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Abstract—Objective assessment of gait is important in the 

treatment and rehabilitation of patients with different diseases. In 

this paper, we propose a gait evaluation system using Procrustes 

and Euclidean distance matrix analysis. We design and develop an 

android app to collect real time synchronous accelerometer and 

gyroscope data from two Inertial Measurement Unit (IMU) 

sensors through Bluetooth connectivity. The data is collected from 

12 young (10 for modelling and 2 for validation) and 20 older 

subjects. We analyse the data collected from real world for stride, 

step, stance and swing gait features. We validate our method with 

measurements of gait features. Generalized Procrustes analysis is 

used to estimate a standard normal mean gait shape (NMGS) for 

10 young subjects. Each gait feature of both young and older 

subjects is then converted to find the best match with the NMGS 

using ordinary Procrustes analysis. The shape distance between 

the NMGS and each gait shape is estimated using Riemannian 

shape distance, Riemannian size-and-shape distance, Procrustes 

size-and-shape distance and Root mean square deviation. A t-test 

is performed to provide statistical evidence of gait shape 

differences between young and older gaits. A mean form which is 

considered as a standard normal mean gait form (NMGF) and 

inter-feature distances are estimated from the set of 10 young 

subjects. The form difference is estimated between the NMGF and 

individual gaits of young and older. The degree of abnormality is 

then estimated for individual features and the result is plotted to 

visualize the feature in a gait. Experimental results demonstrate 

the performance of the proposed method. 

 

IndexTerms—Gait Analysis; Gait Assessment; Gait Features; 

Inertial Measurement Unit (IMU) 

I. INTRODUCTION 

UMAN gait is the result of a series of rhythmic 

alternating movements of the arms, legs, and trunk 

which create forward movement of the body [1]. Its 

complex mechanisms depend upon the integrated actions of the 

musculoskeletal, nervous system, visual, vestibular, auditory 

systems leading to the smooth propulsive movement of the 

centre of gravity. Quantification of gait variabilities, kinematic 

and kinetic measurements, muscular measurements and energy 

expenditure,  provide comprehensive locomotive gait 

information [2]. Gait quantification information is used to 1) 

distinguish the type of gait impairments and suggest possible 
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diagnoses; 2) measure and monitor the severity of an injury or a 

disease and determine the most appropriate treatment [3]; 3) be 

a determinant of progression in patients with medical 

conditions causing gait disorders [4, 5] monitor response to 

treatment in orthopaedic rehabilitation [6]; 4) monitor and 

improve an athlete’s performance [7]; and 5) in biometrics and 

biomedical engineering areas, be an assistive tool to 

characterize human locomotion and have many applications 

[8]. Gait quantification information is important in elderly 

patient fall risk assessment [9] and also a predictor of functional 

and cognitive decline [10].  Therefore, the objective evaluation 

of gait and understanding the gait changes has many potential 

uses. 

The paper is organized in the following sections. Section II 

introduces previous related work. Section III presents the 

proposed method. Section IV delivers the experimental results 

to demonstrate the proposed method. Section V presents the 

discussions. The conclusion is given in section VI. 

II. RELATED WORK 

The tools and methodologies used to assess human gait are 

often arbitrary and often studied in artificial controlled 

conditions. Gait abnormalities are generally assessed by 

physicians, physiotherapists and researchers in clinical settings 

or in gait laboratories. Clinical scales used to analyse gait 

parameters such as Gait Abnormality Rating Scale [11], Figure 

of 8 Walk Test [12], and Berg Balance Scale [13] are subjective 

or semi-subjective and a poor replacement to laboratory based 

methods. This may not satisfy scientific criteria of reliability 

and validity [14], which may affect the accuracy of diagnosis, 

follow-up and treatment [2]. There is no commonly accepted 

guideline, preferred methodology or protocol for gait changes 

evaluation. The European GAITRite Network Group, 

developed Guidelines for Clinical Applications of Gait 

Analysis [15], with the intention to facilitate collaboration and 

provide guidance to clinicians however there is no 

recommended systematic procedure in the guideline. The 

available common approaches [28] for gait quantification of 

temporal and spatial gait pattern are Symmetry index, 

Symmetry ratio, Ratio, Gait asymmetry, etc. The commonly 

used Symmetry Indices  need to be normalized to a reference 

value [16, 17] and there is  potential influence for artificial 

inflation as the normal values for young and older subjects are 

not the same [18]. Sometimes the mean value calculation used 

for quantifying gait asymmetry may lead to erroneous results as 

the mean measurements from two abnormal limbs may appear 

normal.  For example, in a situation where a patient has 

asymmetry in the opposite direction of gait, the true magnitude 
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of asymmetry for affected or unaffected limbs may be very 

small. The effect of the direction of gait asymmetry may be 

eliminated using absolute values in the symmetry indices [16]. 

There are methods [19, 20] which do not make it possible to 

identify the point during the gait cycle at which deviations 

occur. There are other approaches [21, 22] including principal 

component analysis, regions of deviation analysis, and paired 

t-test to quantify gait symmetry. However, the number of test 

subjects and experiments are important for these methods. 

These methods may also need normative data from able-bodied 

subjects as a reference [17]. Although gait asymmetry is 

frequently reported as present or not present which may not 

satisfy scientific criteria of reliability and validity [14], an 

arbitrary cut-off value of 10% deviation from perfect symmetry 

has been used as a criterion of asymmetry in gait assessment 

[23, 24]. This is later criticized due to its non-parameter 

specific nature [18]. Other previously used criteria to describe 

the absence or presence of gait asymmetry include sensitivity 

and specificity of parameter measurement [25], the use of 95% 

CI where gait asymmetry within the limits of a 95% CI obtained 

in a healthy population would define able-bodied gait, while 

gait asymmetry outside the 95% CI would define pathologic 

gait [18], and significant limbs difference [21] etc. Although 

there are many approaches for quantifying gait asymmetry, 

there is little research conducted on a gait quantification 

method based on overall gait features. Considering all the 

various parameters that constitute the gait cycle, we propose a 

novel gait quantification method which offers a simple and 

easily interpretable assessment of gait with good accuracy and 

comprehensive features. 

In order to provide comprehensive gait information and 

evaluation in clinical screening and research, an affordable gait 

evaluation system is required which will provide the facility in 

clinic or at home. The aim of this study is to propose a novel 

method of gait evaluation using Procrustes superimposition 

[26] and Euclidian Distance Matrix Analysis (EDMA). To 

quantify individual gait based on all features four shape and 

size comparison techniques (Riemannian shape distance (RSD) 

[27], Riemannian size-and-shape distance (RSSD) [28], 

Procrustes size-and-shape distance (PSSD) [29] and Root mean 

square deviation (RMSD) [29]) are applied. We also aim to 

investigate how each feature impacts on a gait using EDMA. A 

high difference between the NMGF and each gait indicates a 

high degree of abnormality and a low value indicates close to a 

normal gait. To date, research on comprehensive understanding 

of gait quantification based on overall gait features to allow 

assessment and monitoring of gait changes from young and 

older adults has received little attention. Our method provides 

the facility to quantify gait and gait changes in both a clinic and 

at home which increases the availability and affordability of 

gait assessment.   

III. METHODS 

A. Participants Selection 

A convenience sample of 32 subjects are recruited: 12 healthy 

young subjects (9 male, mean age 25.4 years, standard 

deviation 4.64, range 19-35 years); 20 older adults (19 male, 

mean age 71.86 years, standard deviation 8.55, range 62-86 

years). Among 12 young subjects, 10 are used for modelling 

while an additional 2 are used for validation. Young subjects 

are selected with no signs of gait, balance or walking 

abnormalities. Older adults from a care home are invited to 

participate. They are a group of patients chosen with some 

having a normal and others an abnormal gait. It is coincidental 

that the majority of subjects are male. 

B. Sensor placing location 

In this study, the sensors are placed at the base of the first 

metatarsal of both feet. This position was previously 

determined and validated for collecting data since this can 

achieve the best performance compared to other foot locations 

[30] (Figure 1(a)).  

C. Data collection 

Our proposed android app for synchronous data collection from 

accelerator and gyroscope is shown in Figure 1(b). The subjects 

perform a walk in a straight corridor comprising of 15 strides of 

normal forward walking, a turn-around and another 15 strides. 

The accelerometer and gyroscope raw data from young subject 

1 is presented in Figure 1(c). 

 
Figure 1. (a) IMU sensors placement in right and left metatarsal feet 

locations, (b) Android app for synchronous data collection from accelerometer 

and gyroscope, (c) Raw accelerometer and gyroscope data of young subject 1 

D. Stride, stance, swing and step phase detection 

Human walking can be described in the context of a gait cycle 

which has eight events shown in Figure 2 with stance and swing 

phases. A stride (whole gait cycle) is the distance between a 

point on one foot at the first foot contact and the same point on 

that foot at the next foot contact. 

Figure 2: Normal human gait phases [31] 

The stance phase shown in Figure 2 starts when the heel 

contacts the ground and the waist is in its lowest position during 
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the entire phase. There is deceleration of the leg towards the 

horizontal axis as the velocity moves to zero. The zero velocity 

remains until the terminal stance event where the foot is flat on 

the ground. In the pre-swing event, the toe is off the ground and 

starts forward movement demonstrating initial acceleration 

towards horizontal axis. The swing phase is when the heel 

moves off the ground. The acceleration interval corresponds to 

the change from the heel lift to the swing at the height point at 

mid-swing event. Deceleration starts during the terminal swing 

event from the highest point to the foot back flat on the ground. 

There is zero velocity again in the interval corresponding to the 

change from a flat foot to a heel lift. The eight events of a gait 

cycle presented in Figure 3 are identifiable from the IMU 

acceleration signal. The same phenomenon of human limb 

kinematic with accelerometer signal output during a typical 

walking cycle is identified in [31, 32]. Our gait cycle 

accelerometer signal (Figure 3) is agreed with the signal pattern 

in [31, 32]. Figure 3 shows the events of the gait cycle (Figure 

2) with corresponding accelerometer signal. 

 
Figure 3: Eight different events of a gait cycle from accelerometer data 

Figure 3 shows that at the start and end of each stride, the feet 

are stationary on the ground. Due to the walker’s forward 

movement, the acceleration shows its high value in the swing 

phase. Based on these characteristics, we identify stride, stance 

and swing events from accelerometer signal shown in Figure 4. 

 
Figure 4. Result of stride, stance and swing event detection 

Figure 4 shows the detected Start (purple circle) which is 

the foot’s initial contact to the ground, the transition of 

stance-swing phase SS (cyan triangle) is the initial swing and 

End (black square) is the terminal swing of gait phases 

information of each stride for both legs where the stance phase 

information is provided by the difference between Start and SS; 

and the swing information is the difference between SS and 

End. 

E. Velocity and distance estimation 

The Madgwick quaternion technique [33] is applied for 

estimating the orientation followed by the trapezoidal double 

integral approach [34] applied to obtain the travelled distance 

from the user movement using accelerometer and gyroscope 

data. The input data are passed through a high-pass filter to 

remove the direct component of the acceleration signal.  

We obtain values for 13 spatial-temporal gait features 

separately from the right and left lower limbs previously 

validated with measurements of gait features collected in a 

laboratory environment using a Qualisys Motion Capture 

System [30, 35]. These include total distance (m), total time (s), 

velocity (m/s), swing length (m), swing velocity (m/s), stride 

length (m), stride time (s), stride velocity (m/s), step length (m), 

step time (s), step velocity (m/s), stance time (s), and swing 

time (s). From our evaluation, we conclude that the first five 

features are redundant since they can be estimated from the rest 

eight features. Therefore, we use the last eight features as these 

are all an average reading from 30 strides.  

F. Understanding of shape, form and size 

Both shape and form consisted of geometrical representation of 

an object can be represented by a set of points or landmarks. 

The form of an object may change when magnitude or volume 

changes along various axes and transforms from reference to a 

target form [36]. Figure 5 shows the relationship between 

shape, size and form changes.  

 
Figure 5: Geometric representation of form change relating with shape and size 

[36] 

These landmarks remain invariant when an object is 1) moved 

within a given coordinate system (translation), 2) turned on any 

axis of a given coordinate system (rotation) and 3) flipped of a 

given coordinate system (reflection). For example, a triangle 

consists of three points considered to be landmarks. Any 

movement results in changes in the coordinate locations of the 

three points but no change to their relative positions. A new set 

of coordinates is therefore required to define the new position 

of the three points. The landmark coordinates matrix change 

upon reflection, translation or rotation even though the shape 

remained the same. In this research a total of eight gait features 

selected from the 13 extracted features are considered as 

landmarks. Procrustes analysis is used to analyse the 

distribution of features representing the gait shapes and 

Euclidean distance matrix analysis (EDMA) is used to analyse 

form difference between objects and the influence of each 

features in a gait. 

G. Normal Mean Gait Shape estimation using Procrustes 

In order to quantify and compare gait, a common procedure is 

to normalise the obtained gait features both in time and length. 

The eight gait features (stride length, stride time, stride velocity, 

step length, step time, step velocity, stance time and swing time) 

from right and left legs are presented in the Cartesian 

coordinate. The x and y axes represent the features of the right 

and left legs with the dimensionless numbers respectively. This 

coordinate represents the shape of gait features collected from 

both legs. 
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Procrustes analysis (a method of statistical analysis used to 

analyse the distribution of a set of shapes) describes curve 

shape and shape change in a mathematical and statistical 

framework, independently of time and size factors. Ordinary 

Procrustes analysis (OPA) finds the rotation matrix, translation 

vector and scaling factor to give the best match between two 

configurations [26]. Generalized Procrustes Analysis (GPA) is 

used to find the best fit among multiple objects [26, 29]. Instead 

of considering matching all possible independent matrix pairs, 

GPA is used in such a way that all matrices are simultaneously 

subjected to suitable rotation, translation and scaling 

transformations until a proper fit criterion is reached. For 

estimating NMGS using GPA, 10 young subjects gait 

information is used. GPA provides the least square 

correspondence of more than two data matrix configurations, Xi 

(i=1,2,3,…,m) be a series of m matrices that contain the 

coordinates of a set of p gait features called as landmarks on the 

m subjects called as number of shapes in k dimensions. 

Translation, rotation and scaling of a configuration are 

described [29] as 

T

iiiii jtOXcX +=
ˆ                                     (1) 

where X̂  is the new coordinate of the landmarks in the 

configuration. Oi is the rotation matrix, ci is the scaling factor, ti 

is the translation vector and j is the unit vector. Using GPA the 

configurations are translated, rotated and rescaled until the sum 

of the squares of the distances between the equivalent 

landmarks are minimized to give the best possible match 

between all configurations. Figure 6 shows the procedure 

where the individual configurations are translated, rotated and 

scaled so that they can be “superimposed” on each other to 

achieve a “best” fit. 

 
Figure 6: Concept of GPA  

Iterative procedures are used for the minimisation process in 

GPA. The shapes are repeatedly scaled, rotated and translated 

until the sum-of-squares defining the distances between the 

equivalent landmarks on all shapes is minimised. The 

Procrustes derivation is described in [37]. 

The Procrustes superimposition computes a mean shape 

referred as NMGS for the young subjects based on gait features 

where scaling and reflection are not performed in this analysis. 

The shape of each subject’s gait is defined by its Procrustes 

residuals which are the deviation of the landmarks from the 

NMGS. 

H. Gait shape comparison  

RSD, RSSD, PSSD and RMSD are used to quantify a gait 

based on all gait features. In Riemannian geometry [38], a 

shortest curve between a pair of points on a curved surface is 

called a minimal geodesic. On some surfaces, there may be 

pairs of points which have more than one minimal geodesic 

between them (e.g., a sphere). RSD gives a measure of the 

relationship between the curvature of a space and its shape. Its 

parameter has a value between 0 and π/2; the smaller this value, 

the smaller the difference between the gaits. RSSD is the 

Riemannian distance between the size-and-shape of the 

configurations found by minimizing the Euclidean distance 

over rotations. The smaller the value is, the closer the 

configurations in size-and-shape distance. PSSD is defined as 

the distance between two shapes as the closest distance between 

the fibers on the pre-shape sphere in a non-Euclidean shape 

metric space. This allows us to compare two configurations 

which are independent of position, scale and rotation. RMSD is 

another measure of size-and-shape differences between 

configurations where the value is estimated from the square 

root of ordinary Procrustes sum of squares divided by the 

number of landmarks and number of dimensions. The small 

value means the small deviation between the configurations. 

RSD, RSSD, PSSD and RMSD are estimated for distinguishing 

degree of abnormality of each gait compared to NMGS. Each 

gait is translated and rotated to find the best match with NMGS 

using OPA and the distances are then estimated between 

NMGS and each best match gait.  

I. Mean form and inter-feature distance estimation  

EDMA [39] for comparing two shapes using landmark data is a 

method for comparing the forms of organisms that are 

measured using homologous landmarks. Homologous 

landmarks are those landmarks chosen to represent features on 

organisms that are similar due to a phylogenetic relationship. 

The organisms being compared thus share a common ancestor 

and the feature under study is present in all organisms under 

consideration due to each inheriting it from the common 

ancestor [40]. EDMA also allows form variation, shape or 

growth differences to examine through the comparisons of 

ratios of landmarks of equivalent configurations [39, 41]. 

The gait features extracted from each subject vary due to 

their walking style, speed and body characteristics etc. This 

variation is manifested as perturbations around the mean gait 

configuration. These perturbations vary in size and shape from 

feature to feature. Initially, the Euclidean distance between all 

pairs of features are estimated which is known as inter-feature 

distances [41]. The data is stored in an 8x8 symmetric matrix 

known as inter-feature distance matrix. The inter-feature 

distance matrix from all young subjects is then used to calculate 

the mean form matrix. The procedure of developing EDMA is 

given in [37]. 
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J. Form matrix and form difference matrix estimation  

FM(A) is as the form matrix (FM) and returns all the relevant 

information about the form of an object as summarized by 

landmark coordinates. 

For a form difference matrix (FDM), suppose the forms of 

two objects, A and B, each with K landmarks are to be 

compared. The forms of these two objects correspond to two 

points in an L-dimensional Euclidean space. If the forms are 

similar, then these two points lie on a ray going through the 

origin. If the above condition is true, then it can be concluded 

that the forms are different. A represents the form of the gait 

features each subject (including both young and older), B 

represents the mean form estimated from 10 young subjects 

using EDMA. FMij(B) represents the reference form which is 

NMGF. FMij(A) represents the real form measured from the 

individual. The ratios of corresponding linear distances from 

the two forms are calculated. 

FDMs contain all the relevant information (represented by 

the landmarks collected) regarding morphological distances 

between two forms (or sample of forms). Differences of form 

can reflect a simple difference in scaling of two forms (i.e. only 

in size), or a combination of difference in size and shape. 

FDMij(B,A) is then used to estimate the form difference 

from all subjects. The variance and covariance are estimated for 

individual features. Two gait features have the same form if 

their Euclidean matrixes are identical. Two gait features also 

have the same form if the Euclidean matrix describing one form 

is a constant multiple of the Euclidean matrix describing the 

second form. The procedure of developing FM and FDM using 

EDMA is given in [37]. 

IV. EXPERIMENTAL RESULTS 

To verify the proposed gait quantification approach, we 

perform experiments to our collected gait features from all 

subjects. We also present detailed analysis on the experimental 

results using the statistical software R [42]. 

A. Data collection 

A database is created for our experiment using the automatic 

gait feature extraction method presented in section III.D. The 

database consists of eight selected gait features among the 13 

features extracted from both legs for all subjects shown in 

Figure 7. Eight features (stride length (m), stride time (s), stride 

velocity (m/s), step length (m), step time (s), step velocity (m/s), 

stance time (s), and swing time (s)) of all individual subjects are 

plotted and each of these points is notionally joined together to 

represent a shape.  

Figure 7 shows that gait features of young subjects from the 

right and left legs are very similar, i.e., the features lying on or 

close to a hypothetical diagonal 45
0
 line indicative of perfect 

symmetry (equal features arising from both legs). Conversely 

for the older subjects there is more variability in output of 

features from their legs. This results in a greater scatter in the 

output recorded, indicative of greater asymmetry shown in 

Figure 7. For this reason, we chose to perform our GPA on the 

young subjects who had a more normal gait than the older 

subjects with a view of developing a reference NMGS. 

B. Estimating of Mean Normal Gait Shape (NMGS) 

We perform GPA on the features (shapes) derived from 10 

young subjects. To do this all 10 shapes of the young subjects 

obtained from both legs are plotted after GPA best fit alignment 

shown in Figure 8. 

 
Figure 7: Gait features from young and older adults 

This GPA translates and rotates each of the shapes to find the 

best fit.  The mean of each shape of the features is then 

estimated and plotted generating the shape of NMGS shown in 

Figure 8 (black line). 

 
Figure 8 : Gait features from young after Generalised Procrustes analysis and the 

black line represents Normal Mean Gail shape (NMGS) 

Figure 8 shows that gait features and NMGS obtained as the 

mean features from the individual young subjects are very close 

to the diagonal.  

C. Gait quantification 

Next, we determine the shape differences between each pair of 

shapes i.e. NMGS with the individual gait shapes. To quantify a 

gait based on all gait features we use four shape comparison 

techniques (RSD, RSSD, PSSD and RMSD) shown in Table 1. 

Results closer to 0 suggest a gait shape close to the NMGS gait. 

TABLE 1 
Gait Quantification Information 

  RSD RSSD PSSD RMSD 

Y
o

u
n
g
 

1 0.129 0.152 0.129 0.054 

2 0.245 0.292 0.243 0.103 

3 0.304 0.364 0.299 0.129 

4 0.223 0.329 0.222 0.116 

5 0.367 0.467 0.359 0.165 

6 0.264 0.33 0.261 0.117 

7 0.204 0.237 0.202 0.084 

8 0.418 0.473 0.406 0.167 

9 0.38 0.441 0.371 0.156 

10 0.205 0.251 0.204 0.089 

11 0.270 0.324 0.267 0.156 

12 0.186 0.262 0.185 0.078 
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O
ld

er
 A

d
u

lt
s 

1 0.977 2.872 0.829 1.015 

2 0.922 1.885 0.797 0.666 

3 1.144 4.35 0.91 1.538 

4 0.905 1.79 0.786 0.633 

5 0.92 3.586 0.795 1.268 

6 0.886 3.104 0.775 1.097 

7 0.918 2.372 0.795 0.838 

8 0.874 1.711 0.767 0.605 

9 1.154 2.291 0.915 0.81 

10 0.959 3.417 0.819 1.208 

11 0.934 3.319 0.804 1.173 

12 1.058 3.755 0.872 1.328 

13 1.442 6.6 0.992 2.333 

14 1.018 2.989 0.851 1.057 

15 1.019 2.977 0.852 1.053 

16 1.173 5.084 0.922 1.798 

17 1.001 2.548 0.842 0.901 

18 0.94 1.848 0.807 0.653 

19 1.202 2.843 0.933 1.005 

20 1.01 3.809 0.847 1.347 

 

Table 1 shows that variations of the distances of the young 

subjects are smaller than those of the older subjects. Therefore, 

Table 1 can help distinguishing different gait patterns in young 

and older adults. 

We evaluate the data for statistical errors and assessed 

whether the estimated values are reasonable. A t-test comparing 

the mean values of RSD, RSSD, PSSD and RMSD values is 

carried out with a statistical significance level (alpha) of 0.05. 

The two sample unpaired t-test summary are given in Table 2. 

TABLE 2 
T-test for distances between MNGS and gaits 

 MD SD t-valuep-value df 
95% Confidence Interval

Lower Upper 

Riemannian shape distance 

Young 0.274 0.092 9.441 0.000 9 0.208 0.340 

Older 1.023 0.140 32.708 0.000 19 0.957 1.088 

Riemannian size-and-shape distance 

Young 0.334 0.106 9.979 0.000 9 0.258 0.409 

Older 3.158 1.199 11.775 0.000 19 2.596 3.719 

Procrustes size-and-shape distance 

Young 0.270 0.088 9.706 0.000 9 0.207 0.332 

Older 0.846 0.061 61.831 0.000 19 0.817 0.874 

Root mean square deviation 

Young 0.118 0.037 10.013 0.000 9 0.091 0.145 

Older 1.116 0.424 11.773 0.000 19 0.918 1.315 

MD= Mean Difference 

The t-tests indicate (p<0.05) that there is a significant mean 

difference between the gait of young and older subjects for 

RSD, RSSD, PSSD and RMSD values. 

The variability in gait shapes is shown in Figure 9 which 

determines the range of results. From the box plot and t-test 

above, it is clearly seen that the mean values of RSD, RSSD, 

PSSD and RMSD of the normal young is significantly lower 

than those of older adults. 

Figure 9 shows that for young subjects, RSSD and RMSD 

are more consistent with less standard deviation (SD) than RSD 

and PSSD. For older subjects the opposite was identified with a 

wider SD for RSSD and RMSD than RSD and PSSD. The 

boxplot confirms the expected difference in gait shapes 

between young and older subjects. From Figure 9, we can 

observe that RSSD provides the best indication among the four 

approaches since the variation of the older is large while the 

variation of the young is small. RMSD is the second best, 

followed by RSD and then PSSD. Next we determine what 

features of gait contribute to abnormality. 

 

Figure 9: Boxplot of RSD, PSSD, RMSD and RSSD 

D. NMGF and inter-feature distance estimation  

The database created in section IV.A is used. The mean form 

based on these normal gaits is estimated and is considered as 

NMGF estimated directly from the unit less feature coordinate 

data using EDMA, which is shown in Table 3. 

TABLE 3 
Normal Mean Gait Form (NMGF) Information 

Index Feature Right Left 

F1 Stride length -0.48296 0.109081 

F2 Stride time -0.77767 -0.09042 

F3 Stride velocity -0.01428 0.002893 

F4 Step length 0.489212 -0.05726 

F5 Step time 0.192591 0.07357 

F6 Step velocity 0.175095 -0.12865 

F7 Stance time 0.211629 0.007791 

F8 Swing time 0.206385 0.083 

The Euclidean distance between all possible pairs of features 

are estimated from NMGF for the inter-feature distances which 

are stored in an 8x8 symmetric matrix. Table 4 presents the 

lower triangular part of the matrix. 

TABLE 4 
Inter-feature distances 

 
F1 F2 F3 F4 F5 F6 F7 F8 

F1 0        

F2 0.356 0       

F3 0.481 0.769 0      

F4 0.986 1.267 0.507 0     

F5 0.676 0.984 0.219 0.324 0    

F6 0.700 0.954 0.231 0.322 0.203 0   

F7 0.702 0.994 0.226 0.285 0.068 0.141 0 
 

F8 0.690 0.999 0.235 0.316 0.017 0.214 0.075 0 

Each cell in Table 4 of the inter-feature distance matrix shows 

the distance in two-dimensions that does not require a 

coordinate system. For example, the cell, that contains the 

number 0.356 in the mean form matrix of the young subjects, 

represents the distance between features F1 and F2. This is the 

distance estimated directly from the feature coordinate data. 

The inter-feature distance of NMGF is used to estimate the 

form difference matrix between NMGF and each gait to 

understand the degree of abnormality. 
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E. Form difference and form difference matrix between NMGF 

and each gait 

Estimation of FDM is carried out for all gaits relative to 

NMGF. The sum of divergences to the median value for each 

feature is estimated considering the whole FDM matrix [43]. 

This is the matrix of the degree of abnormality where the higher 

the degree of difference the greater the abnormality. Lower 

values imply that the gait features of the individual are closer to 

NMGF and conversely higher values mean that there is greater 

abnormality as there is greater deviation from MNGF. To 

represent the degree of abnormality in a meaningful and easily 

interpretable way we propose a two dimensional plot to 

summarize, explore and interpret the FDM results. Figure 10 

shows such a plot where x represents individual gait features 

and y represents the degree of abnormality in relation to the 

other features. The form difference for all eight gait features 

with respect to NMGF is plotted. For example in Figure 10 

feature 1 has the highest difference with feature 2 but is very 

close to features 3-8. This analysis is applied to a set of 32 gaits 

(12 young and 20 older). 

 
Figure 10: The degree of abnormality of Young Subject 1 with respect to the 

Mean Normal Gait Form for all the eight gait features. 

V. DISCUSSION 

This study demonstrates a detailed analysis of gait using 

Procrustes and EDMA methods. Procrustes is valuable in 

determining variation of gaits from NMGS while EDMA is 

useful in determining the degree of abnormality of the gait 

feature. We obtain the results using eight gait features collected 

automatically from both legs by adopting low cost IMU sensors 

synchronously. Our results have shown that a normal gait 

provides a set distribution of features. Any deviation from this 

distribution is identifiable as abnormal. This to our knowledge 

has not been done before. Although at this stage one cannot 

extrapolate this information to make accurate diagnoses the 

ability to identify such subtle differences in gait may have the 

potential to support specific diagnoses as well as treatment. 

This new method is more comprehensive than other methods 

that often rely on single or a smaller number of features [23, 

44]. We also introduce a morphological analysis to the 

evaluation of gait where one can see a pattern of gait and 

identify where changes occur in the gait pattern. Different 

parameters of gait indicate different type of gait abnormalities.  

Although our results are encouraging, there are a number of 

limitations. The number of subjects is relatively small (30) and 

no steps are taken to ensure a random sample. Coincidentally 

there is a gender bias with most subjects being male. The aim of 

the study is to see whether a Procrustes method can be used to 

analyse gait and not to study gait differences between the 

genders.  This gender bias is therefore unlikely to impact the 

value of our results and what they are trying to achieve. Other 

possible confounding factors are speed of walking as well as 

different height resulting in different gait parameters such as 

stride length. Our study was however intended to evaluate the 

normal baseline gait of our subjects only. The influence of these 

other factors will be studied in the future. Lastly, NMGS and 

NMGF are estimated using only 10 young subjects, while 

additional 2 young subjects are used for validation of our 

estimated NMGS and NMGF. There is the potential of a Type 1 

error (false positive) in detecting an effect that is not there.  
 However, our work is a proof of concept study that has 

established our method for gait evaluation. Future work is to 

establish a database with a larger number of subjects which 

stores more medical and physical information as well as 

longitudinal data across a longer period of time. Such 

longitudinal information will demonstrate the potential for 

using our method in monitoring response to treatment in patient 

with gait disorders. 

Normal gait is not determined by time and distance 

travelled. It is determined by the degree of variation in the gait 

features. While the time and distance can be assessed relatively 

easily using visual observation the variation is more difficult to 

determine. The Procrustes analysis uses translation and rotation 

among all gait feature shapes to find the best fit to identify such 

variation. We show how this normalization technique is used 

for a set of 10 normal young subjects to estimate NMGS. The 

RSD, RSSD, PSSD and RMSD distances between NMGS and 

all gaits are then calculated. We use the data from two 

additional young subjects to validate our results. This method 

has the potential to provide detailed analysis of gait on an 

individual basis. For example, from Table 1 we can see that the 

highest and lowest of RSD, RSSD, PSSD and RMSD distances 

are found in Y8 (young 8) and Y1, O13 (older 13) and O8 for 

older subjects respectively. From the individual gait features, 

the highest and lowest travelled distances are found from Y5 

and Y10, the highest and lowest time are found from Y4 and 

Y8. Interestingly, considering all gait features, the highest 

variation lies in Y8. This is demonstrated in the Procrustes 

shape obtained in Figure 11a.  

 
Figure 11: Lowest and highest shape differences from (a) young and (b) older 

subjects 

Although, other young subjects travelled distance and time are 

higher than Y8, based on the overall gait features, the shape 

difference between NMGS, Y8 is the highest. Similar findings 

are also found for older subjects. The lowest and highest shape 

difference is found for O8 and O13 shown in Figure 11b. 
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Investigating the history of O13 helps explain the shape of 

the graph. In this case O13 had a stroke and numbness in the 

right leg. He was unable to move his right leg and used crutches 

for moving. Thus most of the movement during walking was 

covered by the left leg and crutches are used to keep body 

balance. In Figure 11b we can see that the normal left leg shows 

greater movement but the abnormal right leg has less 

movement detected. In the future we will investigate further the 

impact of specific diagnoses and patient health on these gait 

parameters by exploring gait patterns obtained in specific 

diagnoses such as Parkinson disease, Stroke, and other 

conditions causing abnormal gaits. 

A t-test and Boxplots using RSD, RSSD, PSSD and RMSD 

distances show that the gait of young are distinguishable from 

older. The standard deviations are close to the mean indicating 

that the gait data distribution from young subjects’ is more 

consistent than that from older. The Box plots of the four 

different distance approaches, RSD, RSSD, PSSD and RMSD, 

show different distributions. They indicate that for young 

subjects RSSD and RMSD provides more consistent results 

with less standard deviation (SD) than RSD and PSSD. For 

older subjects the opposite was identified with a wider SD for 

RSSD and RMSD than RSD and PSSD. This difference is 

likely to arise as a consequence of the different mathematical 

formulas involved in calculating these measurements. In the 

future we will explore the reasons for this in more detail.  

To fully understand the degree of gait abnormality for older 

subjects, we use EDMA to locate the specific feature of the gait 

contributing to the abnormality. The process starts with 

estimating a mean form from a set of normal young gaits called 

as NMGF. It is then used to estimate the inter-feature distances 

that represents the distance between each feature from one to 

another. The form difference matrix is then estimated between 

NMGF and all gaits. Figure 12 shows the form difference of 

Y1, Y8, O8 and O13.  

 
Figure 12: Degree of abnormality from (a) young and (b) older adults 

Arguably, one can provide a multidimensional shape where 

each important feature is an axis which is to be explored in our 

future work. We have however deliberately chosen to use a two 

dimensional shape that is easy to visualize and interpret to start 

off.  Gait is a complex interaction of all features together and 

giving individual RMSDs may be difficult to interpret in the 

context of the global picture of the persons’ gait [45].  

With an aging population and the increase in chronic illness 

such as poor mobility and falls there is an increasing drive for 

new technologies to support treatment of patients at their own 

home. Our proposed system can be used to monitor gait 

abnormalities across a spectrum of diseases. A series of gait 

feature measurements on a regular basis can identify the 

progression or recession of changes in gait pattern as well as 

response to treatment with rehabilitation for these types of 

diseases and more. Growing young adults particularly if they 

have physical disabilities may develop gait abnormalities 

during puberty growth spurts. Periodic monitoring is becoming 

essential to make sure that such gait abnormalities are not 

progressing. Our method of gait evaluation can be used for such 

longitudinal monitoring for these cases. Our low cost gait 

evaluation system has the potential for widespread clinical use 

both at home and in a hospital setting. Using our method, it is 

possible to identify where in the gait cycle the abnormality lies 

and this enables therapists to identify problems to address these 

in a timely and in a more specific way. In future works, we plan 

to use our gait evaluation information to classify gait changes 

over time to identify abnormal gait patterns for the assessment 

of elderly fall risk, rehabilitation and sports applications. 

VI. CONCLUSION 

The aims of this study are to propose a novel method of gait 

evaluation using Procrustes superimposition and to investigate 

how each feature impacts on a gait using EDMA. We designed 

and implemented a portable system that can be used in both 

home and clinics without requiring access to a gait laboratory. 

Our method is objective and simple.  It has three parts: we use 

1) Procrustes for shape normalisation, 2) four techniques shown 

in Table 1 for gait quantification and 3) EDMA for identifying 

the degree of abnormality shown in Figures 10 and 12. This 

method also provides information to distinguish young from 

older gaits taking the full features distribution into account 

rather than relying on individual parameters such as specific 

length and time. EDMA can help to estimate and visualize the 

position of the gait abnormality. Our method offers several 

advantages: 1) it is easy to set up and implement; 2) it does not 

require complex equipment with segmentation of body parts 

required in a gait lab 3) it is relatively inexpensive and therefore 

increases its affordability decreasing health inequality; and 4) 

its versatility has the potential to increase its usability at home 

supporting inclusivity of patients who are home bound. 

Therefore, our method can help improve the accuracy of 

assessment and monitor the rehabilitation of patients with 

mobility problems. 
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