
1 
 

ABSTRACT 

The imminent introduction of flying cars in the traffic fleet is anticipated to modify the 

mobility patterns of urban commuters.  Flying cars’ hybrid operation on the ground and in the air, 

in conjunction with their (semi-) automated capabilities, may lead to more appealing trip 

considerations, such as travel time, fuel consumption, or environmental emissions, as well as to 

the emergence of new sources of concerns for the potential users.  In this context, the future 

adoption of flying cars is directly associated with individuals’ perceptions of the benefits and 

concerns arising from the use of flying cars.  This paper aims to identify the perceptual patterns of 

individuals towards travel time, cost and environmental benefits, as well as towards challenges 

arising from key flying cars operational characteristics.  To that end, grouped random parameters 

bivariate probit models of individuals’ perceptions are estimated using data collected from an 

online survey of 692 individuals.  The statistical analysis shows that a number of socio-

demographic, behavioral, and attitudinal characteristics affect respondents’ expectations and 

concerns towards the adoption and implementation of flying cars.  Even though individuals’ 

perceptions are anticipated to undergo substantial changes until the introduction of flying cars in 

the traffic fleet, the findings of this work may shed more light on perceptual nuances with critical 

effect on public interest about the adoption of flying cars.  
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1. INTRODUCTION 1 

Recent advances in automobile technology have led to emerging transportation systems 2 

with significant potential to modify two fundamental components οf the driving task.  The first 3 

component is associated with the subject of the driving task.  Although the latter has been 4 

recognized as an exclusive outcome of a human-involved process, the introduction of various 5 

automation capabilities in vehicle operation seeks to establish semi-automated or fully driverless 6 

mobility patterns (Fagnant and Kockelman, 2015; Bansal et al., 2016; Bagloee et al., 2016; Litman, 7 

2017; Milakis et al., 2017).  Specifically, the forthcoming emergence of the fully connected and 8 

autonomous vehicles (also referred to as self-driving vehicles) aims to provide safer mobility, 9 

lower travel times, increased transportation accessibility to various population groups, as well as 10 

more sustainable system-wide traffic operations (Kyriakidis et al., 2015; Bansal and Kockelman, 11 

2017; Fagnant and Kockelman, 2018).  12 

With respect to the second component, the driving task is inherently associated with the 13 

use of ground transportation networks.  However, recent developments pave the way for a new 14 

transportation technology that simultaneously provides mobility in two spatial dimensions, on the 15 

ground and in the air (Eker et al., 2018).  Flying cars constitute novel vehicular elements of such 16 

technology being designed to operate as conventional vehicles in the ground transportation 17 

networks and as personal aircrafts in the air.  The recent interest of the manufacturing companies 18 

in developing flying car prototypes, as well their intention to rapidly commercialize them, 19 

demonstrate that flying cars will be available in the automobile market soon, possibly between 20 

2020 and 2025 (Marks, 2014; Becker, 2017; Oppitz and Tomsu, 2018).1  To that end, major car 21 

                                                           
1 For a detailed description of the technical specifications of flying cars, see also Eker et al. (2018). 
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and aircraft manufacturers have already developed and successfully tested flying car prototypes.  22 

These manufacturers include Terrafugia (a member of the Volvo group), Airbus, Boeing, Cora, 23 

Ehang184, Lilium, Workhorse and Volocopter, and other companies.  24 

The anticipated penetration of flying cars in the transportation network is expected to 25 

amend various aspects of urban mobility.  The capability of flying cars to take off and land 26 

vertically without the use of extensive runways (as they only need clearance zones with a diameter 27 

of 100 feet or longer) substantiates their potential for daily, short-, or medium-distance trips.  Their 28 

range of travel distance in the air can reach up to 500 miles, whereas their maximum cruising speed 29 

can vary between 100 and 200 mph depending on the prototypes’ technical characteristics.  As far 30 

as their navigation is concerned, the latest flying car prototypes are equipped with fully 31 

autonomous navigation features (as, for example, in the Terrafugia’s TF-X model or the Boeing’s 32 

passenger air vehicle).  However, during the first stages of their deployment, the operation of flying 33 

cars is anticipated to be undertaken by appropriately trained and licensed pilots, as the transition 34 

to fully autonomous navigation will require a mature regulatory framework (Templeton, 2019).  35 

With regard to their engine characteristics, the operation of flying cars will be based on hybrid 36 

engine systems combining electric motors with gasoline engines.  Such an engine configuration is 37 

primarily driven by the use of electric propulsion, which constitutes one of the latest advances in 38 

the vertical take-off and landing (VTOL) technologies.  In this context, recent design concepts are 39 

devoted to the development of fully electric flying cars.  For example, Uber is closely collaborating 40 

with various aircraft manufacturers to create a fleet of electric, vertical take-off and landing 41 

aircrafts.  42 

The fully- or semi-automated navigation capabilities of flying cars in combination with the 43 

unrestricted selection of trip origin and destination (given that airport facilities are not necessary 44 
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for their operation) allow the identification of the shortest route, either solely in the air or both in 45 

the air and on the ground.  With these features determining the duration of the flying car trips, their 46 

establishment in the traffic fleet may significantly decrease travel times, especially for trips across 47 

urban or suburban areas.  In a similar manner, the user-controlled level of interaction with other 48 

components of the ground transportation networks as well as the user-controlled involvement to 49 

the traffic congestion patterns may increase travel time reliability, since major sources of travel 50 

time uncertainty can be avoided. 51 

As the travel time implications grow their appeal to daily commuters, the implementation 52 

of flying cars may also mitigate traffic congestion in urban and downtown districts, with 53 

subsequent effect on the total fuel consumption produced by the ground transportation networks.  54 

Specifically, non-drivers or commuters’ groups with inflexibility in travel time variations, may 55 

gradually substitute conventional vehicles with flying cars, removing, thus, considerable traffic 56 

volumes from congested transportation networks.  In addition, the automated features of flying 57 

cars, as well as their cost characteristics, may result in the establishment of on-demand shared 58 

flying car services.  This is an operationally feasible possibility as most of the flying car prototypes 59 

can accommodate two to four passengers.  Interestingly, Uber currently investigates the 60 

development of aerial ridesharing services based on vehicles with vertical take-off and landing 61 

capabilities.  This service – called “Uber Air” – aims at providing on-demand aerial transportation 62 

either within densely populated cities, or between cities and suburban areas, and is expected to be 63 

commercially launched by 2023 in Dallas and Los Angeles in the USA, and in Melbourne, 64 

Australia (Uber, 2019).  Such shared transportation services could optimize not only the capacity 65 

of the flying car fleet that will be deployed, but also the efficiency of the existing highway network.  66 

Even when they operate as conventional ground vehicles, their automation and connectivity 67 
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features may allow traffic flow improvements, involvement in centralized traffic operations, and 68 

minimization of fuel-consuming maneuvers.2  The deployment of aerial ridesharing services 69 

constitutes a key component of the “Urban Air Mobility” (UAM) concept envisioned by NASA, 70 

towards the creation of an integrated air transportation framework for passengers and goods in 71 

urban environments (NASA, 2018).  72 

Apart from the travel time considerations, the user’s cost constitutes another major trip 73 

characteristic that may be affected by the introduction of flying cars.  The – currently estimated – 74 

acquisition cost of a flying car varies from $200,000 to $600,0003, which is higher compared to 75 

the cost of conventional or fully autonomous vehicles (Wadud, 2017).  Another important cost 76 

consideration stems from the expenses required for the operation of flying cars, and especially the 77 

expenses associated with their maintenance and their fuel consumption.  Given that various flying 78 

car prototypes include either electric or gasoline-based engines, the fuel expense patterns of flying 79 

cars have not been yet unfolded to their full extent.  The fuel consumption relating to their on-80 

ground operation may not considerably differ from the autonomous vehicles’ consumption; 81 

whereas, their in-air operation may require greater engine power, thus resulting in greater fuel 82 

consumption.  The latter has also environmental implications, since higher CO2 and other pollutant 83 

emissions may be generated due to the energy-consuming in-air operation of flying cars.  However, 84 

the aforementioned macroscopic or microscopic cost implications may be counterbalanced by the 85 

emergence of shared flying cars, which may have the potential to not only reduce average 86 

                                                           
2 Similar benefits are also anticipated from the introduction of shared connected vehicles in the traffic fleet.  For further 

details on the traffic implications of shared autonomous vehicles, see Fagnant and Kockelman (2014), Krueger et 
al. (2016), Fagnant and Kockelman (2018), and Loeb et al. (2018). 

3 The range of the acquisition cost of a flying car is based on the currently announced prices of various flying car 
models.  For example, Terrafugia’s basic model is approximately priced at $280,000, whereas the model “Liberty” 
of PAL-V is approximately priced at $600,000.  
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transportation costs, but also to transform the current mobility status from the a priori use of an 87 

ownership-based vehicle fleet, to trip-based use of a shared flying car fleet.   88 

In this context, the level of penetration of flying cars in the traffic fleet is highly associated 89 

with the public expectations and attitudinal perspectives towards two fundamental dimensions of 90 

public acceptance: (i) the anticipated benefits and concerns arising from the future use of flying 91 

cars; and (ii) the public adoption of flying cars, as expressed through their acquisition or use by 92 

the commuting population.  While these two components reflect two separate layers of individuals’ 93 

decision-making mechanism, they can be also considered as interrelated, since the assessment of 94 

public perception can result in the identification of public awareness gaps that can retard or disrupt 95 

the massive adoption of flying cars.  Therefore, the investigation of public perceptions about travel 96 

time, cost, environmental, and operational considerations of flying cars has the potential to shed 97 

more light on the specific benefits and concerns that may serve as motives or barriers, respectively, 98 

for the successful implementation of this emerging technology.  99 

On the basis of the aforementioned public acceptance components, Eker et al. (2018) 100 

provide a preliminary assessment of public adoption of flying cars through the investigation of the 101 

factors affecting individuals’ willingness to buy and use flying cars.  The statistical analysis 102 

showed that the perceived benefits and concerns arising from the operation of flying cars constitute 103 

major determinants of individuals’ willingness to adopt flying cars for various trip and pricing 104 

scenarios.  In this context, a deeper understanding of the individual-specific characteristics (such 105 

as, sociodemographic attributes, behavioral characteristics, trip preferences) that, in fact, 106 

determine public perception, can assist policymakers, transportation consultants, legislative 107 

agencies, and manufacturers in preparing a strategic roadmap with policy actions that can enhance 108 

the adoption of flying cars by targeted groups of individuals. 109 
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In line with earlier research devoted to the public perception of other emerging 110 

transportation technologies (Egbue and Long, 2012; Carley et al., 2013; Schoettle and Sivak, 2014; 111 

Kyriakidis et al., 2015; Shin et al., 2015; Bansal et al., 2016; Harper et al., 2016; Nayum et al., 112 

2016; Daziano et al., 2017; Dias et al., 2017; Dong et al., 2017; Vinayak et al., 2018; Van 113 

Brummelen et al., 2018; Alemi et al., 2018; Langbroek et al., 2018; Westin et al., 2018), the current 114 

paper aims at providing an empirical assessment of public perception towards benefits and 115 

concerns arising from the use of flying cars.  To that end, an online survey was developed and 116 

disseminated to 692 individuals, who provided their attitudinal perspectives towards the 117 

implications of flying cars use, along with extensive information about their sociodemographic 118 

and behavioral background.  This paper thus seeks to go beyond providing merely an overview of 119 

public perceptions, by identifying key sociodemographic, behavioral, and attitudinal factors that, 120 

in turn, affect and shape individuals’ perceptual patterns towards travel time, cost, environmental, 121 

and operational considerations associated with the future use of flying cars.  To that end, using the 122 

collected information from the surveys, the individuals’ perceptions of benefits and concerns 123 

arising from the use of flying cars are statistically modeled.  Given the current uncertainty 124 

associated with the infrastructural, technical, training, and licensing requirements of flying cars, 125 

as well as the subjective nature of the survey responses, the individuals’ perceptions constitute 126 

significant sources of unobserved variations that can affect – to some extent – statistical inferences 127 

(Rasouli and Timmermans, 2014).  To account for such variations, which may arise either from 128 

perceptual similarities relating to the benefits and concerns of flying cars, or from unobserved 129 

individual-specific characteristics, discrete outcome statistical and econometric approaches are 130 

used.  The findings of the statistical analysis can be leveraged for the identification of policy 131 
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interventions targeted either on critical perceptions of flying cars, or on socio-demographic aspects 132 

with influential role in the decision-making mechanism of potential flying car users. 133 

 134 
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2. DATA 135 

In order to capture individuals’ expectations towards key implications of flying cars, a web-136 

based survey was conducted in March 2017, using the online platform “SurveyMonkey”.  137 

Specifically, the survey was distributed through 352 students and employees of the University at 138 

Buffalo, who served as survey-collectors.  The latter collectors were provided with unique web 139 

links and extensively disseminated the online questionnaire and disseminated the survey to 692 140 

individuals.  The vast majority of the respondents (84.3%) were located in the United States, 141 

whereas the remaining respondents were located in various countries worldwide; the country of 142 

each respondent was identified through the Internet Protocol (IP) of each survey response4.  With 143 

regard to the socio-demographic composition of the respondents, approximately 60% of the sample 144 

represents male respondents (and 40% female respondents).  Focusing on the educational 145 

attainment, approximately 72% of the respondents hold a bachelor’s or a post-graduate degree.  146 

The average respondent age is approximately 30 years old, while the median annual household 147 

income of the respondents falls within the range of $50,000 to $75,000.  As far as the ethnicity/race 148 

characteristics are concerned, 57% of the respondents are classified as Caucasian/White, 23% of 149 

the respondents as Asian, while the remaining 20% of the respondents self-identified as members 150 

of other ethnic groups (e.g., African American, American Indian, or Hispanic).   151 

To account for the limited awareness of respondents with regard to the operations of flying 152 

cars, an information session consisting of a detailed description, various images, and video 153 

recordings relating to the capabilities of flying cars preceded the survey questions.  The survey 154 

questionnaire was designed on the basis of three conceptual dimensions corresponding to distinct 155 

                                                           
4 Apart from United States, survey responses from eighteen other countries were also included in the sample: Australia, 

Canada, Dominican Republic, Greece, Iran, Nepal, New Zealand, Nigeria, Oman, Qatar, Saudi Arabia, Sri Lanka, 
Switzerland, Thailand, Turkey, United Arab Emirates, and United Kingdom. 
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classes of information.  The first conceptual dimension is associated with the individuals’ 156 

expectations towards the adoption of flying cars (Eker et al., 2018).  Specifically, the respondents 157 

were asked about their willingness to buy a flying car under various pricing scenarios, as well as 158 

their willingness to use a flying car for various trip scenarios.  For the aforementioned trip 159 

scenarios, various trip purposes, trip distances, and time-of-the-day combinations were considered.  160 

For a detailed description of the data elements and data collection process, see Eker et al. (2018).    161 

Another conceptual dimension of the survey questions was devoted to the perceptions of 162 

individuals with regard to the benefits and concerns stemming from the use of flying cars.  As far 163 

as the benefits are concerned, respondents were asked about their expectations regarding the 164 

emergence of various trip-, traffic-, cost-, and environment-related benefits after the introduction 165 

of flying cars.  The key potential benefits include the reduction of travel times, the increase of 166 

travel time reliability, the expected cost implications of the flying cars in terms of fuel or vehicle 167 

maintenance expenses, as well as the decrease of transportation-related CO2 emissions.  It should 168 

be noted that the individuals expressed their expectations on the basis of a four-point Likert scale, 169 

by rating the likelihood of occurrence for each possible benefit as “very unlikely”, “somewhat 170 

unlikely”, “somewhat likely”, or “very likely”.   171 

 Turning to the questions about the possible concerns arising from the use of flying cars, 172 

respondents were asked about their level of concern about several operational implications, such 173 

as the interactions with other vehicles on the roadway or other vessels on the airway, the flying car 174 

performance in inclement weather conditions, or the learning process that may be required for the 175 

operation of a flying car.  In line with the ‘benefits’ set of questions, the level of concern of 176 

respondents in relation to the aforementioned considerations was expressed through four-point 177 

Likert style questions, with the possible outcomes being “Not at all concerned”, “Slightly 178 
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concerned”, “Moderately concerned”, and “Very concerned”.  Similarly, respondents were asked 179 

about possible relocation preferences after the introduction of flying cars, as well as about their 180 

opinions on possible policy interventions (e.g., background check of flying car operators, air traffic 181 

control, and establishment of air-road police) that could potentially tackle security issues arising 182 

from the operation of flying cars.   183 

 The third conceptual dimension of the collected information focuses on individual’s 184 

familiarity with advanced driver assistance systems (e.g., emergency automatic braking, adaptive 185 

cruise control, blind spot monitoring, etc.) as well as on their socio-economic and behavioral 186 

background.  The latter includes socio-demographic characteristics (e.g., marital status, education 187 

level, income level, gender, age, race/ethnicity, household composition, and household location), 188 

information about their driving history (in terms of driving experience, driving exposure, and 189 

accident history), as well as habitual and behavioral characteristics (e.g., alcohol consumption, 190 

driving behavior in the vicinity of a traffic signal, driving preferences, and speed limit perceptions). 191 

Table 1 provides an overview of individuals’ perceptions regarding travel time, cost, 192 

environmental, and operational benefits and concerns arising from the use of flying cars, while 193 

Table 2 provides descriptive statistics of key variables – the variables that were identified as 194 

statistically significant determinants of individuals’ perceptions in the statistical analysis.  Table 1 195 

shows that the vast majority of respondents expect that the introduction of flying cars will result 196 

in lower and more reliable travel times (85.85% and 79.10% of respondents, respectively).  In 197 

contrast, the majority of respondents do not expect lower operational cost or lower environmental 198 

burden with the introduction of flying cars (70.58% and 64.63% of respondents, respectively), 199 

since they consider the reduction of fuel expenses or CO2 emissions unlikely to occur.  Table 2 200 

shows that individuals are overall concerned for all the aforementioned operational implications 201 
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of flying cars, with the flying car performance in poor weather conditions, the interaction with 202 

other vehicles on the roadway, and the interactions with other vessels on the airway, constituting 203 

the major factors of concern (for 86.82%, 80.55%, and 73.95% of the respondents, respectively).  204 

 205 

  206 
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Table 1. Distribution of respondents’ perceptions of travel time, cost, environmental and 207 
operational benefits and concerns of flying cars. 208 

Benefits Overall 
unlikely 

Overall 
likely 

Lower travel time to destination 14.15% 85.85% 
More reliable travel time to destination 20.90% 79.10% 
Lower fuel expenses 70.58% 29.42% 
Lower CO2 emissions 64.63% 35.37% 

 Overall 
unconcerned 

Overall 
concerned 

Concerns   
Interaction with other vehicles on the roadway 26.05% 73.95% 
Interaction with other flying cars or vessels on the airway 19.45% 80.55% 
Flying car performance in poor weather (storm, high wind, rain, 

snow, etc.) 13.18% 86.82% 

Learning to operate/use a flying car 33.92% 66.08% 
a The percentage corresponding to the “overall unlikely” outcome includes the individuals who selected the “very 209 

unlikely” or “somewhat unlikely” outcome.  Similar aggregation was adopted for the “overall likely” outcome.  210 
Furthermore, the percentage corresponding to the “overall concerned” outcome includes the individuals who 211 
selected the “moderately concerned” or “very concerned” outcome, whereas the “overall unconcerned” outcome is 212 
derived from the aggregation of the “not at all concerned” and “slightly concerned” outcomes.  213 
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Table 2. Descriptive statistics of key variables 214 
Variable Description Mean Std. Dev. Min. Max. 
Socio-demographics     
Gender indicator (1 if the respondent is female, 0 

otherwise) 0.398 - 0 1 

Square of the age of the respondent 1087.866 1031.774 256 8836 
Inverse of square of the age of the respondent 0.002 0.001 0.0001 0.004 
Age indicator (1 if the respondent is younger than 

25, 0 otherwise) 0.460 - 0 1 

Age indicator (1 if the respondent is older than 45, 0 
otherwise) 0.182 - 0 1 

Current living area indicator (1 if the respondent 
lives in city center, 0 otherwise) 0.136 - 0 1 

Current living area indicator (1 if the respondent 
lives in rural area, 0 otherwise) 0.095 - 0 1 

Ethnicity indicator (1 if the respondent is Asian, 0 
otherwise) 0.226 - 0 1 

Education indicator (1 if the respondent has a 
technical college degree or college degree, 0 
otherwise) 

0.546 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is less than $30,000, 0 
otherwise) 

0.182 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is between $20,000 and 
$40,000, 0 otherwise) 

0.123 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is between $30,000 and 
$50,000, 0 otherwise) 

0.130 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is between $30,000 and 
$75,000, 0 otherwise) 

0.290 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is between $50,000 and 
$150,000, 0 otherwise) 

0.492 - 0 1 

Income indicator (1 if the respondent’s annual 
household income is greater than $75,000, 0 
otherwise) 

0.487 - 0 1 

Opinions and Preferences     
Vehicle safety features indicator (1 if the respondent 

never owned a car with an advanced safety feature, 
0 otherwise) 

0.459 - 0 1 

Vehicle safety features indicator (1 if the respondent 
is not familiar with advanced safety features, 0 
otherwise) 

0.139 - 0 1 
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Variable Description Mean Std. Dev. Min. Max. 
Aggressive driving indicator (1 if the respondent 

thinks that s/he normally drives not aggressively, 0 
otherwise) 

0.449 - 0 1 

Aggressive driving indicator (1 if the respondent 
thinks that s/he normally drives very aggressively, 
0 otherwise) 

0.092 - 0 1 

Driving speed indicator (1 if the respondent 
normally drives faster than 65 mph on an interstate 
with a 65 mph speed limit and little traffic, 0 
otherwise) 

0.762 - 0 1 

Driving speed indicator (1 if the respondent 
normally drives faster than 75 mph on an interstate 
with a 65 mph speed limit and little traffic, 0 
otherwise) 

0.137 - 0 1 

Speed limit opinion indicator (1 if the respondent 
completely disagrees with the statement: “Speed 
limits on high speed freeways should only be 
suggestive”, 0 otherwise) 

0.094 - 0 1 

Speed limit opinion indicator (1 if the respondent 
disagrees or completely disagrees with the 
statement: “Speed limits on high speed freeways 
should only be suggestive”, 0 otherwise) 

0.298 - 0 1 

Speed limit opinion indicator (1 if the respondent 
agrees or completely agrees with the statement: 
“Speed limits on high speed freeways should only 
be suggestive”, 0 otherwise) 

0.311 - 0 1 

Red light reaction indicator (1 if the respondent 
accelerates and crosses the signal when 
approaching a traffic signal which is green initially 
but turns yellow, 0 otherwise) 

0.158 - 0 1 

Driver preference indicator (1 if the respondent 
generally prefers to drive herself/himself when 
there are more than two licensed drivers in a 
vehicle on a trip, 0 otherwise) 

0.454 - 0 1 

Driver preference indicator (1 if the respondent is 
not sure (varies) about driving herself/himself 
when there are more than two licensed drivers in a 
vehicle on a trip, 0 otherwise) 

0.299 - 0 1 

Accident history indicator (1 if the respondent has 
had at least one non-severe or severe accident in 
the last 5 years, 0 otherwise) 

0.327 - 0 1 

Accident history indicator (1 if the respondent has 
had more than one non-severe accidents in the last 
5 years, 0 otherwise) 

0.099 - 0 1 

Annual mileage driven (in 1000 miles) 10.523 9.882 0 50 
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Variable Description Mean Std. Dev. Min. Max. 
Mileage indicator (1 if the respondent annually 

drives less than 5,000 miles, 0 otherwise) 0.305 - 0 1 

Mileage indicator (1 if the respondent annually 
drives greater than 15,000 miles, 0 otherwise) 0.185 - 0 1 

Mileage indicator (1 if the respondent annually 
drives greater than 20,000 miles, 0 otherwise) 0.092 - 0 1 

 215 

 216 

 217 
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3. METHODOLOGICAL APPROACH 218 

Table 1 provides a preliminary screening of public perception about the anticipated benefits 219 

and concerns arising from the use of flying cars.  The determinants of public perception, though, 220 

cannot be obtained through the descriptive statistics of survey responses.  To identify the factors 221 

that affect individuals’ expectations and constitute potential indicators of future policy 222 

interventions, the benefit- and concern-specific responses are statistically modeled. 223 

From a theoretical perspective, the public perceptions towards the benefits and concerns 224 

about flying cars are investigated in reference to three major conceptual pillars captured by the 225 

survey-based data collection: socio-demographic characteristics; attitudinal preferences; and 226 

perceived behavioral patterns.  Such three pillars are generally in line with various facets of the 227 

theory of planned behavior (TPB – see also Ajzen, 1991).  The latter theory has been frequently 228 

employed for the investigation of decision-making mechanism in transportation-related choices 229 

(e.g., Thorhauge et al., 2016; Buckley et al., 2018; Jing et al., 2019).  Socio-demographic 230 

characteristics have the potential to unmask aggregate trends in the perceptions of general 231 

population, especially when such perceptions are associated with emerging transportation 232 

technologies (Becker and Axhausen, 2017).  They can also capture – to some extent – beliefs about 233 

behavioral outcomes or social norm-specific patterns that cannot be extensively identified through 234 

a survey-based data collection (Darnton, 2008).  The attitudinal preferences and behavioral traits 235 

can capture aspects of individuals’ decision-making mechanism that are inherent in the TPB 236 

theory, such as behavioral intention, subjective norms, and perceived behavioral control.  In this 237 

theoretical context, to account for the subjective evaluation of benefits and concerns, we employ 238 

a statistical and econometric framework with significant potential in addressing subjectivity-239 

related heterogeneity (Mannering et al., 2016). 240 
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From a statistical viewpoint, the key travel time, cost, environmental, and operational 241 

benefits and concerns arising from the use of flying cars may constitute major sources of 242 

systematic unobserved variations.  Such variations stem from systematic perceptual patterns across 243 

considerations of the same conceptual nature, such as the travel time-related benefits, or the 244 

interaction-related concerns.  For example, individuals may perceive the benefits associated either 245 

with lower travel times, or more reliable travel times in a similar manner.  Such similarities may 246 

result in commonly shared unobserved variations across the dependent variables that represent 247 

perceptions about benefits or concerns of the same conceptual nature.  In statistical terms, such 248 

unobserved systematic variations are captured by the error terms relating to the specific dependent 249 

variables, which – in this case – may be significantly correlated (Sarwar et al., 2017a; Sarwar et 250 

al., 2017b; Pantangi et al., 2019; Becker et al., 2017; Fountas and Anastasopoulos, 2018; Fountas 251 

and Rye, 2019).  To account for the possible error term correlation of – conceptually similar – 252 

dependent variables, the bivariate modeling framework is employed.   253 

For model estimation, the four ordinal responses of the benefit- and concern-specific 254 

questions were aggregated into two discrete outcomes; with such aggregation, conceptually similar 255 

perceptions of individuals are represented by a homogeneous outcome.  Thus, for the benefit-256 

specific questions, the dependent variables have two discrete outcomes: “overall unlikely” and 257 

“overall likely”.  Similarly, the concern-specific dependent variables have also two outcomes: 258 

“overall concerned” and “overall unconcerned”.  To that end, the binary discrete outcome 259 

framework is coupled with the bivariate approach for the statistical modeling of individuals’ 260 

perceptions.  Such integrated modeling setting enables simultaneous modeling of two dependent 261 

variables that share similar or same unobserved characteristics, while accounting concurrently for 262 

the correlation of the relevant error terms (this type of correlation is referred to as contemporaneous 263 
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or cross-equation error term correlation).  The bivariate probit model is as follows (Sarwar et al., 264 

2017a; Greene, 2016; Khoo and Asitha, 2016; Pantangi et al., 2019): 265 
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where, X is a vector of independent variables that determine individuals’ perceptions with regard 269 

to the benefits and concerns arising from the use of flying cars, β denotes a vector of coefficients 270 

corresponding to X, wi,1 and wi,2 correspond to the observed binary outcomes of the dependent 271 

variables,  ε is a random error term assumed to follow the standard normal distribution, and λ is 272 

the cross-equation correlation coefficient of the error terms.  In this context, the cumulative 273 

function of the bivariate normal distribution as well as the log-likelihood function of the bivariate 274 

probit model are respectively defined as (Greene, 2016), 275 
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Apart from perceptual patterns relating to benefits and concerns of similar conceptual 280 

nature, other sources of unobserved variations may also affect theindividuals’ perception 281 

mechanism (Kang et al., 2013).  Such sources may be associated with personal preferences, 282 

experience and priorities, limited awareness about advanced transportation technologies, or 283 

attitudinal patterns of individuals that cannot be captured through the survey-based data collection 284 

process (Belgiawan et al., 2017).  To account for the effect of unobserved characteristics on 285 

individuals’ perceptions (i.e., unobserved heterogeneity – for further details on unobserved 286 

heterogeneity and its features see: Mannering and Bhat, 2014; Anastasopoulos, 2016; Mannering 287 

et al., 2016; Fatmi and Habib, 2017; Fountas et al., 2018b; Guo et al., 2018), random parameters 288 

are incorporated in model estimation.  The random parameters modeling allows for the effect of 289 

explanatory variables – as expressed through the parameter estimates – to vary across the 290 

observational units of the dependent variable (Chen and Mahmassani, 2015; Satishkumar et al., 291 

2018).  In this paper, we allow for the parameter estimates to vary not across the separate survey 292 

responses, but across groups of survey responses corresponding to different survey collectors.  In 293 

this manner, unbalanced panel effects stemming from possible systematic variations across the 294 

collector-specific survey responses are effectively captured.  The grouped random parameters are 295 

formulated as (Washington et al., 2011; Fountas and Anastasopoulos, 2017; Sarwar et al., 2017a; 296 

Anastasopoulos et al. 2017; Fountas et al., 2018a, 2018c; Menon et al., 2019; Hyland et al., 2018): 297 

k kv= +β β           (5) 298 

where, β is the vector of parameter estimates and vk denotes a random, collector-specific term with 299 

zero mean and variance σ2.  With regard to the distributional specification of the grouped random 300 

parameters, various parametric density functions (e.g., normal, log-normal, triangular, uniform, 301 

and Weibull) were investigated, and the normal distribution provided the best statistical fit.  302 
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 Τhe estimation of the grouped random parameters within a bivariate context is a 303 

computationally cumbersome process, especially due to the excessive number of the required 304 

numerical integrations.  For this reason, a simulated likelihood estimation approach is employed, 305 

with the numerical integrations being generated on the basis of a Halton sequence technique 306 

(Halton, 1960).  To obtain stable and consistent parameter estimates, the statistical models were 307 

estimated with 500 Halton draws (Anastasopoulos, 2016; Fountas et al., 2018a). 308 

To gain further insights into the magnitude of the effect of explanatory variables, (pseudo-) 309 

elasticities are computed.  Specifically, in order to identify the effect on individuals’ perceptions, 310 

due to 1% change in the value of any continuous explanatory variable, the elasticity of the specific 311 

variable is computed as (Washington et al., 2011): 312 

,
,1 k k i

k k i
X

E X
β

β
σ

  
= −Φ  

  
        (6) 313 

In case of indicator variables, and in order to identify the effect on individuals’ perceptions 314 

due to a change from “0” to “1”, the pseudo-elasticity is computed as follows (Washington et al., 315 

2011):  316 
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4. ANALYSIS RESULTS 318 

To identify the determinants of individuals’ perceptions towards the future use of flying 319 

cars, grouped random parameters bivariate probit models are estimated for pairs of benefit-specific 320 

or concern-specific survey responses.  The selection of pairs of dependent variables that are 321 

simultaneously modeled is based on two criteria: (i) commonly shared unobserved characteristics 322 

between benefits or concerns, which may imply possible interrelationship between the 323 

corresponding dependent variables; and (ii) the identification of statistically significant error term 324 

correlation between the dependent variables.5  In total, two grouped random parameters bivariate 325 

probit models are estimated for the benefit-related individuals’ expectations; while two grouped 326 

random parameters bivariate probit models are estimated for the concern-related individuals’ 327 

expectations.  For model estimation, all possible variables and variable interactions were 328 

examined, and the variables that were identified as statistically significant at 0.90 level of 329 

confidence or higher, are included in the model specifications.  The magnitude of the estimated 330 

cross-equation correlation coefficients supports the use of the bivariate modeling framework in all 331 

model specifications. 332 

Benefit-specific perceptions 333 

Tables 3 and 4 present the estimation results and (pseudo-)elasticities of the bivariate model 334 

of individuals’ expectations about the potential of flying cars to result in lower and more reliable 335 

travel times, respectively.  The estimation results and (pseudo-)elasticities of the bivariate model 336 

                                                           
5 Note that multivariate probit models were initially estimated in order to gain further insights regarding the cross-

equation correlation of the error terms corresponding to the potential dependent variables of the bivariate models.  
The results of the multivariate probit models showed that pairs of variables with significant conceptual similarity 
(e.g., variables reflecting travel time- or interaction-specific perceptions) are indeed associated with strong cross-
equation error term correlation.  Thus, these pairs of variables were used as dependent variables in the grouped 
random parameters bivariate probit models.  
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of individuals’ expectations regarding lower fuel expenses and lower CO2 emissions from the 337 

future use of flying cars are presented in Tables 5 and 6, respectively.338 
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Table 3. Estimation results of the grouped random parameters bivariate probit model of travel 339 
time-related perceptions 340 

Variable 
Lower travel 

time to 
destination 

More reliable 
travel time to 
destination 

 Coeff. t-stat Coeff. t-stat 
Constant 1.117 8.97 0.834 9.97 
Socio-demographics     
Age indicator (1 if the respondent is older than 45, 0 

otherwise) - - 0.370 1.9 

Standard deviation of parameter distribution - - 0.729 2.98 
Income indicator (1 if the respondent’s annual household 

income is between $30,000 and $50,000, 0 otherwise) - - -0.303 -1.67 

Income indicator (1 if the respondent’s annual household 
income is greater than $75,000, 0 otherwise) 0.354 2.33 - - 

Opinions and Preferences     
Aggressive driving indicator (1 if the respondent thinks 

that s/he normally drives very aggressively, 0 otherwise) -0.541 -2.04 - - 

Driving speed indicator (1 if the respondent normally 
drives faster than 75 mph on an interstate with a 65 mph 
speed limit and little traffic, 0 otherwise) 

0.272 1.07 - - 

Standard deviation of parameter distribution 0.503 2.62 - - 
Driver preference indicator (1 if the respondent is not sure 

(varies) about driving herself/himself when there are 
more than two licensed drivers in a vehicle on a trip, 0 
otherwise) 

- - 0.282 1.75 

Standard deviation of parameter distribution - - 0.434 2.9 
Annual mileage driven (in 1000 miles) -0.013 -2.08 - - 
Cross equation correlation 0.747 9.53   
Number of survey collectors 35    
Number of respondents 531    
Log-likelihood at convergence -417.28    
Log-likelihood at zero -499.66    
Akaike information criterion (AIC) 860.60    
Aggregate distributional effect of random parameters across the respondents 
 Above zero Below zero 
Age indicator (1 if the respondent is older than 45, 0 

otherwise) 69.42% 30.58% 

Driver preference indicator (1 if the respondent is not sure 
(varies) about driving herself/himself when there are 
more than two licensed drivers in a vehicle on a trip, 0 
otherwise) 

76.53% 23.47% 

Driving speed indicator (1 if the respondent normally 
drives faster than 75 mph on an interstate with a 65 mph 
speed limit and little traffic, 0 otherwise) 

70.59% 29.41% 

341 
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Table 4. (Pseudo-)elasticities of the explanatory variables included in the model of travel time-342 
related perceptions. 343 

Variable 
Lower travel 

time to 
destination 

More reliable 
travel time to 
destination 

Socio-demographics   
Age indicator (1 if the respondent is older than 45, 0 

otherwise) - 0.084 

Income indicator (1 if the respondent’s annual household 
income is between $30,000 and $50,000, 0 otherwise) - -0.087 

Income indicator (1 if the respondent’s annual household 
income is greater than $75,000, 0 otherwise) 0.073 - 

Opinions and Preferences   
Aggressive driving indicator (1 if the respondent thinks that 

s/he normally drives very aggressively, 0 otherwise) -0.139 - 

Driving speed indicator (1 if the respondent normally drives 
faster than 75 mph on an interstate with a 65 mph speed 
limit and little traffic, 0 otherwise) 

0.051 - 

Driver preference indicator (1 if the respondent is not sure 
(varies) about driving herself/himself when there are more 
than two licensed drivers in a vehicle on a trip, 0 
otherwise) 

- 0.068 

Annual mileage driven (in 1000 miles) -0.0003 - 
344 
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Table 5. Estimation results of the grouped random parameters bivariate probit model of cost and 345 
environmental perceptions 346 

Variable Lower fuel 
expense 

Lower CO2 
emissions 

 Coeff. t-stat Coeff. t-stat 
Constant -0.741 -5.7 - - 
Socio-demographics     
Inverse of square of the age of the respondent - - -222.7 -4.27 
Current living area indicator (1 if the respondent lives in 

city center, 0 otherwise) 0.454 3.27 - - 

Income indicator (1 if the respondent’s annual household 
income is between $50,000 and $150,000, 0 otherwise)  -0.214 -1.52 -0.075 -0.65 

Standard deviation of parameter distribution 0.535 6.72 0.565 6.63 
Opinions and Preferences     
Vehicle safety features indicator (1 if the respondent 

never owned a car with an advanced safety feature, 0 
otherwise) 

- - -0.197 -1.75 

Standard deviation of parameter distribution - - 0.553 5.63 
Speed limit opinion indicator (1 if the respondent agrees 

or completely agrees with the statement: “Speed limits 
on high speed freeways should only be suggestive”, 0 
otherwise) 

0.277 2.35 - - 

Mileage indicator (1 if the respondent annually drives less 
than 5,000 miles, 0 otherwise) 0.217 1.74 0.305 2.7 

Cross equation correlation 0.778 17.86   
Number of survey collectors 35    
Number of respondents 529    
Log-likelihood at convergence -550.74    
Log-likelihood at zero -673.43    
Akaike information criterion (AIC) 1,127.5    

Aggregate distributional effect of random parameters across the respondents 
 Above zero Below zero 
Income indicator (1 if the respondent’s annual household 

income is between $50,000 and $150,000, 0 otherwise) 
[Lower fuel expenses] 

34.43% 65.57% 

Income indicator (1 if the respondent’s annual household 
income is between $50,000 and $150,000, 0 otherwise) 
[Lower CO2 emissions] 

44.70% 55.30% 

Vehicle safety features indicator (1 if the respondent 
never owned a car with an advanced safety feature, 0 
otherwise) 

36.07% 63.93% 

 347 

 348 
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Table 6. (Pseudo-)elasticities of the explanatory variables included in the model of cost and 349 
environmental perceptions. 350 

Variable Lower fuel 
expense 

Lower CO2 
emissions 

Socio-demographics   
Inverse of square of the age of the respondent - -0.001 
Current living area indicator (1 if the respondent lives in city 

center, 0 otherwise) 0.157 - 

Income indicator (1 if the respondent’s annual household income 
is between $50,000 and $150,000, 0 otherwise) -0.069 -0.027 

Opinions and Preferences   
Vehicle safety features indicator (1 if the respondent never owned 

a car with emergency automatic braking, lane keeping 
assist/lane centering, adaptive cruise control, left turn assist, 
adaptive headlights or blind-spot monitoring, 0 otherwise) 

- -0.072 

Speed limit opinion indicator (1 if the respondent agrees or 
completely agrees with the statement: “Speed limits on high 
speed freeways should only be suggestive”, 0 otherwise)   

0.090 - 

Mileage indicator (1 if the respondent annually drives less than 
5,000 miles, 0 otherwise) 0.070 0.113 

351 
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A number of socio-demographic characteristics are found to affect individuals’ perceptions 352 

on the future use of flying cars.  For example, older individuals are less likely to expect a decrease 353 

of CO2 emissions with the use of flying cars.  The  majority (69.42%, as shown in Table 3) of 354 

respondents older than 45 years old acknowledge the potential of flying cars to provide more 355 

reliable travel times; whereas, about one third (30.58%) of respondents older than 45 years old are 356 

less likely to expect benefits in terms of travel time reliability.  This finding may be capturing the 357 

perceptions of elderly travelers, who may not be well-aware of the capabilities of emerging 358 

transportation technologies, or may be exaggerating current technical uncertainties relating to the 359 

future operation of flying cars.  The income level of individuals’ households is another significant 360 

determinant.  For example, Table 5 shows that individuals from lower income households are less 361 

likely (by -0.087, as shown by its pseudo-elasticity in Table 4) to anticipate more reliable travel 362 

times from the use of flying cars.  In contrast, individuals from medium and high income 363 

households (annual income greater than $75,000) are more likely (by 0.073, as shown by the 364 

pseudo-elasticities in Table 4) to anticipate lower travel times from the future use of flying cars.  365 

With respect to the cost and environmental benefits of flying cars, individuals from medium or 366 

high income households are found to have heterogeneous perceptions; their majority (65.57% and 367 

55.30%, respectively) are less likely to anticipate lower fuel expenses and lower CO2 emissions, 368 

respectively, from the use of flying cars.  This result may stem either from the common perception 369 

that the in-air operation will require stronger engine power, or from the existence of various 370 

technical specifications regarding the engine characteristics of flying cars (e.g., various flying car 371 

models include electric engine, gasoline-based engine, or hybrid engine).  Moreover, individuals 372 

who permanently live in densely populated areas (such as the city center and vicinity) are more 373 

likely (by 0.157, as indicated by the pseudo-elasticities in Table 6) to anticipate lower fuel 374 



29 
 

expenses from the use of flying cars.  This finding may be reflecting environmental and energy 375 

benefits of flying cars from their anticipated congestion-free traffic operation, as compared to 376 

highly congested surface transportation of traditional vehicles. 377 

As far as the familiarity with advanced transportation technologies is concerned, 378 

individuals who never owned a car with advanced safety features have mixed perceptions with 379 

respect to the expected environmental benefits of flying cars.  The reduction of CO2 emissions due 380 

to the use of flying cars is viewed as a less likely outcome by the majority (63.93%, as shown in 381 

Table 5) of these respondents; whereas for the rest of the respondents (36.07%, as shown in Table 382 

5), this outcome is more likely to occur. 383 

Moving to the behavioral and attitudinal determinants, individuals who perceive 384 

themselves as very aggressive drivers are less likely to anticipate reduction of travel times from 385 

the future use of flying cars.  On the contrary, expectations for lower travel times vary across 386 

drivers with self-reported speeding behavior (e.g., drivers who normally drive faster than 75 mph 387 

on an interstate with speed limit of 65 mph and little traffic).  Notably, for the majority (70.59%, 388 

as shown in Table 3) of these respondents, the self-reported speeding behavior increases the 389 

likelihood of expectations for lower travel times.  Such mixed expectations of individuals with 390 

aggressive driving behavior may possibly be attributed to their perceptions of the required time for 391 

the take-off and landing operations of flying cars.  For example, some individuals may have 392 

perceived the time requirements of flying cars’ take-off and landing  similar to those related to  393 

airport operations and conclude that trip durations will include such operational delays. 394 

Another source of perceptual variations arises from individuals with varying willingness 395 

to drive in shared trips (e.g., drivers who are not sure about driving themselves when other licensed 396 

drivers are also present in a vehicle).  The majority (76.53%, as shown in Table 3) of these 397 
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individuals are more likely to associate the use of flying cars with more reliable travel times to 398 

destination, while the opposite is observed for the remaining 25.83% of individuals.  This subgroup 399 

of drivers may be more susceptible to undesirable driving circumstances (such as, off-peak-hour 400 

congestion, traffic disruptions due to accidents, or workzone presence) that can result in 401 

unexpected travel delays.  The potential non-involvement of flying cars in such traffic situations 402 

may be serving as a contributing factor towards the enhancement of the perceived travel time 403 

reliability.  404 

Furthermore, individuals who endorse the suggestive role of speed limits are more likely 405 

(by 0.09, as shown by the (pseudo-)elasticities in Table 6) to expect lower fuel-related expenses.  406 

Driving exposure has also influential effect in shaping individuals’ expectations about the benefits 407 

of flying cars.  Specifically, individuals with greater annual mileage are less likely (by -0.0003, as 408 

shown by the elasticities in Table 4) to expect lower travel times.  Similarly, individuals with low 409 

annual mileage (less than 5,000 miles per year) are more likely to expect a decrease in fuel 410 

expenses and CO2 emissions from the future use of flying cars.  Both findings possibly capture the 411 

effect of habitual driving patterns on the individuals’ perceptions, since keen car-users may be 412 

more skeptical to the benefits of emerging transportation technologies, as opposed to car-users 413 

with little experience. 414 

Focusing on the cross-equation error term correlation, the specific coefficient was found to 415 

be positive in both benefit-specific models.  That means the unobserved characteristics captured 416 

by the error terms of the bivariate probit specification have a homogeneous and unidirectional 417 

effect on both model components.  In other words, such characteristics either both increase, or 418 

both decrease the likelihood of the benefit-specific perceptions (Pantangi et al., 2019; Fountas et 419 

al., 2019).  This finding underscores the conceptual interrelationship between the extent and 420 
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reliability of travel times, as well as between fuel expenses and CO2 emissions in the perceptual 421 

mechanism of individuals.  For the travel time model, the controlled involvement of flying cars in 422 

the ground transportation traffic may constitute a driving force for the identified interrelationship; 423 

whereas, established perceptions towards the energy demand features of the current commercial 424 

aircrafts may underpin the identified interrelationship between fuel expenses and CO2 emissions. 425 

Concern-specific perceptions 426 

Tables 7 and 8 present the estimation results and (pseudo-)elasticities of the bivariate model 427 

of individuals’ concerns about the interactions of flying cars with other vehicles on the roadway 428 

and interactions with other flying cars or vessels on the airway, respectively.  The estimation results 429 

and (pseudo-) elasticities of the bivariate model of individuals’ concerns regarding the 430 

performance of flying cars in poor weather (storm, high wind, rain, snow, tec.) and the learning 431 

process associated with the operation of flying cars are presented in Tables 9 and Table 10, 432 

respectively. 433 
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Table 7. Estimation results of the grouped random parameters bivariate probit model of 434 
individuals’ concerns regarding the interactions of flying cars on the roadway and airway 435 

Variable 

Interaction 
with other 

vehicles on the 
roadway 

Interaction 
with other 

flying cars or 
vessels on the 

airway 
 Coeff. t-stat Coeff. t-stat 
Constant - - 0.473 2.6 
Socio-demographics     
Gender indicator (1 if the respondent is female, 0 

otherwise) 0.572 3.3 0.644 4.22 

Square of the age of the respondent 0.0002 3.03 0.0003 2.26 
Income indicator (1 if the respondent’s annual household 

income is between $50,000 and $150,000, 0 otherwise) - - -0.223 -1.9 

Opinions and Preferences     

Vehicle safety features indicator (1 if the respondent never 
owned a car with an advanced safety feature, 0 
otherwise) 

- - 0.235 1.93 

Aggressive driving indicator (1 if the respondent thinks 
that s/he normally drives not aggressively, 0 otherwise) 0.143 1.4 - - 

Standard deviation of parameter distribution 0.244 2.9 - - 
Driving speed indicator (1 if the respondent normally 

drives faster than 65 mph on an interstate with a 65 mph 
speed limit and little traffic, 0 otherwise) 

0.177 1.65 - - 

Red light reaction indicator (1 if the respondent accelerates 
and crosses the signal when approaching a traffic signal 
which is green initially but turns yellow, 0 otherwise)  

- - -0.291 -1.48 

Standard deviation of parameter distribution - - 0.267 1.9 
Driver preference indicator (1 if the respondent generally 

prefers to drive herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

- - -0.006 -0.05 

Standard deviation of parameter distribution - - 0.330 3.65 
Accident history indicator (1 if the respondent has had 

more than one non-severe accidents in the last 5 years, 0 
otherwise) 

- - 0.362 1.64 

Standard deviation of parameter distribution - - 0.833 3.05 
Mileage indicator (1 if the respondent annually drives 

greater than 20,000 miles, 0 otherwise) 0.462 1.85 - - 

Cross equation correlation 0.914 37.77   
Number of survey collectors 35    
Number of respondents 514    
Log-likelihood at convergence -423.56    
Log-likelihood at zero -574.62    
Akaike information criterion (AIC) 883.1    
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Aggregate distributional effect of random parameters across the respondents 
 Above zero Below zero 
Aggressive driving indicator (1 if the respondent thinks 

that s/he normally drives not aggressively, 0 otherwise) 72.03% 27.97% 

Red light reaction indicator (1 if the respondent accelerates 
and crosses the signal when approaching a traffic signal 
which is green initially but turns yellow, 0 otherwise 

13.80% 86.20% 

Driver preference indicator (1 if the respondent generally 
prefers to drive herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

49.30% 50.70% 

Accident history indicator (1 if the respondent has had 
more than one non-severe accidents in the last 5 years, 0 
otherwise) 

66.80% 33.20% 

436 
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Table 8. (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 437 
concerns regarding the interactions of flying cars on the roadway and airway 438 

Variable 

Interaction 
with other 

vehicles on the 
roadway 

Interaction 
with other 

flying cars or 
vessels on the 

airway 
Socio-demographics   
Gender indicator (1 if the respondent is female, 0 otherwise) 0.167 0.150 
Square of the age of the respondent 0.0006 0.0005 
Income indicator (1 if the respondent’s annual household 

income is between $50,000 and $150,000, 0 otherwise) - -0.056 

Opinions and Preferences   
Vehicle safety features indicator (1 if the respondent never 

owned a car with emergency automatic braking, lane 
keeping assist/lane centering, adaptive cruise control, left 
turn assist, adaptive headlights or blind-spot monitoring, 0 
otherwise) 

- 0.058 

Aggressive driving indicator (1 if the respondent thinks that 
s/he normally drives not aggressively, 0 otherwise) 0.043 - 

Driving speed indicator (1 if the respondent normally drives 
faster than 65 mph on an interstate with a 65 mph speed 
limit and little traffic, 0 otherwise) 

0.055 - 

Red light reaction indicator (1 if the respondent accelerates 
and crosses the signal when approaching a traffic signal 
which is green initially but turns yellow, 0 otherwise)  

- -0.078 

Driver preference indicator (1 if the respondent generally 
prefers to drive herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

- -0.001 

Accident history indicator (1 if the respondent has had more 
than one non-severe accidents in the last 5 years, 0 
otherwise) 

- 0.080 

Mileage indicator (1 if the respondent annually drives 
greater than 20,000 miles, 0 otherwise) 0.123 - 

439 
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Table 9. Estimation results of the grouped random parameters bivariate probit model of 440 
individuals’ concerns about flying car performance in poor weather and learning to operate a flying 441 
car 442 

Variable 

Flying car 
performance in poor 

weather (storm, 
high wind, rain, 

snow, etc.) 

Learning to 
operate/use a 

flying car 

 Coeff. t-stat Coeff. t-stat 
Constant 1.68 8.06 0.497 3.88 
Socio-demographics     
Inverse of square of the age of the respondent -293.72 -2.71 - - 
Current living area indicator (1 if the respondent 

lives in city center, 0 otherwise) - - 0.397 2.2 

Income indicator (1 if the respondent’s annual 
household income is greater than $75,000, 0 
otherwise) 

- - 0.016 0.12 

Standard deviation of parameter distribution - - 0.284 3.54 
Opinions and Preferences     
Speed limit opinion indicator (1 if the respondent 

disagrees or completely disagrees with the 
statement: “Speed limits on high speed freeways 
should only be suggestive”, 0 otherwise)   

-0.297 -1.87 -0.297 -2 

Driver preference indicator (1 if the respondent is 
not sure (varies) about driving herself/himself 
when there are more than two licensed drivers in a 
vehicle on a trip, 0 otherwise) 

0.344 1.81 - - 

Accident history indicator (1 if the respondent has 
had at least one non-severe or severe accident in 
the last 5 years, 0 otherwise) 

- - -0.001 -0.01 

Standard deviation of parameter distribution - - 0.213 2.25 
Cross equation correlation 0.641 8.21   
Number of survey collectors 35    
Number of respondents 550    
Log-likelihood at convergence -502.57    
Log-likelihood at zero -572.65    
Akaike information criterion (AIC) 1029.1    

Aggregate distributional effect of random parameters across the respondents 
 Above zero Below zero 
Income indicator (1 if the respondent’s annual 

household income is greater than $75,000, 0 
otherwise) 

52.26% 47.74% 

Accident history indicator (1 if the respondent has 
had at least one non-severe or severe accident in 
the last 5 years, 0 otherwise) 

49.75% 50.25% 

443 
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Table 10. (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 444 
concerns about flying car performance in poor weather and learning to operate a flying car 445 

Variable 

Flying car 
performance in poor 

weather (storm, 
high wind, rain, 

snow, etc.) 

Learning to 
operate/use a 

flying car 

Socio-demographics   
Inverse of square of the age of the respondent -0.001 - 
Current living area indicator (1 if the respondent lives 

in city center, 0 otherwise) - 0.130 

Income indicator (1 if the respondent’s annual 
household income is greater than $75,000, 0 
otherwise) 

- 0.006 

Opinions and Preferences   
Speed limit opinion indicator (1 if the respondent 

disagrees or completely disagrees with the 
statement: “Speed limits on high speed freeways 
should only be suggestive”, 0 otherwise)   

-0.060 -0.108 

Driver preference indicator (1 if the respondent is not 
sure (varies) about driving herself/himself when 
there are more than two licensed drivers in a vehicle 
on a trip, 0 otherwise) 

0.059 - 

Accident history indicator (1 if the respondent has 
had at least one non-severe or severe accident in the 
last 5 years, 0 otherwise) 

- -0.0005 

 446 

A number of sociodemographic characteristics are found to affect individuals’ concern-447 

specific perceptions. Table 7 shows that the interactions of flying cars with roadway vehicles and 448 

other flying cars or air vessels constitute major sources of concern for older individuals.  In 449 

contrast, Table 9 shows that younger individuals are less likely to be concerned with the flying car 450 

performance during poor weather conditions.  Both findings possibly capture the more 451 

conservative perspectives of older individuals towards the innovative, yet largely unknown 452 

capabilities of flying cars.  In a similar manner, female respondents are overall more concerned 453 

about the implications from the interactions of flying cars with roadway vehicles as well as from 454 

the interactions with other flying cars or air vessels.  Interestingly, the specific variable (female 455 
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respondent indicator) increases the likelihood of concerns arising from the aforementioned 456 

interactions, by 0.167 and 0.15, respectively (as shown by the pseudo-elasticities in Table 8).  Such 457 

attitudinal pattern of females is in line with previous findings relating to their perceptions of 458 

automated transportation technologies (see also Schoettle and Sivak, 2014) and possibly reflects 459 

their higher level of cautiousness against the implications of advanced transportation technologies.  460 

The income level of individuals’ households constitutes another significant determinant. For 461 

example, Table 7 shows that individuals  from medium- or high-income households (annual 462 

income from $50,000 to $150,000) are less likely to be concerned about the interaction of flying 463 

cars with other in-air vessels, whereas 52.26% of the respondents from high income households 464 

(annual income greater than $75,000) consider the learning process associated with the flying car 465 

operation as a more likely source of concern.  Overall, likely significant experience of medium- 466 

and high-income individuals with air trips as well as potential perceptual similarities between the 467 

flying cars and the conventional airplanes may affect their level of concern against various flying 468 

car operations.  469 

Moving to the behavioral and attitudinal determinants of individuals’ concerns, the 470 

accident history is found to result in mixed perceptions towards the in-air interactions and the 471 

learning process of the flying car operation.  The majority (66.80%, as shown in Table 7) of 472 

respondents who were involved in more-than-one non-severe accidents over the last 5 years are 473 

more likely to be concerned about the in-air interactions of flying cars; whereas, the remaining one 474 

third (33.20%) of respondents are less likely to be concerned about the in-air interactions of flying 475 

cars.  Learning of flying car operations is found to bifurcate the perceptions of individuals with at 476 

least one, non-severe or severe, accident over the last 5 years, with almost half of these individuals 477 

being more likely to be concerned (49.75%, as shown in Table 9).  Intuitively, the involvement of 478 
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individuals in accidents with conventional vehicles may increase their level of cautiousness against 479 

various possible causes of flying car accidents, such as the interactions with other vessels or the 480 

inadequate knowledge of flying car operations.  The latter may also affect the perceptions of 481 

individuals who are unfamiliar with advanced safety features; the non-ownership of a vehicle with 482 

such features increases (by 0.058, as shown by the pseudo-elasticities in Table 8) the likelihood of 483 

concerns stemming from the in-air interaction of flying cars.  484 

The self-reported non-aggressive driving behavior of individuals is found to 485 

heterogeneously influence perceptions towards the on-ground interactions of flying cars.  The vast 486 

majority (72.03%, as shown in Table 7) of respondents who perceive their driving behavior as 487 

non-aggressive are more likely to be concerned about the implications from the interactions of 488 

flying cars with other vehicles in the ground transportation network; while the opposite is observed 489 

for the remaining 27.97% of the respondents.  Greater degree of cautiousness during the driving 490 

task, which is habitually exercised by non-aggressive drivers (Paleti et al., 2010), may enhance 491 

their tendency for low-risk ground interactions of flying cars.  With respect to the effect of specific 492 

driving behavior patterns, speeding behavior (for example, driving with speed greater than the 493 

speed limit on an interstate highway) is found to increase the likelihood of concern (by 0.055, as 494 

shown in Table 8) associated with the on-ground interactions of flying cars.  In contrast, the 495 

speeding behavior in the vicinity of a traffic signal (as exhibited by drivers who accelerate and 496 

cross the traffic signal when the traffic signal turns from green to yellow) has mixed effect on 497 

individuals’ concerns; the vast majority (86.2%, as shown in Table 7) of these respondents are less 498 

likely to be concerned about the in-air interactions of flying cars.  Due to their risk-taking behavior, 499 

these individuals may not consider the implications of the in-air interactions as possible issues that 500 

can disrupt the unobstructed navigation of flying cars.  501 
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Furthermore, individuals with high driving confidence – as indicated by their willingness 502 

to drive themselves even in the presence of other licensed drivers – are associated with mixed 503 

perceptions of the in-air interactions of flying cars, with 50.7% (as shown in Table 7) of these 504 

individuals being less likely to be concerned about the implications of such interactions.  In 505 

opposite, the variable reflecting varying willingness of individuals to undertake the driving task in 506 

the presence of other licensed drivers increases (by 0.059, as shown by the pseudo-elasticities in 507 

Table 10) the likelihood of concerns arising from the flying car performance during poor weather.  508 

Especially for drivers with limited driving familiarity, the inclement weather constitutes a major 509 

cause of driving discomfort and driving errors (Ahmed and Ghasemzadeh, 2018), which may also 510 

result in concerns about the operation of flying cars under such conditions.  In similar fashion, 511 

experienced drivers (whose annual mileage exceeds 20,000 miles) are more concerned about the 512 

interactions of flying cars with other vehicles on the roadway network.   513 

With respect to the impact of attitudinal characteristics, individuals with unfavorable 514 

opinions towards the suggestive enforcement of speed limits are less likely to be concerned about 515 

the flying car performance in inclement weather as well as about the learning process that may be 516 

required for the operation of flying cars.  This group of individuals may consider the behavioral 517 

variations under various traffic conditions as major risk component for conventional vehicles as 518 

well as for flying cars.  In this perceptual context, the automated capabilities of flying cars may 519 

restrain the exposed risk of individuals during the on-ground or in-air operation.  520 

The cross-equation error term correlation was consistently found positive in both concern-521 

specific models, thus implying the homogeneous effect of the captured unobserved characteristics 522 

on the dependent variables.  The interactions on the ground and in the air are, in fact, conceptually 523 

interrelated, with the cross-equation error correlation possibly capturing individuals’ similar 524 
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expectations regarding the safety performance of flying cars in the surface and air transportation 525 

networks.  Such perceived safety considerations, in conjunction with the perceived navigation 526 

comfort and the infrastructure-related uncertainties, may interact with individuals’ concerns about 527 

the performance of flying cars in inclement weather, and about learning to operate a flying car.  528 

The interdependence of weather, safety, and operational barriers have been also highlighted in the 529 

recent report of NASA on the potential market of Urban Air Mobility (NASA, 2018). 530 
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5. SUMMARY AND CONCLUSIONS 531 

The innovative features of flying cars – arising from their hybrid operation in the air and 532 

on the ground transportation networks – differentiate them significantly from the conventional 533 

vehicles, as well as from the emerging autonomous vehicles, especially in the context of 534 

individuals’ perceptions.  The limited awareness regarding their capabilities and differences from 535 

other urban mobility systems may affect the perceptual patterns towards potential advantages or 536 

drawbacks of flying cars.  This study seeks to shed more light on individuals’ perceptions on the 537 

benefits and concerns from the future use of flying cars, which may potentially have a critical 538 

effect on their adoption by the commuting population, and on their establishment in the traffic 539 

fleet.  Using data collected from an online survey, the fundamental components of public 540 

perception were identified, in terms of benefits and concerns arising from various travel time, 541 

environmental, cost or operational implications of flying cars.  Even though the survey results can 542 

provide preliminary insights into the current expectations of individuals, the long-term deployment 543 

of flying cars is anticipated to be highly dependent on the personal, behavioral and attitudinal 544 

factors that shape public perceptions.  To identify these determinants, the survey-based data were 545 

statistically analyzed through the estimation of grouped random parameters bivariate probit 546 

models.  Such models allow simultaneous modeling of conceptually similar benefits or concerns 547 

and account for various misspecification issues stemming from the highly heterogeneous nature of 548 

the survey data. 549 

The findings of the statistical analysis showed that various socio-demographic, behavioral, 550 

and attitudinal attributes affect individuals’ perceptions towards the benefits and concerns from 551 

the future use of flying cars.  Overall, the majority of older individuals, individuals with varying 552 

willingness to drive, and individuals with high household annual income were found more likely 553 
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to expect lower or more reliable travel times upon the introduction of flying cars.  Individuals who 554 

live in densely populated urban districts and individuals who travel extensively were found more 555 

likely to anticipate a decrease in the fuel expenses after the introduction of flying cars.  In contrast, 556 

individuals from medium- or high-income households, and individuals unfamiliar with advanced 557 

vehicle features were found less likely to expect environmental benefits from the introduction of 558 

flying cars.   559 

With regards to individuals’ concerns, the interactions of flying cars with other vehicles on 560 

the ground transportation networks were identified as a major source of concern for women, older 561 

individuals, non-aggressive drivers, and individuals who travel extensively.  Similarly, women, 562 

older individuals, and individuals with notable accident history were more likely to be concerned 563 

about interactions involving other flying cars or vessels in the airway.  Drivers with varying 564 

willingness to drive were more concerned about flying cars’ performance in inclement weather.  565 

Finally, learning how to operate a flying car was found to be the least concerning implication; 566 

individuals located in densely populated areas, individuals with high annual income, and 567 

individuals with notable accident history were more likely to be concerned about this operational 568 

element. 569 

The findings of the statistical analysis can provide significant insights on the potential of 570 

flying cars to attract public interest, as well as into the operational challenges that may act as 571 

potential barriers for their successful penetration into the traffic fleet.  Understanding the 572 

determinants of individuals’ perceptions can assist policymakers, researchers, manufacturing 573 

companies, and regulators in the identification of target groups, for which policy actions should 574 

be undertaken.  In this context, older individuals, individuals with limited knowledge or experience 575 

with advanced transportation systems, or individuals with notable accident history, may all 576 
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constitute focus groups whose perceptions towards the implications of flying cars need to be 577 

investigated in depth.  To increase the awareness of such focus groups about the capabilities of 578 

flying cars, media campaigns, training sessions, or targeted demonstrations of flying car operations 579 

can be carefully designed and implemented.   580 

The outcomes of this study can be blended with preliminary findings from recent endeavors 581 

of manufacturing or governmental entities (e.g., NASA, 2018; Airbus, 2019) focusing on policy 582 

actions to be undertaken, in order to address the establishment constraints of flying cars.  In this 583 

context, future policy interventions may aim at raising public awareness about the automated 584 

features of flying cars – in both ground and air operations – as well as on their minimal facility 585 

requirements for take-off and landing operations.  Such comparative advantages may further attract 586 

the interest of population groups with an inclination towards short and reliable travel times.  587 

Increased awareness about the monitoring and management of undesirable circumstances on the 588 

ground and in the air (e.g., traffic conflicts, on-ground and in-air vehicle interactions, system 589 

failure, navigation during adverse weather conditions) may also contribute to the resolution of 590 

concerns originating from conservative drivers or individuals with previous accident experience. 591 

It should be noted that the current public perceptions, as outlined in this study, are 592 

influenced by the public’s limited awareness and absence of previous experience with flying cars.  593 

As individuals become more informed about flying cars and essentially experience flying 594 

operations, their attitudinal perspectives will possibly change.  For instance, if the introduction of 595 

flying cars bears reliable, safe, cost- and environmentally-effective trips, public perceptions may 596 

shift towards a more favorable standpoint.  On the contrary, possible occurrence of undesirable 597 

incidents (e.g., accidents, system failures, excessive user’s cost) may adversely affect individuals’ 598 

perceptions and bring the implementation of flying cars to a halt.  This paper should thus be 599 
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regarded as an empirical, yet introductory step towards understanding public perceptions about the 600 

future use of flying cars, especially since the findings may be subject to temporal instability arising 601 

from the future growth patterns of the flying car market.   602 

 603 

6. ACKNOWLEDGEMENTS  604 

The contents of this paper reflect the views of the authors, who are responsible for the facts 605 

and the accuracy of the data presented herein.  The contents do not necessarily reflect the official 606 

views or policies of any agency, nor do the contents constitute a standard, specification, or 607 

regulation. 608 



45 
 

7. REFERENCES 609 

Ahmed, M.M., Ghasemzadeh, A., 2018. The impacts of heavy rain on speed and headway 610 

behaviors: an investigation using the SHRP2 naturalistic driving study 611 

data. Transportation research part C: emerging technologies, 91, 371-384. 612 

Airbus, 2019. Urban Air Mobility: on the path to public acceptance. 613 

https://www.airbus.com/newsroom/news/en/2019/02/urban-air-mobility-on-the-path-to-614 

public-acceptance.html  Accessed in June, 2019. 615 

Ajzen, I., 1991. The theory of planned behavior. Organizational behavior and human decision 616 

processes, 50(2), 179-211. 617 

Alemi, F., Circella, G., Handy, S., Mokhtarian, P., 2018. What influences travelers to use Uber? 618 

Exploring the factors affecting the adoption of on-demand ride services in 619 

California. Travel Behaviour and Society, 13, 88-104. 620 

Anastasopoulos, P.Ch. 2016. Random parameters multivariate tobit and zero-inflated count data 621 

models: Addressing unobserved and zero-state heterogeneity in accident injury-severity 622 

rate and frequency analysis. Analytic Methods in Accident Research, 11, 17-32. 623 

Anastasopoulos, P.C., Fountas, G., Sarwar, M.T., Karlaftis, M.G., Sadek, A.W., 2017. Transport 624 

habits of travelers using new energy type modes: a random parameters hazard-based 625 

approach of travel distance. Transportation Research Part C: Emerging 626 

Technologies, 77, .516-528. 627 

https://www.airbus.com/newsroom/news/en/2019/02/urban-air-mobility-on-the-path-to-public-acceptance.html
https://www.airbus.com/newsroom/news/en/2019/02/urban-air-mobility-on-the-path-to-public-acceptance.html


46 
 

Bansal, P., Kockelman, K.M., Singh, A., 2016. Assessing public opinions of and interest in new 628 

vehicle technologies: An Austin perspective. Transportation Research Part C: Emerging 629 

Technologies, 67, 1-14. 630 

Bansal, P., Kockelman, K.M., 2017. Forecasting Americans’ long-term adoption of connected and 631 

autonomous vehicle technologies. Transportation Research Part A: Policy and 632 

Practice, 95, 49-63. 633 

Bagloee, S.A., Tavana, M., Asadi, M., Oliver, T., 2016. Autonomous vehicles: challenges, 634 

opportunities, and future implications for transportation policies. Journal of Modern 635 

Transportation, 24(4), 284-303. 636 

Becker, E.P., 2017. The future of flying is near. Tribology and Lubrication Technology, 73(8), 96. 637 

Becker, F., Axhausen, K.W., 2017. Literature review on surveys investigating the acceptance of 638 

automated vehicles. Transportation, 44(6), 1293-1306. 639 

Becker, H., Loder, A., Schmid, B., Axhausen, K.W., 2017. Modeling car-sharing membership as 640 

a mobility tool: a multivariate Probit approach with latent variables. Travel Behaviour and 641 

Society, 8, 26-36. 642 

Belgiawan, P.F., Schmöcker, J.D., Abou-Zeid, M., Walker, J., Fujii, S., 2017. Modelling social 643 

norms: Case study of students’ car purchase intentions. Travel Behaviour and Society, 7, 644 

12-25. 645 

Buckley, L., Kaye, S.A., Pradhan, A.K., 2018. Psychosocial factors associated with intended use 646 

of automated vehicles: A simulated driving study. Accident Analysis & Prevention, 115, 647 

202-208. 648 



47 
 

Carley, S., Krause, R.M., Lane, B.W., Graham, J.D., 2013. Intent to purchase a plug-in electric 649 

vehicle: A survey of early impressions in large US cites. Transportation Research Part D: 650 

Transport and Environment, 18, 39-45. 651 

Chen, R.B., Mahmassani, H.S., 2015. Let it rain: weather effects on activity stress and scheduling 652 

behavior. Travel behaviour and society, 2(1), 55-64. 653 

Darnton, A., 2008. GSR Behaviour Change Knowledge Review: Overview of Behaviour Change 654 

Models and their Uses-Briefing Note for Policy Makers. Government Social Research 655 

Unit. 656 

Daziano, R.A., Sarrias, M. and Leard, B., 2017. Are consumers willing to pay to let cars drive for 657 

them? Analyzing response to autonomous vehicles. Transportation Research Part C: 658 

Emerging Technologies, 78, 150-164. 659 

Dias, F.F., Lavieri, P.S., Garikapati, V.M., Astroza, S., Pendyala, R.M., Bhat, C.R., 2017. A 660 

behavioral choice model of the use of car-sharing and ride-sourcing 661 

services. Transportation, 44(6), 1307-1323. 662 

Dong, X., DiScenna, M., Guerra, E., 2017. Transit user perceptions of driverless 663 

buses. Transportation, 1-16. 664 

Egbue, O., Long, S., 2012. Barriers to widespread adoption of electric vehicles: An analysis of 665 

consumer attitudes and perceptions. Energy policy, 48, 717-729. 666 

Eker, U., Fountas, G., Anastasopoulos, P.Ch., 2018. A preliminary investigation of public 667 

expectations and interest in flying cars: a statistical analysis of willingness to pay and 668 

willingness to use flying cars. Working paper.  669 



48 
 

Fagnant, D.J., Kockelman, K.M., 2014. The travel and environmental implications of shared 670 

autonomous vehicles, using agent-based model scenarios. Transportation Research Part 671 

C: Emerging Technologies, 40, 1-13. 672 

Fagnant, D.J., Kockelman, K., 2015. Preparing a nation for autonomous vehicles: opportunities, 673 

barriers and policy recommendations. Transportation Research Part A: Policy and 674 

Practice, 77, 167-181. 675 

Fagnant, D.J., Kockelman, K.M., 2018. Dynamic ride-sharing and fleet sizing for a system of 676 

shared autonomous vehicles in Austin, Texas. Transportation, 45(1), 143-158. 677 

Fatmi, M.R., Habib, M.A., 2017. Modelling mode switch associated with the change of residential 678 

location. Travel behaviour and society, 9, 21-28. 679 

Fountas, G., Anastasopoulos, P.Ch., 2017. A random thresholds random parameters hierarchical 680 

ordered probit analysis of highway accident injury-severities. Analytic Methods in Accident 681 

Research, 15, 1-16. 682 

Fountas, G., Sarwar, M.T., Anastasopoulos, P.Ch., Blatt, A., Majka, K., 2018a. Analysis of 683 

stationary and dynamic factors affecting highway accident occurrence: A dynamic 684 

correlated grouped random parameters binary logit approach. Accident Analysis & 685 

Prevention, 113, 330-340. 686 

Fountas, G., Anastasopoulos, P.Ch., Mannering, F.L., 2018b. Analysis of vehicle accident-injury 687 

severities: A comparison of segment- versus accident-based latent class ordered probit 688 

models with class-probability functions. Analytic Methods in Accident Research, 18, 15-689 

32.  690 



49 
 

Fountas, G., Anastasopoulos, P.Ch., Abdel-Aty, M, 2018c. Analysis of accident injury-severities 691 

using a correlated random parameters ordered probit approach with time variant 692 

covariates. Analytic Methods in Accident Research, 18, 57-68. 693 

Fountas, G., Anastasopoulos, P.Ch., 2018. Analysis of accident injury-severity outcomes: The 694 

zero-inflated hierarchical ordered probit model with correlated disturbances. Analytic 695 

Methods in Accident Research, 20, 30-45. 696 

Fountas, G., Rye, T., 2019. A note on accounting for underlying injury-severity states in 697 

statistical modeling of injury accident data. Procedia Computer Science, 151, 202-209. 698 

Fountas, G., Pantangi, S.S., Hulme, K.F., Anastasopoulos, P.Ch., 2019. The effects of driver 699 

fatigue, gender, and distracted driving on perceived and observed aggressive driving 700 

behavior: A correlated grouped random parameters bivariate probit approach. Analytic 701 

Methods in Accident Research, 22, 100091. 702 

Greene, W., 2016. LIMDEP Version 11.0. Econometric Software, Inc., Plainview, NY. 703 

Guo, Y., Wang, J., Peeta, S., Anastasopoulos, P.Ch., 2018. Impacts of internal migration, 704 

household registration system, and family planning policy on travel mode choice in 705 

China. Travel Behaviour and Society, 13, 128-143. 706 

Halton, J.H., 1960. On the efficiency of certain quasi-random sequences of points in evaluating 707 

multi-dimensional integrals. Numerische Mathematik, 2(1), 84-90. 708 

Harper, C.D., Hendrickson, C.T., Mangones, S., Samaras, C., 2016. Estimating potential increases 709 

in travel with autonomous vehicles for the non-driving, elderly and people with travel-710 

restrictive medical conditions. Transportation research part C: emerging technologies, 72, 711 

1-9. 712 



50 
 

Hyland, M., Frei, C., Frei, A., Mahmassani, H.S., 2018. Riders on the storm: Exploring weather 713 

and seasonality effects on commute mode choice in Chicago. Travel Behaviour and 714 

Society, 13, 44-60. 715 

Jing, P., Huang, H., Ran, B., Zhan, F. Shi, Y., 2019. Exploring the Factors Affecting Mode Choice 716 

Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A 717 

Case Study in China. Sustainability, 11(4), 1155. 718 

Kang, L., Xiong, Y. and Mannering, F.L., 2013. Statistical analysis of pedestrian perceptions of 719 

sidewalk level of service in the presence of bicycles. Transportation Research Part A: 720 

Policy and Practice, 53, pp.10-21. 721 

Khoo, H.L., Asitha, K.S., 2016. User requirements and route choice response to smart phone traffic 722 

applications (apps). Travel Behaviour and society, 3, 59-70. 723 

Krueger, R., Rashidi, T.H., Rose, J.M., 2016. Preferences for shared autonomous 724 

vehicles. Transportation research part C: emerging technologies, 69, 343-355. 725 

Kyriakidis, M., Happee, R., de Winter, J.C., 2015. Public opinion on automated driving: Results 726 

of an international questionnaire among 5000 respondents. Transportation research part 727 

F: traffic psychology and behaviour, 32, 127-140. 728 

Langbroek, J.H., Franklin, J.P., Susilo, Y.O., 2018. How would you change your travel patterns if 729 

you used an electric vehicle? A stated adaptation approach. Travel Behaviour and 730 

Society, 13, 144-154. 731 

Litman, T., 2017. Autonomous vehicle implementation predictions. Victoria Transport Policy 732 

Institute. https://www.vtpi.org/avip.pdf (Accessed on June, 2018). 733 

https://www.vtpi.org/avip.pdf


51 
 

Loeb, B., Kockelman, K.M., Liu, J., 2018. Shared autonomous electric vehicle (SAEV) operations 734 

across the Austin, Texas network with charging infrastructure decisions. Transportation 735 

Research Part C: Emerging Technologies, 89. 736 

Mannering, F.L., Bhat, C.R., 2014. Analytic methods in accident research: Methodological frontier 737 

and future directions. Analytic methods in accident research, 1, 1-22. 738 

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical 739 

analysis of highway accident data. Analytic Methods in Accident Research, 11, 1-16. 740 

Menon, N., Barbour, N., Zhang, Y., Pinjari, A.R., Mannering, F., 2019. Shared autonomous 741 

vehicles and their potential impacts on household vehicle ownership: An exploratory 742 

empirical assessment. International Journal of Sustainable Transportation, 1-12. 743 

Marks, P., 2014. Are you ready to get on a pilotless plane?. New Scientist, 223(2981), 30-33. 744 

Milakis, D., Van Arem, B., Van Wee, B., 2017. Policy and society related implications of 745 

automated driving: a review of literature and directions for future research. Journal of 746 

Intelligent Transportation Systems, 21(4), 324-348. 747 

Nayum, A., Klöckner, C.A., Mehmetoglu, M., 2016. Comparison of socio-psychological 748 

characteristics of conventional and battery electric car buyers. Travel Behaviour and 749 

Society, 3, 8-20. 750 

NASA, 2018. Urban Air Mobility (UAM) Market Study. 751 

https://www.nasa.gov/sites/default/files/atoms/files/bah_uam_executive_briefing_181005752 

_tagged.pdf  Accessed in June, 2019.  753 

https://www.nasa.gov/sites/default/files/atoms/files/bah_uam_executive_briefing_181005_tagged.pdf
https://www.nasa.gov/sites/default/files/atoms/files/bah_uam_executive_briefing_181005_tagged.pdf


52 
 

Oppitz, M., Tomsu, P., 2018. Future Technologies of the Cloud Century. In Inventing the Cloud 754 

Century , 511-545. Springer, Cham. 755 

Paleti, R., Eluru, N., Bhat, C.R., 2010. Examining the influence of aggressive driving behavior on 756 

driver injury severity in traffic crashes. Accident Analysis and Prevention, 42(6), 1839-757 

1854. 758 

Pantangi.,S.S., Fountas, G., Sarwar, M.T., Anastasopoulos, P.Ch., Blatt, A., Majka, K., Pierowicz, 759 

J, Mohan, S., 2018. The Development of New Insights into Driver Behavior to Improve 760 

High Visibility Highway Safety Enforcement (HVE) Programs. Analytic Methods in 761 

Accident Research, 21, 1-12. 762 

Rasouli, S., Timmermans, H., 2014. Applications of theories and models of choice and decision-763 

making under conditions of uncertainty in travel behavior research. Travel Behaviour and 764 

Society, 1(3), 79-90. 765 

Sarwar, M.T., Anastasopoulos, P.Ch., Golshani, N., Hulme, K.F., 2017a.  Grouped random 766 

parameters bivariate probit analysis of perceived and observed aggressive driving 767 

behavior: a driving simulation study.  Analytic Methods in Accident Research, 13, 52–64. 768 

Sarwar, M.T., Fountas, G., Anastasopoulos, P.Ch., 2017b. Simultaneous estimation of discrete 769 

outcome and continuous dependent variable equations: A bivariate random effects 770 

modeling approach with unrestricted instruments. Analytic Methods in Accident Research, 771 

16, 23-34. 772 

Satishkumar, B., Maitra, B., Das, S.S., 2018. Temporal shift in willingness-to-pay for rural feeder 773 

service to bus stop. Travel Behaviour and Society, 12, 102-107. 774 



53 
 

Schoettle, B., Sivak, M., 2014. A survey of public opinion about autonomous and self-driving 775 

vehicles in the U.S., the U.K., and Australia. Michigan, USA. 776 

<http://deepblue.lib.umich.edu/bitstream/handle/2027.42/108384/103024.pdf>. 777 

Shin, J., Bhat, C.R., You, D., Garikapati, V.M., Pendyala, R.M., 2015. Consumer preferences and 778 

willingness to pay for advanced vehicle technology options and fuel types. Transportation 779 

Research Part C: Emerging Technologies, 60, 511-524. 780 

Templeton, B., 2019. “A Field Guide To The Types OfFlying Cars”. Forbes. 781 

https://www.forbes.com/sites/bradtempleton/2019/03/25/a-field-guide-to-the-types-of-782 

flying-cars/#4a5720e116f4. Accessed in June, 2019. 783 

 784 
Thorhauge, M., Haustein, S., Cherchi, E., 2016. Accounting for the Theory of Planned Behaviour 785 

in departure time choice. Transportation Research Part F: Traffic Psychology and 786 

Behaviour, 38, 94-105. 787 

Uber, 2019.  Aerial ridesharing at scale. https://www.uber.com/gb/en/elevate/uberair/ Accessed in 788 

June, 2019. 789 

Van Brummelen, J., O’Brien, M., Gruyer, D., Najjaran, H., 2018. Autonomous vehicle perception: 790 

The technology of today and tomorrow. Transportation research part C: emerging 791 

technologies, 89, 384-406. 792 

Vinayak, P., Dias, F.F., Astroza, S., Bhat, C.R., Pendyala, R.M., Garikapati, V.M., 793 

2018. Accounting For Multi-dimensional Dependencies Among Decision-makers Within 794 

a Generalized Model Framework: An Application to Understanding Shared Mobility 795 

Service Usage Levels. Presented at the 97th Annual Meeting of Transportation Research 796 

Board (No. 18-05777). 797 

http://deepblue.lib.umich.edu/bitstream/handle/2027.42/108384/103024.pdf
https://www.forbes.com/sites/bradtempleton/2019/03/25/a-field-guide-to-the-types-of-flying-cars/#4a5720e116f4
https://www.forbes.com/sites/bradtempleton/2019/03/25/a-field-guide-to-the-types-of-flying-cars/#4a5720e116f4
https://www.uber.com/gb/en/elevate/uberair/


54 
 

Wadud, Z., 2017. Fully automated vehicles: A cost of ownership analysis to inform early 798 

adoption. Transportation Research Part A: Policy and Practice, 101, 163-176. 799 

Washington, S., Karlaftis, M., Mannering, F.L., 2011.  Statistical and Econometric Methods for 800 

Transportation Data Analysis.  Chapman and Hall/CRC, Boca Raton. 801 

Westin, K., Jansson, J., Nordlund, A., 2018. The importance of socio-demographic characteristics, 802 

geographic setting, and attitudes for adoption of electric vehicles in Sweden. Travel 803 

Behaviour and Society, 13, 118-127. 804 

 805 


