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Abstract 

This paper studies the dynamic frictional interactions of the underactuated vibro-driven capsule systems with the 

viscoelastic property. Frictional dynamics of the capsule systems is an active research domain, while the online 

implementation and control of the friction models are still intractable tasks. This paper investigates the frictional 

characteristics of the capsule systems in the dynamic regime, including particularly the non-reversible drooping 

and hysteresis. Firstly, the frictional interaction dynamics is modelled and characterized using a combined physics-

based and analytical-based approach. Subsequently, the qualitative changes in the capsule dynamics and friction-

induced vibrational responses that triggered by multiple control parameters are discussed. It is found that the capsule 

dynamics is mainly periodic, and the motion velocity of the capsule systems can be controlled by appropriate tuning 

of the control parameters around the identified control points. Simulation results have a good agreement with the 

experimentally observed frictional characteristics. The effectiveness of the proposed method is verified in terms of 

satisfaction of the energy requirements and quenching of the friction-induced vibrations. It is also found that the 

frictional interaction dynamics of the capsule systems can be predicted for a wide range of vibrational behaviours. 

Finally, the importance of a concrete understanding and accurate description of the dynamic friction at the sliding 

substrate is highlighted. 

Keywords 

Vibro-driven dynamics; Underactuated system; Capsule systems; Friction and hysteresis; 

Viscoelasticity 

 

1. Introduction 

During the past decade, autonomous micro-mechanical systems have become an active research topic 

in both robotics and control communities. Various systems have been studied, for instance, the rigid 

body with two internal masses (Bolotnik and Figurina, 2008), the two-body system (Chernous’ko, 2011), 

the capsubot (Huda and Yu, 2015a; Liu et al., 2018a, 2018b), the vibro-impact capsule systems (Liu et 

al., 2018c, 2017; Zhan and Xu, 2015; Zhang et al., 2014a). These systems move by generating the 

internal autogenetic forces and overcoming the external environmental resistance. Equipped with 

hermetic structure and smooth surface, they have extensive applications, for instance, in engineering 
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diagnosis, medical endoscopy, disaster rescues and seabed exploration. Irrespective of the complex gear 

case and external protruding components, they are simple in mechanical structure and prone to control, 

which shed light on the design of the dynamical model of autonomous and bionic-robotic systems. The 

rectilinear locomotion is based on the principle that an internal vibro-driven mass moves and interacts 

with the system body and overcomes the environmental resistant forces. Capsule systems are designed 

with this principle to work in vulnerable media and restricted space, for instance, minimally invasive 

diagnosis inside a human body and pipeline inspection into a narrow tube. The dynamics of a mobile 

system with an internal acceleration-controlled mass based on the stick-slip effect was studied in (H. 

Fang and Xu, 2011). The issue of trajectory tracking control of an underactuated capsubot system was 

studied in (Huda and Yu, 2015), which proposed a two-stage motion control strategy through 

acceleration profiles. A vibro-driven capsule system was proposed in (Liu et al., 2014, 2016) and the 

issues of motion generation and dynamic interactions with the environment were studied. The capsule 

systems require high fidelity, which makes precise modelling and prediction of the frictional 

interactions is a nontrivial but intractable task. Conventionally, friction is considered as an instable 

factor that needs to be eliminated or compensated through the design of control systems. Robust friction 

models are required in some practical engineering problems. However, friction plays a pivotal role in 

the locomotion of the self-propelled capsule systems. For the vibro-driven system considered in this 

paper, the dynamic coupling between the driving mechanism and the capsule are utilized to generate 

desirable stick-slip motions. Hence, accurate predictions of the dynamic interactions in the sticking, 

presliding and pure sliding regimes become crucial. 

Various friction models have been proposed in the literature through investigation in the physical 

phenomena. These models have different numbers of parameters to be identified and controlled. 

Basically, there are three indexes (Al-Bender and Swevers, 2008) for evaluating the friction model: 1) 

simple for online utilization; 2) sophisticated to describe all frictional characteristics; and 3) having a 

limited number of parameters to be identified. As a simplified friction model, the Coulomb model 

describes the friction as a function of relative velocity between two bodies in contact (Armstrong-

Hélouvry et al., 1994), and it has been widely used for studying capsule systems such as in (Chernous’ 

ko, 2002; Fang and Xu, 2011; Huda and Yu, 2015; Li et al., 2006; Liu et al., 2013b). Some significant 

studies on stick-slip motions of a single-module vibro-driven motion system have been reported in 

(Fang and Xu, 2013; H. B. Fang, 2010). Towards a capsule endoscope inside an intestine, an analytical 

frictional resistance model was studied in (Kim et al., 2007), the contact geometry and viscoelasticity 

of the lubricants on the intestine surface was considered to reveal the intestine characteristics, e.g., stress 

relaxation that results in lower frictional force with a decreasing capsule speed. Coulomb frictions, 

viscous friction and viscoelastic deformation of the intestinal wall were used in (Zhang et al., 2012) to 

study a capsule system inside an intestine, and the experiment results verified the friction model then 

the robot moves with a lower speed at 20mms-1. These findings reveal that the low-speed stick-slip 

locomotion is a plausible motion pattern for the capsule system, and the friction characteristics are 

dominated by the intestine’s villus-like structure and viscoelasticity. However, for specific applications 



of the capsule systems, an accurate representation of the dynamic frictional interaction is required to 

capture several dynamic phenomena that have been observed in the experiments. Nevertheless, the 

static friction models solely consider the variations in velocities between the two bodies in frictional 

contact, while the hysteretic loops and the drooping frictional characteristics in the regime with lower 

relative velocity are not captured. Therefore, this paper models and analyses the dynamic interactions 

through the dominating components of the friction, including the static friction, presliding, breakaway 

force, stick-slip motion, the Stibeck effect, friction memory and the hysteretic effect. 

The drooping characteristic arises with dynamic frictional contact, and it is typically represented as a 

function of the relative velocity of the bodies in contact. In this regard, the friction is a single-valued 

function, which means it is driven by the reversible drooping to follow the same path in the deceleration 

stage (DS) and the acceleration stage (AS). However, the experimental observations are not always 

aligned with the consideration above, particularly in the unsteady environmental conditions such as the 

oscillations in relative velocity. Therefore, some engineering investigations have revealed that the 

frictional dynamics can be multi-valued, which means the friction force travels along different paths 

during the DS and the AS, and forms a non-reversible curve as reported in (Becker and Mahin, 2013; 

Biswas and Chatterjee, 2014; Neis et al., 2011; Outirba and Hendrick, 2014; Stefański et al., 2006; 

Wojewoda et al., 2008). The main reason for this phenomenon is the temporal lag between the variations 

of the friction force and the relative velocity. In the literature, both the clockwise (i.e. the friction force 

for the AS is greater than that for the DS) and the anticlockwise drooping loops have been observed in 

the pure sliding regime in engineering applications. Moreover, the hysteretic loops have been 

experimentally observed in the presliding regime based on the compliance property between the 

asperities induced by the spring-like behaviour as described in (Casini et al., 2012; Giannini et al., 2011). 

As a result, there is velocity overshooting during the initiation of stick-slip motion between the bodies 

in contact. 

Single-degree-of-freedom (DOF) mass-spring-damper systems resting on a moving belt are well-

adopted in literature to explore the friction-induced vibrations and experimentally observed friction 

characteristics (Hetzler et al., 2007; Saha et al., 2015). A majority of researches study on 2-DOF 

tangential-wise (typically linearly along the motion direction) vibrations as reported in (H. B. Fang and 

Xu, 2011; Huda and Yu, 2015; Liu et al., 2013b; Zhan and Xu, 2015) or the norm-wise vibrations as 

presented in (Chowdhury and Helali, 2008) w.r.t. the substrates in contact. These works form the main 

concept for self-propelled micro-robotic systems. However, the combined (nonlinear) norm-wise and 

tangential-wise vibrations that could generate bidirectional locomotion which has not been widely 

reported in the literature. It sheds light on a generalized significance for the studies on capsule systems. 

It is also noted that towards the nonlinear friction, there are several seminal studies in the literature (H. 

Fang and Xu, 2011; Fang and Xu, 2012). These works mainly focused on the qualitative changes 

induced by the control parameters with different friction models. 

This paper considers the capsule systems which utilize combined tangential-wise and norm-wise 

vibrations to generate the underactuated locomotion. The nonlinear connection of the pendulum and the 



vibrational actuator is characterized via a torsional spring and a viscous damper. Viscoelastic property 

is a promising feature for bio-inspired and soft robots, which enables efficient locomotion through 

natural oscillations. Many animals are capable of considerably reducing their metabolic cost of running 

through efficient utilization of the viscoelastic properties of muscles, tendons, and bones distributed in 

their bodies (Alexander et al., 1985) and limbs (Dimery et al., 1986; McMahon, 1985). The study on 

the relations between viscoelastic parameters and the system performance is beyond the scope of the 

work here and will be reported in due course. Motivated by the experimental findings in the literature, 

this paper studies the frictional forces described by the LuGre model (De Wit et al., 1995) (LM) and the 

Exponential model (Armstrong-Hélouvry et al., 1994) (EM). In the literature, only few works have 

reported the dynamic frictional interactions between the capsule system and the substrate. Towards this 

end, the non-reversible frictional characteristics (e.g., drooping and hysteresis) are studied. The dynamic 

interactions are firstly modelled using a combined physics-based and analytical-based approach. Then, 

this paper identifies the frictional limits for the static friction, the presliding regime and the pure sliding 

regime. Dynamic analysis of the friction-induced vibrational responses is then conducted, and the 

qualitative variations laws induced by the control parameter are identified. The analytical and numerical 

results have good agreements with the seminal findings in the literature. The proposed work is an 

advisable benchmark to exploit the challenges in friction compensation and online control of 

underactuated micro-robotic systems. The rest of the paper is organized as follows. The mathematical 

modelling of the capsule system and frictional interactions are provided in Section 2. Analysis of 

dynamic frictional interactions is presented in Section 3. Finally, conclusions are outlined in Section 4. 

2. Mathematical modelling 

2.1 System description 

The 2-DOF capsule model is considered as shown in Fig. 1, which contains a pendulum and a platform 

merged with a rigid massless capsule shell. A vibration actuator is mounted on the platform at the pivot 

and connected with the pendulum. The movable pendulum is linked with the capsule body, and it is 

driven by a prescribed and harmonically excited force generated by the actuator. The actuator model is 

simplified here, and the interconnection between the pendulum and the capsule is represented by a 

torsional spring and a viscous damper. 𝑙 and 𝑚 are the length and mass of the pendulum, 𝑀 is the 

mass of the platform. 𝑥  and 𝜃  denote the absolute displacements of the capsule and the driving 

pendulum. 𝑘 and 𝑐 represent the coefficients of the stiffness and damping, respectively. It is assumed 

that the sliding friction force 𝐹𝑐 between the capsule and the substrate is applied along the X-axis.  

The motion principle of the capsule system is based on the interactions between the centripetal forces 

excited by the vibration actuator and the friction forces at the substrate. The system is propelled over a 

surface rectilinearly through the interactions with the friction. Elastic potential energy is accumulated 

and released in accordance with the contraction and relaxation of the torsional spring. The rotating 

pendulum drives the capsule to move bidirectionally via the dynamic couplings. The capsule motion 

begins with a static state, and it starts to move when the resultant force applied horizontally exceed the 



threshold of the static friction at the surface in contact. The sticking phase dominates the system when 

the threshold is not reached. And once the condition is met, the capsule starts to move with the fast 

motion, which is termed as the pure sliding phase. The capsule model is developed to exploit advisable 

friction control approaches through the stick-slip effects. As a result, optimal forward motions can be 

generated, in which the capsule and the driving pendulum synchronize their motions harmoniously.  
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Fig.1. Schematic of the vibro-driven underactuated encapsulated system. 

2.2 Dynamic model 

Let the centre of the platform be the origin of the coordinate, 𝑥𝑏  and 𝑦𝑏  denote the absolute 

displacements measuring the deflection of the geometric centre of the ball referenced from the medial 

axis in horizontal and vertical direction, respectively. The configuration of the ball and its derivative 

are obtained as 𝑥𝑏 = 𝑥 − 𝑙𝑠𝑖𝑛(𝜃), 𝑦𝑏 = 𝑙𝑐𝑜𝑠(𝜃), �̇�𝑏 = �̇� − 𝑙�̇�𝑐𝑜𝑠(𝜃) and �̇�𝑏 = −𝑙�̇�𝑠𝑖𝑛(𝜃). Using 

the Euler-Lagrange’s method, dynamics of the capsule system excited by harmonic force are described 

as 

𝑑

𝑑𝑡

𝜕𝐿(𝑞𝑖,�̇�𝑖)

𝜕�̇�𝑖
−

𝜕𝐿(𝑞𝑖,�̇�𝑖)

𝜕𝑞𝑖
+ 𝐹𝑖 = 𝑄𝑖  𝑖 = 1,2.                     (1) 

where 𝑞1  and 𝑞2  denote the angular position 𝜃  and capsule displacement 𝑥 , 𝐿(𝑞𝑖, �̇�𝑖) =

𝐸(𝑞𝑖, �̇�𝑖) − 𝑉(𝑞𝑖)  is the Lagrangian function, 𝐸  and 𝑉  denote the kinetic energy and potential 

energy, 𝐹𝑖  describes the friction and resistant forces, 𝑄𝑖 is the generalized externally applied force or 

moment. Details of the variables above are listed as follows: 𝐸 =
1

2
𝑀�̇�2 +

1

2
𝑚 [(�̇� − 𝑙�̇�𝑐𝑜𝑠(𝜃))

2
+

(−𝑙�̇�𝑠𝑖𝑛(𝜃))
2

], 𝑉 =
1

2
𝑘𝜃2 + 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃), and 𝑄1 = 𝐴𝑐𝑜𝑠(𝛺𝑡). It is noted that 𝐹1 = 𝑐�̇� denotes the 

viscous friction induced by the actuator, 𝐹2 = 𝑁0Ϝ is the friction force between bodies in contact (with 

𝑁0 denoting the normal load and Ϝ describing the friction force per normal load unit). 𝐴 and 𝛺 are 

the amplitude and frequency of the harmonic force. 𝑔 is the gravitational acceleration. Therefore, the 

equations of motion are derived as 

𝑚𝑙2�̈� − 𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) + 𝑘𝜃 + 𝑐�̇� = 𝐴𝑐𝑜𝑠(𝛺𝑡)                (2) 

−𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� + (𝑀 + 𝑚)�̈� + 𝑚𝑙𝑠𝑖𝑛(𝜃)�̇�2 + 𝑁0Ϝ = 0                  (3) 

We introduce a characteristic time scale using natural frequency 𝜔𝑛 = √𝑔/𝑙  and a characteristic 



length 𝑥0 = 𝑔/𝜔𝑛
2, the following non-dimensional motions of the equation are given as 

𝛩′′ − 𝑐𝑜𝑠(𝛩)𝑋′′ − 𝑠𝑖𝑛(𝛩) + 𝜌𝛩 + 𝜐𝛩′ = ℎ𝑐𝑜𝑠(𝜔𝜏)                  (4) 

−𝑐𝑜𝑠(𝛩)𝛩′′ + (𝜆 + 1) 𝑋′′ + 𝑠𝑖𝑛(𝛩)𝛩′2 + 𝑁𝑓 = 0                   (5) 

where 𝛩 and 𝑋 represent the configuration variables with respect to 𝜃 and 𝑥 in the non-dimensional 

space. Accordingly, the non-dimensional quantities are defined as 

𝑋 = 𝑥/𝑥0, 𝜆 = 𝑀/𝑚, 𝜌 = 𝑘/(𝑚𝑙2𝜔𝑛
2), 

𝜐 = 𝑐/(𝑚𝑙2𝜔𝑛), ℎ = 𝐴/(𝑚𝑙2𝜔𝑛
2), 𝜔 = 𝛺/𝜔𝑛, 𝑁 = 𝑁0/(𝑚𝑙𝜔𝑛

2) 

It is noted that the prime ( ′ ) in the equations above represents the derivatives in non-dimensionalized 

space 𝜏 = 𝜔𝑛𝑡, and 𝑓  is Eq. (5) denotes the friction force under the non-dimensionalized relative 

velocity of the surfaces in contact. 

Remark 1: In the normalized coordinate, the physical meanings of the control parameters can be captured 

as follows: 𝜆 represents the mass ratio, 𝜌 and 𝜐 respectively denote the dimensionless spring and 

damping coefficients, ℎ and 𝜔 are dimensionless excitation amplitude and frequency. 

2.3 Modelling and characterization of friction force dynamics 

2.3.1 The physics-based analysis 

Typically, friction arises at the physical interface between the contacting surfaces of different bodies in 

relative motions. It is assumed that the substrate is composed of a great number of tiny contacts on the 

surface irregularities, and the limit for a spring-like microscopic part of the contacting area is far larger 

than that for the bulk object. It can be concluded that the surfaces may have relative motion within a 

sufficiently small distance and without destroying the transitory connections. Also, the stretched 

irregularities gradually exert the elastic force to predominate the resisting friction force. It is noted that 

the above conclusion has different forms of interpretation, which is governed by the relative velocity 

between the bodies in contact. The reason behind is that the bonds may remain undisrupted for a period. 

The duration of the period is equivalent to the maximum extension of the micro-connections divided by 

the average velocity (McMillan, 1997). For the velocity near zero, the hysteretic effect may appear from 

the tiny movement between the two bodies in the phase of sticking, which is also named as micro-slip. 

The increasing number of connections being disrupted during a period can be associated with an 

increased friction force at a sufficiently fast average velocity. Hence, characteristics of the nonlinearity 

near zero relative velocities are the most significant to introduce the hysteretic effect. This is originated 

from the random distribution and size of asperities between the bodies in contact. 

The capsule model rests on the horizontal plane, as shown in Fig. 2, and it is driven by a pendulum 

relative to the substrate with a velocity of 𝑋′(𝜏). For a small driving force in the horizontal direction, it 

is noted that the interface between the capsule and the surface falls into the sticking regime as shown in 

Fig. 2(a). As such, the stiction force results from the tension in conjoint irregularities. The brush-like 

surface illustration represents the evolution of the junction deflections between different asperities, and 

the tension on these connections. Nevertheless, as the driving force increases, the capsule moves with 

the displacement farther than the maximum extension of the connections. From Fig. 2(a), the capsule is 

initially stationary, and the connections are un-tensioned with no friction torque resisting the motion. In 



Fig. 2(b), after a short period of time under the anticlockwise motion of the pendulum, the relative 

velocity of the capsule is appeared to be slightly positive, and the bonds remain intactness. The threshold 

will be met during the sticking phase via opposing torque of the friction force. At this critical boundary 

as depicted in Fig. 2(c), the capsule starts to slip with a kinematic friction force, which is characterized 

by a dramatic decrease. The clockwise motion of the pendulum results into a deceleration of the capsule 

to a slightly positive velocity, while it keeps slipping as the bonds need some time to reform (see Fig. 

2(d)). The connections are re-built and the sticking phase arrives again when the capsule decelerates 

through 𝑋′(𝜏) = 0 as shown in Figs. 2(e) and (f). Backward motions of the capsule follow the argument 

through Figs. 2(g) to (j). Following the discussions above, Fig. 3 shows the curve of friction force as a 

function of the average velocity of the capsule system. It is noted that the sketches in Fig.2 illustrate the 

motions of the capsule system to show the process and transition of sticking, presliding and sliding 

motion phases, which serves merely as an aid to intuition, please refer to (Liu et al., 2015) for detailed 

motion generation description. 

The arguments above considers that the friction force depends solely on the relative velocity of the two 

bodies in contact (Armstrong-Hélouvry et al., 1994), i.e. 𝑓(𝜏) = 𝑓(𝑋′(𝜏)), which gives rise to the 

reversible characteristic of the friction force (black solid line) as shown in Fig. 3. The capsule slips back 

onto a lately travelled trajectory where new asperities might have been reformed. The reason behind is 

that a unique value is generated for a given relative velocity during the DS and the AS. For dynamic 

frictional circumstance, however, it is necessary to take into account the state variable(s) associated with 

the average velocity 𝑋′(𝜏). The state variable may have different values for one particular relative 

velocity during the AS and the DS since they evolve with time by the description of differential equations. 

The arrows in green depict the different acceleration and deceleration paths that the capsule follows, and 

accordingly, a clockwise hysteretic loop is characterised in the pure sliding regime. 

Remark 2: The phenomenon described above introduces the non-reversible characteristic of the friction 

force, which is demonstrated by different friction values during the AS and the DS (blue dashed line in 

Fig. 3). Therefore, the friction-velocity curve follows different paths for the AS and the DS, which gives 

rise to the hysteretic loops. For example, the non-reversible friction characteristic for the forced 

vibrations as shown in Fig. 3. This study aims to fill in the research gaps in modelling and analysing the 

dynamic interactions between the mobile capsule systems and the substrate. 
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Fig.2. Schematic of the capsule motions with interface deformation. 
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Fig.3. Schematic of the reversible (black solid line) and non-reversible (blue dashed line) 

characteristics of the friction forces. 

2.3.2 Friction models 

Two friction models (the LM and the EM) are employed as the first approximations to describe the 

tribological interactions between the capsule and the locomotion substrate in the tangential direction. 

Surface asperities are used in the LM to model the damped spring-like bristles between the bodies in 

contact. As a result, the micro-slip during the small displacement (the presliding) and the Sticbeck effect 

in massive displacement (the pure sliding) are revealed in the model. The external environmental force 

governs the bristles’ deformation and reformation. As a result, the friction force is determined by a 

linear viscous term and the resultant deflection of the bristles. In this regard, an internal variable 𝜉 is 

introduced which is the average bristle deflection. Hence, the friction force 𝑓  features two state 

variables, and 𝑓 = 𝑓𝐿𝑀(𝜉, 𝑋′) is described as 

𝑓𝐿𝑀(𝜉, 𝑋′) = 𝛿0𝜉 + 𝛿1𝜉′ + 𝛿2𝑋′                         (6) 

where 𝛿0  and 𝛿1  describe the stiffness and damping coefficients of the bristle, respectively. 𝛿2 

represents the viscous part of the resistant force. 𝜉 is the average bristle deflection, and the evolution of 

the average bristle deflection is governed by 

𝜉′ = 𝑋′ [1 −
�̂�

ℊ(𝑋′)
𝑠𝑔𝑛(𝑋′)]                           (7) 

where ℊ(𝑋′) =
𝑁

𝛿0
[𝜂𝑐 + Δ𝜂𝑒−(𝑋′/𝑣𝑠)𝛼

] dominates the Stribeck effect, 𝑣𝑠 denotes the critical Sticbeck 

velocity, Δ𝜂 = 𝜂𝑠 − 𝜂𝑐, 𝜂𝑐 describes the minimum level of the Coulomb friction, 𝜂𝑠 denotes the level 

of the static friction and 𝛼 is the parameter of slope to be designed (ℊ(𝑋′) is referred to as the Gaussian 

friction model when 𝛼 = 2). 

The Exponential friction force 𝑓 = 𝑓𝐸𝑀(𝑋′) is introduced as 

𝑓𝐸𝑀(𝑋′ ) = 𝑁[𝜂𝑐 + Δ𝜂𝑒−(𝑎|𝑋′|)]𝑠𝑔𝑛(𝑋′)                     (8) 

We introduce two state vectors in the extended phase spaces containing the internal state vector 𝜉 to 



allocate the system dynamics into state-space. For the capsule systems with the LM and the EM, 

respectively, the state vectors are defined as 

S𝐿𝑀 ≔ (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) ∈ ℜ5×1 ≔ (𝛩, 𝛩′, 𝑋, 𝑋′, 𝜉) ∈ ℜ5×1 

SEM ≔ (𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ ℜ4×1 ≔ (𝛩, 𝛩′, 𝑋, 𝑋′) ∈ ℜ4×1 

Decoupling Eqs. (4) and (5), and combining with Eqs. (6) and (8), a set of first-order differential 

equations in accordance with the defined state vectors above is yielded as 

𝑦1′ = 𝑦2 

𝑦2′ =
1

𝐵
[(𝜆 + 1)ℎ𝑐𝑜𝑠(𝜔𝜏) + (𝜆 + 1)(sin(𝑦1) − 𝜌𝑦1 − 𝜐𝑦2) − 𝑠𝑖𝑛(𝑦1)𝑐𝑜𝑠(𝑦1)𝑦2

2 − 𝑁𝑓1(𝑦4)𝑐𝑜𝑠(𝑦1)] 

𝑦3′ = 𝑦4 

𝑦4′ =
1

𝐵
[𝑐𝑜𝑠(𝑦1)ℎ𝑐𝑜𝑠(𝜔𝜏) + 𝑐𝑜𝑠(𝑦1)(𝑠𝑖𝑛(𝑦1) − 𝜌𝑦1 − 𝜐𝑦2) − 𝑠𝑖𝑛(𝑦1)𝑦2

2 − 𝑁𝑓1(𝑦4)] 

𝑦5′ = Δ 

(9) 

where 𝐵 = 𝜆 + 1 − 𝑐𝑜𝑠2(𝑦1), and for the capsule system with LM, 𝑓1(𝑦4) = 𝛿0𝑦5 + 𝛿1𝑦5′ + 𝛿2𝑦4, Δ=

𝑦4(1 −
𝑦5

ℊ(𝑦4)
𝑠𝑔𝑛(𝑦4))  and ℊ(𝑦

4) =
𝑁

𝛿0
(𝜂

𝑐
+ Δ𝜂𝑒−(𝑦4/𝑣𝑠)2

) ; for the capsule system with EM, 𝑓1(𝑦4) =

(𝜂𝑐 + Δ𝜂𝑒−(𝑎|𝑦4|))𝑠𝑔𝑛(𝑦4) and Δ= 0. 

Remark 3: The additional state 𝜉 in S𝐿𝑀 is the distinguishing factor that governs the evolution of the 

dynamic friction forces. However, there are limited reports in the literature on how 𝜉 manipulates the 

dynamic frictional characteristics (e.g., drooping) of capsule systems during the presliding and the pure 

sliding phases. In this regard, the role of 𝜉 will be studied elaborately in this paper. 

2.3.3 Analysis of dynamic frictional limit 

Fig. 4 depicts the microscopic elastic limits for the sticking, presliding and pure sliding phases. It is 

experimentally observed in the literature that the frictional dynamics act like springs at the sticking 

phase. A presliding displacement exists during the sticking phase that can be approximated through a 

linear representation of the static friction as shown in Fig. 4(b). Fig. 4(c) demonstrates the moment of a 

breakaway taking place when the threshold force is met, and at the meantime, the micro-connections 

are disrupted. Conventional studies on the friction-induced capsule dynamics have been reported using 

numerical analysis (Liu et al., 2013b, 2013a) or analytical analysis (H. Fang and Xu, 2011; Fang and 

Xu, 2012). In this paper, non-reversible characteristic of the friction dynamics for the static friction, the 

presliding and the pure sliding phases are studied analytically through the frictional limit, and the 

boundaries are identified. 

 



x  = 0(a) Sticking (b) Presliding x  = 0+

k

x  > 0(c) Sliding

 

Fig. 4. Schematics of the microscopic elastic limit for the sticking, presliding and pure sliding phases. 

From the friction models, it is noted that the friction force begins with strapping the contacting bodies 

by generating slipping motions relative to each other, and only microscopic deformations of the 

substrate occur at this stage. Also, these micro-connections are disrupted when the frictional limit is 

reached. In the quasi-static phase when no macroscopic sliding exists, ℊ(𝑋′) in Eq. (7) indicates that 

the bristle deflection evolves proportionally with the internal state variable 𝜉 and the friction force. 

The breakaway of bristles (i.e., the sign of 𝜉 changes) occurs when 𝜉 = ℊ(𝑋′(𝜏)) is satisfied. As a 

result, the maximum static friction force can be reached under the conditions of 𝑋′′(𝜏) = 0 and 𝜉′ =

0, and accordingly, we have 

ℊ(𝑋′) =
𝑁

𝛿0
[𝜂𝑐 + (𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)

𝛼

]                        (10) 

where 𝜂𝑠 denotes the maximum static friction during the quasi-static motion regime. 

When the capsule moves with steady-state motion, the rate of deflections of the bristles is contained at 

zero (i.e., 𝜉′ = 0) and relative sliding motions occur between two bodies in contact. Therefore, the 

frictional dynamics are given as 

𝑓 = 𝛿0ℊ(𝑋′) + 𝛿2𝑋′ = 𝑁 [𝜂𝑐 + (𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)
𝛼

] + 𝛿2𝑋′            (11) 

∂f

∂𝑋′ = −𝛼𝑁
𝑋′𝛼−1

𝑣𝑠
𝛼

(𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼
+ 𝛿2                    (12) 

Comparing to the Stribeck velocity 𝑣𝑠 , the first term on the right side of Eq. (12) is negligible by 

assuming that the motion of capsule is with sufficiently small or large average velocity. Therefore, it is 

plausible to make a supposition that, during the sliding regime, the average velocity has two offset 

values labelled as 𝑋′𝑙  (lower velocity) and 𝑋′ℎ  (higher velocity). For the velocity values 𝑋′(𝜏) ∈

(0, 𝑋′𝑙) and 𝑋′(𝜏) ∈ (𝑋′ℎ , 𝑋′𝑚𝑎𝑥) (𝑋′𝑚𝑎𝑥 denotes the maximum velocity that the capsule can obtain), 

the friction force is a monotonically increasing function of average velocity. On the other hand, for the 

velocity value 𝑋′(𝜏) ∈ (𝑋′𝑙 , 𝑋′ℎ) , the friction force decreases monotonically. At the offset points 

𝑋′(𝜏) = 𝑋′𝑙 and 𝑋′(𝜏) = 𝑋′ℎ, the slope of the friction curve becomes zero. These findings will be 

verified and demonstrated in the numerical analysis. The analytical values of  𝑋′𝑙 and 𝑋′ℎ can be 

achieved by solving Eq. (12) and letting ∂f/ ∂X′ = 0, gives 

−𝛼𝑁
𝑋′𝛼−1

𝑣𝑠
𝛼 (𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼

+ 𝛿2 = 0                     (13) 

It is noted that the lower velocity value 𝑋′(𝜏) = 𝑋′𝑙 should be sufficiently small as the velocity is 



extremely low. Let (𝑋′/𝑣𝑠)𝛼 = 0, we have 

𝑋′𝑙 = 𝑣𝑠 [
𝛿2𝑣𝑠

𝛼𝑁(𝜂𝑠−𝜂𝑐)
]

1/(𝛼−1)
                          (14) 

On the other hand, for the higher velocity value 𝑋′(𝜏) = 𝑋′ℎ, it is noted that 𝑋′ℎ stays in adjacency 

of the Stribeck velocity value 𝑣𝑠. Therefore, it can be obtained recursively as 

(
𝑋′

ℎ

𝑣𝑠
)

𝑛+1
= {ln [(

𝛼𝑁(𝜂𝑠−𝜂𝑐)

𝛿2𝑣𝑠
)

1/(𝛼−1)
(

𝑋′
ℎ

𝑣𝑠
)

𝑛
]}

1/2

                  (15) 

3. Numerical analysis of the frictional interaction dynamics 

In this section, the interaction dynamic responses of the capsule models with the LM and the EM are first 

analysed to reveal the nonlinear friction characteristics. Subsequently, the effects of the control 

parameters are studied closely to identify the parameter dependence and the qualitative variation laws in 

capsule dynamics. The Gaussian friction model is adopted in this study as the exponential term in LM, 

i.e., 𝛼 = 2. The rationality of the parameters chosen in this section is described as follows: parameter 

values of the LM and EM are configured from the dynamic friction studies in literature as reported in 

(Chatterjee, 2007; Olsson et al., 1998; Saha et al., 2015) (𝛿0 = 100, 𝛿1 = 10, 𝛿2 = 0, 𝑁 = 1, 𝜂𝑐 =

0.15, 𝜂𝑠 = 0.45, 𝑣𝑠 = 0.1 and 𝑎 = 10); the control parameter values and the initial conditions of state 

variables are selected based on our previous (Liu et al., 2015) and ongoing works on identification of the 

qualitative variation laws induced by the control parameters (𝑦1(0) = 𝜋/3, 𝑦2(0) = 0, 𝑦3(0) = 0, 

𝑦4(0) = 0  and  𝑦5(0) = 0.0026 ). The numerical studies in this section are based on the system 

dynamics in Eq. (9). 

3.1 The friction-induced vibrations 

The time domain dynamic responses of the capsule systems with the EM and the LM are portrayed in 

Figs. 5 and 6, respectively. It is noted that the negative slope characteristic is observed in the figures 

which guarantees the stability of the system. The EM is able to describe the Stribeck effect, while it is 

inherently a static model of the friction which does not interpret the hysteretic behaviour. The LM falls 

into the categories of dynamic models and is capable of predicting the hysteretic loops. The friction-

induced vibrational responses with the EM and the LM are depicted in Fig. 5. The capsule with the LM 

exhibits similar variation patterns to the one with the EM in angular displacement 𝛩, angular velocity 

𝛩′, capsule displacement 𝑋 and capsule velocity 𝑋′. It is noted that the main difference lies into the 

transitions between the sticking regime and the pure sliding regime. As depicted in Fig. 5(d), the relative 

velocity does not drop down to zero completely during the sticking regime, this is affected by the 

friction’s hysteretic characteristic during the presliding regime. It is noted that without the hysteretic 

behaviour in the EM in the presliding regime, the sticking regime exerts a greater influence on the EM 

than that on the LM, which leads fluctuations of the capsule velocity around zero. It is also observed 

from Figs. 5(c) and 5(d) that higher velocity and larger displacement of the systems are obtained for the 

capsule with the EM than that with the LM, the reason behind is that capsule with the EM avoids the 

energy loss in the hysteretic loop.  



(a) The angular displacements 𝛩 

(b) The angular velocities 𝛩′ 

(c) The capsule displacements 𝑋 

(d) The capsule velocity 𝑋′ 

Fig. 5. Friction-induced vibrational response of the system with the EM (blue dashed lines) and system 

with the LM (red solid lines), obtained for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0. 

  

(a) The internal state variable 𝜉 
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(b) The friction forces 𝑓 

 

(c) Enlarged friction forces 𝐹 

Fig. 6. Friction-induced vibrational responses of the system with the EM (blue dashed lines) and the 

system with the LM (red solid lines), obtained for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0. 

From, Fig. 6, it is observed that the dynamic responses of the internal state variable 𝜉 and friction force 

𝑓 have a similar variation law. This indicates that 𝜉 governs the evolution of 𝑓. Specifically, during 

the onset of the sticking regime, 𝜉  decreases significantly from a certain level and increases 

monotonically until the same level in the opposite direction. The value of the average bristle deflection 

𝜉  changes in both pure sliding and presliding regimes that it firstly decreases in the AS and then 

augments in the DS in a periodic pattern. This is affected by function 𝑔(𝑋′ ) which dominates the 

evolution of the internal state variable 𝜉. Figs. 6(b) and 6(c) demonstrates sharp declines of the friction 

force and then indicates the onsets of the sticking regime. Subsequently, the friction rises monotonically 

during the sticking regime until it reaches the boundary of the static friction. Therefore, the roles of the 

state variable 𝜉 are be concluded as: it manipulates the hysteretic behaviour in the presliding and pure 

sliding regimes, and the characteristic of drooping during the pure sliding regime. Interestingly, these 

findings in friction-induced vibrations coincide with the results reported in (Astrom and Canudas-De-

Wit, 2008; Chatterjee, 2007; Saha et al., 2015), in which several fully-actuated systems are studies. The 

capsule systems considered in this paper are underactuated, and the friction has an indirect mapping to 

the input, which, in turn, verifies the results presented here. 
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(a) The pendulum subsystem 

 

(b) The capsule subsystem 

Fig. 7. Phase plane trajectories of the capsule systems with the EM (blue dashed lines) and the LM (red 

solid lines), obtained for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0. 

The phase plane trajectory of the pendulum subsystem (𝛩 and 𝛩′) and the capsule subsystem (𝑋 and 

𝑋′) are portrayed in Fig. 7. A relatively larger limit cycle is observed for the capsule with the EM than 

that with the LM. The reason behind is the energy loss resulted from the hysteretic behaviour of the 

frictional dynamics with the LM. Several steps are also observed in Fig. 7(a) and 7(b) when the value 

of relative velocity pass through zero, and accordingly, the frictional dynamics becomes quasi-static in 

this phase. It is also observed that slight discontinuities exist associated with imperfect overlaps between 

the beginning and the end of the limit cycle. It is noted that the dynamics shown in Fig.7 are not strictly 

periodic. However, they are constrained to reside within some finite boundaries. As a result, dynamic 

responses in this regime are classified into quasi-periodic motions, and this is due to the hysteretic 

characteristic of the friction. 



 

(a) Friction curves

 

(b) Enlarged friction curves 

Fig. 8. Friction forces for the capsule systems with the EM (blue dashed lines) and the LM (red solid 

lines) show the friction characteristics near zero velocity, obtained for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 =

1.0. 

As shown in Fig.8, the hysteretic loops are characterized as the friction which is a function of the average 

velocity of the capsule system. The loop (in blue dash line) for the capsule system with the EM does not 

demonstrate the hysteretic behaviour. This cross-validates the numerical results in Figs. 5 and 6 that the 

system with the EM performs oscillations with relatively higher frequency than that with the LM. 

Besides, a lower maximum friction force is obtained for the system with the LM than that with the EM, 

with same set of parameter values, e.g., the stiction force level 𝜂𝑠, the Coulomb friction level 𝜂𝑐, and 

the Stribeck velocity 𝑣𝑠. The reason behind is the dimension reduction of the limit cycle for the capsule 

system with the LM. Moreover, the arrow flows as shown in Fig. 8 depict the variations of the friction 

in accordance with the changes in velocity for the capsule system with the LM. For backward and 

forward motions, it is also noted that the friction force has relatively smaller value in the DS than that in 

the AS during the pure sliding regime. As a result, a clockwise hysteretic loop takes place during the 

pure sliding regime. While the trend is completely different near the zero velocity: the friction force in 



the AS is smaller than that in the DS. The DS and the AS are portrayed with arrows that are in accordance 

with the decreasing and increasing of the relative velocity of the capsule, respectively. It is apparently 

observed that the hysteretic curves have offset points near the regime of zero when the friction changes 

from small displacement in the AS to massive displacement in the DS, respectively.  

During the forward motion stage of the capsule systems, 𝑀1 is an identified boundary point between 

the pure sliding and presliding regimes. Precisely, the capsule system escapes from the presliding regime 

and then accesses the pure sliding regime at 𝑀1. Meanwhile, the friction firstly rises to a certain level 

within the boundary of the maximal value of the Exponential friction, and then declines monotonously 

in accordance with the augmenting average velocity, and finally terminals and overlaps with the DS. 

Interestingly, the trajectories of the capsule system with the EM and with the LM almost coincide with 

each other around 𝑀1. It is also found that between 𝑀1 and the terminal point, the friction force for the 

DS is always smaller than that for the AS. The trend between 𝑀1 and the offset point is reversed.  

3.2 Influence of the control parameters 

The solutions and their stabilities play a vital role in the system responses. A proper tuning of the control 

parameters will improve the system performance and avoid undesirable responses. The capsule system 

moves from the origin, so its average velocity is bounded and can reveal the qualitative changes in the 

system responses. The average velocity 𝑋′  is plotted as a function of mass ratio 𝜆  to reveal the 

parameter dependence.  

In this subsection, the mass ratio 𝜆 is considered as the branching control parameter. The numerical 

results are presented in Fig. 9, the average velocities of the capsule systems with the EM (blue dotted 

line) and the LM (red dotted line) are illustrated and projected as functions of 𝜆. The average velocity 

is defined as the average (forward) progression of the capsule systems per period of excitation. 
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Fig. 9. Dynamic responses of the capsule systems with the EM (blue dotted) and the LM (red dotted) 

constructed under variation of the mass ratio λ, obtained for ℎ = 1.8, 𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 =

1.2. 
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(a) 𝜆 = 0.5                                 (b) 𝜆 = 2.5 
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(c) 𝜆 = 4.0                                 (d) 𝜆 = 6.0 

Fig. 10. Phase domain trajectories for the pendulum subsystem (y1 and y2) and time domain 

trajectories for the capsule subsystem (progressive velocity y4), with the LM (red solid lines) and the 

EM (blue dashed lines), obtained for ℎ = 1.8, 𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 = 1.2. 

From Fig. 9, it is noted that periodic system responses are predicted for 𝜆 considered in this paper. 

Both curves demonstrate the negative slope characteristic with different magnitudes: the capsule system 

with the EM has a relatively larger negative slope than that with the LM. From the numerical results, 

we can also observe that with both friction models, the average velocities decrease monotonically with 

the increasing of 𝜆  for 𝜆 ∈ [0.01, 8.1] . Boundary points at 𝑃1  (𝜆 = 1.18 ) and 𝑃2  (𝜆 = 4.36 ) are 

identified that separate the performances of capsule systems. Specifically, the capsule with the EM 

obtains a relatively higher velocity than that with the LM before the boundary point 𝑃1. For the mass 

ratio between points 𝑃1 and 𝑃2 𝜆 ∈ [1.18, 4.36], the trend is reversed: the average velocity of the 

capsule with the EM is lower than that with the LM. However, beyond point 𝑃2 for 𝜆 ∈ [4.36, 8.1], 

the capsule with the EM overtakes that with the LM again near the zero velocity while in the negative 

direction. As can be observed in Fig. 9, the capsule moves with positive velocities for 𝜆 ≤  4.0 and 

𝜆 ≤  2.2 with the LM and the EM, respectively. On the other hand, the capsule moves with negative 

speeds are recorded for 𝜆 ∈ [2.2, 8.1]  with the EM and for 𝜆 ∈ [4.0, 8.1]  with the LM. The time 

domain trajectory of the capsule velocity and phase domain trajectory of the driving pendulum are 

portrayed in Fig. 10. It is recorded that with both the LM and EM, the capsules move with larger positive 

velocities in each period of excitation for 𝜆 ≤  4.0 and 𝜆 ≤  2.2. And subsequently, the magnitude 

of velocity declines dramatically in the positive direction as 𝜆 increases. As a result, the average speeds 

of the capsules drop down below zero. Therefore, the average capsule velocity can be controlled by 

appropriate tuning of the mass ratio  𝜆  around the identified control point 𝑂1  at 𝜆 = 4.0  for the 

system with the LM, and around the identified control point 𝑂2 at 𝜆 = 2.2 for the system with the 

EM. 



Comparison of the travel distance of the capsule systems under the variation of 𝜆 is shown in Fig. 11. 

For the capsule systems with the LM and the EM, it is clearly observed that both the travelling distance 

decrease monotonically in accordance with the augmentation of 𝜆 . Similarly, the amplitude of the 

displacement curves reduces as 𝜆  increases. On the other hand, towards an increasing mass ratio, 

capsule travelling distance with the EM exerts a more significant decline rate than that of the system 

with the LM. It can be concluded that this is due to the difference in the negative slopes of the average 

velocity curves. 

 

(a) Capsule system with the LM 

 

(b) Capsule system with the EM 

Fig. 11. Time histories of the capsule displacements under the varying mass ratio (λ =

0.8, 2.0 and 4.0), obtained for ℎ = 1.8, 𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 = 1.2. 

4. Conclusions 

The motion of the vibro-driven capsule systems relies on the inherently nonlinear effects of the dynamic 

frictions. The nonlinear friction forces can trigger dynamic interactions between the systems and the 

substrate in contact. Towards the capsule systems, the dynamic frictional characteristics have been 

studied in this paper. The main difference between the friction models exists in the transitions between 

the sticking and the pure sliding regimes. It is found that the hysteretic characteristic has a significant 

influence on the relative velocity during the presliding regime, and it does not drop down to zero entirely 

during the sticking regime. The role of 𝜉  in dominating the drooping characteristic of the friction 



during the pure sliding regime, and the hysteretic behaviours during the presliding and pure sliding 

regimes have been precisely discussed. The dependence on multi-control parameters has been 

investigated. It is also demonstrated that the interaction models predict periodic responses of the system 

dynamics. Average motion velocity decreases monotonously along with the increasing of the mass ratio 

𝜆 and, in turn, a control action can be applied by appropriate tuning of the multi-control parameters. 

The studies on the capsule dynamics also provide the desirability of the LM than the EM during most 

of the evaluations of the system performance. The performance evaluations used for comparison of the 

friction models contain the capabilities of seizing the frictional characteristics that have been observed 

in the experiments, the energy requirements, and quenching of the vibrations induced by the friction. 
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