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SUMMARY

Direct observation of morphological plant traits is tedious and a bottleneck for high-throughput phenotyp-

ing. Hence, interest in image-based analysis is increasing, with the requirement for software that can reli-

ably extract plant traits, such as leaf count, preferably across a variety of species and growth conditions.

However, current leaf counting methods do not work across species or conditions and therefore may lack

broad utility. In this paper, we present Pheno-Deep Counter, a single deep network that can predict leaf

count in two-dimensional (2D) plant images of different species with a rosette-shaped appearance. We

demonstrate that our architecture can count leaves from multi-modal 2D images, such as visible light, fluo-

rescence and near-infrared. Our network design is flexible, allowing for inputs to be added or removed to

accommodate new modalities. Furthermore, our architecture can be used as is without requiring dataset-

specific customization of the internal structure of the network, opening its use to new scenarios. Pheno-

Deep Counter is able to produce accurate predictions in many plant species and, once trained, can count

leaves in a few seconds. Through our universal and open source approach to deep counting we aim to

broaden utilization of machine learning-based approaches to leaf counting. Our implementation can be

downloaded at https://bitbucket.org/tuttoweb/pheno-deep-counter.

Keywords: image-based plant phenotyping, machine learning, deep learning, leaf counting, multimodal,

night images.

INTRODUCTION

Image-based plant phenotyping has recently become a valu-

able tool for quantitative analysis of plant images. However,

its rapid expansion has highlighted the need for reliable soft-

ware solutions with the power to analyze data efficiently

(Gehan et al., 2017). While the bottleneck was previously

thought to be the acquisition of imaging data (i.e. the hard-

ware; Furbank and Tester, 2011), it has recently shifted to a

lack of reliable software (and algorithms) (Minervini et al.,

2015a), due to the sheer number of imaging data that need to

be analyzed to extract quantitative plant traits. Machine learn-

ing has been proposed as a suitable solution to effectively

extract plant traits (Singh et al., 2016; Tsaftaris et al., 2016).

Leaf count is an important plant trait and is directly

related to the development stage of the plant (Boyes et al.,

2001) and its flowering time (Chien and Sussex, 1996),

yield potential (Kouressy et al., 2008) and health (Rah-

nemoonfar and Sheppard, 2017). Until recently, leaf count-

ing was treated as a by-product of leaf segmentation with

deterministic image processing techniques. For example,

most of the methods in the seminal collation study of leaf

segmentation (Scharr et al., 2016) perform the following

processing steps: first, they isolate the plant from the outer

background (per plant segmentation) and then apply cer-

tain heuristics to delineate each leaf (per leaf segmenta-

tion). For example, IPK (Pape and Klukas, 2015a) uses color

images to extract geometrical representations of the iso-

lated plant to find suitable split points to separate each

leaf, relying on assumptions about plant shape and
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structure (e.g. reduced leaf overlap and visible long leaf

blades). Aksoy et al. (2015) employed a clustering algo-

rithm to delineate leaves on near-infrared (NIR) images of

tobacco plants, where the per leaf segmentation was fur-

ther improved using shape models. In general, the main

drawback of these deterministic approaches is that such

heuristics may fail when they encounter new data, reduc-

ing their applicability to different setups: for example, the

performance of IPK drops by over 20% when this algorithm

is applied to tobacco plants, where blade overlap is signifi-

cant (Pape and Klukas, 2015a). Hence, users are faced with

a dilemma: either to adapt the many parameters of these

methods or to derive completely new ad hoc heuristic

methods suitable for new imaging settings and plant

species.

Machine learning is an alternative approach: rather than

having users adapt methods, they instead provide their

expertise by doing tasks they know well and have always

been doing – phenotyping by observation. For example, in

the context of leaf counting, a user may give observations

(referred to as annotations in machine learning) either by

delineating each leaf (a time-consuming finely grained

annotation) or by giving the location of each leaf (less time-

consuming) or just the total number of leaves in each plant.

It is then the task of the machine-learning algorithm to learn

from such examples (known as the training set), i.e. the

combination of images and corresponding annotations.

Romera-Paredes and Torr (2016) and Ren and Zemel

(2017) proposed very sophisticated deep neural network

models that, given a training set of images and precise leaf

delineations, learn per leaf segmentation and leaf count.

They both evaluated their general method in plant images

of wild-type Arabidopsis based on an open dataset (Min-

ervini et al., 2016). However, the collection of such finely

grained annotations is tedious and time-consuming

(Minervini et al., 2015b; Minervini et al., 2017), particularly

when one must annotate data of significant diversity to

account for large leaf variation, different imaging condi-

tions, etc. In addition, these methods are very sensitive to

how leaves are arranged (i.e. plant topology). Due to the

intricacies of the learned models, such approaches cannot

fully accommodate the variability of leaf appearance and

arrangement not seen during training.

Therefore, it remains of interest to identify methods that

can learn robust leaf counting predictors without the need

for such sophisticated annotations. Giuffrida et al. (2015)

and Pape and Klukas (2015b) made the observation that

elementary cues in the image could relate to plant leaf

count. A predictor can thus be built by first extracting the

cues (features) from images and then relating them to the

corresponding total leaf count. In particular, Pape and Klu-

kas (2015b) used hand-designed geometric features from

the per plant segmentation mask to learn a relationship (a

regression) between such features and leaf count. This

approach required expert knowledge of the appropriate

geometric features to use. On the contrary, the method of

Giuffrida et al. (2015) uses K-means (Coates et al., 2011),

instead of hand-designed features, to learn a visual dic-

tionary from the data in a context-adaptive fashion without

expert knowledge.

Recently, deep neural networks have also been

employed to address the leaf counting problem. These

approaches essentially combine the task of finding suitable

image features with the task of learning a good regression

model relating the features to leaf count (Aich and Stav-

ness, 2017; Dobrescu et al., 2017a; Ubbens and Stavness,

2017). These approaches show significant promise, but

each of these is specialized: a new model and network for

each plant species or cultivar, imaging condition, etc is

required. In addition, all three approaches use only optical

images, whereas different imaging sensors such as NIR or

fluorescence (FMP) are now also commonly employed in

plant phenotyping (Fiorani and Schurr, 2013; Klukas et al.,

2014; Apelt et al., 2015; Gehan et al., 2017) .

In this paper, we introduce the Pheno-Deep Counter

(briefly PhenoDC), a multi-input deep network that combi-

nes information coming from different imaging sources

(termed modalities hereafter) to count the number of

leaves of rosette-shaped plants. In contrast to other

approaches, we aim to build a single unified model that

can be used for a variety of plants and imaging scenarios

where plants are seen from the top in a laboratory setting.

Critically, we demonstrate that by agglomerating data from

a variety of sources the model learns better (deep learning

algorithms require large numbers of data; Sun et al., 2017).

Our approach also significantly enhances utility, as the

same model can be used in a variety of scenarios and can

be easily adapted for this purpose.

The main contributions of this work are:

(i) Multi-modal model: an architecture that benefits from,

and can use, multiple imaging modalities, for example

classical color (RGB) and NIR images. We show that by

combining information coming from multiple modali-

ties, PhenoDC improves leaf count prediction. As an

example, training our network with RGB images alone,

PhenoDC predicts the correct leaf count in 55% of

cases. Adding other modalities (e.g. NIR and FMP), the

prediction accuracy increases to 88%.

(ii) Ease of adaptation to new settings: our model can

easily be adapted to work with another imaging

setup (still assuming a top view), either by simply

specializing the network for the new task or perform-

ing data agglomeration. We show that with a of

handful plant images (regardless of the species

tested) our network can be trained to count leaves for

the new scenario. We showcase several experiments

using images of Arabidopsis thaliana plants, as well
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as other plant species such as tobacco and komat-

suna (a Japanese vegetable).

(iii) State-of-the-art performance: our approach can predict

the number of leaves in unseen images with an error

of �1 leaf in about 80% of cases as compared with

57% in Giuffrida et al. (2015), further closing the gap to

achieving human-level performance (Giuffrida et al.,

2018). This improves further when multi-modal learn-

ing is used.

(iv) Nocturnal leaf counting: we show that our network is

also capable of counting leaves during the night by

using NIR images, extending the applicability through-

out the diel cycle, a feature not yet addressed by any

other methods.

We perform a comprehensive analysis and comparison with

other methods using a variety of data sources (both in-house

and publicly available). To aid adoption of our approach, we

release code and trained models to allow plant scientists to

utilize them in their experiments. This work also includes

several experiments and discussion points to help elucidate

how one can adopt such an approach (e.g. how many anno-

tated samples are required and how to collect annotations)

and how to interpret findings.

RESULTS

To showcase the performance of our approach, we

employed four different datasets:

(i) A special collection from the PRL dataset (Minervini

et al., 2016) and Aberystwyth dataset (Bell and Dee,

2016) that was used in the latest CVPPP 2017 Leaf

Counting Challenge (LCC)1; it contains five different

sub-datasets (cf. Table S1 in the online Supporting

Information). These datasets contain RGB color images

of four different plant experiments, using different

plants (and different cultivars), growth conditions and

camera settings.

(ii) The multi-modality imagery database for plant pheno-

typing (Cruz et al., 2016), containing images of A. thali-

ana Col-0 acquired in three different modalities (RGB,

NIR, FMP);

(iii) The RGB images in the komatsuna dataset (Uchiyama

et al., 2017);

(iv) Nocturnal Arabidopsis plant images acquired using a

NIR camera (Dobrescu et al., 2017b).

Visual samples of these datasets are shown in Figure S1,

whereas technical details are reported in Table S1.

Our deep neural network, shown in Figure 1 and detailed

in the Experimental Procedures, has been designed with the

aim of accommodating inputs of variable size. To achieve

this, our architecture breaks down the task of counting into

several sub-tasks. First, each image goes through a network

that aims to find a fixed length vector representation to bet-

ter describe a plant image. This is achieved by a sub-net-

work (modality branch), where each input source is

processed independently. However, during training the net-

work learns what can be usefully retained from each modal-

ity, which results in an image descriptor (a vector per image)

that jointly represents all the useful information. Multi-

modal plant representation is accomplished by the feature

fusion part of the architecture (details in Experimental Proce-

dures). Finally, the fused image descriptor is related to leaf

count by learning the parameters of a non-linear regression

model between the descriptor and leaf count. After the net-

work has been trained, evaluation of a plant’s image(s) (the

plural is used to denote the presence of different modalities)

provides an estimate of the leaf count.

To quantitatively assess the performance of our approach,

we adopt the same evaluation metrics as in Giuffrida et al.

(2015) (now a consensus in the broad community):

(i) Difference in count (DiC): mean and standard deviation

of the differences between predicted leaf counts and

ground truth (best value when mean and standard

deviation are close to 0);

(ii) Absolute difference in count (|DiC|): similar to before,

but the differences between prediction and ground

truth are absolute values (best value when mean and

standard deviation are close to 0);

(iii) Mean squared error (MSE): mean of the squared differ-

ences between prediction and ground truth (best value

near to 0);

(iv) Percentage agreement (%): number of times (as a per-

centage) that the predicted leaf count is exactly correct

(best value at 100%).

Technical details about our deep architecture are provided

in the Experimental Procedures, whereas evaluation met-

rics are detailed in Methods S1.

We present a comprehensive set of experiments that

demonstrate the reliability of PhenoDC for leaf counting.

To train our model, data are split into (at least) two data-

sets, namely a training and a testing set. The training set is

needed to optimize the set of parameters specifying our

model (see Experimental Procedures for further details).

The testing set is required to evaluate the performance of

the algorithm, using unseen data.

In the following, in a series of experiments we show:

(i) the benefit of data agglomeration across different

sources;

(ii) the superior prediction performance in the recent

benchmark CVPPP 2017 dataset;

(iii) that prediction error reduces when using multimodal

sources with the dataset of Cruz et al. (2016); and lastly
1More information at: https://www.plant-phenotyping.org/

CVPPP2017-challenge.
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(iv) a set of experiments that demonstrate the flexibility of

our network to adapt to other contexts, such as differ-

ent plant species.

Proof of concept: data agglomeration helps

Herein we aim to show that increasing data diversity in fact

improves accuracy.

We isolated the A1 set of images in the CVPPP 2017

dataset (Minervini et al., 2016), which includes 128 images

of A. thaliana Col-0 for training. We followed the training

procedure of Dobrescu et al. (2017a), assessing the perfor-

mance of our network using a fourfold cross-validation,

randomly splitting the training set by the following propor-

tions: (i) 64 images for learning; (ii) 32 images for valida-

tion; and (iii) 32 images for testing. The validation

set allows us to monitor model performance during train-

ing and prevents overfitting (the case where the model has

essentially memorized the training set and therefore can-

not adapt to new data).

Using this learning protocol, the fourfold cross-valida-

tion results are as follows:

(i) DiC �0.81 (0.85);

(ii) |DiC| 0.94 (0.70);

(iii) MSE 1.38;

(iv) percentage agreement 25%.

We proceeded to add more data drawn from the CVPPP 2017

dataset, namely the A2 (A. thaliana of five genotypes), A3 (to-

bacco) and A4 (A. thaliana Col-0) sets of images. As we

continued to add data, we observed that the MSE reduced

by about 50% (MSE 0.72). A similar improvement was seen

in the percentage agreement, which increased to 56%.

Finally, we wanted to evaluate which areas of an image con-

tribute to the count. Ideally, the count produced by the net-

work should only be influenced by regions of the image that

contain plant. This analysis was performed using the

method in Dobrescu et al. (2017a). We describe this analysis

in Methods S2 and show the evaluation in Figure S2 on sam-

ple images taken from the CVPPP 2017 dataset.

This experiment highlights the benefit of data agglomer-

ation, even when the sources are diverse. Since deep net-

works can form very complex functions (between input

and output) the more data the better, and being ‘universal’

is better than being specialized (e.g. one model per plant

species) as it reduces the chance of memorization.

Evaluation and comparison with the state of the art on the

CVPPP 2017 benchmark dataset

In this experiment we assess the performance of our net-

work when trained on the heterogeneous CVPPP 2017

plant dataset and how it compares with state-of-the-art

methods in the literature.

We report quantitative results in Table 1, comparing our

performance with other deep learning methods for leaf

counting (Aich and Stavness, 2017) and leaf counting via

segmentation (Romera-Paredes and Torr, 2016; Ren and

Zemel, 2017), as well as with the machine-learning algorithm

that won CVPPP LCC 2015 (Giuffrida et al., 2015). The CVPPP

Figure 1. Schematic of the proposed deep architec-

ture.

(a) A modality branch, consisting of ResNet50 (He

et al., 2016), extracts modality-dependent plant fea-

tures as a feature vector of 1024 neurons (RGB, visi-

ble light; NIR, near infrared; FMP, fluorescence).

(b) The fusion part combines those features to

retain the most useful information from each

modality.

(c) The regression part relates fused information

with leaf count as a non-linear regression. (This fig-

ure is best viewed in color online.) [Colour figure

can be viewed at wileyonlinelibrary.com].
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2017 dataset contains as a subset data from previous compe-

titions, allowing comparisons across the years and methods

(but not on all data). Overall, PhenoDC outperforms all other

methods, scoring the lowest MSE error in all datasets (1.56).

Note that the single input model of our deep architecture

achieved the best results on the CVPPP 2017 dataset in the

LCC. A paired t-test shows statistically significant gains when

compared with Aich and Stavness (2017) (P-value <0.0001;
last column of Table 1). Figure 2 collates results across all

images as: (i) the correlation between ground truth and pre-

diction, showing the high agreement of our method

(R2 = 0.96); (ii) the distribution of error in leaf count, where it

can be seen that in about 80% of cases the error is confined

within the �1 leaf range (for comparison Giuffrida et al.

(2015) report 57% agreement for the same range).2 On some

occasions PhenoDC might predict leaf counts incorrectly.

Figure S3 shows some examples of such cases taken from

the training set (Figure S3a, ground truth 20, predicted 17;

Figure S3b, ground truth 18, predicted: 15; Figure S3c,

ground truth: 13, predicted: 7). Overall, these images show

several challenges to the network, including significant over-

lap and concentrated small leaves in the central part of the

plant.

In conclusion, PhenoDC is more reliable in terms of leaf

counting than the current state-of-the-art approaches.

Multiple modalities and leaf counting

In this section we assess whether our network benefits

from multi-modal learning, leading to improved leaf count

predictions.

For this experiment we used the dataset of Cruz et al.

(2016), which contains images of A. thaliana wild-type Col-

0 acquired using multiple sensors. Cruz and collaborators

used 16 plants for 9 days, acquiring top-view images from

9 a.m. to 11 p.m. (15 frames a day). This setup produced a

dataset containing 2160 individual images altogether,

albeit only 576 of them are annotated (images taken at

9 a.m., 12 p.m., 4 p.m. and 8 p.m.). Images were taken

simultaneously in the following modalities: RGB, FMP, NIR

and depth. The multiple sensors acquired the same plants

simultaneously. Due to the heterogeneity of such sensors

and their placement, image resolution (and effective image

size) and alignment vary. We excluded depth images due

to their extremely low resolution (about 30 9 30 pixels)

Table 1 Testing set results for PhenoDC trained on visible light (RGB) images from the CVPPP 2017 dataset (Scharr et al., 2014; Bell and
Dee, 2016; Minervini et al., 2016). Difference in count (DiC) and absolute DiC (|DiC|) are given as mean and standard deviation (in parenthe-
sis), with lower values being better. For the mean squared error (MSE) a lower value is better, while for percentage agreement (%) a higher
value is better

A1 A2 A3 A4 A5 Alla

DiCd

PhenoDC (this paper) �0.39 (1.17) �0.78 (1.64) 0.13 (1.55) 0.29 (1.10) 0.25 (1.21) 0.19 (1.24)

Giuffrida et al. (2015) �0.79 (1.54) �2.44 (2.88) �0.04 (1.93) – – –
Romera-Paredes and Torr (2016) 0.20 (1.40) – – – – –
Aich and Stavness (2017) �0.33 (1.38) �0.22 (1.86) 2.71 (4.58) 0.23 (1.44) 0.80 (2.77) 0.73 (2.72)

|DiC|d

PhenoDC (this paper) 0.88 (0.86) 1.44 (1.01) 1.09 (1.10) 0.84 (0.76) 0.90 (0.85) 0.91 (0.86)

Giuffrida et al. (2015) 1.27 (1.15) 2.44 (2.88) 1.36 (1.37) – – –
Romera-Paredes and Torr (2016)b,c 1.10 (0.90) – – – – –
Ren and Zemel (2017)b,c 0.80 (1.10) – – – – –
Aich and Stavness (2017) 1.00 (1.00) 1.56 (0.88) 3.46 (4.04) 1.08 (0.97) 1.66 (2.36) 1.62 (2.30)

MSEd

PhenoDC (this paper) 1.48 3.00 2.38 1.28 1.53 1.56

Giuffrida et al. (2015) 2.91 13.33 3.68 – – –
Aich and Stavness (2017) 1.97 3.11 28.00 2.11 8.28 7.90

%e

PhenoDC (this paper) 33.3 11.1 30.4 34.5 33.2 32.9

Giuffrida et al. (2015) 27.3 44.4 19.6 – – –
Aich and Stavness (2017) 30.3 11.1 7.1 29.2 23.8 24.0

aA paired t-test between our method and Aich and Stavness 2017 (the only two approaches from the CVPPP Workshop 2017) shows statisti-
cally significant differences (p value <0.0001).
bTrained on A1 only.
cTraining and inference are performed using per-leaf segmentations and not total leaf count as with the other methods.
dBest values are those closer to 0.
eBest values are those closer to 1 (i.e. 100% in the case of Percentage Agreement).
Entries in bold represent the best performance.

2It is relevant to point out that, unlike in our method, Giuffrida

et al. (2015) used only the A1, A2 and A3 images. PhenoDC still

has an accuracy of �1 leaf range in about 80% of cases, when

trained and tested on the same portion of the data to make fair

comparisons.
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compared with the others (see Table S1). Image samples

are shown in Figure S1 with dataset details reported in

Table S1. We randomly split the labeled dataset into three

parts (50% training, 25% validation, 25% testing) and

trained our network using fourfold cross-validation.

To establish a baseline for our multi-modal results and

to find the most useful single modality (for the counting

task), we first trained our network using only one of the

available modalities as input at a time prior to using all

modalities. As reported in Table 2, we obtained the best

single-input result using the NIR images (MSE = 0.39). This

is due to the fact that NIR images in this dataset are shar-

per and more detailed. To demonstrate this, we visualize

the activations produced by our network for each of the

modality branches. Figure S4 shows the output of the first

residual block (He et al., 2016) for three sample plants of

the dataset (mean activation across the feature maps).

Overall, most of the activations are focused on the region

where the plant is located. Note that while some pixels are

active on the background on RGB or FMP, the IR activa-

tions are mostly dominant on the plant, which demon-

strates the benefit of using multi-modal information. We

obtained the best performance when all three inputs were

used simultaneously: MSE was reduced by more than 50%

and percentage agreement increased by about 19%.

We conclude that combining information coming from

multiple modalities improves counting accuracy. The fusion

layer learns (cf. Figure 1b) to retain the most useful image

features coming from any of the modality branches (cf. Fig-

ure 1c). These experiments highlight that multi-modal

learning can be useful for plant phenotyping purposes, and

that our architecture can handle any number of inputs.

Evaluation of network adaptivity capabilities

In this section we address the problem of how one can use

PhenoDC by adapting to other experimental setups differ-

ent from the one used during training.

We rely on the principle of fine-tuning a pre-trained net-

work to significantly reduce the number of new training

examples required to adapt the network (Bengio, 2012)

and increase performance (Sun et al., 2017). Fine-tuning

entails the labeling of just a few images and using them to

update the parameters of a network that has been pre-

trained to solve the same task but in a different context

(e.g. for different plant species).

We demonstrate this capability in three different cases

using the following datasets: tobacco plants (A3) from Min-

ervini et al. (2016), komatsuna plants from Uchiyama et al.

(2017) and other Arabidopsis cultivars using night-time

(a) (b)

Figure 2. Leaf count prediction in the CVPPP dataset (all images together).

(a) Ground truth versus prediction, shown as a scatter plot. Due to integer values the colors show how many points are overlapping. Dashed parallel lines show

the �1 leaf error range. Note that our approach has high agreement with the real leaf count.

(b) Error distribution. Observe that there is 83% chance that the error will be �1 within 0 (highlighted area), a number close to the agreement among human

observers (about 90%; Giuffrida et al., 2018). (This figure is best viewed in color online.) [Colour figure can be viewed at wileyonlinelibrary.com].

Table 2 Testing the performance of PhenoDC on the multi-modal
dataset (Cruz et al., 2016). We report results when the network is
trained using only a single modality and when also using all the
three modalities

Training on DiCa |DiC|a MSEa %b

RGB only 0.02 (0.75) 0.48 (0.57) 0.56 55.7
FMP only �0.06 (0.72) 0.45 (0.56) 0.52 58.7
NIR only 0.13 (0.61) 0.33 (0.53) 0.39 69.6
All (RGB, FMP, NIR) 0.11 (0.40) 0.13 (0.39) 0.17 88.5

DiC, difference in count; |DiC|, absolute DiC; MSE, mean squared
error; %. percentage difference; RGB, visible light; FMP, fluores-
cence; NIR, near infrared.
aBest values are those closer to 0.
bBest values are those closer to 1 (i.e. 100%).

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2018), 96, 880–890

PhenoDC: a unified architecture for leaf counting 885



images Dobrescu et al. (2017b). (Further details of all these

image datasets are given in Table S1 and Figure S1.) For

these experiments, we first pre-trained our neural network

using only the Arabidopsis plant images A1, A2 and A4 in

the CVPPP 2017 dataset (Bell and Dee, 2016; Minervini

et al., 2016). This training dataset containing Arabidopsis

plants, as reported in Table S1, does not include a large

number of images, making the learning process challeng-

ing. The following experiments were also aimed at assess-

ing the number of training images required to adapt the

network to another scenario.

Tobacco plants (different species, imaging camera and set-

tings). We fine-tuned the pre-trained network using a

variable number of tobacco training images. Specifically,

we selected 7, 14, 21 and then 27 images to fine-tune the

pre-trained network. The results of these experiments are

reported in Table 3. Overall, we observed that more train-

ing data leads to better predictions in the testing set. As

expected, the lowest error is obtained when we use all 27

images for training (MSE = 1.50). Figure 3 shows the distri-

bution of the error that we registered during progressive

learning. As more images are used, the error distribution

narrows around 0. In fact, in about 80% of the data in the

testing set our method is within 1 leaf error from the

ground truth (highlighted areas in Figure 3), thus achieving

more accurate predictions. Hence, we can conclude that

after fine-tuning with a handful of images (≥21 in this

setup), PhenoDC can produce a reliable leaf count.

The komatsuna case (different species, imaging camera

and settings). This dataset contains 300 RGB images of

five different komatsuna plants, six images/day for 10 days

(images were taken every 4 h from 3 p.m. until 3 p.m. the

following day). We split the dataset as follows (see

Table S1):

(i) training set: two plants (IDs 00 and 01), entire timeline

(120 images);

(ii) validation set: one plant (ID 04), entire timeline (60

images);

(iii) testing set: two plants (IDs 02 and 03), entire timeline

(120 images).

We fine-tuned our pre-trained network by progressively

increasing the size of the training set to 10, 20, 30 and then

40 images per plant, choosing time frames that followed

the evolution of plant growth. Overall, the results in Table 4

show that more data contribute to more accurate results.

Predictions become very accurate when 40 images per plant

are used during training, showing a reduction of the MSE

by 50%, compared with training using 10 images per plant.

Nocturnal images of Arabidopsis plants (different cultivars,

settings and modality). Night images are usually acquired

using infrared cameras and specific LED lights that illumi-

nate the scene with NIR (a wavelength of 940 nm which

does not alter natural plant development; Cruz et al., 2016;

Dobrescu et al., 2017b). We selected and annotated a sub-

set of night images (from Dobrescu et al., 2017b). Specifi-

cally, we selected 18 plants and sampled one image per

night every other day for 8 days (a total of 72 images).

Examples of nocturnal images are shown in Figure S1. We

pre-trained the network using the NIR images from Cruz

et al. (2016) and fine-tuned it using 10 plants for training

(40 images in total), 4 plants for validation (16 images) and

the last 4 for testing (16 images). Since these images come

from different ascensions of A. thaliana, we randomly

changed the training/validation/testing set four times.

Quantitative results on the testing error are: DiC, �0.14

(0.77); |DiC|, 0.52 (0.59); MSE, 0.61; percentage agreement,

53.1%. Overall, the error is very low (MSE < 1), demonstrat-

ing the utility of our machine-learning approach to leaf

counting during the night.

To summarize, these experiments demonstrated that

PhenoDC can adapt to different scenarios of considerable

complexity. Acceptable performance can be attained using

just a few images (e.g. 14 in the case of tobacco). In addi-

tion, by fine-tuning our network with Arabidopsis images

acquired during the night, plant growth analysis during the

entire circadian cycle is allowed (Apelt et al., 2015).

DISCUSSION

In this paper we report on PhenoDC, a deep artificial neural

network that can predict the total number of leaves from

top-view plant images. We have shown the effectiveness

and reliability of our network architecture using several

plant datasets. Specifically, we show that data agglomera-

tion helps to improve accuracy: as more datasets were

added the MSE fell by 50%. A similar error reduction

was also observed when the network was trained with

Table 3 Adapting (fine-tuning) the parameters of the proposed
architecture to work on tobacco images [A3 dataset (Minervini
et al., 2016)] previously pre-trained with Arabidopsis plants [A1,
A2, and A4 (Bell and Dee, 2016; Minervini et al., 2016)]. We pro-
gressively increase the number of training images to find a suit-
able number of images required to create a meaningful model
that can count tobacco leaves. The table reports the results on the
held-out testing set

No. of training images DiCa |DiC|a MSEa %b

7 �0.39 (1.65) 1.32 (1.07) 2.83 23.2
14 0.00 (1.32) 0.96 (0.90) 1.75 32.1
21 0.27 (1.36) 0.87 (1.07) 1.91 41.1
27 0.25 (1.20) 0.86 (0.87) 1.50 37.5

DiC, difference in count; |DiC|, absolute DiC; MSE, mean squared
error; %. percentage difference.
aBest values are those closer to 0.
bBest values are those closer to 1 (i.e. 100%).
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multi-modal data, showing that combining information

from multiple imaging sources helps to train a better

regression model and allows learning of better features.

We showed that our method can adapt to new settings

and demonstrated that a refinement step, fine-tuning, can

be used to achieve excellent performance even with only a

few images for training. We also demonstrate that NIR

modalities can be used to count leaves during darkness,

permitting leaf counts for detailed plant growth analysis

throughout the circadian cycle.

Our approach to leaf counting involves learning of

meaningful image features across all modalities and then

relates features to leaf count via non-linear regression. We

train both aspects together, thus adapting image features

while learning the regressor. This has been central to the

success of deep learning in a variety of problems, from

image recognition to self-driving cars (LeCun et al., 2015).

Furthermore, our approach offers a single model to solve

the same task for any input. Our robust and accurate neu-

ral network can be extended for new input/modalities with-

out changing the overall architecture. This simplifies

adoption and permits the sharing of model updates when

new experiments have been made available on the basis

of our architecture. Therefore, by placing our pre-trained

PhenoDC and source code (and instructions) into the pub-

licly available repository at https://bitbucket.org/tuttoweb/

pheno-deep-counter, we hope to accelerate the adoption

of such methods in plant phenotyping analysis.

Our network was evaluated on top-down views of dicot

rosette-shaped plants. Clearly, this is one setup among

many others. It is possible, though, that an ideal leaf

counting algorithm would also be able to work on mono-

cots, and even tree canopies with thousands of leaves,

given enough training data. Unfortunately, we currently

lack such curated datasets with these scenarios and are

unable to experimentally assess how PhenoDC would

Figure 3. Error distribution of our network fine-

tuned using tobacco plants in the A3 dataset (Min-

ervini et al., 2016).

We reported the distribution of the error committed

in the testing set, after refining the network parame-

ters with 7 (a), 14 (b), 21 (c) and 27 (d) tobacco

plants. When we train with more images (≥21), the
highlighted area (error up to �1 leaf, cf. Figure 2)

contains more than 80% of the cases. (This figure is

best viewed in color online.) [Colour figure can be

viewed at wileyonlinelibrary.com].

Table 4 A similar process to that described in Table 3 but repeated for komatsuna plant leaf counting based on data available in Uchiyama
et al. (2017). The model has been trained on Arabidopsis as described in Table 3. Results shown refer to the testing set

No. of training
images
per plant Hours of the day DiCa |DiC|a MSEa %b

10 3 p.m. �0.74 (1.08) 0.96 (0.89) 1.71 35.0%
20 3 p.m., 11 a.m.c �0.54 (0.95) 0.86 (0.65) 1.19 25.0%
30 3 p.m., 3 a.m.c, 11 a.m.c 0.18 (0.92) 0.67 (0.66) 0.88 44.2%
40 3 p.m., 3 a.m.c, 7 a.m.c, 11 a.m.c 0.24 (0.84) 0.59 (0.64) 0.76 49.1%

DiC, difference in count; |DiC|, absolute DiC; MSE, mean squared error; %, percentage difference.
aBest values are those closer to 0.
bBest values are those closer to 1 (i.e. 100%).
cImages taken on the following day.
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perform, although it still brings us a step closer towards

generalization.

In this work we focused on ‘how many’ rather than

‘which’ annotated images are needed to train a good

regression model. It goes without saying that adequate

image resolution and quality are necessary. Generally,

images that show appearance diversity are good images to

annotate. In a time-lapse setting, images spanning a set

interval of the time series would be a good start. However,

better approaches exist to find the best set of images to

jointly inform the model, known as active learning. Active

learning with neural networks is an ongoing research prob-

lem in machine learning. We have previously shown, using

plant descriptors and data mining (He, 2016), promising

potential in identifying images for annotation.

Furthermore, this work assumed that ground-truth anno-

tations (provided by expert observers) can be considered

as gold standard and error-free. However, it is widely

known (e.g. in applications in medical image analysis) that

even expert observers show variation. Recently, several

related works have shown that variations exist among

annotators in labeling plant images (Giuffrida et al., 2018)

or in assigning specific (a)biotic plant stress via visual

inspection of leaf blades (Ghosal et al., 2018). Interestingly,

intra- and inter-observer variation can also be used to

assess algorithm performance. Based on the findings of

Giuffrida et al. (2018), inter-observer variation has a MSE

of 0.81 [inexperienced annotators on a subset of Arabidop-

sis images used in Minervini et al. (2017)]. Experienced

and inexperienced annotators are within the �1 leaf error

range in about 90% of cases, whereas PhenoDC is within

�1 leaf error in about 80% of cases, thus bringing us closer

to human-level performance.

Evidently, ‘true’ ground-truth data can only be attained

by aggregating observations from many annotators to

reach a consensus. Since doing this with experts is time-

consuming, recent studies using dedicated online plat-

forms, such as Zooniverse, can alleviate this problem by

tapping into the power of citizen scientists. An alternative

is to use simulated or synthetic data, where ground truth is

absolute by design. Simulated data have recently been

used in the plant community to count the number of fruits

(Rahnemoonfar and Sheppard, 2017) and the number of

leaves in Arabidopsis plants (M€undermann et al., 2005;

Ubbens et al., 2018). Simulated images are provided by

software that takes object parameters as input (e.g. plant

age, number of leaves). Although images may lack visual

realism, recent innovations in image synthesis (Giuffrida

et al., 2017) point to the potential of creating synthetic

images of realistic appearance.

In conclusion, we present a deep learning approach to

leaf counting with a neural network. Trained with exam-

ples of images and corresponding plant leaf counts, our

approach can achieve outstanding results in a variety of

settings. Our model handles many input modalities and

has been tested with images of different species, cultivars

and also with images at night. By making it openly avail-

able to the community we hope that it will stimulate large-

scale analysis in plant phenotyping of a crucial plant trait –
leaf count – and help relieve the analysis bottleneck (Min-

ervini et al., 2015a).

EXPERIMENTAL PROCEDURES

In this section we discuss technical details of the deep network
architecture that characterizes our PhenoDC, shown in Figure 1.
We optimize all computational blocks simultaneously to obtain a
mapping between input images and leaf counts. For our purposes,
we used up to three inputs: RGB, NIR and FMP.

Modality branch

The modality branch is a sub-network that processes each input
(see Figure 1a). We used the ResNet50 architecture (He et al.,
2016), as in Dobrescu et al. (2017a). Each input is processed inde-
pendently of the others and generates a vector representation
specific to its input, ensuring meaningful and discriminative fea-
tures. Each branch ends with a fully connected layer of 1024 neu-
rons using rectifier (ReLU) non-linearity, which allows the
suppression of negative values during the process of feature
extraction. Each input results in an output vector of the same size
independent of the input image size.

Feature fusion

Feature fusion is the process that combines information coming
from all modalities to retain the most meaningful features. Follow-
ing the concept in Chartsias et al. (2018), we apply an element-wise
maximum fusion layer. We display this segment of the network in
Figure 1(b).

Regression

Regression is the process of relating fused information to leaf
count (cf. Figure 1c). The output of the fusion layer is given to
another fully connected layer of 512 neurons with ReLU activation
function. At the end of the network, the output of the last layer is
given to a single neuron that makes the actual prediction of the
number of leaves. During training, we minimize the MSE between
predicted leaf count and ground truth. The model predicts real
numbers and we round the leaf count to the nearest integer only
at the test time.

Training strategies

We employ three common training strategies to improve network
training and performance. First, we initialize our network with pre-
trained parameters (rather than random ones), computed previ-
ously based on an image recognition task (Russakovsky et al.,
2015). Second, we use an L2 regularizer in the last fully connected
layer before the output (i.e. the regression component). This tech-
nique prevents the network from learning large weights which
may produce unstable results. For all experiments in this paper
we set this regularization constant to k = 0.02. Finally, to artifi-
cially increase robustness to changes in view (rotation, translation
and camera position), we perform dataset augmentation during
training. Specifically, we apply random geometrical transforma-
tions to the training data (e.g. random rotations, zoom-ins, shifts);
this helps the network to learn from more data without having to
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collect more data. Our network was trained using a learning rate
of g = 0.0001.

Validation set

One of the problems arising in network training is when to stop
training. The typical approach in machine learning is to also use a
small set of labeled data, called the validation set (Theodoridis
and Koutroumbas, 2008). We therefore used an early stop criterion
to interrupt the learning procedure; terminating the training after
10 epochs we observed that the validation error had started to get
worse.

Image pre-processing

While combining data across different sources (data agglomera-
tion) has benefits, the images coming from different setups exhi-
bit variations in intensity and size that need to be corrected. For
instance, images in A1 (Minervini et al., 2016) and images in A4
(Bell and Dee, 2016) were acquired with different cameras and dif-
ferent illumination conditions, although they may show the same
plant species (A. thaliana Col-0). To ameliorate variations in illumi-
nation, we perform histogram normalization on all images and to
standardize image size we resize all images of a modality to the
same size of 320 9 320 pixels. For the multi-modal images (Cruz
et al., 2016), RGB images are too small to be provided to the RGB
modality branch, as ResNet needs images of at least 200 9 200
pixels in size (cf. Table S1). In this case, we upsampled the images
to 240 9 240 pixels whereas the images from the other modalities
were left unchanged.

Implementation details

We implemented our deep neural network using Keras (Chollet,
2015), an open-source library for deep learning in Python, with a
Tensorflow backend. We performed our training experiments in a
machine with a TITAN X GPU. Note that such equipment is not
necessary for fine-tuning and adapting our network to new experi-
mental data.
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