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Abstract. Falls are a major health concern in older adults. Falls lead to
mortality, immobility and high costs to social and health care services.
Early detection and classification of falls is imperative for timely and
appropriate medical aid response. Traditional machine learning models
have been explored for fall classification. While newly developed deep
learning techniques have the ability to potentially extract high level
features from raw sensor data providing high accuracy and robustness
to variations in sensor position, orientation and diversity of work envi-
ronments that may skew traditional classification models. However, fre-
quently used deep learning models like Convolutional Neural Networks
(CNN) are computationally intensive. To the best of our knowledge,
we present the first instance of a Hybrid Multichannel Random Neural
Network (HMCRNN) architecture for fall detection and classification.
The proposed architecture provides the highest accuracy of 92.23% with
dropout regularization, compared to other deep learning implementa-
tions. The performance of the proposed technique is approximately com-
parable to a CNN yet requires only half the computation cost of the
CNN based implementation. Furthermore, the proposed HMCRNN ar-
chitecture provides 34.12% improvement in accuracy on average than a
Multilayer Perceptron.

1 Introduction

Falls are a significant cause of death and injury in older adults [1]. 43% of the
older adults fall in a span of 5 years and 25% of those living alone in a span of
one year [2]. 62% of fall incidents cause injuries resulting in lack of mobility and
high mortality rates [2,3]. Falls incur high costs to health care services [1]. Early
classification and detection of falls is imperative for life saving health response
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services. Fall detection systems are known to reduce death incidents by 80% due
to prompt medical aid and hospitalization [4].

Current fall detection systems have a significant focus on traditional ma-
chine learning algorithms, such as decision tree, random forest algorithm, k-
nearest neighbour, support vector machine and principal component analysis
[5–7]. While, deep learning techniques offer significant benefits over traditional
machine learning classification models [8]. Deep learning has the ability to po-
tentially extract high level features from raw accelerometer signals [9] within
a context-aware setting [10] and can provide a robust and accurate method to
variations in work environments, sensor positions and orientations [11–13]. For
example, a model developed for a waist band sensor with traditional machine
learning techniques may not apply to the arm or wrist band sensor because of
the variations in acceleration values across different parts of the body [12]. Sim-
ilarly, a mobile phone based sensor classification model may not work well with
variations in mobile phone position and orientation, since sensors generate dif-
ferent signals in different contexts, to which traditional machine learning models
do not provide robust and accurate classification [13,14]. Variability in activities
of individuals may also play a role in accuracy of the classification model, e.g.
certain physically demanding work and sports environments may result in wrist
band accelerometer values not related to falls and may skew the classification
model [13]. Deep learning models have been proposed for fall detection, including
Convolutional Neural Networks (CNN) [15, 16], combination of CNN and Long
Short-Term Memory (LSTM) [17–19] and AutoEncoders (AE) [20]. However,
the deep learning techniques are computationally intensive both in terms of time
cost and hardware resources [21]. Random Neural Networks (RNN) introduced
by Gelenbe [22] have been reported to have exact and simple computational al-
gorithms due to their “product form” [23]. Gelenbe et. al introduced the deep
learning architectures for Random Neural Networks in [23] and improved it for
a multichannel dataset in [24].

In this paper, we propose a Hybrid Multichannel Random Neural Network
architecture for fall detection and classification, but without the dense clusters
of the Multichannel Random Neural Network in [24]. In contrast to the use of
dense clusters, the proposed design is simple and computationally inexpensive
for classification of 1D sensor signals for fall activity. The multichannel hybrid
architecture consists of RNN layers and fully connected feed forward Multilayer
Perceptron (MLP) with Rectified Linear activation Units (ReLU). The under-
lying concept of the proposed architecture is for the RNN layers to provide
low-dimensional feature space relevant to each accelerometer axis, separately.
While, merging at the fully connected Multilayer Perceptron with ReLU acti-
vation functions is used to learn a non-linear function over the entire extracted
feature space. It has the effect of diminishing non-relevant features from ac-
celerometer axes representing movement dimensions that may be least relevant
to activities and falls. The accelerometer data used for our work consists of val-
ues for three axes of motion ax, ay and az for falls and various activities of daily
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life. The data from the three accelerometer axes (128 sample window each) are
input to each of the channels in the proposed architecture resulting in an input
layer of size 3×128 and a fall or no fall decision is obtained from the network.
The proposed scheme is discussed in Section 4. The methodology used for train-
ing and testing of the proposed architecture is discussed in Section 5. Results
are tabulated and discussed in Section 6 where computational time cost and
performance accuracy is determined and compared with CNN and MLP imple-
mentations. The proposed HMCRNN scheme is also compared with a MCRNN
architecture with the same structure and size. The next Section discusses rele-
vant related work.

2 Related Work

There have been a number of recent applications of deep learning techniques
for activity and fall detection, including CNN and LSTM [25]. Quero et. al [15]
detect falls from vision based sensors and apply 3 different CNN models to raw
data. The work also evaluates the effect of kernel size and number of layers on
classification accuracy and reports up to 92% accuracy with three CNN layers.
Lu et. al [19] developed a 3D CNN for fall detection, which used both spatial and
temporal information for video classification. In addition, the output of 3D CNN
is used as an input for the LSTM network for higher accuracy. ConvLSTM [17]
applies deep learning to raw accelerometer data for fall risk assessment and
compares the performance of three deep learning models CNN, LSTM and a
combination of CNN with LSTM. However, our work is based on fall event
detection rather than fall risk assessment. Chen et. al [16] performed multi-class
classification on accelerometer signals for falls and daily activities of life with a
CNN consisting of 3 convolutional and 3 pool layers. Ordez et. al [18] utilised
a CNN in addition with a recurrent LSTM for multimodal activities dataset
including falls from a number of sensors. However, a major draw back of CNNs
is that they are computationally intensive [26].

Deep learning with Random Neural Networks (RNN) was introduced by
Gelenbe et. al in [23], which has been further explored by Gelenbe et. al in
[24,27–29]. The work in [23,24,27] is based on the concept that the structure of
human brain is composed of clusters of dense nuclei. They developed a mathe-
matical model based on dense clusters also known as the “Dense” RNN, where
each cluster is composed of neurons with statistically identical structure of con-
nections implemented as a spiking recurrent RNN. A training procedure based on
unsupervised and supervised learning is also proposed, which converts training
into a convex optimization problem that can utilise better or comparable solu-
tions for higher speed convergence than the gradient descent algorithm. In [24,27]
a Multichannel architecture of “Dense” RNN is proposed and applied for different
applications, such as recognition of 3D objects, classification of chemical gases
and activities of daily life. Recent advancements have implemented RNN models
to predict the toxicity levels of chemical compounds based on their physical-
chemical structure [30]. In [31] a deep learning model based on dense random
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neural networks for the detection of denial-of-service network attacks against
Internet of Things gateways is presented. Our proposal utilises the original sin-
gle cell architecture of RNN [30], however with a hybrid Multichannel RNN and
MLP network for improved accuracy. Furthermore, we achieve high accuracy
comparable to CNN without the dense RNN clusters and the proposed learn-
ing algorithms in [24, 27, 31]. Our work utilises RMSProp algorithm introduced
by Hinton [32], which adapts resilient propagation (RProp) [33] algorithm for
stochastic gradient descent (SGD) [34]. Riedmiller et. al [33] have utilised RProp
algorithm for learning in RNN. While, Basterrech et. al [35] combined RProp
with the gradient descent algorithm and used the Levenberg-Marquardt opti-
misation and momentum to achieve high convergence speeds than the gradient
descent algorithm.

Our work is based on a Multichannel RNN implementation, however for our
fall classification problem which has raw accelerometer window sizes of 128 sam-
ples, two RNN hidden layers are utilised for extracting a significant feature space.
This paper presents a hybrid implementation of MLP and RNN to achieve ac-
curacies comparable to a CNN implementation. We achieve an added advantage
of lower computational time complexity than CNN by not using dense clusters
and achieve comparable performance in accuracy to CNN architecture with the
RMSProp [32] training algorithm.

3 Random Neural Network

The RNN was introduced in groundbreaking work [22] and the behaviour of
large RNN networks was first considered in [36]. In RNN, the state of a neuron
is described by its potential, which is a non-negative integer and represents
the accumulation of signals. Neurons in RNN layers exchange excitatory and
inhibitory spiking signals probabilistically. The excitatory and inhibitory spikes
are represented by +1 and -1, respectively. Hence, given a potential vn(t) of a
neuron n at time t, then vn(t) ∈ R+

0 , where an inhibitory spike can only cancel
a positive signal and has no effect if vn(t) = 0. If vn(t) = 0, neuron n is in an
idle state, otherwise if vn(t) > 0 neuron n is in excited state. The neuron in
RNN transmits signals randomly, according to an exponential distribution with
firing rate r(n) and mean value of times between signals as 1/r(n). The signals
are transmitted to the next neuron m either as a positive excitatory signal with
probability p+(n,m) or as a negative inhibitory signal with probability p−(n,m).
The signal may also leave the network with probability d(n). The sum of all
probabilities must be equal to unity, mathematically:

N∑
m=1

[p+(n,m) + p−(n,m)] + d(n) = 1,∀n (1)

where N represents the total number of neurons. Given the arrival rates of
external excitation and inhibition as Λ(n) and λ(n) respectively, the probability



5

of firing of neuron n is [37]:

qn =
λ+(n)

r(n) + λ−(n)
(2)

where,

λ+(n) =

N∑
m=1

qmr(m)p+(m,n) + Λ(n) (3)

λ−(n) =

N∑
m=1

qmr(m)p−(m,n) + λ(n) (4)

The output qn is an activation function of excitatory inputs λ+(n) divided by a
sum of inhibitory inputs λ−(n) and a firing rate r(n). w+(n,m) and w−(n,m)
are non-negative rates for positive and negative signals, respectively, represented
as:

w+(n,m) = r(n)p+(n,m) ≥ 0 (5)

w−(n,m) = r(n)p−(n,m) ≥ 0 (6)

Expression for firing rate r(n) can be derived from Equations 1, 5 and 6, as:

r(n) = (1− d(n))−1
N∑
m=1

[w+(n,m) + w−(n,m)] (7)

λ+(n) < [r(n) + λ−(n)] (8)

where Equation 8 is a sufficient condition for existence of unique solution in
RNN. The values w+(n,m) and w−(n,m) represented by Equations 5 and 6 are
equivalent to weights in a classical neural network (Gelenbe [22]) and can be
trained using traditional learning algorithms, such as gradient descent.

3.1 Gradient Descent Algorithm for RNN

A standard gradient descent algorithm for training RNN is presented in this
section based on the work in [38] and generalised in [39]; an early application of
this algorithm is presented in [40]. Let the training set (X,Y ) consist of L input-
output pairs, whereX = {x1x1x1, . . . ,xLxLxL} are successive inputs and Y = {y1y1y1, . . . , yLyLyL}
are the respective output vectors, where each vector ylylyl = (y1l, . . . , yNl) and
each element ynl ∈ [0, 1]. The lth input pattern xlxlxl is represented by the pair
(ΛlΛlΛl,λlλlλl) of positive and negative flow rates, where ΛlΛlΛl = [Λl(1), . . . , Λl(N)] and
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λlλlλl = [λl(1), . . . , λl(N)] are vectors. The xnl data input of the lth training pattern
is: {

Λl(n) > 0, λl(n) = 0 If xnl > 0
Λl(n) = 0, λl(n) > 0 If xnl ≤ 0

(9)

The error cost function El of lth input-output pair for the gradient descent
algorithm is:

El =
1

2

N∑
n=1

αn(qn − ynl)2, αn ≥ 0 (10)

where αn ∈ [0, 1] decides whether neuron n is an output neuron, qn is a differ-
entiable function and ynl is the desired value. The function of gradient descent
is to minimize the error cost function described in Equation 10. Let two RNs a
and b be connected, then weights w+(a, b) and w−(a, b) are updated according
to the expression:

w+
t (a, b) = w+

t−1(a, b)− η
N∑
n=1

αn(qn − ynl)
[
∂qn/∂w

+(a, b)
]
t−1

(11)

w−
t (a, b) = w−

t−1(a, b)− η
N∑
n=1

αn(qn − ynl)
[
∂qn/∂w

−(a, b)
]
t−1

(12)

where η is the learning rate, ∂qn/∂w
+(a, b) and ∂qn/∂w

−(a, b) are the activation
function derivatives with respect to weights, for which the matrix form is proved
by Gelenbe in [38]. The partial derivative terms in Equations 11 and 12 can be
computed by defining a vector q = (q1, . . . , qN ) and a matrix W of size N ×N ,
where W is:

W = [w+(n,m)− w−(n,m)qm]/[r(m) + λ−(m)], n,m = 1, . . . , N. (13)

Also, defining vectors γγγ+(a, b) and γγγ−(a, b) with N entries, where each entry
n is defined as:

γ+n (a, b) =


−1

r(n)+λ−(n) if a = n, b 6= n
1

r(n)+λ−(n) if a 6= n, b = n

0 otherwise

(14)

γ−n (a, b) =


−1+qn

r(n)+λ−(n) if a = n, b = n
−1

r(n)+λ−(n) if a = n, b 6= n
−qn

r(n)+λ−(n) if a 6= n, b = n

0 otherwise

(15)

One can use the above notation to derive from Equation 2 the following vector
equations:

∂qqq/∂w+(a, b) = ∂qqq/∂w+(a, b) W + γγγ+(a, b)qa (16)
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∂qqq/∂w−(a, b) = ∂qqq/∂w−(a, b) W + γγγ−(a, b)qa (17)

Equation 16 and 17 can be equivalently written as:

∂qqq/∂w+(a, b) = γγγ+(a, b)qa[ I−W]−1 (18)

∂qqq/∂w−(a, b) = γγγ−(a, b)qa[I−W]−1 (19)

where I is a size N × N identity matrix. The training algorithm stops when a
certain defined convergence criteria is met or maximum number of iterations are
reached.

4 Proposed Hybrid MCRNN

The proposed architecture for fall classification and detection is a Hybrid Multi-
channel Random Neural Network (HMCRNN). It consists of Multichannel Ran-
dom Neural Network layers where each channel is fully connected. The separate
channels are merged at a Multilayer Perceptron (MLP) with two hidden layers
and an output layer. Each channel in HMCRNN consists of two hidden layers
with 128 and 64 random neurons respectively, resulting in 3×128 and 3×64 neu-
rons in the two hidden random neural network layers. The output activation
vector qqqRNN for an RNN layer implementation in Tensorflow/Keras can be de-
rived from Equation 2, using Equation 3, 4, 5 and 6. The activation function qn
for a neuron n can be given as:

qn =

∑N
m=1 qmw

+(m,n)

r(n) +
∑N
m=1 qmw

+(m,n)
(20)

where Λ(n) and λ(n) are 0 for neurons with no external input. For an entire
RNN layer with n = 1, . . . , N neurons, weight matrices W+ and W− can be
used to represent weights as:

W+ = [w+(m,n)], m, n = 1, . . . , N (21)

W− = [w−(m,n)], m, n = 1, . . . , N (22)

while the activation function outputs of neuron from the previous layer can be
represented as a vector x, where x is:

x = [qm], m = 1, . . . , N (23)

The final RNN layer can be represented in matrix form as:

qqqRNN =
W+ · x

rrrRNN + W− · x
(24)

Where qqqRNN is a vector of activation values of the RNN layer. W+,W− ∈ R+

corresponding to matrix forms of Equations 5 and 6 represent weight parameter
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matrices, while rrrRNN is a vector of constants. The 3 channels are fully connected
to 92 neurons at the first MLP layer followed by 16 neurons in the second MLP
layer. The hidden MLP layers uses the ReLU activation function. The output
activation vector qqqMLP for a ReLU MLP layer with a preceding RNN layer is
given as:

qqqMLP = fReLU (WMLP · qqqRNN + bbb) (25)

Where WMLP and bbb are weight matrix and bias vector of the MLP layer,
respectively. qqqRNN is the output activation vector for the preceding RNN layer.
The final output layer is a single input neuron with a sigmoid activation func-
tion for binary classification. The proposed HMCRNN is implemented with and

Fig. 1: Hybrid deep MCRNN with dropout layers in Tensorflow/Keras

without dropout regularization [41] in Tensorflow and Keras. Figure 1 shows a
typical dropout regularization implementation in Keras, where each layer includ-
ing the input and hidden layers are followed by a dropout layer. The dropout
layer works by randomly dropping or turning off a fraction of units, see Sec-
tion 5 on methodology for fractions used. The three raw accelerometer signals
ax, ay and az from each of the three axes of motion x, y and z respectively, are
normalised between 0 and 1. The normalised signals are used as inputs to the
HMCRNN for classification of fall activity. Each RNN channel layer processes
the three accelerometer signals separately. The output of these layers are then
processed with the merged and fully connected MLP layers.

The proposed hybrid HMCRNN architecture was trained and tested for fall
detection with the RMSProp optimization of the gradient decent algorithm. The
RMSProp optimization exploits the moving average of the square of gradients
to normalize the gradient. It balances step size and avoids the vanishing or
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exploding of the gradient with the propagation of energy. It is equivalent to the
first update vector of the Adadelta [42], and can be expressed as:

E[grad2]t = γE[grad2]t−1 + (1− γ)grad2t (26)

φt+1 = φt −
η√

E[grad2]t + ε
(27)

Where E[grad2]t and grad2t are the running average and gradient at time
t respectively, while E[grad2]t−1 is the running average at time t − 1. γ is the
moving average constant. The φt+1 ∈ Rd represents the model’s parameter at
time t+ 1, η is the learning rate and the second term of Equation 27 represents
the parameter update vector. The training and testing methodology for all the
networks is discussed in the next section.

5 Methodology

Fall Dataset: The data used for our work is a publicly available accelerometer
dataset by Kwolek et. al [43] for falls and various Activities of Daily Life (ADL)
including walking up/down stairs, sitting on a chair, lying down, picking up
objects, standing up and sitting down. The fall and ADL data is acquired with
an Inertial Management Unit (IMU). The IMU device used is a motion sensing
platform with an overall sampling rate of 256 Hz. The data is transmitted in real-
time, wirelessly through Bluetooth for processing. The IMU device consists of a
16-bit tri-axis gyroscope and a 12-bit tri-axis accelerometer. The accelerometer
sensor of the device was used for analysis and classification of falls in our work.
The accelerometer sensor measures acceleration in units of G-force (g) for three
axes of motion ax, ay and az with obtained values ranging from -8 to 8g. The
sensor was worn near the pelvis by five volunteers who performed three kinds of
falls, namely forward, lateral and backward apart from ADLs.

The received accelerometer values are normalised between 0 and 1 to sat-
isfy the RNN constraints, as outlined by Gelenbe in [38]. The sensor values are
divided into 128 sample windows for classification of falls and ADLs. The dura-
tion of activities vary and 128 samples capture basic movements, such as falling,
sitting down, and lying down within the dataset used for fall classification. The
activities that span longer or shorter durations are divided into integer multiples
of 128 sample windows with zero padding. Tri-axes accelerometer values for 128
sample segments are illustrated in Figure 2 for fall activity. Samples from each of
the activities were used for training and validation of the proposed architecture.

Experimental Specifications: The training and testing of fall activity dataset
for classification was performed on a hardware platform with Intel core i5 quad
core CPU and 8 GB of RAM with Ubuntu 16.04 Xenial operating system. The
proposed system was designed, implemented and tested in Tensorflow and Keras.
Four deep multilayer neural networks, namely MLP, CNN, Multichannel Ran-
dom Neural (MCRNN) and the proposed “Hybrid” architecture Multichannel
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Fig. 2: Tri-axes accelerometer signals ax, ay and az for fall activity

Random Neural Network (HMCRNN) were implemented. The MLP, CNN and
HMCRNN were implemented with sigmoid output activation functions for bi-
nary classification between falls and no fall activities. Our CNN output is also
based on the sigmoid activation function, since it is well known that the multi-
class softmax activation function reduces to a sigmoid for two class problems [44].
The structures were chosen to give best results on the fall activity dataset [43].
The structures of deep neural networks with input, hidden and output layers are
summarized in Table 1 and are discussed below.

Table 1: Deep neural network structures

Deep Network Input Layer Hidden Layers Output Layer

Deep MLP 384 384-192-92-16 1 (Sigmoid)

CNN 3x8x16 Conv-Conv-MaxPool-FC 1 (Sigmoid)

MCRNN 3x128 3x128-3x64-1x92-1x16 1 (Sigmoid)

HMCRNN 3x128 3x128-3x64-1x92-1x16 1 (Sigmoid)

The deep MLP has fully connected dense layers with an input layer of size
384, four hidden layers of size 384-192-92-16 and a single node output layer with
sigmoid activation functions, resulting in a total of 6 layer MLP. The CNN struc-
ture in Gelenbe et. al [24] is used for comparison with the HMCRNN. It consists
of two convolution layers, one pooling and a fully connected layer, apart form
input and output layers. The three channel input (3 × 128) from each of the
accelerometer’s axes ax, ay, az is reshaped into (3 × 8 × 16) before input to the
convolutional layer. While, Gelenbe et. al [24] reshape due to their large input
vector size of 3000 samples. We observe that reshaping provides better perfor-
mance for our three axis accelerometer fall dataset. The convolutional layers
use 30 kernels with [2 × 2] size. While, pooling layer is a max-pool layer and
is flattened before connecting to the Fully Connected (FC) layer. The MCRNN
structure consists of 3-channel layers followed by merged layers. It consists of
3×128 input layer followed by 2 multichannel hidden layers 3×128-3×64 and
2 FC dense MLP layers 1×92-1×16, followed by a single node output layer.
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The proposed HMCRNN for fall detection and classification consists of a single
3×128 input layer followed by 2 multichannel RNN hidden layers 3×128-3×64
and 2 FC MLP dense layers 1×92-1×16, followed by a single node output layer,
resulting in a total of 6 layers. All the networks were trained and tested on the
fall dataset with the stratified k-fold procedure.

Stratified K-Fold Procedure: The fall dataset was split into 4 folds, with
3 folds for training and 1 fold for testing, resulting in a split of 75%-25% be-
tween training and test data. All the networks were trained with the RMSProp
optimizer [32] for all four permutations of stratifed k-fold. The learning param-
eters for RMSProp algorithm are given in Table 2.

Table 2: Learning algorithm parameters

Learning Parameters

Learning Algorithm RMSProp
Learning Rate, η 0.001
Moving Average Parameter, γ 0.9
Epochs, ε 40

The final results were obtained from mean and standard deviation of the
stratified k-fold permutations.

Dropout Regularization: The training and testing procedures were repeated
with regularization to reduce over fitting of the training model and improve
testing accuracy. The dropout technique introduced by Srivastava et. al [41] was
used for regularization. Dropout procedure was applied to both input layer and
the hidden layers. The dropout value of 15% was initially used and increased up
to 30% to evaluate higher performance for testing. The best testing performance
was used as the final value with the dropout method.

6 Experimental Results and Discussion

The test results give the highest accuracy of 91.5% for 6-layer HMCRNN ar-
chitecture, as illustrated by Network III in Table 3. However, if the number of
layers are increased to 7 by either adding RNN or MLP layer, the accuracy de-
creases to approximately 82%. Accuracy of the network further decreases with
increasing the number of layers to 8. Similarly, a decrease in number of layers
to 5 results in lower accuracy of 85%. The proposed network is optimal with
the highest accuracy of 91.5%, while an increase or decrease in layers results in
lower accuracy.

The test results of the proposed 6-layer HMCRNN, MLP, MCRNN and CNN
are presented as percentages of confusion matrix values in Table 4 for compar-
ison. The percentage values for True Positive (TP), True Negative (TN), False
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Table 3: Impact of HMCRNN layers on accuracy

Network I II III IV V VI

Total Layers 5 5 6 7 7 8

Hidden Layers
RNN Layers 1 2 2 2 3 3
MLP Layers 2 1 2 3 2 3

Total Neurons 877 977 1069 1133 1165 1230

Accuracy 85.7 85.78 91.5 82.84 82.92 75.82

Positive (FP) and False Negative (FN) classifications are averaged over all 4-
folds. It is clear from Table 4 that HMCRNN gives the highest true positive
values for falls at 38.56% as compared to other classifiers, as well as the lowest
false classifications overall of 8.5%.

Table 4: Positive and negative classifications

Classifier TP (%) TN (%) FP (%) FN (%)

MLP 2.10 55.09 0 42.81

MCRNN 18.63 48.61 8.58 2.42

CNN 37.17 52.86 2.94 7.03

HMCRNN 38.56 52.94 4.25 4.25

The FP values for all the classifiers are further analysed in Table 5 and pro-
vide insight into the activities misclassified or confused by classifiers as falls.
Table 5 shows that the classifiers MCRNN, CNN and HMCRNN misclassify “ly-
ing down” as falls. CNN and HMCRNN produce the highest false positive values
for falls due to the “lying down” activity. Furthermore, amongst all the activ-
ities, only lying down activity is misclassified as falls by CNN. Also, MCRNN
misclassifies both lying and sitting activities as falls, while the false positives
for MLP are zero in Table 5. This is due to the poor classification response of
MLP with a lower positive classification value of 2.1 % (TP) and 0% (FP), as
illustrated in Table 4.

The final training and testing accuracies of fall detection with and without
the dropout regularization are illustrated in Table 6. The MLP architecture with
6 layers (Table 1) provides 57.2% testing accuracy. No improvements in testing
accuracy of MLP is observed with dropout even though dropout results in a slight
decrease in training accuracy. MCRNN performs better than MLP at 69.85%
with dropout. However, the performance accuracy of MCRNN is considerably
low as compared to the proposed HMCRNN and CNN implementations. The
CNN architecture provides an improvement of 20% over a traditional MCRNN
with an accuracy of 91.22%. While, the proposed hybrid HMCRNN has the
highest testing accuracy for fall detection at 92.23% with dropout, which is
comparable to the CNN performance of 91.22%.
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Table 5: False Positives: Activities misclassified as falls

Activities MLP (%) MCRNN (%) CNN (%) HMCRNN (%)

Sitting down 0 1.47 0 0

Sitting on chair 0 2.94 0 0

Sitting down/Standing up 0 1.39 0 0

Lying down 0 1.39 2.94 2.86

Lying on bed 0 1.39 0 0

Picking up objects 0 0 0 1.39

Walking 0 0 0 0

Total FP 0 8.58 2.94 4.25

Table 6: Accuracies of deep neural networks on fall dataset

Deep Network Training Accuracy (%) Testing Accuracy (%)

MLP 58.59 (+/-2.85) 57.19 (+/-1.63)

MLP-Dropout 57.62 (+/-0.67) 57.19 (+/-1.63)

CNN 96.66 (+/-0.84) 90.03 (+/-4.59)

CNN-Dropout 96.19 (+/-0.04) 91.22 (+/-6.25)

MCRNN 70.04 (+/-5.39) 67.24 (+/-2.29)

MCRNN-Dropout 69.23 (+/-2.36) 69.85 (+/-1.35)

HMCRNN 95.89 (+/-2.31) 91.5 (+/-2.61)

HMCRNN-Dropout 95.12 (+/-2.25) 92.23 (+/-1.82)

Fig. 3: Normalized time cost w.r.t.“MLP without dropout”
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The CNN architecture is computationally intensive and has a high computa-
tional time cost of ∼ 2× compared to the proposed HMCRNN architecture. The
HMCRNN computational time cost is 51% less without dropout regularization
and 43% less with dropout than the CNN architecture. The total computational
time cost of each deep learning architecture is illustrated in Figure 3, normalized
to an MLP implementation without dropout regularization. The total time costs
of the three architectures MLP, MCRNN and HMCRNN for falls and activities
dataset, are comparable with a maximum of 7% difference without dropout and
13% with dropout regularization.

The proposed work demonstrates comparable accuracy to CNN architec-
ture and lower computational time with a hybrid network for fall detection and
classification. While, activity recognition utilising RNN models have achieved
high-accuracy classification with dense RNN clusters and enhanced learning al-
gorithms [24,27], the proposed hybrid approach is orthogonal to the dense RNN
structure and the efficient learning algorithms in [24,27,31]. The proposed work
can therefore benefit from the opportunities of enhanced learning algorithms and
dense RNN clusters to further improve accuracy.

7 Conclusion and Future Work

Falls are a health hazard in older adults and lead to high mortality rates. Deep
learning techniques have been explored for fall detection to achieve high accuracy.
However, frequently used deep learning models like CNN achieve high accuracy
at the cost of high computational time. In contrast to CNN based techniques,
a novel computationally efficient RNN based hybrid architecture is presented.
The proposed Hybrid Multichannel Random Neural Network (HMCRNN) ar-
chitecture for fall classification and detection exploits raw accelerometer signals
to provide high accuracy of classification. HMCRNN performs better than the
Multichannel Random Neural Network (MCRNN) with an improvement of 20%.
HMCRNN implementation offers a high accuracy of 92.23% for fall detection,
comparable to the CNN performance of 91.22% at a much lower computational
cost. The CNN architecture takes up to ∼ 2× the computational time of the
HMCRNN for the fall dataset. The proposed scheme offers 51% less total time
cost without dropout regularization and 43% less with dropout regularization for
fall classification. In comparison to an MLP implementation, our scheme incurs
10% higher computational time cost on average with a 34.12% improvement in
accuracy. Future work intends to use multiple datasets including smart phone
accelerometer data for classification of falls. Additionally, this will also extend
the present work to include a larger number of activities such as running, slow
and fast walking etc.
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