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Abstract—Sensor-based human activity recognition (HAR) has 

received considerable attention due to its wide applications in 

health care. Each sensor modality has its advantages and 

limitations. Single sensor modalities sometimes may not cope with 

complex situations in practice. To resolve this challenge, we 

design and develop a practical hybrid sensory HAR system for 

older people. To enhance the performance of the system, we 

propose a unique data fusion method through combining both 

wearable sensors and ambient sensors. The wearable sensors in 

this paper are used for identifying the specific daily activities. The 

ambient sensors delivering the occupant’s room-level daily 

routine provide a more comprehensive surveillance with the 

wearable sensors together; meanwhile, the captured room-level 

location information is also used in the data fusion to trigger the 

sub classification models pretrained by wearable data. We also 

explore a new feature set extracted from wearable sensors to 

improve the system performance. We experimentally evaluate 

our system by applying four typical mutual information-based 

feature selection methods and the support vector machines 

classification algorithm instead of other complex algorithms, with 

the aim of exploring a practical way to improve recognition 

accuracy. The ground-truth data are gathered from 21 subjects, 

including 17 daily activities with the sample size of 2,142,000. The 

experimental results demonstrate the effectiveness of our method. 

The new feature set help improve the accuracy to 96.82%±0.15 

from 89.81%±0.54 using wearable data only; and the data fusion 

with ambient information achieves a further increased accuracy 

of 98.32%. 

Index Terms— Wearable sensors; passive infrared sensors, 

activity recognition; data fusion; attitude-related features 

I. INTRODUCTION 

NCREASED life expectancy coupled with declining birth 

rates leads to an aging population structure [1]. Aging-

caused changes, such as physical or cognitive decline, could 

affect people’s daily life, resulting in injuries, mental health or 

the lack of physical activity. Around 75% of older people 

prefer to continue living at their own homes and a majority of 

them (between 60 and 70) believe they can live independently 

and accomplish daily tasks without a caregiver [2]. Providing 

this group of older people with formal or traditional cares 

might imply an extra cost, and even disturbances in everyday 

life. However, certain assistances are still needed to maintain 

or improve the quality of life of these older people. Recent 

decades,  the advancement of assistive technologies has 

promoted independent, active and healthy aging [3]. HAR - 

based systems become one of the most promising solutions to 

assist older people’s daily life [4-7].  

HAR learns activities from a series of observations on the 

actions of subjects in real life settings, using ambient sensors, 

wearable sensors or hybrid sensory modality. Specifically, in 

an ambient-sensor-based HAR (ASHAR) system, dozens of 

sensors are typically deployed at home, which are attached to a 

door, a kettle, a fridge, on the floor, etc., providing the 

contextual information related to the defined activities [8-10]. 

ASHAR could be less obtrusive because of no on-body sensors 

deployed, whilst usually at the cost of poor flexibility and 

complex sensor deployment. Also, ASHAR works in a limited 

area. Besides, using pure ambient sensors is less capable of 

identifying detailed changes and elaborate actions. A wearable-

sensor-based HAR (WSHAR) system identifies human 

activities by mining the informative data from wearable sensors 

using computational algorithms, and it can function in a 

relatively large space. Generally, placing more sensors on 

multiple body parts is beneficial for improving the performance 

and robustness of WSHAR. For example, Laudanski, et al. [10] 

identify the post-stroke-gait-related activities by putting two 

inertial measurement units (IMUs) on the less-affected and 

affected shanks individually. Their experimental results 

demonstrate that the highest classification accuracy can be 

achieved using both sensor positions. Cleland, et al. [11] further 

study the impact of combining multiple accelerometers from 

different body positions (check, wrist, hip, foot, lower back and 

thigh). Their results indicate that combining two or more sensor 

positions can achieve better accuracy. Our previous work also 

demonstrates that combining 6 wrists-worn sensors with a 

chest-attached heart rate sensor can improve the daily activity 

recognition performance [12].  

However, multiple sensors with complex sensor placement 

on body could cause higher cost, practical deployment difficult, 

and obtrusiveness for older users. Pure WSAHR systems also 

have some limitations that may enable less accurate recognition 

for certain activities, these activities contain similar sensor-

derived attributes, such as brushing and eating [6]. 

Consequently, WSHAR systems either confront with the 

problems of complex sensor placement on body or the limited 

capacity of identifying elaborate actions, which lays the 

foundation to develop hybrid sensory systems to tackle these 

problems [4]. The hybrid sensory systems which harness single 

sensor modalities are thus explored in HAR. Stikic et al. [13] 

combine the data from accelerometers and Radio Frequency 

Identification (RFID). They place 191 RFID tags on 55 objects 

to provide the primary information for activity recognition. The 

accelerometers are only used when the RFID data are not 

sufficient. The experimental results suggest that the sensor 

combination improves the recognition performance compared 

with using one of the two sensing modalities separately. Roy et 

al. [14] use ambient and mobile data in a multi-inhabitant 

environment for daily activity detection. Their initial results 

reach around 70% which is higher than the performance using 

the smartphone-based accelerometers alone. Atallah, et al. [15] 

combine the ear-worn sensors (an accelerometer and an oxygen 

saturation (SpO2) sensor) with the ambient-mounted blob 

sensors to detect patients’ daily pattern changes. Zhu & Sheng 

[16] use three motion sensors and two cameras to identify the 

body activities and hand gestures simultaneously. The cameras 
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installed on the wall are used to capture the wearer’s location 

information; and the wearable motion sensors attached on the 

right thigh, the right hand and the waist separately are used to 

record the motion-related information. They explore the 

correlation between the human activities and the location 

information and evaluate the effectiveness and accuracy of their 

method in a mock home environment. Some other studies 

report the improved performances of activity recognition by 

combining the wearable sensors with infrared sensors [17, 18], 

where the data fusion is directly feeding the features extracted 

from two-source sensors to the classifiers. 

This paper proposes a unique data fusion method based on a 

hybrid sensory system for older people’s daily activity and 

daily routine monitoring by leveraging the strengths of both 

WSHAR and ASHAR. The paper has two main contributions 

below.  

1) Proposing an effective data fusion method based on a 

practical hybrid HAR system. The wearable data are 

used for recognition of specific daily activities. The 

location information captured by the room-mounted 

passive infrared (PIR) sensors has two functions. 

Firstly, it is used for inference of a user’s room-level 

daily routine. According to the generally occurring 

rooms of an activity, we skilfully divide the whole task 

of recognizing all the defined activities into certain 

room-based sub tasks. Since each sub classification 

model for each sub task takes a smaller number of 

activities’ recognition, we can improve efficiency and 

accuracy. In data fusion, the location information is 

also used to trigger the sub models that are pre-trained 

by the corresponding wearable data. Our data fusion 

effectively combines two-source sensor information for 

HAR, which is different to the other related data fusion 

methods in HAR.  

2) Exploring augmented features from limited sensors for 

accuracy improvement. We implement a group of 

attitude-related features (ARFs) and evaluate their 

contribution to HAR in our system. Most previous 

studies in WSHAR employ the conventionally-used 

features (CUFs) generated from a channel (axis) of a 

single sensor or multiple channels of a single sensor, 

e.g., the mean of the acceleration readings along the x-

axis, or the correlation between the x-axis and y-axis of 

the acceleration readings. Only few studies exploit a 

handful of ARFs, e.g., tilt, yaw or pitch angle [19, 20]. 

Different to CUFs, ARFs are generated from the 

multiple wearable sensors instead of one individual 

sensor. 

The rest of the paper is organized as follows. Section II 

presents the proposed data fusion method based on a hybrid 

sensory system and the sensors used in this research. Section 

III introduces the data acquisition and the methods used for 

data processing. The experimental results are presented in 

Section IV. Section V provides the discussion and Section VI 

is proceeded with the conclusions and future directions. 

II. SYSTEM ARCHITECTURE 

A. Proposed system and data fusion method 

Our previous work [12] develops a multi-sensor activity 

recognition system and investigates the contribution of seven 

types of wearable sensors to HAR. Seven sensors placed on 

three body parts can cause obtrusiveness and high cost for real 

use. In this paper, we use less wearable sensors and explore 

augmented features from the limited sensors to improve 

accuracy. Another problem in HAR is that some activities are 

difficult to recognize accurately when using wearable sensors 

alone, such as brushing teeth and eating (feeding), wiping and 

ironing, due to the similar attributes regarding wrist 

movements [6]. In this work, we assume, for instance, that 

eating is less likely happening in a bathroom. Thus, if the 

ambient information tells the classifier that the user is in the 

bathroom at a specific moment, it will be easier to differentiate 

brushing teeth from eating. To address the above-mentioned 

problems, we propose a practical approach by applying a data 

fusion method in our hybrid sensory system to combine two-

source sensory data and exploring an augmented feature set 

from wearable sensors as well.  

Figure 1 shows our proposed system with three blocks: 

wearable information processing, ambient information 

processing and data fusion. The wearable sensing involves a 

wrist-worn device with five initially selected sensors inside, 

delivering the user’s motion-caused observations. Each 

ambient sensing set (with a PIR sensor inside) is installed in 

one room, which provides the user’s room-level location 

information. The system targets older people who live alone, 

which means, most of the time, only one ambient sensing set 

can capture “1” (presence) and others capture “0” (absence) at 

one specific moment. The recorded long-time “0” and “1” 

series can reveal the occupant’s daily routine. As presented in 

Fig.1, we first compare the individual performance of the 

ARFs and the CUFs before applying data fusion; and the best-

performed feature set is used for classification and data fusion. 

Data fusion is the core of the system, which utilizes the 

ambient information of “presence” (“1”) to trigger a sub 

classification model. The sub models are pretrained by the 

corresponding wearable data assigned in a specific room. For 

example, when room n is detected as occupied, only the sub 

model n is activated and works at this moment. Thus, each sub 

model is responsible for recognizing a smaller number of 

activities compared with the scenario of recognizing all the 

defined activities without applying data fusion (the whole 

model). By doing this, the overall recognition accuracy can be 

improved without additional computation. The system switches 

to “the whole model” mode to deal with the situation when 

more than one occupant is detected, i.e., two or more than two 

“1” are captured at the same time. “The whole model” 

recognizes all the defined activities together only using the 

wearable data. 

Generally, there are three function modes in our system: the 

whole classification model (the pure wearable sensing mode) 

identifying specific daily activities, the pure ambient sensing 

mode delivering the occupant’s room-level daily routine, and 

the room-based sub classification mode (data fusion applied) 

providing a spatio-temporal surveillance with the wearable 

sensors. The first mode can work alone when the ambient 

sensing fails, and the second mode can roughly identify the 

user’s daily routine without wearable sensing. The data-fusion-

applied mode provides a more accurate and complementary 

HAR surveillance when both the wearable sensing and ambient  
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Fig.1. The proposed system and data fusion 

(Acc.: accelerometer; Gyro.: gyroscope; Mag.: magnetometer; Baro.: barometer; Tem.: temperature) 

sensing function properly. We evaluate the proposed method 

with the ground-truth data following the procedure in Fig.1. 

B. Sensors and sensor placement  

In this subsection, we present the details of the sensors used 

in the proposed system (Fig.1). 

1). Wearable sensors 

We initially select five wearable sensors: a 3-axis 

accelerometer (MPU6050, range of ±2g), a 3-axis gyroscope 

(MPU6050, range of ±1000°/s), a 3-axis magnetometer 

(HMC588, range of ± 4.07 Gauss), a barometer for height 

measuring (BMP180, with resolution of 0.5m for the height 

measuring) and a temperature sensor (BMP180, range of -

10~60℃ ). The accelerometer measures linear motion. The 

gyroscope measures rotational motion. The magnetometer 

provides the direction of an ambient magnetic field. The three 

inertial sensors above enable the measurement of motion-

caused variations and offer useful information for activity 

recognition [6, 20, 21]. Also, we derive the ARFs from the 

three inertial sensors in this work. The barometer and the 

temperature sensor are selected since the height variations are 

likely linked to certain activities, such as climbing stairs or 

exercise; and the temperature changes are usually 

accompanied with some specific activities, such as cooking or 

eating. 

We integrate the selected sensors into a specifically-

customized module, as shown in Fig.2. The upper one in Fig.2 

(a) is the wearable device with 5 built-in sensors and the lower 

one is the receiver. The wearable device has an on-board 

processing system that can deliver the attitude angles. Thus, 

the wearable module provides 3 attitude values (yaw, pitch, 

roll) of the wearable device and another 11 readings from the 

5 individual sensors. All the readings are wirelessly recorded 

with a nearby laptop at the sampling rate of 20Hz.  

Eq. (1) presents data    series at time t from the wearable 

module. 

   {                              }            (1) 

where   denotes the index of the data series regarding the 

sample rate;       and      are the temperature and the height 

(1)

(2)

(3)

(a) Wearable sensors

Centre Unit (CU)

Receiving Terminal Unit (RTU)

(b) Ambient sensors

Arduino 

Pro mini

Wireless 

Shield

PIR Sensor

 
Fig.2.  Sensors used in this paper 

(1) Wireless transceiver; (2) USB powered; (3) USB to PC 

measurements at time t, respectively, and 

     {                 }   

     {              }  

      {                 }  

     {              }. 

2). Ambient sensors 

We use ambient sensors to detect a user’s in-home location. 
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The passive infrared (PIR) sensor is selected due to its utility, 

cost savings and energy savings in smart homes [22, 23]. Our 

developed ambient sensor module consists of two parts (see 

Fig.2 (b)): the Receiving Terminal Unit (RTU) and the Centre 

Unit (CU). The CU circularly inquires the status of each RTU 

and receives the data sent from the RTUs. The readings 

obtained from the ambient sensors are processed as series of 

binary digits, of which “1” represents presence and “0” 

represents absence.  

3.) Sensor placement 

Sensor placement is one of the important issues for 

WSHAR. Sensors placing on different body parts offer diverse 

information and lead to different recognition performances 

[11]. Wrist is a promising position for detecting activities as 

most activities are associated with wrist movements [12, 24]. 

Additionally, according to the survey in [25], 299 responders 

from 4 different countries give the answer that the wrist is the 

most-preferred placement when being asked about where they 

would like to wear the sensors. We choose the dominant wrist 

for the wearable sensors placing (Fig.1), taking both the 

recognition performance and the user acceptance into account. 

As to the placement for the PIR sensor sets, each of them is 

placed on the rear side behind the door on the floor in the 

room (see Fig.1) for simplicity and disturbances avoiding.  

III. DATA PROCESSING 

 This section presents the methods and algorithms involved 

in further stages in Fig.1, including (A) data acquisition, (B) 

data pre-processing, (C) feature selection, (D) data fusion and 

(E) performance evaluation, respectively. 

A. Data acquisition  

This paper focuses on indoor daily activity recognition for 

older people to observe their routine activities and abnormal 

patterns. We predefine 17 activities listed in Table I which can 

basically reveal independent life skills [26], including basic 

survival tasks (walking, eating, cooking, etc.), the activities for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maintaining an independent life at home (using phones, 

mopping, washing, ironing, etc.) and abnormal activities (falls, 

long-term lying). Some activities, such as toilet using, 

dressing/undressing and bathing, are not included due to the 

privacy concerns or the unavailability of data because of the 

limitation of the sensor modules. We do not directly monitor 

the toilet using or bathing, nevertheless, we capture how often 

and how long the occupant uses bathroom from the ambient 

sensors. It is worth noting that a larger data set is beneficial for 

evaluating our proposed system. Therefore, our data set has 17 

activities, which is large enough for our experimental purpose. 

The data collection associated procedures are approved by 

Bournemouth University Research Ethics Committee. The 

data collection is carried in our developed home -based hybrid 

sensory environment. The activities except Falls are collected 

from 21 subjects (aged from 60 to 74, 11 females and 10 

males, all right-handed). Table II shows their basic 

information. ‘Fall detection’ is one of the important tasks in 

HAR [27]. Considering older subjects’ safety, we recruit 21 

young subjects (aged from 25 to 35, 11 females, and 10 males) 

who replace the older subjects performing natural falls in 

different ways (forward, backward, left-side and right-side) 

onto a mattress. 

During the data collection, the wearable device (the upper 

one in Fig.2(a)) is tightly bound at the subject’s dominant 

wrist for acquiring the movement-caused signals from the 

sensors inside. Meanwhile, we deploy a PIR sensor set (the 

RTU in Fig.2 (b)) in each room (Fig.1) to capture the user’s 

presence and absence information. Taking the home structures 

into account, our predefined activities are assigned to four 

groups (Table I) according to their occurring places, i.e., 5 
activities in Bathroom, 8 in Kitchen, 10 in Living room and 5 

in Bedroom. We prepare the activity list for each room. The 

subjects are encouraged to independently perform each activity 

in their own way. They can have any breaks during data 

collection. The valid data from the same activity are added up 

up if the data collection is interrupted. We label the data 

manually and mark the start and end time for each activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I 

DAILY ACTIVITIES DEFINED IN THIS PAPER 

Name Description Taking place in  

Brush  Brushing teeth on their own natural way Bathroom 

Clean  Cleaning the windows or cupboard doors with a cloth Bathroom, Kitchen 

Cook Making a meal on a fire Kitchen 

Eat Having a meal using a spoon, a fork or a pair of chopsticks Living room 

Exercise Waving or stretching arms in a wide range Living room   

Falls Performing a natural fall from different directions onto a mattress on the floor All rooms 

Iron Ironing a shirt, trousers, T-shirt, etc. on a table surface or flat board Kitchen, Living room 

Lie Lying down on a bed or sofa without frequent turns Bedroom 

Mop Cleaning the floor with a mop Bathroom, Kitchen 

Phone Answering a call using a telephone or mobile phone when sitting or standing Living room, Bedroom 

Read Reading a book or newspaper when sitting Living room 

Stairs use Walking down or up on the stairs Living room 

Stand Still standing without continuous additional actions All rooms 

Walk Walking around at home at normal pace and turns are allowed Living room, Bedroom  

Wash dishes Cleaning bowls, plates, glasses, etc. in a sink Kitchen 

Watch  Sitting on a sofa with a remote in one hand for channels changing use when watching TV Living room 

Wipe  Clean a table or other flat surface with a cloth Kitchen 
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The whole data collection process lasts over twenty days. 

Each older subject completes 16 activities and each younger 

subject performs 1 activity of falls. We use 17 activities after 

merging the falls to the 16 daily activities. The valid data from 

each activity is 5 minutes with the sampling rate of 20Hz. The 

total sample size for wearable data is therefore 2,142,000 for 

17 activities and 21 subjects. It is noted that the data do not 

contain overlap and disturbances between activities. Fig.3 

presents some data collection cases with the corresponding 

raw data, in which the y axis shows the readings from different 

sensors and the x axis represents the number of data points. 

The raw data over different activities present diverse values 

and variations. 

For the attitude angles, we can see from Fig.3 that the yaw 

angle fluctuates between 100 degrees and 150 degrees for 

Cook, waves between slightly under 250 degrees and over 300 

for Mop, while keeps relatively steady just over 200 degrees 

then drops dramatically until a fall occurs for Falls. Mining 

useful information from the raw data can facilitate the later 

learning in HAR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Data preprocessing   

The data obtained from PIR sensors are processed as the 

format of {   } digital series. The data pre-processing here 

refers to the wearable sensory data. For facilitating the later 

learning, time data series   in Eq. (1) are needed to segment 

into certain fixed sub windows. It is generally acknowledged 

that a window length of several seconds can sufficiently  

capture circles of activities, such as walking, running, using 

stairs, etc. [28, 29]. Here, we follow the principles in [29] 

setting our segmentation length as 12.8s (256 samples in each 

window). Meanwhile, 50% overlap between consecutive 

windows is applied to reduce possible information loss at the 

edges of pair of adjacent sub windows. The total number of 

window segmentations N for a data series is then obtained in 

Eq. (2) 

  
     

     
                                  

where    is the data length,    is the overlap size and     is 

the segmentation length. Eq. (2) rounds a number to the next  

lower integer. After segmentation,   is split into N sub 

windows   {          } . No smoothing filtering or 

medium filtering is applied to the raw data before feature 

extraction. 

C. Feature extraction  

Feature extraction plays a pivotal role in HAR, which 

typically transforms the original data into the informative 

 

TABLE II 
THE OLDER SUBJECTS’ STATISTICAL INFORMATION 

 Age(year) Height(cm) Weight(kg) BMI(kg/m2) 

Mean 66.8 163.2 63.1 19.3 

Std. 3.5 5.6 5.7 1.3 

Range 13.0 9.0 18.0 3.2 

 

Cook   

 
Mop   

 
Falls   

Fig.3. Data collection examples and the recorded raw data 
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features for classification. Typical features for HAR include 

heuristic features [30], time-domain features [31], frequency-

domain features [6] as well as other hybrid features [19]. As 

mentioned previously, the commonly-used features are 

generated from an individual channel (axis) of a sensor, i.e. 

CUFs. The ARFs are instead derived from the multiple sensory 

channels or multiple sensors. The roll in Fig.4 is the sides of 

the device moving up/down; the pitch is the head of the device 

moving up and down and the yaw is the head moving right and 

left. From Fig.3, we can see that the attitude angles of the 

wearable device vary over different activities, which implies 

the potential of the ARFs for activity recognition. Hence our 

research explores the contribution of the ARFs to HAR based 

on the collected data.  We apply the typical time-domain and 

frequency-domain features on the observations to generate 

CUFs and ARFs for later comparisons. The obtained feature 

space can be presented as 

   {     }  {         }                       (3) 

where   is the feature extraction function set, implementing 

the calculation of all the features used in the study;    given in 

Eq. (1) is the data series obtained from the wearable device. 

We denote all the extracted features as All (ARFs + CUFs), the 

features related to the wearable device’s attitude as ARFs, the 

remaining features excluding ARFs as CUFs. The feature 

extraction is conducted in each segmentation window   . The 

details of the specific features used in this paper are given in 

appendix. 

To the CUFs, we do not apply all types of features on each 

of all 5 sensors evenly. This is because people live in varied 

floors, different weather conditions and changing room 

environments, which means some features (like the max, the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mean of the height or the temperature) are less useful to 

distinguish activities. Only the features that can represent the 

variations of the observations instead of the absolute or 

specific values are applied to the height and the temperature 

measurements. Features with multiple null values or with 

similar or equal values for different activities are removed 

manually. Finally, the feature pool is constructed in Table III 

with the abbreviations. Table III includes the potential features 

for activity recognition and often contains many redundant and 

irrelevant features. Applying the feature selection can select 

the optimal sub feature set and reduce the dimensionality of 

the feature space.   

D. Feature selection   

Mutual information (MI) based feature selection algorithms 

are a big family of the existing feature selection (FS) methods. 

Algorithms in this family usually exploit different filter criteria 

to measure the importance of the candidate features. The FS 

process involved is independent of any classifier and therefore 

capable of obtaining a comparable trade-off between the 

performance and the efficiency. We use four MI-based FS 

methods, i.e. minimum Relevance Maximum Relevance 

(mRMR), Joint Mutual Information (JMI), Conditional Mutual 

Information Maximum (CMIM), and Double Input 

Symmetrical Relevance (DISR) from [32]. 

E. Classification and performance assessment 

 The support vector machine (SVM) is one of the most 

robust and accurate methods among all well -known 

classification algorithms [11, 33, 34]. We use the libSVM 

package in MATLAB [35] with the RBF kernel to train and 

test our ground-truth data based on 10-fold-cross validation. 

The available data set from all subjects are split into 10 
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Fig.4. Wearable device on the wrist and the corresponding attitude 

TABLE III 
THE ORIGINAL FEATURE POOL CREATED IN THIS PAPER 

 

 Sensor Feature title Feature count 

 

 

 

 

CUFs 

Accelerometer Mean, Rms, Ptp, Cmr, Czr, SMA, Apf, MI, Ader, Cftor, Autoc, Percentiles, Interq, 

Corrcoef, Std, Stdm, Kurtosis, Skewness, Max, Min, Median, Mode, Variance, 

Mode, MAD, Domifq, SpecEgy, SpecEnt, MFC, Medifq 

296 

Gyroscope Mean, Rms, Ptp, Cmr, Czr, SMA, Apf, MI, Ader, Cftor, Autoc, Percentiles, Interq, 

Corrcoef, Std, Std, Kurtosis, Max, Skewness, Min, Median, Mode, Variance, Mode, 

MAD, Domifq, SpecEgy, SpecEnt, MFC, Medifq 

Magnetometer Mean, Rms, Ptp, Cmr, Czr, Apf, Ader, Cftor, Autoc, Percentiles, Interq, Corrcoef, 

Std, Stdm, Kurtosis, Skewness, Max, Min, Median, Mode, Variance, Mode, MAD, 

Domifq, SpecEgy, SpecEnt, MFC, Medifq 

Barometer  Ptp, Cmr, Apf, Ader, Autoc, Std, Stdm, Variance, SpecEgy, SpecEnt, MFC 

Temperature Ptp, Cmr, Apf, Ader, Autoc, Std, Stdm, Variance, SpecEgy, SpecEnt, MFC 

 

ARFs 

 

Attitude  

(Roll, Pitch, Yaw) 

Mean, Rms, Ptp, Cmr, Czr, Apf, Ader, Cftor, SpecEnt, Percentiles, Interq, Corrcoef, 

Std, Stdm, Kurtosis, Skewness, Max, Min, Median, Mode, Variance, Mode, MAD, 

Domifq, SpecEgy, SpecEnt, MFC, Medifq 

75 

All                            CUFs+ARFs 371 

Pitch 

-90°~90° 

Roll 

-180°~180° 

Yaw 

0°~360° 
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roughly equal-sized folds, and each fold has the roughly same 

number of patterns from each activity of each subject. 8 folds 

are used as training data, one fold serves for validation, and 

one fold is for testing the model. Each of the 10 folds is used 

exactly once as test data and the test data is unseen for the 

classifier. The results reported in the rest of the paper are the 

average of 10 test measures. 

IV. RESULTS AND ANALYSIS 

A. Identification of functions of the selected wearable sensors 

and the contribution of different feature sets 

We initially select 5 types of sensors which are integrated 

into a wrist-worn device (Fig.2). The diversity of the multiple 

sensors is expected to compensate the possible insufficient 

information when only placing them on the wrist. It is less 

practical to show the performance of all possible combinations 

of the 5 sensors. We divide the five sensors in the following 

groups (the first column in Table IV) according to their 

contributions in the related studies [6, 12, 14, 20, 36] to 

identify the sensors’ functions in this work. The mRMR, JMI, 

CMIM and DISR are applied individually to select the best sub 

features from the CUFs pool for each sensor group, and the 

selected features are fed into the SVM classifiers with 10-fold-

cross validation. Table IV shows the classification accuracies 

over different sensor groups with four FS methods. When 

using one single sensor, accelerometer and the gyroscope 

achieve the better average accuracy of 83.62% and 82.18%, 

respectively; the magnetometer gives a lower average 

classification accuracy of 74.25%; the temperature and the 

barometer are unlikely useful  on their own from the 

experimental results, giving lowest results. When using two 

sensors among the accelerometer, the gyroscope and the 

magnetometer, the classification accuracies are improved to a 

range of accuracies, between 84.26% and 86.35%. And the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combination of the accelerometer, the gyroscope and the 

magnetometer (AGM) gives the highest average accuracy of 

87.97%, and the best accuracy of 89.81% among all the groups 

is achieved by using the mRMR plus the SVM. When the 

barometer or/and the temperature sensor are combined with 

the AGM, the accuracies remain unchanged at 89.81%. The 

experimental results indicate that the temperature and the 

barometer fail in improving the recognition accuracy, which 

could be attributed to the assumption that the features 

extracted from these two sensors might be less discriminating 

or overwhelmed by the features extracted from other sensors. 

Thus, only AGM are used for the later stages hereafter. 

The results obtained above are based on the CUFs. We also 

apply the mRMR, JMI, CMIM and DISR on the ARFs and all 

the features (i.e. CUFs + ARFs in Table III) to evaluate the 

performance of the ARFs. Fig. 5 shows the performance of the 

ARFs, the CUFs, and the ARFs+CUFs in terms of accuracy. 

We can see that the ARFs (the curve group in red) present the 

highest accuracy with respect to the used FS methods, 

followed by the feature set of ARFs+CUFs (the curves in blue) 

and the CUFS (the curves in green). The ARFs produce higher 

accuracies only using 5 to 20 selected features by the JMI, 

CMIM and DISR. The ARFs+CUFs perform better than the 

CUFs, with the best accuracy of around 92% and 90%, 

respectively. When applying the FS on the ARFs+CUFs, 

taking the mRMR as an example, nearly half of the selected 

features are from the CUFs and the other half from the ARFs. 

The detailed results are shown in Table V, in which all the 

results are obtained with 30 selected features. Specifically, the 

mRMR produces the highest accuracy of 89.8% based on the 

feature set of CUFs; the CMIM achieves the highest accuracy 

of 91.74% on the CUFs+ARFs; and the JMI, CMIM and DISR 

present a greatly-improved accuracy of over 96% on ARFs. 

Table V also shows the classification accuracy for each 

activity in accordance with the three best cases in bold. The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV 

CLASSIFICATION ACCURACIES (%) OF DIFFERENT SENSOR GROUPS WITH SVM 

Sensor group Feature selection methods Average 
mRMR JMI CMIM DISR 

Acc. 83.2±0.65 83.59±0.43 83.94±0.62 83.76±0.45 83.62 

Gyro. 82.48±0.46 80.25±0.70 83.85±0.69 82.12±0.43 82.18 

Mag. 72.89±0.66 74.28±0.66 75.55±0.46 74.28±0.66 74.25 

Baro. 19.32±0.49 19.32±0.49 19.32±0.49 19.32±0.49 19.32 

Tem. 24.28±0.57 24.28±0.57 24.28±0.57 24.28±0.57 24.28 

Acc.Gyro. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Baro. 83.2±0.65 83.59±0.43 83.94±0.62 83.76±0.45 83.62 

Acc.Gyro.Baro. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag.Baro. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag.Baro. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag.Baro. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Gyro.Mag.Tem. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Gyro.Baro.Tem. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag.Baro.Tem. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag.Baro.Tem. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag.Baro.Tem. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.: accelerometer; Gyro.: gyroscope; Mag.: magnetometer; Baro.: barometer; Tem.: temperature 
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last column in Table V shows the accuracy difference for each 

activity between the ARFs and the CUFs. We can see that the 

accuracy increases at different degrees for the vast majority of 

the activities, especially for some misclassified activities when 

using CUFs. For example, the Read presents the largest 

increase by 20.45% on ARFs, which is usually misclassified as  

Lie on CUFs; next is the Mop with a rise of 12.69%; and 

followed by the Wipe with an increase of 12.16%, which is 

easily misclassified as Iron when using CUFs; the Exercise 

and the Phone only see a slightly increased accuracy; a 

 dropped accuracy only occurs with the Stand. It is also found 

that the Falls and the Walk achieve their highest accuracies on 

the feature set of CUFs + ARFs. Also, the Read, Watch, Walk 

and Stairs rank the most difficult activities to recognize. The  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARFs plus the CMIM performs best with an overall difference 

of 6.91% in accuracy to the CUFs with mRMR. The data 

fusion with ambient information in the next section is based on 

the set of ARFs due to its better performance in Table V.  

B. Fusion with ambient infomration 

Figure 6 presents a subject’s daily routine inferred from the 

room-level ambient information, which can tell us when, how 

long, and how often (WHH) the user stays in specific rooms. 

Fig. 6 also gives the details that the person under monitored 

got up in the bedroom at around 6.30 am, went to bed at about 

9.30 pm and used the toilet once at night, etc. Furthermore, the 

room-level daily routine over a long time can reveal whether 

the user could actively organize a daily life, or whether the 

user is leading an abnormal routine compared with the normal 

routine. Accordingly, combining the ambient information with 

the wearable-sensor-based decisions can deliver a more 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE V 
CLASSIFICATION ACCURACIES  (%) WITH SVM FOR ALL ACTIVITIES BASED ON DIFFERENT FEATURE 

SETS FROM WEARABLE INFORMATION 

 

All 

activities 

FS methods CUFs CUFs +ARFs ARFs 
Difference 

(ARFs vs. 

CUFs) 

mRMR 

JMI 

CMIM 

DISR 

89.81±0.54 

86.83±0.43 

88.26±0.54 

86.98±0.49 

91.19±0.34 

90.61±0.36 

91.74±0.35 

90.63±0.37 

93.46±0.17 

96.82±0.21 

96.82±0.15 

96.78±0.20 

Brush  93.38±2.35 90.58±1.68 99.74±0.36 6.36 

Clean  90.06±2.00 95.13±1.83 99.69±0.56 9.63 

Cook  91.82±1.68 94.82±2.17 98.96±0.65 7.14 

Eat  91.41±0.77 94.51±1.61 98.71±0.44 7.30 

Exercise  97.83±1.33 91.77±1.58 99.74±0.37 1.91 

Falls  93.17±2.77 98.96±0.73 97.31±0.97 4.14 

Iron  94.57±0.95 94.25±1.79 97.15±1.25 2.58 

Lie  94.41±1.36 88.05±2.05 98.45±0.69 4.04 

Mop  84.57±2.03 89.18±2.39 97.26±0.69 12.69 

Phone  98.76±0.74 93.79±1.52 99.74±0.37 0.98 

Read  75.88±2.36 83.64±3.06 96.33±0.79 20.45 

Stairs  79.14±2.97 86.8±1.84 86.39±2.02 7.24 

Stand  99.95±0.16 91.98±1.76 97.46±0.82 -2.49 

Walk  78.47±2.65 88.3±2.46 88.04±1.40 9.57 

Wash  90.01±2.63 94.41±1.22 98.86±0.59 8.85 

Watch  89.39±2.10 90.73±2.37 96.07±1.07 6.68 

Wipe  83.96±2.78 92.65±1.44 96.12±1.39 12.16 

Overall  89.91±0.54 91.74±0.35 96.82±0.15 6.91 
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Fig.6. One user’s room-level routine over a whole day 

 

 

Fig.5. Classification accuracies of different feature sets (“All” represents 

“CUFs+ARFs”’) 
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comprehensive surveillance of WWHH, i.e. we can also learn 

what the user is doing other than WHH. 

To fuse the data from the wearable and ambient sensors, we 

propose a simple but effective data fusion method, as shown in 

Fig.1, which is different to any other published methods 

described in Section I. The method is based on the following 

assumption: some activities can be limited in a specific room 

based on occurring places, e.g., cooking is highly impossible 

taking place in a bathroom and teeth brushing may not take 

place in a bedroom. Here, the user’s location information can 

be used to trigger the room-based-sub-models, and each of the 

sub models is only responsible for the recognition of limited 

activities. As a result, after fusing the ambient information to 

the wearable information, the whole classification classifier 

turns into several parallel-working sub classifiers. To unify the 

home structures where we collect data, the 17 activities are 

assigned to four groups (see Table I), i.e., 5 activities in 

Bathroom, 8 in Kitchen, 10 in Living room and 5 in Bedroom. 

The activity types in each room decrease, thereby reducing 

recognition requirements and simplifying the classification 

models compared with the scenario of recognizing all the 

activities together. To facilitate the later comparisons, the 

sample size used for each activity remains unchanged before 

and after data fusion. Experimental results, including the 

scenarios of without data fusion (all activities) and with data 

fusion (room-based sub models), are illustrated in Table VI. 

The Accuracy, Precision, Recall and F-score present similar 

trends for each model. The analyses afterwards are all based 

on the index of accuracy. From Table VI, we can see that the 

CMIM plus SVM achieves the highest accuracy of 98.32%, 

followed by the JMI and DISR with the accuracy of 97.89% 

and 97.66% respectively after combining the room- level 

location information. The mRMR instead produces the largest 

increase by around 3.35%, from 3.46% to 96.81% after data 

fusion. 

Figure 7 further demonstrates the performances before and 

after data fusion, including the scenario of only using CUFs-

based wearable sensing. The four FS methods all produce a 

similar trend regarding the increase of the recognition 

accuracies, i.e. AccuracyFusion > AccuracyARFs > AccuracyCUFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the PIR-sensor-captured location information, the sub 

models for the specific rooms are assigned with fewer 

activities and hence most sub models obtain their improved 

performance. Table VI also shows that the accuracy for 

Bathroom, Kitchen, Bedroom and all greatly increases after 

data fusion; only Living room obtains a slightly higher or 

lower accuracy. More importantly, the improved accuracies 

are achieved with the smaller number of features compared 

with the 30 features when dealing with all the activities 

together. Taking mRMR and CMIM as an example, we list the 

selected features for the corresponding modes in Table VII 

which shows that only 2 or 3 features can produce the 

accuracy of over 99.3% in Bedroom, and both Kitchen and 

Bathroom achieve increased accuracy over 98% using no more 

than 20 features. The computational time for the feature 

selection on room-based sub models all decrease compared 

with the whole model which deals with all defined activities. 

Table VII presents the differences in terms of the selected  

 

   

 

 

 

 

 

 

 

 

 

 

  

TABLE VI 
CLASSIFICATION RESULTS (%) COMPARISON BETWEEN THE SCENARIOS WITH THE FUSED AMBIENT INFORMATION AND WITHOUT 

  Model for (# of activities) 

Feature 

selection 

method 

Performance 

index (%) 

All 

activities 

(17) 

Fusion (sub models) 

Bathroom (5) Kitchen (8) Living room (10) Bedroom (5) Overall 

accuracy (%) 

 

 

mRMR 

A1 93.46±0.17 98.61±0.65 98.12±0.39 94.32±0.56 99.34±0.3 

96.81 

  

P1 93.58±0.38 98.08±0.95 98.14±0.43 93.92±0.57 99.03±0.51 

R1 93.46±0.38 97.93±0.98 98.11±0.43 93.48±0.58 98.88±0.51 

F1 93.45±0.37 98.00±0.93 98.12±0.44 94.48±0.62 98.95±0.54 

 

JMI 

A1 96.82±0.21 99.23±0.60 98.87±0.28 96.21±0.44 99.36±0.37 

97.89 P1 96.84±0.21 98.98±0.78 98.87±0.32 95.89±0.53 98.95±0.59 

R1 96.82±0.21 99.04±0.79 98.83±0.26 95.85±0.55 99.09±0.46 

F1 96.82±0.21 99.01±0.78 98.84±0.27 95.85±0.49 99.01±0.52 

 

CMIM 

A1 96.82±0.15 99.42±0.39 98.95±0.29 96.80±0.49 99.36±0.37 

98.32 P1 96.83±0.21 99.25±0.51 98.95±0.37 96.60±0.55 98.95±0.59 

R1 96.82±0.15 99.18±0.48 98.91±0.29 96.62±0.51 99.09±0.46 

F1 96.82±0.15 99.21±0.48 98.92±0.31 96.60±0.51 99.01±0.52 

 

DISR 

A1 96.78±0.20 98.47±0.63 97.89±0.51 96.60±0.34 99.36±0.32 

97.66 P1 96.80±0.22 98.14±0.82 97.79±0.53 96.28±0.42 98.91±0.60 

R1 96.78±0.23 97.76±0.80 97.92±0.54 96.31±0.33 99.08±0.46 

F1 96.78±0.23 97.93±0.80 97.85±0.52 96.28±0.34 98.99±0.52 

A1: Accuracy, P1: Precision, R1: Recall, F1: F-score 

 
   Fig.7. Classification accuracies with SVM on different feature sets 

     (Fusion: ARFs fused with the ambient information) 
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optimal feature set for different models. With respect to the 

mRMR, an interesting finding is that f40, i.e. 90th percentile of 

the roll, ranks top 10 selected features for all models, top 3 in 

Bedroom and Kitchen, top 5 for the case of all activities. Also, 

8 out of top 10 selected features are related to the roll, 

according to the number of occurrences of each selected 

feature. To the CMIM, f40 also ranks the top selected features 

for all room-based sub models. The last column in Table VII 

gives the computational time of feature selection at the same 

computer configuration, and the time drops for each room-

level task compared to the task of recognizing all the activities 

together using mRMR and CMIM.   

To study the performance of each activity before and after 

data fusion, we look into the results from the mRMR and keep 

an eye on the CMIM. From Table VIII to Table XI, we can 

clearly see the correct and incorrect classifications for each 

activity. When using mRMR for feature selection, Table IX 

indicates that the vast majority of activities achieve an  

increased accuracy after applying the data fusion. For instance, 

the Read obtains the largest increase by 10.09%, next is the  

Stairs with a rise of 8.49% and followed by the Mop with an 

improvement of 5.28%. Only the Fall and the Stand have a 

little drop in accuracy. The improved recognition results can 

be attributed to the assumption that some confusing activities 

are separated into different room groups to avoid 

misclassification. In Table VIII, 1.92% of patterns from the 

Phone are incorrectly classified as the Brush when using the 

wearable sensors alone. However, when the Brush is limited in 

 

Bathroom after applying data fusion, the accuracy of the 

Phone rises to 99.95% in Table IX from 97.77% in Table VIII. 

Similarly, 13.1% of the Read are misclassified as the Lie 

before data fusion in Table VIII, whilst only 5.38% of the 

Read are misclassified as the Watch after data fusion in Table 

IX, this is the part of the explanation of greatly increased 

accuracy for the Read. Collectively, the Read and the Watch, 

the Walk and the Stairs, rank the most two confusing pairs of 

activities, although their recognition accuracies are apparently 

improved compared with the scenario without room location 

information combined. The Clean, the Cook, the Exercise, the 

Phone, the Stand and the Wash seem to be easily distinguished 

from other activities regardless combining ambient 

information or not. 

For the results from the CMIM with the details shown in the 

supporting document, the experimental results exhibit certain 

different findings. The activities that have high accuracies of 

over 99% before data fusion, such as the Clean, the Exercise 

and the Phone, only have a slight increase or remain 

unchanged in accuracy. The Stairs and the Walk, on the other 

hand, present further increase of 4.97% and 3.66%, 

respectively. Also, the great improvements can be found to the 

Read, the Watch, the Stand and the Mop. 

V. DISCUSSION 

To identify the functions of the selected wearable sensors, 

results from Table IV suggest that the best sensor combination 

 

TABLE VII 

FEATURES SELECTED BY MRMR AND CMIM BEFORE AND AFTER DATA FUSION 

FS Model for # Selected   

features 

Feature ranking Computational 

time (s) 

 

 

mRMR 

All activities 30 f52 f49 f28 f3 f40 f46 f9 f37 f31 f6 f8 f34 f55 f58 f69 f7 f43 f64 f42 f47 f59 f25 f63 f41 f61 f38 f62 f60 f35 f21 1.765455 

Bathroom 20 f46 f49 f9 f16 f37 f47 f7 f52 f40 f43 f55 f64 f28 f41 f34 f14 f59 f3 f58 f61 0.138422 

Kitchen 20 f28 f8 f40 f52 f46 f7 f31 f49 f3 f37 f33 f34 f59 f58 f55 f21 f47 f42 f48 f41 0.346742 

Living room 25 f28 f9 f49 f6 f59 f37 f8 f31 f7 f40 f52 f43 f69 f21 f34 f60 f55 f25 f3 f41 f58 f64 f44 f42 f61 0.566477 

Bedroom 3 f40 f6 f21 0.023285 

 

 

CMIM 

All activities 30 f52 f9 f49 f46 f6 f14 f7 f50 f35 f55 f2 f66 f45 f47 f8 f16 f48 f51 f31 f29 f70 f13 f3 f12 f17 f5 f32 f26 f22 f30  2.715012 

Bathroom 16 f46 f49 f9 f40 f16 f52 f43 f37 f64 f34 f58 f28 f7 f3 f55 f41   0.175898 

Kitchen 16 f28 f8 f40 f52 f7 f31 f37 f3 f46 f49 f34 f58 f33 f41 f55 f42 0.405028 

Living room 24 f28 f9 f49 f6 f59 f37 f8 f69 f40 f52 f43 f31 f7 f34 f64 f3 f21 f58 f41 f55 f62 f25 f60 f46 0.440814 

Bedroom 2 f40 f21 0.036533 

TABLE VIII 

CONFUSION MATRIX OF MRMR PLUS SVM BEFORE DATA FUSION (ON WEARABLE SENSING ALONE) 

Actual Classified as (%) 

 

Brush Clean Cook Eat Exer. Fall Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 95.13 1.19 0.16 2.07 0.00 0.05 0.00 0.00 0.00 1.04 0.36 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.83 98.45 0.26 0.10 0.00 0.21 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 

Cook 0.16 0.16 97.05 0.52 0.00 0.10 0.36 0.00 0.26 0.00 0.36 0.00 0.00 0.00 0.98 0.00 0.05 

Eat 1.71 0.10 0.88 94.67 0.00 0.16 0.00 0.05 0.00 0.05 2.38 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.16 0.00 0.00 98.55 1.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.16 0.05 0.16 95.86 0.26 0.00 1.71 0.00 0.00 0.78 0.16 0.67 0.00 0.10 0.10 

Iron 0.00 0.10 0.21 0.00 0.00 0.05 93.48 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.52 0.00 5.28 

Lie 0.00 0.00 0.05 0.00 0.00 0.00 0.00 96.79 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.16 0.00 

Mop 0.00 0.05 0.16 0.00 0.00 2.74 0.41 0.00 92.91 0.00 0.00 0.83 0.00 0.62 0.21 0.00 2.07 

Phone 1.92 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.47 0.00 1.19 1.50 0.00 0.00 0.00 13.10 0.00 0.00 82.66 0.00 0.00 0.00 0.36 0.72 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 1.50 0.00 0.00 1.09 0.00 0.00 82.09 0.00 15.32 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.05 0.00 0.00 0.05 99.64 0.10 0.00 0.00 0.00 

Walk 0.00 0.00 0.00 0.00 0.05 0.98 0.00 0.00 0.83 0.00 0.00 13.35 0.05 84.73 0.00 0.00 0.00 

Wash 0.00 0.05 1.14 0.00 0.00 0.05 0.67 0.00 0.05 0.00 0.16 0.00 0.00 0.00 97.77 0.10 0.00 

Watch 0.00 0.00 0.10 0.00 0.00 0.21 0.36 4.76 0.05 0.00 0.52 0.00 4.76 0.00 0.10 89.08 0.05 

Wipe 0.00 0.00 0.05 0.00 0.00 0.16 6.11 0.00 1.35 0.00 0.05 0.00 0.00 0.00 0.10 0.00 92.18 

Exer. denotes Exercise from Table VIII to Table IX 
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chosen by MI-based feature selection methods is the 

accelerometer, the gyroscope and the magnetometer. The 

related studies illustrated that the barometer (for the height 

measuring) [12, 37, 38] and the temperature [12] could  

contribute HAR when being combined with other sensors. 

This paper finds that the function of a sensor not only depends 

on the sensor’s intrinsic characteristic but on what specific 

information extracted from the sensor. The mean, the max or 

other absolute values from the barometer contribute the 

activity recognition [12, 37, 38]. These features show the 

importance to the classification just in the specific 

environment, e.g., on the same floor or over a short time. The 

problem could be that it might be less useful for detecting 

Activity A on the ground floor if the max of the height value is 

useful for detecting activity A on the fifth floor. The similar 

issues can also be applied to the temperature sensor. For 

example, if the mean of the temperature is useful for 

differentiating Activity B in winter, it might be invalid for the 

same activity in summer or a different temperature 

environment. This study holds that people live in varied floors, 

different weather conditions and changing room environments, 

which means the features (like the max/min of the height, the 

mean of the temperature, etc.) are less beneficial to distinguish 

different activities. Therefore, only the features that can 

represent the relative variations of the height and the 

temperature, such as the peak-to-peak amplitude or the 

standard deviation, are used in this study. The experimental 

results in Table IV, nonetheless, imply that none of the 

features related to the temperature and the barometer is 

selected by the applied feature selection methods when the 

barometer and the temperature are used with any other sensors. 

This could be likely that the height and the temperature-related  

features are overwhelmed by the more informative features 

from other sensors. As a result, the temperature sensor and the 

barometer do not contribute to the improvement of the 

recognition accuracy with MI-based feature selection methods, 

whereas they might be useful with other feature selection  

approaches. Our future work will look into further evaluation 

of the feature sets with other state-art-of feature selection 

algorithms. 

Our proposed hybrid system is simple and practical, which 

only deploys three wrist-worn wearable sensors and one type  

 

of ambient sensor (PIR sensor) installed in each room. The 

data fusion by using the ambient information to trigger the 

room-based-sub-models provides a unique way to combine the  

ambient information and the wearable information. The 

improved performance after data fusion can be attributed to 

two factors: 1) the decrease of activity types reduces the 

requirements for each room-based model; 2) the confusing 

activities separated into different rooms can avoid the 

misclassification between them to some extent. After data 

fusion, the HAR system is extended to be more comprehensive 

which monitors the specific activities and the daily routine in 

the spatio-temporal environment simultaneously. Regarding 

each individual activity shown from Table VIII to Table IX, 

the most easily classifiable activities are the Brush, the Lie, the 

Cook, the Phone, the Exercise, the Wash, etc. The most 

difficult ones are the Walk, the Stairs, the Watch, the Read, 

etc., although their performances have been improved after 

applying data fusion. One possible reason for the lower 

recognition accuracies of the Read and the Watch is that the 

two activities share similar wrist caused attitude attributes. 

This can be studied further. The unexpected misclassification 

between the Stairs and the Walk is partly because there is a 

short and flat platform between two flights of stairs in some 

subjects’ homes, and the data collected from the Walk on the 

platform are labelled as the Stairs instead of the Walk. The 

tiny part of mislabelled data is difficult to be corrected in the 

raw data.  

There are the following remarks for comparison of other 

related studies with our research. First, the practical aspect can 

be seen from the sensor number and sensor deployment. 

Studies in [11, 20]  use a smaller number of wearable sensors, 

but they either only recognize the smaller number of activities 

or have a complex sensor deployment on body. Study in [20] 

uses the same wearable sensors with ours, whilst it only 

utilizes the CUFs without exploring the ARFs. Our previous 

work reaches the similar performance with this work using 

similar data mining techniques [12]. The authors in [12] 

deploy 7 wearable sensors on 3 different body parts, which 

may cause obtrusiveness or uncomfortable feelings for older 

people in real use. Our work only uses 3 wearable sensors on 

the wrist while producing comparable performances. Second, 

our sensor combination method is unique. Although the 

  TABLE IX 

CONFUSION MATRIX OF MRMR PLUS SVM AFTER DATA FUSION (ON COMBINED SENSING) 

Actual Classified as (%) 

 Brush Clean Cook Eat Exer. Fall Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.10 99.38 0.05 0.00 0.00 0.10 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cook 0.00 0.00 99.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 

Eat 0.00 0.00 0.00 98.24 0.00 0.16 0.88 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.00 0.00 0.00 99.90 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.00 0.21 0.05 95.70 0.05 0.00 1.97 0.05 0.00 0.52 0.31 1.09 0.00 0.00 0.05 

Iron 0.00 0.00 0.00 0.67 0.00 0.10 95.39 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.16 3.52 

Lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mop 0.00 0.05 0.00 0.00 0.00 1.35 0.00 0.00 98.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 

Phone 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 99.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.00 1.71 0.00 0.05 0.05 0.00 0.00 0.05 92.75 0.00 0.00 0.00 0.00 5.38 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 90.58 0.10 8.90 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.21 99.38 0.05 0.00 0.16 0.00 

Walk 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 9.06 0.05 89.91 0.00 0.00 0.00 

Wash 0.00 0.00 0.05 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.69 0.00 0.05 

Watch 0.00 0.00 0.00 0.16 0.00 0.21 0.78 0.00 0.00 0.00 4.19 0.00 3.67 0.00 0.00 90.99 0.00 

Wipe 0.00 0.00 0.00 0.00 0.00 0.05 3.99 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.05 0.00 95.70 
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combination of wearable sensors with ambient sensors in HAR 

has been investigating, we propose and implement a different 

data fusion method. Both Stikic, et al [17] and our work 

combine the infrared sensors with wearable sensors. Stikic et 

al [17] directly use the number of activations from infrared 

sensors as the input to the classifiers. Nevertheless, infrared 

sensors have a different role in our hybrid system. Instead of 

using it as the input of a classifier, we use the binary location 

information derived from infrared sensors to trigger sub 

classification models for data fusion. In other words, the whole 

task of recognizing all defined 17 activities are skilfully 

separated to several sub tasks according to the room-level 

location information captured by infrared sensors. By doing 

this, we improve the overall accuracy in a practical way.  

VI. CONCLUSIONS 

We develop a practical HAR system which targets 

simultaneously monitoring older people’s specific daily 

activity and daily routine. The system uses a unique data 

fusion approach to hybridize the wearable information and the 

ambient information. A group of attitude-related features 

(ARFs) are implemented and experimentally evaluated. The 

initial results are promising: the ARFs perform better than the 

CUFs based on the applied four FS methods plus SVM 

classifiers over the ground truth data; and the data fusion 

applied in our hybrid system improves the accuracy compared 

with the scenario of recognising all the activities only using 

the wearable sensors. We train and test the current models 

based on all the data from all the subjects to obtain a model for 

general users, meanwhile, we can also train and test the 

models subject-dependently to meet specific requirements. 

Additionally, the wearable network and the ambient network 

can function as a stand-alone network when any of them fails. 

The former can work alone for distinguishing the specific 

activities of the wearer and the latter can work for monitoring 

a person’s room-level daily routine on its own.  

The study has however a few limitations. One limitation is 

that the system only targets the older people who live alone. If 

the application is scaled up to a multi-person system, the 

identification of each specific user should be considered to 

activate sub classification models. Also, the impact of the pets 

or other visitors on the PIR sensors should be further studied 

and evaluated. We considered a room with only one door in 

this paper, we will explore more PIR sensors to handle a room 

with multiple doors in our future work. The second limitation 

is the activity assignment fixed in each room. As a case study, 

we generally define the activities which most likely take place 

in different rooms to verify our hypothesis. In real use, since 

house structures and people habits vary, we cannot be hundred 

percent sure which activities must occur in one specific room 

or not, e.g., the Read can take place anywhere. The third 

limitation is about the hardware: the wearable and ambient 

network are separated in this paper, the data analysis apart 

from test are all offline. The next version prototype can 

consider synchronizing two networks into one after further 

evaluation. 

It is worth pointing out that we do not intend to identify all 

possible daily activities in this paper; we predefine and detect 

set of limited activities.  An extension of our work could thus 

focus on semi-supervising or actively learning the activities 

based on feature mapping and feature similarity, in which we 

will regard some of the activities we define in this paper as 

unlabelled in the both home-level and the room level to 

address the second limitation. This is also expected to partly 

tackle the issue of overlap between activities by seeing some 

of the interwoven activities as the unseen activities from the 

base and more important activity, like drinking tea while 

reading newspaper. Another future work could be the practical 

investigation of the ARFs compared with using the CUFs in 

terms of the efficiency, the additional power consumption and 

so on. Our current work focuses on using CCA (Canonical 

Correlation Analysis)-based, sparse filtering-based feature 

selection methods to further evaluate the handcrafted features 

we extracted. Meanwhile, we are also working on using deep 

learning for automatically learning the features from the raw 

data for comparison study.  

Appendix 

List of features used in this research 

1. Mean: The average value of the signal over the window 

2. Root Mean Square (Rms): The quadratic mean value of the signal 

over the window 

3. Peak-to-peak amplitude (Ptp): The difference between the 

maximum and the minimum value over a window 

4. Mean crossing rate (Cmr): Rates of time signal crossing the mean 

value, normalized by the window length 

5. Zero crossing rate (Czr): Rates of time signal crossing the zero 

value, normalized by the window length 

6. Signal magnitude area (SMA): The acceleration magnitude 

summed over three axes within each window normalized by the 

window length 

7. Average of Peak Frequency (Apf): The average number of signal 

peak appearances in each window 

8. Movement Intensity (MI): The total acceleration vector over the 

window 

9. Averaged derivatives (Ader): The mean value of the first order 

derivatives of the signal over the window 

10. Crest factor (Cftor): The ratio of peak values to the effective value 

over the window 

11. Autocorrelation (Autoc): The correlation between values of the 

process at different times 

12. Percentiles: 10th,25th,50th,75th,90th 

13. Interquartile range (Interq): Difference between the 75th and 25th 

percentile 

14.  Pairwise correlation (Corrcoef): The ratio of the covariance and 

the product of the standard deviations between each pair of axes 

15. Standard deviation (Std): Measure of the spreadness of the signal 

over the window 

16. Standard deviation to the mean (Stdm): The ratio of the standard 

deviation to the mean 

17. Kurtosis: The degree of peakedness of the signal probability 

distribution 

18. Skewness: The degree of asymmetry of the sensor signal 

probability distribution 

19. Max: The largest value in a set of data 

20. Min: The smallest value in a set of data 

21. Median: The middle number in a group of ordering numbers 

22. Mode: The number that appears the most often within a set of 

numbers 

23. Variance: The average of the squared differences from the Mean 

24. Median Absolute Deviation (MAD): The median of the absolute 

deviations from the data's median 
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25. Dominant frequency (Domifq): The frequency corresponding to 

the maximum of the squared discrete FFT component magnitude 

of the signal from each sensor axis 

26. Spectral energy (SpecEgy): The sum of the squared discrete FFT 

component magnitude of the signal from each sensor axis, 

normalized by the window length 

27. Spectral entropy (SpecEnt): Measure of the distribution of 

frequency components, normalized by the window size 

28. First five components (MFC): Magnitude of first five components 

of FFT analysis 

29. Median Frequency (Medifq): The frequency corresponding to the 

median of the squared discrete FFT component magnitude of the 

signal from each sensor axis 
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