ’ ) )
30 i n f o += s t r ( i d a t l e n g t h )
31 i n f o +=d
32

33 wi th s t r i n g s t o r e as i :
34 i f i . has_key ( i n f o ) :
35 i [ i n f o ] . append ( impa th )
36 e l s e :
37 i [ i n f o ] = [ impa th ]
38 r e t u r n 1
39

40 e x c e p t Excep t ion , e :
41 p r i n t f p a t h , e
42

43 # P a r s e commandline a r g s .
44 p a t h = ’ ’
45 b y t e l e n g t h = ’ ’
46 p o s s i b l e _ o r d e r s =[ ’ normal ’ , ’ random ’ , ’ r e v e r s e ’ ]
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47 o r d e r = p o s s i b l e _ o r d e r s [ 0 ]
48 s i z e = 0
49 num_th reads =1
50 i f l e n ( a rgv ) == 4 :
51 p a t h = a rgv [ 1 ]
52 num_threads = i n t ( a rgv [ 3 ] )
53 s i z e = i n t ( a rgv [ 2 ] )
54 e l i f l e n ( a rgv ) == 5 :
55 p a t h = a rgv [ 1 ]
56 s i z e = i n t ( a rgv [ 2 ] )
57 num_threads = i n t ( a rgv [ 3 ] )
58 o r d e r = a rgv [ 4 ]
59 i f o r d e r n o t i n p o s s i b l e _ o r d e r s :
60 p r i n t " i n v a l i d o r d e r : {} " . f o r m a t ( o r d e r )
61 e x i t ( )
62 e l s e :
63 p r i n t " a r g s : < f i l e _ d i r e c t o r y > < i d a t d a t a s i z e >
64 <num_threads > <( o p t i o n a l ) o r d e r i n g >"
65 e x i t ( )
66

67

68 i n f o s t r i n g s = T h r e a d S a f e D i c t ( )
69 t p o o l = ThreadPoo l ( num_th reads )
70 c l a s s e s = {}
71 t o o s m a l l = 0
72 t o o s m a l l a n d n o t u n i q u e = 0
73 p s u s a g e = [ ]
74 c o u n t e r = 0
75

76

77

78

79 f l i s t = os . l i s t d i r ( p a t h )
80 i f o r d e r == ’ r e v e r s e ’ :
81 f l i s t . r e v e r s e ( )
82 e l i f o r d e r == ’ random ’ :
83 random . s h u f f l e ( f l i s t )
84

85 t 0 = t ime . t ime ( )
86 f o r im i n f l i s t :
87 t p o o l . a d d _ t a s k ( p r o c e s s F i l e , pa th , im , s i z e , i n f o s t r i n g s )
88 t p o o l . w a i t _ c o m p l e t i o n ( )
89

90 # t i m e r end
91 t 1 = t ime . t ime ( )
92 t o t a l _ t i m e = t1−t 0
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93

94 s i g l e n g t h s = [ ]
95 f o r s i n i n f o s t r i n g s :
96 s i g l e n g t h s . append ( l e n ( s ) )
97

98 c l a s s e s [ l e n ( i n f o s t r i n g s [ s ] ) ]= c l a s s e s . g e t ( l e n ( i n f o s t r i n g s [ s ] ) , 0 )
+1

99

100 s l = s i g l e n g t h s
101

102

103 p r i n t "IHDR_IDAT−Length_ {}B_{} T o t a l t ime : {} " .
104 f o r m a t ( s i z e , o r d e r , t o t a l _ t i m e )

Listing C.1 Benchmark for PyPNG sub-file signature.

C.2 Supplementary Results

C.2.1 CPU Usage Data

CPU usage data was collected for the PNG experiments, depicted below in Figure C.3.
Very little overall CPU utilisation was seen on the hard drive, while the lower specification
laptop processor began to reach capacity with high thread counts on fullhash.

Fig. C.3 CPU Usage data for Fullhash and the sub-file PyPNG approach. Largest benefits
seen on HDD at lower thread counts. The sub-file approach uses less CPU than full file
hashing in all cases.
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JPEG Signature - Supplementary

D.1 JPEG Run-length Pattern

The JPEG standard makes use of a serpentine pattern (Figure D.1) when run-length
encoding the 63 AC coefficients of the DCT matrix. Items in the bottom right are heavily
quantized, and should often be zeroes. The serpentine pattern attempts to capitalise on
this by producing many consecutive zeroes for efficient run-length encoding.

Fig. D.1 The zig-zag pattern used to run length encode DCT matrix coefficients in JPEG
compression. Sourced from: https://commons.wikimedia.org/wiki/File:Zigzag_scanning.
jpg
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D.2 Code Snippets

D.2.1 Linux Volume Mounting Options

Volumes were mounted -ro,noatime in Ubuntu, however this comes with some implicit,
version specific, options. The following output was obtained by running the mount com-
mand with no parameters after setting up the experiment.

NTFS: ro,noatime,user_id=0,group_id=0,allow_other,blksize=4096
EXT4: ro,noatime,norecovery

D.2.2 Huffman Sub-file JPEG Signature Generation and Benchmark

The following contains the C++ code for extracting Huffman signatures and performing
the timed benchmark. The main body makes use of the Boost library for thread pools, and
the main loop has a limit of 30000 items in the processing queue to avoid crashes. Code
to read the JPEG is a modified version of the libjpeg example (https://github.com/LuaDist/
libjpeg/blob/master/example.c), while the remaining code constructs a signature string by
processing the Huffman length and value arrays.

1 # i n c l u d e < b o o s t / a s i o / i o _ s e r v i c e . hpp >
2 # i n c l u d e < b o o s t / b ind . hpp >
3 # i n c l u d e < b o o s t / t h r e a d / t h r e a d . hpp >
4 # i n c l u d e < s t d i o . h>
5 # i n c l u d e < j p e g l i b . h>
6 # i n c l u d e < s e t j m p . h>
7 # i n c l u d e < i o s t r e a m >
8 # i n c l u d e < v e c t o r >
9 # i n c l u d e < f s t r e a m >

10 # i n c l u d e <unordered_map >
11 # i n c l u d e < s t r i n g >
12 # i n c l u d e <chrono >
13 # i n c l u d e < t h r e a d >
14

15 u s i n g namespace s t d ;
16

17 / / G l ob a l c o u n t e r s
18 a tomic < i n t > c o m p l e t e C o u n t e r { 0 } ;
19

20 vo id appendArray ( UINT8 a r r [ ] , i n t num_elements , s t r i n g & s ) {
21 f o r ( i n t i = 0 ; i < num_elements ; i ++ ) {
22 s . append ( t o _ s t r i n g ( a r r [ i ] ) ) ;
23 }
24 }

https://github.com/LuaDist/libjpeg/blob/master/example.c
https://github.com/LuaDist/libjpeg/blob/master/example.c
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25

26 / / For Length a r r a y i n Huffman t a b l e . Append t h e v a l u e s t o s and
r e t u r n number o f codes .

27 i n t appendLeng ths ( UINT8 a r r [ ] , s t r i n g & s ) {
28 / / Always 17 e l emen t s , a r r [ 0 ] s h o u l d a lways be zero , s k i p i t .
29 i n t c o d e c o u n t = 0 ;
30 f o r ( i n t i = 1 ; i < 1 7 ; i ++ ) {
31 s . append ( t o _ s t r i n g ( a r r [ i ] ) ) ;
32 c o d e c o u n t = c o d e c o u n t + a r r [ i ] ;
33 }
34 r e t u r n c o d e c o u n t ;
35 }
36

37 / / P r i n t t h e huffman s t r u c t u s i n g p r i n t A r r a y , r e t u r n t o t a l number o f
codes

38 i n t a p p e n d H u f f S t r u c t ( JHUFF_TBL t a b l e , s t r i n g & s ) {
39 i n t t o t a l _ c o d e s ;
40 / / Get t o t a l number o f codes and append t h e l e n g t h a r r a y
41 t o t a l _ c o d e s = appendLeng ths ( t a b l e . b i t s , s ) ;
42 / / Append Huffman v a l u e s i n l e n g t h o r d e r .
43 appendArray ( t a b l e . h u f f v a l , t o t a l _ c o d e s , s ) ;
44 r e t u r n t o t a l _ c o d e s ;
45 }
46

47

48 s t r i n g b u i l d H u f f S t r i n g ( j p e g _ d e c o m p r e s s _ s t r u c t * c i n f o ) {
49 / / Get t h e number o f AC and DC huffman t a b l e s from t h e component

i n f o r m a t i o n .
50 / / Note : t h i s i s on ly t o t h e f i r s t SOS marker , t h e r e may be m u l t i p l e

i n p r o g r e s s i v e JPEG
51 i n t numDC = 0 ;
52 i n t numAC = 0 ;
53 f o r ( i n t i =0 ; i < c i n f o −>num_components ; i ++) {
54 i n t c u r r e n t _ a c ;
55 i n t c u r r e n t _ d c ;
56 / / The h i g h e s t i n d e x +1 = number AC/DC t a b l e s i n use .
57 c u r r e n t _ d c = c i n f o −>comp_info [ i ] . d c _ t b l _ n o ;
58 i f ( c u r r e n t _ d c +1 > numDC) {
59 numDC = c u r r e n t _ d c +1;
60 }
61 c u r r e n t _ a c = c i n f o −>comp_info [ i ] . a c _ t b l _ n o ;
62 i f ( c u r r e n t _ a c +1 > numAC) {
63 numAC = c u r r e n t _ a c +1;
64 }
65 }
66
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67 s t r i n g h u f f s t r i n g ;
68 / * Rese rve memory t o a v o i d l o a d s o f c o p i e s and moves
69 There a r e on ly 348 p o s s i b l e codes , b u t t h e y va ry i n l e n g t h i f i n t .
70 * /
71 h u f f s t r i n g . r e s e r v e ( 2 0 0 0 ) ;
72 i n t t o t a l _ c o d e s = 0 ;
73

74 / / Append DC
75 / / v e c t o r < i n t > lenDCs ;
76 f o r ( i n t i =0 ; i < numDC ; i ++) {
77 i n t l = a p p e n d H u f f S t r u c t (* c i n f o −> d c _ h u f f _ t b l _ p t r s [ i ] , h u f f s t r i n g ) ;
78 t o t a l _ c o d e s += l ;
79 }
80

81 / / Append AC
82 f o r ( i n t i =0 ; i < numAC ; i ++) {
83 i n t l = a p p e n d H u f f S t r u c t (* c i n f o −> a c _ h u f f _ t b l _ p t r s [ i ] , h u f f s t r i n g ) ;
84 t o t a l _ c o d e s += l ;
85 }
86

87 r e t u r n h u f f s t r i n g ;
88 } / / end b u i l d h u f f
89

90

91

92

93 s t r u c t my_error_mgr {
94 s t r u c t j p e g _ e r r o r _ m g r pub ; / * " p u b l i c " f i e l d s * /
95

96 jmp_buf s e t j m p _ b u f f e r ; / * f o r r e t u r n t o c a l l e r * /
97 } ;
98

99 t y p e d e f s t r u c t my_error_mgr * m y _ e r r o r _ p t r ;
100

101 / *
102 * Here ’ s t h e r o u t i n e t h a t w i l l r e p l a c e t h e s t a n d a r d e r r o r _ e x i t method

:
103 * /
104

105 METHODDEF( vo id )
106 m y _ e r r o r _ e x i t ( j_common_ptr c i n f o )
107 {
108 / * c i n f o −> e r r r e a l l y p o i n t s t o a my_error_mgr s t r u c t , so c o e r c e

p o i n t e r * /
109 m y _ e r r o r _ p t r myerr = ( m y _ e r r o r _ p t r ) c i n f o −> e r r ;
110
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111 / * Always d i s p l a y t h e message . * /
112 / * We c o u l d p o s t p o n e t h i s u n t i l a f t e r r e t u r n i n g , i f we chose . * /
113 / / ( * c i n f o −>e r r −>o u t p u t _ m e s s a g e ) ( c i n f o ) ;
114 / * Re tu rn c o n t r o l t o t h e s e t j m p p o i n t * /
115 longjmp ( myerr−>s e t j m p _ b u f f e r , 1 ) ;
116 }
117

118

119 GLOBAL( s t r i n g )
120 r e a d _ J P E G _ f i l e ( c h a r * f i l e n a m e )
121 {
122 i n t s t a t u s ; / / S t a t u s f l a g f o r h e a d e r r e a d
123

124 / * Th i s s t r u c t c o n t a i n s t h e JPEG d e c o m p r e s s i o n p a r a m e t e r s and
p o i n t e r s t o

125 * working s p a c e ( which i s a l l o c a t e d as needed by t h e JPEG l i b r a r y ) .
126 * /
127 s t r u c t j p e g _ d e c o m p r e s s _ s t r u c t c i n f o ;
128 s t r u c t my_error_mgr j e r r ;
129 FILE * i n f i l e ; / * s o u r c e f i l e * /
130

131 i f ( ( i n f i l e = fopen ( f i l e n a m e , " rb " ) ) == NULL) {
132 f p r i n t f ( s t d e r r , " can ’ t open %s \ n " , f i l e n a m e ) ;
133 s t r i n g r e t s t r i n g = " f a i l e d " ;
134 r e t u r n r e t s t r i n g ;
135 }
136

137 / * S t ep 1 : a l l o c a t e and i n i t i a l i z e JPEG d e c o m p r e s s i o n o b j e c t * /
138 c i n f o . e r r = j p e g _ s t d _ e r r o r (& j e r r . pub ) ;
139 j e r r . pub . e r r o r _ e x i t = m y _ e r r o r _ e x i t ;
140 / * E s t a b l i s h t h e s e t j m p r e t u r n c o n t e x t f o r m y _ e r r o r _ e x i t t o use . * /
141 i f ( s e t j m p ( j e r r . s e t j m p _ b u f f e r ) ) {
142 / * I f we g e t here , t h e JPEG code has s i g n a l e d an e r r o r .
143 * We need t o c l e a n up t h e JPEG o b j e c t , c l o s e t h e i n p u t f i l e , and

r e t u r n .
144 * /
145 j p e g _ d e s t r o y _ d e c o m p r e s s (& c i n f o ) ;
146 f c l o s e ( i n f i l e ) ;
147 c e r r << " E r r o r : F a i l e d t o p r o c e s s " << f i l e n a m e << e n d l ;
148 s t r i n g r e t s t r i n g = " f a i l e d " ;
149 r e t u r n r e t s t r i n g ;
150 }
151

152 / * Now we can i n i t i a l i z e t h e JPEG d e c o m p r e s s i o n o b j e c t . * /
153 j p e g _ c r e a t e _ d e c o m p r e s s (& c i n f o ) ;
154 j p e g _ s t d i o _ s r c (& c i n f o , i n f i l e ) ;
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155 s t a t u s = j p e g _ r e a d _ h e a d e r (& c i n f o , TRUE) ; / / i g n o r e r e t u r n code wi th
vo id .

156

157 f c l o s e ( i n f i l e ) ;
158

159

160 / / B u i l d Huffman S t r i n g and d e s t r o y c o m p r e s s i o n o b j e c t .
161 s t r i n g h s t r i n g = b u i l d H u f f S t r i n g (& c i n f o ) ;
162 j p e g _ d e s t r o y _ d e c o m p r e s s (& c i n f o ) ;
163 r e t u r n h s t r i n g ;
164 }
165

166 i n t e x t r a c t H u f f ( s t r i n g f i l e n a m e ) {
167 s t r i n g s i g ;
168 s i g = r e a d _ J P E G _ f i l e ( f i l e n a m e . c _ s t r ( ) ) ;
169 i f ( s i g == " f a i l e d " ) {
170 / / f i l e f a i l e d t o p r o c e s s
171 c o u t << " f a i l e d " << f i l e n a m e << e n d l ;
172 c o m p l e t e C o u n t e r ++;
173 r e t u r n 0 ;
174 }
175 c o m p l e t e C o u n t e r ++;
176 r e t u r n 0 ;
177 }
178

179

180 / / / Main / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
181 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
182 i n t main ( i n t a rgc , c h a r * a rgv [ ] ) {
183 i f ( a r g c != 3) {
184 c o u t << " Usage : < f i l e _ l i s t _ p a t h , num_threads >" << e n d l ;
185 r e t u r n 1 ;
186 }
187 c o u t << e n d l ;
188 / / Ass ign t h r e a d c o u n t .
189 i n t my_ th r ead_coun t = s t o i ( a rgv [ 2 ] ) ;
190

191

192 v e c t o r < s t r i n g > f i l e n a m e s ;
193 i f s t r e a m i n p u t ( a rgv [ 1 ] ) ;
194 i f ( ! i n p u t . i s _ o p e n ( ) ) {
195 c o u t << " Couldn ’ t open " << a rgv [ 1 ] << e n d l ;
196 r e t u r n 1 ;
197 }
198 f o r ( s t r i n g l i n e ; g e t l i n e ( i n p u t , l i n e ) ; )
199 {
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200 / / f o r each l i n e , add i t t o t h e l i s t o f f i l e s
201 f i l e n a m e s . push_back ( l i n e ) ;
202 }
203

204 / / S t a r t t i m i n g
205 t i m e _ t s t a r t = t ime ( 0 ) ;
206

207

208 / *
209 * C r e a t e an a s i o : : i o _ s e r v i c e and a t h r e a d _ g r o u p ( t h r o u g h poo l i n

e s s e n c e )
210 * /
211 b o o s t : : a s i o : : i o _ s e r v i c e i o S e r v i c e ;
212 b o o s t : : t h r e a d _ g r o u p t h r e a d p o o l ;
213 b o o s t : : a s i o : : i o _ s e r v i c e : : work work ( i o S e r v i c e ) ;
214

215 / *
216 * C r e a t e worker t h r e a d s
217 * /
218 f o r ( i n t i = 0 ; i < my_ th read_c oun t ; ++ i )
219 t h r e a d p o o l . c r e a t e _ t h r e a d ( b o o s t : : b ind (& b o o s t : : a s i o : : i o _ s e r v i c e : : run

, &i o S e r v i c e ) ) ;
220

221 i n t c =0 ;
222 f o r ( s i z e _ t i =0 ; i < f i l e n a m e s . s i z e ( ) ; i ++) {
223 / / S top c r a s h e s from t h e poo l f i l l i n g up t o o much , b u t keep t h e

t h r e a d s f e d .
224 i f ( c <30000) {
225 i o S e r v i c e . p o s t ( b o o s t : : b ind ( e x t r a c t H u f f , f i l e n a m e s [ i ] ) ) ;
226 c ++;
227 } e l s e {
228 c = i − c o m p l e t e C o u n t e r ;
229 i f ( c >30000) {
230 s t d : : t h i s _ t h r e a d : : s l e e p _ f o r ( s t d : : ch rono : : m i l l i s e c o n d s ( 5 0 ) )

;
231 }
232 i o S e r v i c e . p o s t ( b o o s t : : b ind ( e x t r a c t H u f f , f i l e n a m e s [ i ] ) ) ;
233 }
234 }
235

236 i o S e r v i c e . r e s e t ( ) ;
237 w h i l e ( c o m p l e t e C o u n t e r < f i l e n a m e s . s i z e ( ) ) {
238 s t d : : t h i s _ t h r e a d : : s l e e p _ f o r ( s t d : : ch rono : : m i l l i s e c o n d s ( 5 0 ) ) ;
239 }
240 i o S e r v i c e . s t o p ( ) ;
241
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242 / / End t i m e r
243 t i m e _ t end = t ime ( 0 ) ;
244 do ub l e t ime = d i f f t i m e ( end , s t a r t ) ;
245 c o u t << " P r o c e s s e d : " << + c o m p l e t e C o u n t e r << e n d l ;
246 c o u t << " Time t a k e n : " << t ime <<" s " << e n d l ;
247

248 r e t u r n 0 ;
249 }

Listing D.1 Benchmark Huffman sub-file signature.



Appendix E

Generic Sub-file - Supplementary

Supplementary materials for Chapter 4.

E.1 Code Snippets

E.1.1 Linux Local Mounting Options

Volumes were mounted -ro,noatime in Ubuntu, however this comes with some implicit,
version specific, options. The following output was obtained by running the mount com-
mand with no parameters after setting up the experiment.

NTFS: ro,noatime,user_id=0,group_id=0,allow_other,blksize=4096
EXT4: ro,noatime,data=ordered

E.1.2 Benchmark Code

The following Python code contains all of the necessary elements to run the sub-file
benchmarks for both local and remote storage. The main loop and thread pools are
essentially unchanged from the PNG code in Appendix C. This code calls the hash
functions depicted in Section E.1.3, below.

1 # Python 2
2 i m p o r t os
3 from s y s i m p o r t a rgv
4 i m p o r t h a s h l i b
5 i m p o r t t ime
6 from t h r e a d _ u t i l s i m p o r t *
7 i m p o r t a r g p a r s e
8 from h a s h f u n s i m p o r t h a s h F u l l , h a s h F i r s t n , hashLas tn , h a s h F i r s t L a s t n
9

185
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10 BLOCKSIZE=4096
11

12 # S e t up a r g s
13 p a r s e r = a r g p a r s e . Argumen tPa r se r ( d e s c r i p t i o n = ’Run a benchmark of sub−

f i l e ( o r f u l l f i l e ) h a s h i n g u s i n g SHA256 . ’ )
14 p a r s e r . add_argument ( ’ d i r ’ , h e l p =" D i r e c t o r y o f f i l e s t o p r o c e s s . " )
15 p a r s e r . add_argument ( ’−− t h r e a d s ’ , ’− t ’ , t y p e = i n t , n a r g s = ’ ? ’ , c o n s t =1 ,

h e l p = ’ number o f t h r e a d s t o use . D e f a u l t 1 . ’ )
16 p a r s e r . add_argument ( ’−− f u l l h a s h ’ , ’− f u l l ’ , a c t i o n = ’ s t o r e _ t r u e ’ , h e l p = ’

pe r fo rm f u l l f i l e h a s h i n g ’ )
17 p a r s e r . add_argument ( ’−− f i r s t n ’ , ’−fn ’ , t y p e = i n t , h e l p =" hash t h e FIRST

n b locks , p r o v i d e n . " )
18 p a r s e r . add_argument ( ’−− l a s t n ’ , ’−l n ’ , t y p e = i n t , h e l p =" hash t h e LAST n

b locks , p r o v i d e n . " )
19 p a r s e r . add_argument ( ’−− f i r s t l a s t n ’ , ’− f l ’ , t y p e = i n t , h e l p = ’ hash t h e

FIRST AND LAST n b locks , p r o v i d e n . ’ )
20 p a r s e r . add_argument ( ’−−s u b s e t ’ , ’−s ’ , t y p e = i n t , h e l p = ’ s u b s e t t h e f i l e s

i n t h e d i e c t o r y , on ly p r o c e s s t h e f i r s t n f i l e s , p r o v i d e n . ’ )
21

22 a r g s = p a r s e r . p a r s e _ a r g s ( )
23

24 num_blocks = 1
25 h a s h f u n = F a l s e
26 a r g d i c t = {}
27

28 # Check t h a t a f l a g i s p r o v i d e d
29 numf lags = 0
30 i f a r g s . f u l l h a s h :
31 numf lags +=1
32 h a s h f u n = h a s h F u l l
33 e l s e :
34 i f a r g s . f i r s t n :
35 numf lags +=1
36 num_blocks = a r g s . f i r s t n
37 h a s h f u n = h a s h F i r s t n
38 i f a r g s . l a s t n :
39 numf lags +=1
40 num_blocks = a r g s . l a s t n
41 h a s h f u n = h a s h L a s t n
42 i f a r g s . f i r s t l a s t n :
43 numf lags +=1
44 num_blocks = a r g s . f i r s t l a s t n
45 h a s h f u n = h a s h F i r s t L a s t n
46 a r g d i c t [ " num_blocks " ] = num_blocks
47

48 i f numf lags != 1 :
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49 p r i n t " P l e a s e p r o v i d e a s i n g l e hash f l a g (−− f u l l h a s h (−h ) , −−
f i r s t n (− fn ) , −− l a s t n (− l n ) OR −− f i r s t l a s t n (− fn ) ) "

50 e x i t ( )
51

52 p r i n t " {} {} , t h r e a d s : {} " . f o r m a t ( h a s h f u n . __name__ , num_blocks , a r g s .
t h r e a d s )

53 t p o o l = ThreadPoo l ( a r g s . t h r e a d s )
54

55 # Acqu i r e f i l e l i s t
56 t 0 = t ime . t ime ( )
57 f l i s t = [ ]
58 f l i s t = os . l i s t d i r ( a r g s . d i r )
59 t 1 = t ime . t ime ( )
60 f i l e l i s t t i m e = t1−t 0
61 p r i n t " F i l e e n u m e r a t i o n t ime : {} , no . f i l e s : {} " . f o r m a t ( f i l e l i s t t i m e ,

l e n ( f l i s t ) )
62 i f a r g s . s u b s e t :
63 f l i s t = f l i s t [ : a r g s . s u b s e t ]
64 p r i n t " Using s u b s e t o f {} f i l e s " . f o r m a t ( l e n ( f l i s t ) )
65

66 r e a d b y t e s = BLOCKSIZE * num_blocks
67 t 0 = t ime . t ime ( )
68 f o r im i n f l i s t :
69 impa th = os . p a t h . j o i n ( a r g s . d i r , im )
70 t p o o l . a d d _ t a s k ( hashfun , impath , r e a d b y t e s )
71 t p o o l . w a i t _ c o m p l e t i o n ( )
72 # t i m e r end
73 t 1 = t ime . t ime ( )
74 t o t a l _ t i m e = t1−t 0
75

76 p r i n t " P r o c e s s i n g t ime : {} " . f o r m a t ( t o t a l _ t i m e )

Listing E.1 Benchmark for block based sub-file signatures.

E.1.3 Hashing Functions

The following code breaks down the various sub-file hashing strategies into individual
functions. Sub-file approaches catch seek exceptions instead of requesting the file size
from the OS. This is faster as few files should be in the 4–12KiB range, and saves a lot of
time on networked devices.

1 # Python 2
2 i m p o r t h a s h l i b
3 i m p o r t os
4
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5 d e f h a s h F u l l ( f p a t h ) :
6 t r y :
7 f i l = open ( f p a t h , ’ rb ’ )
8 d= f i l . r e a d ( )
9 h = h a s h l i b . sha256 ( d ) . h e x d i g e s t ( )

10 e x c e p t Excep t ion , e :
11 p r i n t " E r r o r f u l l h a s h i n g " , f p a t h , e
12 f i n a l l y :
13 i f " f i l " i n l o c a l s ( ) :
14 f i l . c l o s e ( )
15 r e t u r n 1
16

17 d e f h a s h F i r s t n ( f p a t h , r e a d b y t e s ) :
18 t r y :
19 f i l = open ( f p a t h , ’ rb ’ )
20 d = f i l . r e a d ( r e a d b y t e s )
21 h = h a s h l i b . sha256 ( d ) . h e x d i g e s t ( )
22 e x c e p t Excep t ion , e :
23 p r i n t " E r r o r i n f i r s t n " , f p a t h , e
24 f i n a l l y :
25 i f " f i l " i n l o c a l s ( ) :
26 f i l . c l o s e ( )
27 r e t u r n 1
28

29 d e f h a s h L a s t n ( f p a t h , r e a d b y t e s ) :
30 t r y :
31 f i l = open ( f p a t h , ’ rb ’ )
32 t r y :
33 f i l . s e ek (− r e a d b y t e s , 2 )
34 e x c e p t :
35 # d idn ’ t work , f i l e w i l l be t o o s m a l l
36 p a s s
37 d = f i l . r e a d ( r e a d b y t e s )
38 h = h a s h l i b . sha256 ( d ) . h e x d i g e s t ( )
39 e x c e p t Excep t ion , e :
40 p r i n t " E r r o r i n l a s t n " , f p a t h , e
41 f i n a l l y :
42 i f " f i l " i n l o c a l s ( ) :
43 f i l . c l o s e ( )
44 r e t u r n 1
45

46

47 d e f h a s h F i r s t L a s t n ( f p a t h , r e a d b y t e s ) :
48 t r y :
49 f i l = open ( f p a t h , ’ rb ’ )
50 t r y :
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51 # f i r s t b l o c k
52 d = f i l . r e a d ( r e a d b y t e s )
53 # l a s t b l o c k
54 f i l . s e ek (−BLOCKSIZE , 2 )
55 d += f i l . r e a d ( r e a d b y t e s )
56 e x c e p t :
57 # f a l l b a c k , r e a d t h e e n t i r e f i l e a s i t ’ s p r o b a b l y t o o

s m a l l .
58 f i l . s e ek ( 0 )
59 d= f i l . r e a d ( )
60 # hash t o g e t h e r
61 h = h a s h l i b . sha256 ( d ) . h e x d i g e s t ( )
62 e x c e p t Excep t ion , e :
63 p r i n t " E r r o r i n h a s h f i r s t a n d l a s t " , f p a t h , e
64 f i n a l l y :
65 i f " f i l " i n l o c a l s ( ) :
66 f i l . c l o s e ( )
67 r e t u r n 1

Listing E.2 Hash functions for generating block based sub-file signatures.



Appendix F

Thumbnail - Supplementary

F.1 Code Snippets

F.1.1 Generate and Fetch Thumbnails (Partial)

Below is a sample of the code use to trigger Windows 10 thumbnail generation and
trigger batch extraction. Only partial code is provided, see the Github repository [149]
for complete code. Timed benchmark results are found in Section 5.5.4. The full Visual
Studio project allows for the thumbnail extraction executables to be built for both directly
for Windows 10, and with a legacy option for Windows 8.1 and below.

1 {
2 LPWSTR szChildName = n u l l p t r ;
3 pChi ld I t em −>GetDisplayName (SIGDN_NORMALDISPLAY, &szChildName ) ;
4

5 / / E x t r a c t t h e t h u m b n a i l from t h e o r i g i n a l v i a t h e Windows
S h e l l API

6 thumbhr = cache−>GetThumbnai l ( pCh i ld I t em ,
7 t humbs ize ,
8 WTS_FORCEEXTRACTION, / / f o r c e e x t r a c t i o n
9 NULL, / / Don ’ t r e t r i e v e t h e memory mapped b i tmap .

10 &f l a g s ,
11 &thumbid
12 ) ;
13 i f (SUCCEEDED( thumbhr ) ) {
14 / / Get CacheID ( " Cache E n t r y Hash " i n ThumbCache Viewer ) .
15 / / Viewer r e v e r s e s t h e b y t e s and i g n o r e s t h e h a l f which i s

compr i s ed o f z e r o e s .
16 / / Ou tpu t h e r e i s s e t t o match t h e v i e w er .
17

18 s t r i n g s t r e a m i d ;
19 i d << " 0x " ;

190
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20 f o r ( i n t i = 7 ; i >−1; i −−) {
21 i d << se tw ( 2 ) << s e t f i l l ( ’ 0 ’ ) << hex << ( i n t ) thumbid .

rgbKey [ i ] ;
22 }
23

24 idmap [ i d . s t r ( ) ] = 1 ;
25 nameidmap [ i d . s t r ( ) ] = szChildName ;
26 i f ( idmap . s i z e ( ) == b a t c h s i z e ) {
27 i = i + b a t c h s i z e ;
28 c o u t << " Cached : " << i << " , p a r s i n g thumcache . db . . . " ;
29 / / P a r s e thumbcache and save e n t r i e s which have IDs

match ing t h o s e i n idmap t o o u t p u t _ p a t h
30 / / expor tThumbs i m p o r t e d from a n o t h e r f i l e .
31 idmap = expor tThumbs ( dbname , o u t p u t _ p a t h , idmap , nameidmap

) ;
32 / / Ou tpu t i f any i t e m s f a i l e d t o be r e t r i e v e d , s h o u l d n ’ t

happen f o r b a t c h s i z e s << thumbcache max s i z e .
33 i f ( idmap . s i z e ( ) > 0 ) {
34 c o u t << " f a i l e d t o save : " << idmap . s i z e ( ) << e n d l ;
35 }
36 e l s e {
37 c o u t << " s u c c e s s " << e n d l ;
38 }
39

40

41 f o r ( a u t o kv : idmap ) {
42 c o u t << kv . f i r s t << e n d l ;
43 f a i l e d I d s . push_back ( kv . f i r s t ) ; / / keep t r a c k o f f a i l e d

i t e m s
44 }
45 idmap . c l e a r ( ) ; / / r e s e t t h e IDs t o g e t from t h e cache ,

t h e s e one ’ s a r e n t t h e r e .
46 nameidmap . c l e a r ( ) ; / / r e s e t id−f i l e n a m e map .
47 }
48

49

50 } e l s e {
51 w p r i n t f ( L" F a i l e d t o o b t a i n %s \ n " , szChildName ) ;
52 }
53

54 CoTaskMemFree ( szChildName ) ;
55 pChi ld I t em −>R e l e a s e ( ) ;
56 }

Listing F.1 Snippet to populate thumbnail and perform batch extraction. Only partial
program.
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F.1.2 Dropbox Thumbnail Benchmarks - SDK

The Python code below allows for the execution and timing of various Dropbox file
acquisition approaches, as benchmarked in Section 5.7.2.

1

2 # Python 2
3 i m p o r t j s o n
4 i m p o r t r e q u e s t s
5 i m p o r t a r g p a r s e
6 i m p o r t t ime
7 i m p o r t d a t e t i m e
8 i m p o r t h a s h l i b
9 i m p o r t dropbox

10 i m p o r t os
11 from t o k e n s i m p o r t DROPBOX_TOKEN
12 from t h r e a d _ u t i l s i m p o r t *
13

14

15 THUMBSIZES= [ 3 2 , 6 4 , 1 2 8 , 6 4 0 , 1 0 2 4 ]
16 #THUMBSIZES2= [ 3 2 , 6 4 , 1 2 8 , 2 5 6 , 3 2 0 , 4 8 0 , 6 4 0 , 7 6 8 , 1 5 3 6 ] # second dimens ion ,

n o t a l l s q u a r e
17 THUMBTYPES=[ " j p e g " , " png " ]
18

19 THUMBSIZEMAP= {
20 3 2 : dropbox . f i l e s . Thumbna i lS ize . w32h32 ,
21 6 4 : dropbox . f i l e s . Thumbna i lS ize . w64h64 ,
22 128 : dropbox . f i l e s . Thumbna i lS i ze . w128h128 ,
23 640 : dropbox . f i l e s . Thumbna i lS i ze . w640h480 ,
24 1024 : dropbox . f i l e s . Thumbna i lS i ze . w1024h768
25 }
26

27 s a v e _ d i r = None
28

29

30 d e f ge tThumbbatch ( dbx , f i l e l i s t , thumbtype , t h u m b s i z e ) :
31 # f i l e l i s t i s l i s t o f f i l e m e t a d a t a
32 e n t r i e s l i s t = [ ]
33 f o r f i n f i l e l i s t :
34 # pa th , fo rmat , s i z e , mode
35 e = dropbox . f i l e s . ThumbnailArg ( p a t h = f . p a th_ lower , f o r m a t =

thumbtype , s i z e = t h u m b s i z e )
36 e n t r i e s l i s t . append ( e )
37 r = dbx . f i l e s _ g e t _ t h u m b n a i l _ b a t c h ( e n t r i e s = e n t r i e s l i s t )
38 c = 0
39 f o r e i n r . e n t r i e s :
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40 i f e . i s _ s u c c e s s ( ) :
41 c+=1
42 e d a t a = e . g e t _ s u c c e s s ( )
43 i f s a v e _ d i r :
44 thumb = e d a t a . t h u m b n a i l
45 meta = e d a t a . m e t a d a t a
46 s a v e p a t h = os . p a t h . j o i n ( s a v e _ d i r , meta . name )
47 t r y :
48 wi th open ( s a v e p a t h , "wb" ) a s f :
49 f . w r i t e ( thumb . decode ( " base64 " ) )
50 e x c e p t E x c e p t i o n as e r r :
51 p r i n t " f a i l e d t o save { } \ n {} " . f o r m a t ( meta . name ,

e r r )
52 i f c != 2 5 :
53 p r i n t " Got {} " . f o r m a t ( c )
54

55

56 d e f g e t S i n g l e F i l e ( dbx , f p a t h , s t a t u s E r r o r ) :
57 r = dbx . f i l e s _ d o w n l o a d ( f p a t h )
58 f i l e m e t a = r [ 0 ]
59 r e s p o n s e = r [−1]
60 # Catch s t a t u s code e r r o r s
61 i f r e s p o n s e . s t a t u s _ c o d e n o t i n [ 2 0 0 , 2 0 6 ] :
62 s t a t u s E r r o r [ " code " ] = r e s p o n s e . s t a t u s _ c o d e
63 s t a t u s E r r o r [ " h e a d e r s " ] = r e s p o n s e . h e a d e r s
64 p r i n t " E r r o r on " , f i l e m e t a . pa th_ lower , r e s p o n s e . s t a t u s _ c o d e ,

r e s p o n s e . h e a d e r s
65 r e t u r n
66 # f i l e c o n t e n t
67 thumb = r e s p o n s e . c o n t e n t
68 i f s a v e _ d i r :
69 s a v e p a t h = os . p a t h . j o i n ( s a v e _ d i r , f i l e m e t a . p a t h _ l o w e r )
70 t r y :
71 wi th open ( s a v e p a t h , "wb" ) a s f :
72 f . w r i t e ( thumb . decode ( " base64 " ) )
73 e x c e p t E x c e p t i o n as e r r :
74 p r i n t " f a i l e d t o save { } \ n {} " . f o r m a t ( meta . name , e r r )
75

76 d e f ge tS ing leThumb ( dbx , f p a t h , thumbtype , thumbs ize , s t a t u s E r r o r ) :
77 r = dbx . f i l e s _ g e t _ t h u m b n a i l ( p a t h = f p a t h , f o r m a t = thumbtype , s i z e =

t h u m b s i z e )
78 f i l e m e t a = r [ 0 ]
79 r e s p o n s e = r [−1]
80 # Catch s t a t u s code e r r o r s
81 i f r e s p o n s e . s t a t u s _ c o d e n o t i n [ 2 0 0 , 2 0 6 ] :
82 s t a t u s E r r o r [ " code " ] = r e s p o n s e . s t a t u s _ c o d e
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83 s t a t u s E r r o r [ " h e a d e r s " ] = r e s p o n s e . h e a d e r s
84 p r i n t " E r r o r on " , f i l e m e t a . pa th_ lower , r e s p o n s e . s t a t u s _ c o d e ,

r e s p o n s e . h e a d e r s
85 r e t u r n
86 # f i l e c o n t e n t
87 thumb = r e s p o n s e . c o n t e n t
88 i f s a v e _ d i r :
89 s a v e p a t h = os . p a t h . j o i n ( s a v e _ d i r , f i l e m e t a . p a t h _ l o w e r )
90 t r y :
91 wi th open ( s a v e p a t h , "wb" ) a s f :
92 f . w r i t e ( thumb . decode ( " base64 " ) )
93 e x c e p t E x c e p t i o n as e r r :
94 p r i n t " f a i l e d t o save { } \ n {} " . f o r m a t ( meta . name , e r r )
95

96

97

98 # S e t up a r g s
99 p a r s e r = a r g p a r s e . Argumen tPa r se r ( d e s c r i p t i o n = " " " U t i l i t y t o benchmark

dropbox t i m e s t o f e t c h f i l e s and t h u m b n a i l s .
100 " " " )
101 # p a r s e r . add_argument ( ’ a l g ’ , h e l p = " " )
102 p a r s e r . add_argument ( ’ f o l d e r p a t h ’ , h e l p =" dropbox f o l d e r pa th , r e l a t i v e

t o dropbox r o o t " )
103 p a r s e r . add_argument ( ’−−z i p ’ , ’−z ’ , a c t i o n = ’ s t o r e _ t r u e ’ , h e l p = ’ Uee

download_z ip method . ’ )
104 p a r s e r . add_argument ( ’−− s i n g l e f i l e s ’ , ’−s f ’ , a c t i o n = ’ s t o r e _ t r u e ’ , h e l p =

’ Uee download a l l f i l e s i n d i v i d u a l l y . ’ )
105 p a r s e r . add_argument ( ’−−s i n g l e t h u m b s ’ , ’− s t ’ , a c t i o n = ’ s t o r e _ t r u e ’ , h e l p

= ’ Uee download a l l f i l e s i n d i v i d u a l l y . ’ )
106 p a r s e r . add_argument ( ’−−thumbba tch ’ , ’−t b ’ , a c t i o n = ’ s t o r e _ t r u e ’ , h e l p = ’

Use t h u m b l o a d _ b a t c h method . ’ )
107 p a r s e r . add_argument ( ’−−t h u m b s i z e ’ , ’− t s ’ , t y p e = i n t , h e l p = ’ Dimension of

t h u m b n a i l s , O p t i o n s : {} ’ . f o r m a t (THUMBSIZES) )
108 p a r s e r . add_argument ( ’−−thumbtype ’ , ’− t t ’ , t y p e = s t r , h e l p = ’ Type of

thumbna i l , PNG or JPEG . ’ )
109 p a r s e r . add_argument ( ’−− t h r e a d s ’ , ’− t ’ , t y p e = i n t , h e l p = ’ Thread c o u n t

f o r m u l t i p l e r e q u e s t s . ’ )
110 p a r s e r . add_argument ( ’−−s u b s e t ’ , ’−sub ’ , t y p e = i n t , h e l p = ’Maximum number

o f f i l e s t o p r o c e s s . ’ )
111 p a r s e r . add_argument ( ’−−p r o g r e s s c o u n t ’ , ’−c ’ , t y p e = i n t , h e l p = ’ P r i n t

p r o g r e s s u p d a t e s a f t e r p r o c e s s i n g t h i s many i t e m s . ’ )
112 p a r s e r . add_argument ( ’−−s a v e d i r ’ , ’−d i r ’ , t y p e = s t r , h e l p = ’ Save f i l e s t o

a d i r e c t o r y . ’ )
113

114

115 a r g s = p a r s e r . p a r s e _ a r g s ( )
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116 # Check t h a t t h r e a d c o u n t i s p r o v i d e d
117

118 i f ( a r g s . thumbba tch + a r g s . z i p + a r g s . s i n g l e f i l e s + a r g s . s i n g l e t h u m b s )
> 1 :

119 p r i n t " P l e a s e choose e i t h e r −−z i p ( z ) , −−thumbba tch (− t b ) , −−
s i n g l e t h u m b s (− s t ) , o r −− s i n g l e f i l e s (− s f ) "

120 e x i t ( )
121

122 # Se tup v a r i a b l e s f o r t h u m b n a i l s t u f f
123 i f ( a r g s . thumbba tch o r a r g s . s i n g l e t h u m b s ) :
124 m = " P l e a s e p r o v i d e a v a l i d t h u m b n a i l s i z e : \ n O p t i o n s : { } " . f o r m a t (

THUMBSIZES)
125 i f a r g s . t h u m b s i z e :
126 i f a r g s . t h u m b s i z e n o t i n THUMBSIZES :
127 p r i n t m
128 e x i t ( )
129 e l s e :
130 p r i n t m
131 e x i t ( )
132 # g e t t h u m b s i z e o b j e c t from i n t
133 t h u m b s i z e = THUMBSIZEMAP[ a r g s . t h u m b s i z e ]
134

135 m = " P l e a s e p r o v i d e a v a l i d t h u m b n a i l t y p e : \ n O p t i o n s : { } " . f o r m a t (
THUMBTYPES)

136 i f a r g s . thumbtype :
137 i f a r g s . thumbtype . lower ( ) n o t i n THUMBTYPES:
138 p r i n t m
139 e x i t ( )
140 e l s e :
141 p r i n t m
142 e x i t ( )
143 # g e t t h u m b n a i l f o r m a t o b e j c t s from s t r i n g s
144 i f a r g s . thumbtype . lower ( ) == " j p e g " :
145 thumbtype = dropbox . f i l e s . Thumbnai lFormat . j p e g
146 e l i f a r g s . thumbtype . lower ( ) == " png " :
147 thumbtype = dropbox . f i l e s . Thumbnai lFormat . png
148

149 i f n o t a r g s . z i p :
150 i f n o t a r g s . t h r e a d s :
151 p r i n t " P l e a s e p r o v i d e a t h r e a d c o u n t (−− t h r e a d s i n t ) "
152 e x i t ( )
153

154 # S e t number o f i t e m s t o add b e f o r e p r o v i d i n g p r o g r e s s f e e d b a c k
155 i f a r g s . p r o g r e s s c o u n t :
156 p r o g r e s s c o u n t = a r g s . p r o g r e s s c o u n t
157 e l s e :
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158 p r o g r e s s c o u n t = 250
159

160 i f a r g s . s a v e d i r :
161 s a v e _ d i r = a r g s . s a v e d i r
162 i f n o t os . p a t h . e x i s t s ( s a v e _ d i r ) :
163 os . m a k e d i r s ( s a v e _ d i r )
164 p r i n t " C r e a t e d save d i r e c t o r y . "
165 e l s e :
166 i f n o t os . p a t h . i s d i r ( s a v e _ d i r ) :
167 p r i n t " {} i s n o t a d i r e c t o r y " . f o r m a t ( s a v e _ d i r )
168 e x i t ( )
169

170

171

172

173

174 # Check t h a t a f l a g i s p r o v i d e d
175 e r r o r = T h r e a d S a f e D i c t ( )
176

177 p r i n t a r g s
178 p r i n t " S t a r t t ime ( b e f o r e c o n n e c t i n g ) : " , s t r ( d a t e t i m e . d a t e t i m e . now ( ) )

[ : 1 9 ]
179

180 # S e t up a c c e s s t o Dropbox a c c o u n t
181 dbx = dropbox . Dropbox (DROPBOX_TOKEN, t i m e o u t =120)
182 dbx . u s e r s _ g e t _ c u r r e n t _ a c c o u n t ( )
183

184

185 i f a r g s . z i p :
186 # Download z i p benchmark
187 # n o t e : s e t t i m e o u t on dropbox . Dropbox ( ) o b j e c t f o r t h i s t o work
188 p r i n t " download ing z i p f o r : {} " . f o r m a t ( a r g s . f o l d e r p a t h )
189 t 0 = t ime . t ime ( )
190 r = dbx . f i l e s _ d o w n l o a d _ z i p ( a r g s . f o l d e r p a t h ) [−1]
191 d = r . c o n t e n t
192 t 1 = t ime . t ime ( )
193

194

195 # n o t a s t a n d a l o n e c a l l t o t h e d i r e c t o r y . need o t f e t c h f i l e p a t h s
196 e l s e :
197 p r i n t " f e t c h i n g l i s t o f f i l e s "
198 t e 0 = t ime . t ime ( ) # e n u m e r a t i o n t i m e r s t a r t
199 # S t a r t l i s t i n g f i l e s i n benchmark d i r e c t o r y
200 f l i m i t = 2000 # max a l l o w e d f o r f i l e s _ l i s t _ f o l d e r
201 i f a r g s . s u b s e t > f l i m i t :
202 f l i m i t = a r g s . s u b s e t
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203

204 l f = dbx . f i l e s _ l i s t _ f o l d e r ( a r g s . f o l d e r p a t h , l i m i t = f l i m i t )
205 e n t r i e s = l f . e n t r i e s
206 i f a r g s . s u b s e t :
207 i f l e n ( e n t r i e s ) >= a r g s . s u b s e t :
208 e n t r i e s = e n t r i e s [ : a r g s . s u b s e t ]
209 e l s e :
210 # I f t h e l i s t s p a n s more t h a n a s i n g l e r e q u e s t , keep

g e t t i n g them u n t i l done .
211 w h i l e l f . has_more :
212 l f = dbx . f i l e s _ l i s t _ f o l d e r _ c o n t i n u e ( l f . c u r s o r )
213 e n t r i e s . e x t e n d ( l f . e n t r i e s )
214 i f l e n ( e n t r i e s ) >= a r g s . s u b s e t :
215 e n t r i e s = e n t r i e s [ : a r g s . s u b s e t ]
216 b r e a k
217

218 e l s e :
219 # c o n t i n u e f e t c h i n g a l l i t e m s
220 w h i l e l f . has_more :
221 l f = dbx . f i l e s _ l i s t _ f o l d e r _ c o n t i n u e ( l f . c u r s o r )
222 e n t r i e s . e x t e n d ( l f . e n t r i e s )
223 t e 1 = t ime . t ime ( ) # e n u m e r a t i o n t i m e r end
224 enumtime = te1−t e 0
225 n u m e n t r i e s = l e n ( e n t r i e s )
226 p r i n t " f i l e l i s t i n g t ime : {} " . f o r m a t ( enumtime )
227 p r i n t "num e n t r i e s : " , n u m e n t r i e s
228

229 # i n i t t h r e a d s t u f f
230 c o u n t = 0
231 t p o o l = ThreadPoo l ( a r g s . t h r e a d s )
232

233

234 i f ( a r g s . s i n g l e f i l e s o r a r g s . s i n g l e t h u m b s ) :
235 # Do s i n g l e f i l e s benchmark b a t c h benchamrk
236 i f a r g s . s i n g l e f i l e s :
237 p r i n t " S t a r t i n g s i n g l e f i l e s benchmark "
238 e l i f a r g s . s i n g l e t h u m b s :
239 p r i n t " S t a r t i n g s i n g l e t h u m b n a i l s benchmark "
240 t 0 = t ime . t ime ( ) # s t a r t benchmark t i m e r
241 f o r e i n e n t r i e s :
242 i f " code " i n e r r o r :
243 i f " Ret ry−A f t e r " i n e r r o r [ " h e a d e r s " ] :
244 t i m e t o w a i t = e r r o r [ " h e a d e r s " ] [ " Ret ry−A f t e r " ]
245 p r i n t " Wai t i ng on r e t r y −a f t e r ( { } ) b e f o r e

s u b m i t t i n g new j o b s " . f o r m a t ( f l o a t ( t i m e t o w a i t ) * 1 . 5 )
246 t ime . s l e e p ( f l o a t ( t i m e t o w a i t ) * 1 . 5 )
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247 e r r o r . c l e a r ( )
248 e l s e :
249 e r r o r . c l e a r ( )
250 t r y :
251 i f a r g s . s i n g l e f i l e s :
252 t p o o l . a d d _ t a s k ( g e t S i n g l e F i l e , dbx , e . pa th_ lower ,

e r r o r )
253 e l i f a r g s . s i n g l e t h u m b s :
254 t p o o l . a d d _ t a s k ( ge tSingleThumb , dbx , e . pa th_ lower ,

thumbtype , thumbs ize , e r r o r )
255 e x c e p t E x c e p t i o n as e x p t :
256 p r i n t " E x c e p t i o n " , exp t , e
257 c o u n t +=1
258 i f c o u n t % p r o g r e s s c o u n t == 0 :
259 p r i n t " Added : " , c o u n t
260 t p o o l . w a i t _ c o m p l e t i o n ( )
261 t 1 = t ime . t ime ( ) # end benchmark t i m e r s i n g l e f i l e s
262

263 i f a r g s . thumbba tch :
264 # Do t h u m b n a i l b a t c h benchamrk
265 p r i n t " S t a r t i n g Thumbna i l_ba t ch benchmark "
266 t 0 = t ime . t ime ( ) # s t a r t benchmark t i m e r
267 i = 0
268 i f n u m e n t r i e s > 2 5 :
269 j = 25
270 e l s e :
271 j = n u m e n t r i e s
272 w h i l e j <= n u m e n t r i e s :
273 e l i s t = e n t r i e s [ i : j ]
274 t r y :
275 t p o o l . a d d _ t a s k ( getThumbbatch , dbx , e l i s t , thumbtype ,

t h u m b s i z e )
276 e x c e p t E x c e p t i o n as e x p t :
277 p r i n t " E x c e p t i o n " , exp t , e l i s t
278 i f j < n u m e n t r i e s :
279 i +=25
280 j +=25
281 i f j > n u m e n t r i e s :
282 j = n u m e n t r i e s
283 i f j % p r o g r e s s c o u n t == 0 :
284 p r i n t " Added : " , j
285 e l s e :
286 # done
287 b r e a k
288

289 p r i n t " F i n i s h e d a dd in g : {} " . f o r m a t ( j )
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290 t p o o l . w a i t _ c o m p l e t i o n ( )
291 t 1 = t ime . t ime ( ) # end benchmark t i m e r t h u m b n a i l b a t c h
292

293

294 f e t c h _ t i m e = t1−t 0
295 p r i n t " F e t c h t ime : {} " . f o r m a t ( f e t c h _ t i m e )
296 p r i n t " End t ime ( c o m p l e t e ) : " , s t r ( d a t e t i m e . d a t e t i m e . now ( ) ) [ : 1 9 ]

Listing F.2 Benchmark for various file acquisition approaches on Dropbox.

F.1.3 Dropbox Thumbnail Download Zip - Python Requests

A small Python program to access the download_zip Dropbox API endpoint, as the Python
SDK timed out when attempting to download a large directory. Benchmark results in
Section 5.7.2.

1 # Python 2
2 i m p o r t r e q u e s t s
3 i m p o r t j s o n
4 i m p o r t t ime
5 from t o k e n s i m p o r t d ropbox_ token
6

7 u r l = " h t t p s : / / c o n t e n t . d r o p b o x a p i . com / 2 / f i l e s / download_z ip "
8

9 h e a d e r s = {
10 " A u t h o r i z a t i o n " : " {} " . f o r m a t ( d ropbox_ token ) ,
11 " Dropbox−API−Arg " : " { \ " p a t h \ " : \ " / D a t a s e t s / F l i c k r _ 5 k _ i n t o r d e r \ " } "
12 }
13

14 t 0 = t ime . t ime ( )
15 r = r e q u e s t s . p o s t ( u r l , h e a d e r s = h e a d e r s )
16 t 1 = t ime . t ime ( )
17 p r i n t " Time t a k e n : {} " . f o r m a t ( t1−t 0 )

Listing F.3 Benchmark downloading Dropbox directory as Zip.
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DCT Discrete Cosine Transformation, it expresses a finite sequence of data points in terms
of a sum of cosine functions oscillating at different frequencies. It is an essential part
of JPEG compression, transforming spatial image data into the frequency domain..

DWT Discrete Wavelet Transform. Similar in idea to the DCT, it uses a different function
to transform data to the frequency domain..

JPEG This is the de-facto format for compressed images at the time of writing, being
used widely on the Web and mobile devices..

Perceptual Hashing A non-cryptographic hashing technique which derives signatures
from how a file appears visually to a human, rather than its binary features. Similar
images should generate identical or similar perceptual hashes..

PNG Portable Network Graphics, a file format for lossless image compression..

Reverse Image Search Where an image is used as a search query resulting in a list of
images with similar visual characteristics as the response, i.e. both the query and
results are images, in contrast to standard text search queries..
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