
  

 

 

 

 

 

 

 

ENERGY DELIVERY OF SOLAR FARMS WITH 

REFERENCE TO SHADNG 

 

By 

 

MICHAEL JEFFREY 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier 

University, for the award of 

 

Doctor of Philosophy 

 

School of Engineering and the Built Environment 

 

 

 

 

 
May 2019 

 



i 

 

Contents 

Abstract ........................................................................................................................................................... ix 

Declaration ...................................................................................................................................................... x 

Acknowledgements...................................................................................................................................... xi 

Publications List .......................................................................................................................................... xii 

List of Figures ............................................................................................................................................. xiii 

List of Tables ............................................................................................................................................... xvii 

Chapter 1 Introduction......................................................................................................................................... 1 

1.1 Chapter Summary ................................................................................................................................... 1 

1.1.2 Research Question ............................................................................................................................ 1 

1.1.2 Aims and objectives ........................................................................................................................... 1 

1.1.3 Research Site and Further Education Context .............................................................................. 2 

1.2 Economic Arguments for Renewables & Solar ............................................................................... 5 

1.3 Drivers for Uptake of Solar in the UK ................................................................................................ 6 

1.4 Existing Medium-Large Scale Solar Installations in UK ............................................................... 8 

1.5 Existing Large-Scale Solar Installations in the UK ......................................................................... 9 

1.5.1 Cornwall Solar Parks ......................................................................................................................... 9 

1.5.2 Other UK Installations ..................................................................................................................... 10 

1.5.3 Errol Estate Solar Farm .................................................................................................................. 10 

1.6 Further Education Colleges Overview ............................................................................................ 12 

1.6.1 Scottish FE college regionalisation ............................................................................................... 12 

1.6.2 Expectations of FE colleges and the Scottish Governments STEM agenda.......................... 13 

1.6.3 Learner Demographics ................................................................................................................... 14 

1.6.4 DYW ................................................................................................................................................... 15 

1.6.5 FE in the Future ............................................................................................................................... 15 

1.6.6 College Innovation ........................................................................................................................... 16 

1.7 Further Education Estate targets...................................................................................................... 16 

1.7.1 Overview of Scotland College Estate ........................................................................................... 17 

1.7.2 Funding options ................................................................................................................................ 18 

1.7.3 College Surveys ............................................................................................................................... 19 

1.7.4 Scotland’s Energy Efficiency Programme (SEEP) ..................................................................... 20 

1.7.5 Aims of SEEP ................................................................................................................................... 20 

1.7.6 Pathfinder Fund ................................................................................................................................ 20 

1.7.6 College sector activity ..................................................................................................................... 21 

1.7.7 College Energy Efficiency Partnership (CEEP) .......................................................................... 24 

1.8 Edinburgh College Electricity Consumption ................................................................................. 25 

1.9 Edinburgh College Travel Costs ....................................................................................................... 26 

1.9.1 Scottish Government decarbonisation of the road transport sector ......................................... 26 



ii 

 

1.9.2 Edinburgh College green fleet – research project ...................................................................... 26 

1.10 Edinburgh College eCar research .................................................................................................. 26 

1.10.1 Edinburgh College BEV - early adopters ................................................................................... 26 

1.10.2 Edinburgh College travel .............................................................................................................. 27 

1.10.3 College commuting requirements ............................................................................................... 28 

1.10.4 Edinburgh College and staff mobility .......................................................................................... 28 

1.11 Future developments ......................................................................................................................... 29 

Chapter 2 – Literature Review, review of worldwide trends in solar photovoltaic technologies ............ 30 

2.0 Chapter Summary ................................................................................................................................. 30 

2.0.1 Existing Literature and previous works ......................................................................................... 30 

2.0.2 Previous works relevant to this research ..................................................................................... 31 

2.1 Worldwide countries leading PV development and installation ............................................... 31 

2.2 China ........................................................................................................................................................ 33 

2.2.1 Key policy drivers ............................................................................................................................. 33 

2.2.2 Photo Voltaic Research & Development activities and associated funding............................ 35 

2.3 Japan ........................................................................................................................................................ 36 

2.3.1 Key Policy Drivers ............................................................................................................................ 36 

2.3.2 Photo Voltaic Research & Development activities and associated funding............................ 37 

2.4 USA ........................................................................................................................................................... 38 

2.4.1 Key Policy Drivers ............................................................................................................................ 38 

2.4.2 Photo Voltaic Research &Development activities and associated funding ............................. 40 

2.5 Germany .................................................................................................................................................. 40 

2.5.1 Policy Drivers .................................................................................................................................... 40 

2.5.2 Photo Voltaic Research & Development activities and associated funding............................ 41 

2.6 U.K ............................................................................................................................................................ 42 

2.6.1 Policy Drivers .................................................................................................................................... 42 

2.6.2 PV Research & Development activities and associated funding .............................................. 44 

2.7 PV electricity production in leading countries .............................................................................. 45 

2.8 PV cost analysis .................................................................................................................................... 46 

2.9 Discussion and recommendations .................................................................................................. 51 

2.9.1 Policy recommendations – Change is required........................................................................... 53 

2.9.2 Incentive and framework ................................................................................................................. 53 

2.9.3 Market transformation ..................................................................................................................... 54 

2.9.4 Development of technology and Research & Development ..................................................... 55 

2.9.5 International expansion and collaborations ................................................................................. 56 

2.10 Scotland’s Key policy drivers ......................................................................................................... 56 

2.10.1 Kyoto Protocol ................................................................................................................................ 56 

2.10.3 Climate Change (Scotland) act 2009 .......................................................................................... 57 



iii 

 

2.10.4 Low Carbon Scotland .................................................................................................................... 58 

2.10.5 Scottish Government Climate Change Plan (2018) ................................................................. 59 

2.10.6 Political Background ...................................................................................................................... 62 

2.11 Solar PV Technologies ...................................................................................................................... 64 

2.12 Solar PV Materials .............................................................................................................................. 64 

2.13 Photovoltaic module material and associated efficiencies ..................................................... 65 

2.14 Crystalline Silicon (c-Si) ................................................................................................................... 69 

2.14.1 Mono crystalline ............................................................................................................................. 69 

2.14.2 Multi crystalline or Poly crystalline .............................................................................................. 70 

2.15 Thin film technology .......................................................................................................................... 71 

2.15.1 Amorphous Silicon (a-Si) .............................................................................................................. 71 

2.15.2 Cadmium Telluride (CdTe) / Cadmium Sulphide (CdS) .......................................................... 72 

2.15.3 Copper Indium Gallium Selenide (CIGS) / Copper Indium (Di) Selenide (CIS) ................... 72 

2.15.4 Gallium Arsenide (GaAs) .............................................................................................................. 73 

2.16 New emerging technologies ............................................................................................................ 74 

2.16.1 Hybrid cell ....................................................................................................................................... 74 

2.16.2 Carbon Nanotube (CNT) cells ..................................................................................................... 74 

2.16.3 Dye Sensitized Solar Cells (DSSC) ............................................................................................ 74 

2.16.4 Tandem cells / Multi Junction solar cell ...................................................................................... 75 

2.17 Conclusion ........................................................................................................................................... 75 

2.18 Thesis Outline ...................................................................................................................................... 77 

Chapter 3 – Evaluation of Solar Modelling Techniques Edinburgh College – Midlothian campus, 

Scotland .............................................................................................................................................................. 78 

3.1 Chapter Summary ................................................................................................................................. 78 

3.2 Introduction ............................................................................................................................................ 78 

3.3 Summary of Analysis Process .......................................................................................................... 80 

3.3.1 Methodology ..................................................................................................................................... 80 

3.3.2 Solar Geometry Calculations to be utilised in this research ...................................................... 81 

3.3.3 Solar Data Recording ...................................................................................................................... 83 

3.3.4 Effects of Shading on String Output .............................................................................................. 85 

3.3.5 Data Presentation ............................................................................................................................ 86 

3.3.6 Horizontal to Slope Irradiation Conversion ................................................................................... 86 

3.3.7 Thermal Model for Cell Temperature ............................................................................................ 87 

3.3.8 Alternative Thermal Model .............................................................................................................. 87 

3.4 Edinburgh College Solar Meadow Technology............................................................................. 88 

3.4.1 Purpose and Investors .................................................................................................................... 88 

3.5 The Solar Meadow Farm ..................................................................................................................... 88 

3.6 Specifics of Location and Site ........................................................................................................... 90 

3.8 Shading Analysis ................................................................................................................................ 101 



iv 

 

3.8.1 Site Survey and Triangulation ..................................................................................................... 102 

3.8.2 Shading Charts .............................................................................................................................. 104 

3.9 Experimental Setup ............................................................................................................................ 105 

3.9.1 Position on Site ................................................................................................................................ 105 

3.9.2 Sensor Specifications ................................................................................................................... 105 

3.9.3 Pyranometer Setup ......................................................................................................................... 106 

3.9.4 Flux Sensor and Thermocouple Setup ....................................................................................... 109 

3.9.5 Data-Loggers .................................................................................................................................. 111 

3.10 Experimental Measurements at Solar Meadow Farm .............................................................. 112 

3.11 Calculation Process ......................................................................................................................... 115 

3.11.1 Slope Irradiation ........................................................................................................................... 115 

3.11.2 Cell Temperature ......................................................................................................................... 117 

3.11.3 Cell Efficiency ............................................................................................................................... 119 

3.12 Results & Discussion ...................................................................................................................... 120 

3.12.1 Slope Irradiation ........................................................................................................................... 120 

3.12.2 Cell Temperature ......................................................................................................................... 121 

3.12.3 Cell Efficiency ............................................................................................................................... 123 

3.13 Experimental Results ....................................................................................................................... 124 

3.13.1 Overview ....................................................................................................................................... 124 

3.13.2 Sensor Readings ......................................................................................................................... 125 

3.14 Manual Readings ............................................................................................................................. 132 

3.14.1 Inverter Power Output ................................................................................................................ 132 

3.14.2 Inverter kWh output ..................................................................................................................... 135 

3.14.2 Overall System Output ............................................................................................................... 137 

3.15 Derived Quantities ........................................................................................................................... 139 

3.15.1 Module Power Output ................................................................................................................. 139 

3.15.2 Energy Balance ........................................................................................................................... 142 

3.15.3 Measuring Correlation ................................................................................................................. 143 

3.15.4 The Slope Irradiation ................................................................................................................... 143 

3.15.5 Results........................................................................................................................................... 144 

3.15.6 Model Comparison ...................................................................................................................... 145 

3.15.7 The Cell Temperature ................................................................................................................. 145 

3.15.8 The Cell Efficiency ....................................................................................................................... 148 

3.15.9 Daily Variability ............................................................................................................................. 149 

3.15.10 Averaged Values ....................................................................................................................... 150 

3.16 Shading Analysis ............................................................................................................................. 152 

3.17 Software .............................................................................................................................................. 156 

3.17.1 Workbook Structure .................................................................................................................... 156 



v 

 

3.17.2 Excel-Only Implementation ....................................................................................................... 158 

3.18 Use and Adaptation of solar analysis Software ......................................................................... 159 

3.18 Implementation of Thermal Model ............................................................................................... 160 

3.19 Cell Efficiency Calculations .......................................................................................................... 161 

3.20 Graphical Display Interface ........................................................................................................... 162 

3.21 Problems Encountered ................................................................................................................... 163 

3.22 Conclusions ....................................................................................................................................... 164 

Chapter 4 – Analysis of Energy Delivery of the Edinburgh College solar PV meadow: Effects of 

Shading ............................................................................................................................................................. 167 

4.1 Chapter Summary ............................................................................................................................... 167 

4.2 Introduction .......................................................................................................................................... 167 

4.3 PV modules in shade ......................................................................................................................... 169 

4.4 Problems caused by shading .......................................................................................................... 171 

4.4.1 Establishing critical points of shade within the Solar Meadow at Edinburgh College ......... 172 

4.5 Modelling Approaches ....................................................................................................................... 175 

4.5.1 Sun-Earth Geometry description ................................................................................................. 175 

4.5.2 Day number description ................................................................................................................ 176 

4.5.3 Solar Declination description........................................................................................................ 176 

4.5.4 Equation of Time description........................................................................................................ 177 

4.5.5 Solar Altitude and Azimuth description ....................................................................................... 177 

4.5.6 Sun Inclination description ........................................................................................................... 178 

4.5.7 Extra-terrestrial spectrum description ......................................................................................... 178 

4.5.8 Solar radiation description ............................................................................................................ 179 

4.5.9 Hourly global slope irradiance description ................................................................................. 180 

4.6 3 Shading algorithms considered: ................................................................................................. 182 

4.6.1 Budin shading algorithm ............................................................................................................... 182 

4.6.2 Horn shading algorithm ................................................................................................................. 183 

4.6.3 Geographic Information system packages ................................................................................ 183 

4.7 Algorithm selected – Sky View Factor (SVF) ............................................................................... 185 

4.7.1 Sky view factor ............................................................................................................................... 185 

4.8 Calculation Process ........................................................................................................................... 187 

4.8.1 Energy delivery from the solar meadow – the three approaches utilised ............................. 187 

4.8.2 Calculating Energy Output with relation to shading .................................................................. 188 

4.9 Results ................................................................................................................................................... 191 

4.9.1 The three approaches in results .................................................................................................. 191 

4.9.2 Linear plots ..................................................................................................................................... 192 

4.9.3 Radar plots ...................................................................................................................................... 194 

4.10 Energy output of the Solar Farm .................................................................................................. 196 

4.10.1 Scenario one ................................................................................................................................ 196 



vi 

 

4.10.2 Scenario 2 ..................................................................................................................................... 198 

4.11 Conclusions ....................................................................................................................................... 199 

Chapter 5 Future plans: Implementation of a solar charging station for e-cars at Edinburgh College

 ............................................................................................................................................................................ 201 

5.0 Chapter Summary ............................................................................................................................... 201 

5.1 Calculation process: Slope irradiation, cell temperature and cell efficiency ..................... 203 

5.1.1 Slope irradiation ............................................................................................................................. 203 

5.1.2 Cell temperature ............................................................................................................................. 204 

5.1.3 Cell efficiency ................................................................................................................................. 205 

5.1.4 Design of the solar charging station: First phase ...................................................................... 205 

5.1.5 Design 1: South orientation .......................................................................................................... 205 

5.1.6 Design 2: East-west orientation ................................................................................................... 206 

5.1.7 Design 3: East-West orientation .................................................................................................. 208 

5.1.8 Design summary ............................................................................................................................ 210 

5.1.9 Design of the solar carport: Second phase ................................................................................ 210 

5.1.10 Design 4: South orientation ........................................................................................................ 211 

5.1.11 Design 5: East-west orientation ................................................................................................. 214 

6.1.12 Design 6: East-west orientation ................................................................................................. 215 

5.2 Summary of results by design shape for the first and second phase .................................. 218 

5.2.1 Design Review ............................................................................................................................... 218 

5.2.2 Characteristics of the chosen design .......................................................................................... 218 

5.2.3 Design of the PV system .............................................................................................................. 220 

5.2.4 Selection of the inverter ................................................................................................................ 220 

5.2.4 Selection of the PV module .......................................................................................................... 224 

5.2.5 Selection of the charging station ................................................................................................. 224 

5.2.6 Layout .............................................................................................................................................. 226 

5.2.7 Driving behaviour ........................................................................................................................... 227 

5.2.8 Number of vehicles to be charged during a day by the solar carport .................................... 230 

5.3 Energy production and energy consumption by the carport .................................................. 231 

5.4 Load profile........................................................................................................................................... 231 

5.5 Financial analysis ............................................................................................................................... 233 

5.6 Scenario 1 ............................................................................................................................................. 233 

5.7 Scenario 2 ............................................................................................................................................. 236 

5.8 Scenario 3 ............................................................................................................................................. 238 

5.9 Financial assumptions ...................................................................................................................... 238 

5.10 Environmental analysis ................................................................................................................... 240 

5.11 Life cycle assessment (LCA) of the project ............................................................................... 240 

5.12 Life cycle assessment of the balance of system (BOS) and system mounting ............... 243 

5.12.1 Energy payback time (EPBT) and global warming potential (GWP) summary .................. 244 



vii 

 

5.12.2 CO2 emissions saved ................................................................................................................. 245 

5.13 Conclusions ....................................................................................................................................... 245 

Solar charging station at Edinburgh College ..................................................................................... 245 

Chapter 6 – Conclusion .................................................................................................................................. 248 

6.1 Introduction .......................................................................................................................................... 248 

6.2 Site identification ................................................................................................................................ 248 

6.3 Site specific data ................................................................................................................................. 248 

6.4 Site survey ............................................................................................................................................ 249 

6.5 Site monitoring .................................................................................................................................... 249 

6.6 Site Modelling ...................................................................................................................................... 250 

6.7 Data Analysis .................................................................................................................................. 251 

6.8 Comparison of solar output ............................................................................................................. 251 

6.9 Pedagogical impact on the College ............................................................................................... 252 

6.10 Lessons learned ................................................................................................................................ 252 

6.11 Recommendations for future study ............................................................................................. 253 

References ........................................................................................................................................................ 255 

Appendices ....................................................................................................................................................... 268 

Appendix A: Data Tables ................................................................................................................................ 268 

Appendix B: Datasheets ................................................................................................................................. 275 

Inverters ............................................................................................................................................................ 277 

Pyranometer specifications ............................................................................................................................ 279 

Sensor Calibration Certificates ...................................................................................................................... 280 

Data-Loggers .................................................................................................................................................... 282 

Appendix C: VBA Code Transcripts .............................................................................................................. 283 

Appendix D: SSE System Documents .......................................................................................................... 293 

Appendix E – Solar Farm Blockage Data .................................................................................................... 296 

Appendix F: MATLAB codes .......................................................................................................................... 298 

Reading data from excel primary data ............................................................................................. 298 

Yallop’s algorithm to calculate sun declination and equation of time .................................... 298 

Greenwich hour angle .......................................................................................................................... 298 

Solar geometry ....................................................................................................................................... 299 

Hourly horizontal global irradiation .................................................................................................. 299 

Hourly global slop irradiation ............................................................................................................. 299 

Block dedication for specific azimuths (Block first row-left) ..................................................... 300 

Blocks modification .............................................................................................................................. 300 

Sky view factor ....................................................................................................................................... 301 

Global slop irradiation with consideration to shade .................................................................... 301 

Mean global horizontal irradiation (December) ................................................................................... 301 



viii 

 

Appendix G – Linear Shading plots .............................................................................................................. 302 

Appendix H– Radar Shading plots ................................................................................................................ 307 

Appendix I - Edinburgh College Midlothian Campus electricity consumption 2013-2017 .................... 312 

Appendix J – Edinburgh College Solar Array Cashflow only (SSE) ........................................................ 314 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



ix 

 

Abstract  

 

This study has been undertaken to research the impact of shading on a large scale solar PV 

site at 56° latitude north, this is the first site in the UK at this latitude, consisting of 2500 solar 

panels across a 5 acres.  As solar altitude decreases obstacles and blockages become more 

of a hindrance and careful planning is required to ensure the amount of shading on the panel 

surface is kept to a minimum.  The impacts of shading on the Edinburgh College Solar 

Meadow, from obstacles along the Southern and Eastern edges have been investigated.  

The accuracy and applicability of existing methods of solar resource modelling and solar 

photovoltaic (PV) module performance are investigated in the case of the ground array 

installation.  The principal derived quantities consist of slope irradiation, cell temperature and 

cell efficiency.  Experimental data was collected on site through both automated and manual 

measurements for comparison with the calculated quantities for both triangulation and quality 

assurance.  The impact of shading has been analysed and the effect on energy delivery 

captured throughout the year.  The research undertook detailed modelling in order to compare 

and evaluate the data obtained with further comparisons made between a number of modelling 

tools and other forms of output associated with the solar farm directly. 

The site was expected to generate 560,000 kWh across the year with no impact from shading, 

based on the installers assumptions.  Results indicate that the models used to compare and 

contrast slope irradiation, cell temperature and cell efficiency are accurate and within the 

expected range as per manufacturer specifications.  The results also show that shading 

impacts the energy generation with a significant reduction in the winter months with respect to 

the available energy at the site by as much as 50%.  Being the first study of its kind, at high 

latitude in the UK,   to show the importance of accurate shade modelling at higher latitudes the 

findings show greater consideration is required at concept stages when taking account of solar 

obstacles.  Shading has reduced the overall output, of this particular array, by 136,859 kWh 

across the year studied. 
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Chapter 1 Introduction 

 

1.1 Chapter Summary 
 

This chapter will introduce the research, the background to the solar meadow at Edinburgh 

College, introduce the research site and provide an overview of the current position of further 

education within the education sector.  It will provide justification for this research, and where 

it sits alongside other research being carried out by the college to support the green initiatives 

and ambitions of the organisation.  It will provide data on the campus consumption in terms of 

electricity and the carbon emissions of the campus where the Solar Meadow is based. 

1.1.2 Research Question 

 

This research will establish the viability of Photovoltaic solar generation at a latitude of 56° and 

its impact on energy saving for a medium sized further education (FE) campus based in 

Midlothian, Edinburgh.  This is a unique piece of research for Scotland and marries aspects of 

modern technology with key environmental concerns.   

This research will aim to discover if a 675kWp solar array can generate enough energy output 

to support a carbon neutral Further Education College campus and whether the energy 

delivery meets the forecast outputs claimed by the installer. 

As this study is the first of its kind, on this scale, at a latitude of 56° north, it offers an important 

look at the impact of shading on solar power generation for Scotland.  This will inform further 

development of such arrays as part of Scotland’s renewable energy solution.  The study will 

also look to validate the pedagogical impact on the college and any potential for wider research 

within the solar farm to form a qualitative approach to biodiversity and environmental impact. 

1.1.2 Aims and objectives 

 

This research aims to cover a number of different elements, which lead towards the 

achievement of the research question and the following research objectives: 

 

 The identification of a site and array to study the impact of shading 

 To obtain real and original solar and meteorological data specific to the site being 

studied, in contrast to using published data for the general area, or yearly-averaged 

data from public databases. This will form a strong basis for the calculations and 

model implementation. 
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 To perform a survey of the site using correct surveying tools and methods in order to 

produce a better understanding of any shading issues. This information will assist in 

energy forecasting for the site, which has real financial implications in terms of energy 

use and investment payback. 

 Monitoring of solar radiation, current production and efficiencies of all the component 

parts of the system.  Module orientation and tilt will be considered, although the 

installation parameters have already been optimised at the time of installation.   

 The data collected on site will allow for an assessment of the applicability and accuracy 

of a range of commonly-used mathematical models of solar resource and photovoltaic 

module performance. Direct comparisons will be made between the measured values 

and those calculated from site-specific input data, showing how well these models 

perform under the given circumstances at this latitude. 

 Analyse and inspect large data sets produced with the development of software tools. 

 Compare and validate findings against actual energy output, available energy, modelled 

energy output and energy output with respect to shading. 

 

 

1.1.3 Research Site and Further Education Context 

 

Jewel & Esk College merged, in 2012, with Edinburgh’s Telford College and Stevenson 

College Edinburgh in order to create the biggest college in Scotland.  This was the first merger 

of Further Education (FE) Colleges within the Scottish Governments regionalisation agenda 

(see section 1.6 for more detail).  This has created opportunities to update and upgrade the 

curriculum offer, and vocational delivery opportunities at the college.  A key area for 

enhancement during this merger has been the drive to better the STEM activity undertaken by 

the college and enhance opportunities for all communities in the region, this is clearly 

referenced through the College STEM Manifesto.  Sustainability and Clean Technology has 

been top of the agenda and through industry engagement there have been many positive 

developments to both curriculum content and up-to-date industrial technologies being utilised 

in the vocational areas.  These take the form of an Electric Vehicle project, Biodiesel 

production, sustainable building technologies, enhanced energy curriculum, micro and macro 

renewable energy including the Solar Meadow based at the Midlothian Campus of Edinburgh 

College in Dalkeith. 

Renewable energy production has become a key element for Further Education to address 

through improvements in curriculum offer and in terms of energy consumption across a large 
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and aging estate nationally (Edinburgh College, 2016).  A key development for Edinburgh 

College, post-merger, was the installation of a Solar Array at the Midlothian Campus.  As well 

as the energy benefits for the College, the site (which was designated for industrial use) has 

become an outdoor classroom for engineering, science, environmental and technology 

students to gather data and understand the technology and biodiversity.  The ground 

surrounding the Solar array has been planted with wild flowers and grasses, allowing students 

to analyse the interaction between biodiversity and the panels, as well as monitor and assess 

the operation and performance of the solar panels.  

 

The Solar Meadow at Edinburgh College’s Midlothian Campus is a 5 acre development which 

provides 627.5kW of energy in the midst of a bio-diversity meadow.  This is a unique 

installation for Scotland and marries aspects of modern technology with key environmental 

concerns.  The energy produced is expected to go some way to reduce the carbon footprint of 

the Campus and the meadow is said to produce enough electricity for the Midlothian Campus 

to be self-sufficient and not rely on the National Grid.  If surplus electricity is produced it will be 

sold back to the Grid, helping to off-set electricity bills at the College’s Edinburgh Campus 

based at Milton Road in Edinburgh.  This research aims to analyse actual performance to ratify 

these claims. 

 

Initially planned as a small scale solar roof, to run the Engineering workshops, evolving quickly 

into a large scale solar PV installation.  The 5 acre site has been developed into a 2560 panel 

installation that has been created in partnership with Scottish & Southern Energy (SSE).  Their 

involvement has allowed the project to grow and make it a viable installation for generation of 

sustainable energy to the College and the National Grid.    The site earthworks were completed 

with the bund and site levelling, the addition of an earth-ship classroom, where the monitoring 

equipment will be based, will complete the installation.  Commissioning of the facility was due 

in November 2012, but was delayed until March 2013 due to complications with the 

groundworks, with the installation of the PV technology taking 3-4 weeks.  It is assumed that 

the energy produced will in part be used for the charging of the college electric vehicle fleet 

and to offset electrical energy consumption from the grid.  The system will be monitored from 

the outset to allow for a clear picture to be developed of the practicalities and viability of such 

a large scale project.  Being the first of its kind in Scotland this research will play a major role 

in informing the energy industry to the viability of producing solar electricity at this scale in a 

high latitude location. Aspects covered in the monitoring will be solar radiation, current 

production and efficiencies of all the component parts of the system.  Module orientation and 
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tilt will be considered, although the installation parameters will already be optimised at the time 

of installation, considering that the aspect and tilt must be given.  The data collected will be 

analysed in order to accurately determine viability and the impact on the College ambition to 

have self-sustaining campus in relation to energy demands.  The data collected will be off-set 

with information obtained through the Campus Buildings Management System which will 

monitor real-time energy consumption of the Campus.  A study of the local environment 

impacts will be devised and incorporation of wild flora and fauna will be available for inclusion.  

Economic analysis will take the form of viability of the facility and its direct impact on the 

campus.  The data collected through the monitoring of the installation will also inform efficiency 

and energy analysis which will provide a complete analysis of a large scale solar PV 

installation.  A notional view of the site, from the south west, is presented in figure 1.  

Interestingly upon completion it was noted that areas of shade were cast upon the Solar 

Meadow due to obstacles surrounding the array.  This is expected to impact adversely on the 

proposed energy generation of the site and therefore have negative impact on the assumed 

impacts for the college. 

 

 

Figure 1 Proposed solar meadow at Edinburgh College 

 

The advent of solar power as a viable method of energy generation promises great changes 

for the future of the energy economy across the globe. Along with other renewable 

technologies, it heralds a move away from the traditional system of fuel-to-energy-to-waste 

to a more cyclical system, where we utilise existing natural processes to support our energy 

needs. 
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1.2 Economic Arguments for Renewables & Solar 
 
There are many arguments for a move towards renewable energy sources and at present the 

economic arguments are ever more pressing.  The utilisation of natural phenomena, such as 

sunlight and wind, as an inexhaustible energy supply (as energy is derived from the sun’s 

nuclear processes) is in stark contrast to the finite and decreasing reserves of traditional type 

fossil fuels. The combined factors of having zero fuel costs, in the running of a renewable 

power plant, coupled with the lack of production of any significant waste products requiring 

disposal also adds to the viability of the process. Of course, the lack of CO2  as a waste 

product is an unparalleled advantage, which has a positive environmental impact and also now 

important economic effects under the current legislation of penalising CO2 production 

(Department of Energy and Climate Change, 2013). 

 
Renewable resources are generally available world-wide, as they are not dependent on 

access to traditional fossil fuels. Some countries are heavily resourced in fossil fuels whilst 

others are very poorly resourced. By turning to renewable resources results in an increase 

in energy security and decreases the need to transfer energy or fuel over large distances. 

Even though there is variability in renewable resource country to country, this is much 

reduced compared to traditional resource variability, every country having sun, wind and rain. 

 
Distributed energy supply, while bringing with it its own set of problems, theoretically allows 

for much more efficient energy transfer with international and local economic benefits, as 

sources of generation can be sited nearby to large consumer populations and can bypass a 

transmission system altogether. Solar is particularly well-suited in this respect, as solar 

panels can be installed almost anywhere there is empty ground, wall or roof-space available.  

Other advantages of the use of solar technology include: 

 

 Low maintenance costs compared with traditional generation and even other renewable 
sources. 

 
 A huge available resource: the theoretical limit is the whole sunlit surface of Earth. While 

the achievable is only a tiny fraction of this, it is still many times that of renewable sources 

such as hydro, tidal or geothermal (Perez et al., 2011). 

 The ability to make use of brown field sites, land with little other purpose (eg desert), 

or land can be dual purpose (eg solar meadow). 

 Little visual impact on surroundings. This is important for local acceptance and to 

ensure planning consent is granted.  Wind power has run into many problems in the 

UK in this regard. 

 Ease of incorporation into the existing built environment, saving costs and ensuring 

true distributed supply. 
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However there are still some important barriers to uptake of solar on a larger 
scale: 
 

 It is a variable and uncontrollable energy supply. 
 

 A relatively low energy density in terms of land use (possible kW produced per unit land 
area). 

 
 The high  price  per  unit  of  electricity  produced  due  to  high  installation  costs 

(Hernandez-Moro & Martinez-Duart, 2013). This is possibly the most important barrier, 

however prices have come down dramatically in recent years (Candelise et al., 2013). 

 The production process of most renewable technology (solar modules in particular) 

is energy-intensive and uses rare materials. 

 Many problems are created with energy transmission: grid capacity, voltage level and 

power factor control, and also the need to change the current centralised grid design 

drastically. This will require both significant R&D and economic investment. 

 
Some of these barriers are offset by incentivised financial support for installation of 

emerging technologies throughout the renewables industry with room for future 

improvement, innovation and cost-reduction, which is less likely for fossil fuels or nuclear 

power. 

 

 

1.3 Drivers for Uptake of Solar in the UK 
 
The real difference in the UK in recent years has been the introduction of attractive 

government incentives towards developing renewable energy sources in general, and solar 

power in particular. 

The Renewables Obligation (RO) refers to an incentivisation mechanism introduced in 2009 

and effectively penalises electricity suppliers for failing to source a percentage of their energy 

from renewable sources (House of Commons, 2012). These percentage targets are met 

through the purchase of Renewable Obligation Certificates (ROCs) from certified renewable 

generators. At the end of an accounting year, any shortfall must be paid off into a buy-out 

fund, which is then divided amongst the suppliers who met their targets. 

The purpose is two-fold: on one hand, suppliers are pressured to conform to government- set 

(and increasing) targets; on the other, generators are afforded an extra source of income. 

ROCs were originally issued to suppliers at the rate of 1 per MWh of electricity produced, but 

now this rate varies with the type of renewable technology. 

 
The equivalent scheme for the small-scale (<50kW) and domestic market is the Feed In Tariff 

scheme (FITs), introduced in 2010. This is somewhat simpler than the ROCs, in that 

owners of  installations are paid directly for each unit of electricity they generate, and are 
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offered a guaranteed price for any energy they would like to sell. The introduction of the FITs 

brought about massive uptake in solar systems in the UK, leading to greater production 

volumes, higher efficiencies and falling system prices (Cherrington et. al. 2013). However, 

FITs rates were cut dramatically at the end of 2011, leading to a slump in the domestic market 

which is only just starting to pick up. The effects on manufacturing, however, are still present. 

 
The Department of Energy and Climate Change (2012) produced a report on the future of 

the RO, taking feedback from industry stakeholders and presenting some important points: 

 
 While previously there was an attempt to provide equivalency between ROCs and FITs, 

this has been abandoned due to the inherent risk in the market-linked ROCs. 

 FITs contracts are more attractive to investors, as the return on investment is 

guaranteed for the 20-year period, allowing for accurate profit forecasts to be made. 

 Ground and roof mounted systems will be considered separately in the ROC rates, 

as the performance is quite different. While roof systems are desirable as they make 

use of existing infrastructure, avoid using un-developed land, and are in close proximity 

to consumers, ground mounted systems perform better as they can be better situated 

and oriented (due south, optimum tilt, no shading). Thus ground-mounted rates will be 

made lower. 

 There are significant economies of scale in larger systems, on materials and labour. 
 
An important point to be noted in the recent changes in solar funding, is that government 

incentives are becoming less critical. A  d rop in incentives, coupled with dramatic decreases 

in module and system prices, make the savings on electricity an increasingly important factor. 

Martin (2012) gives the case of a 5MW plant in Cornwall, which was built despite a reduction in 

incentives, simply because capital costs had fallen to the point that it was worth it even on the 

reduced incomes. 

 
This view must be balanced however, in that the near future for solar in the UK is not so 

easily predictable. Worldwide total installed capacity of solar photovoltaic has indeed 

increased from 1.4GW in 2000, to over 67GW in 2011 (Candelise, et al., 2013), partly due to 

the reasons discussed above. Uptake has also been boosted by the emergence of China as 

a major, cheap, producer of solar PV. However the decreases in costs, and increases in 

capacity, have not been at all linear (Candelise, et al., 2013). Plateaus and sharp drops have 

increased and the continued uncertainty over the future of Chinese involvement leave 

developments over the next 10 years in doubt. 
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1.4 Existing Medium-Large Scale Solar Installations in UK 
 
Whilst domestic and small-scale solar projects are common across the UK, the site that serves 

as a subject for this investigation is the first >500kW ground-mounted solar facility to be 

installed in Scotland. This is due to the generally lower solar availability at these latitudes, 

and the increased annual cloud cover, reducing the economic viability of the site. A rough 

evaluation of the available solar resource in the UK is shown below (Figure 2): 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 UK Solar Resource, Source: PVGIS in (Rugg, 2012) 

It should be noted, however, that the colour scheme chosen for the plot exaggerates the 

difference between north and south, in fact the irradiation in central England is only 10% lower 

than that of Cornwall, and Scotland only 15% lower than that. Allowing for local differences in 

climate, a range of sites across Scotland may well be viable for solar exploitation. 

 

 
Other comparable sites in the UK, to that assessed in this project, include: 

Kernow, Hendra Holiday Park, Trenouth, and Wheal Jane solar parks in Cornwall. 
 
Shipton Bellinger, Hatchlands Farm and a set of West Midlands solar plants in England. 
 
As yet, large scale solar has yet to see significant development in Scotland. However, this is 

due to change as investment is starting to be put into large rooftop systems such as IKEA 
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(Colville, 2013) and farm-based schemes. An article in the Scotsman (Horton, 2012) 

highlights plans of ‘TGC Renewables’ to install 5MW schemes on Scottish farmland. 

 

1.5 Existing Large-Scale Solar Installations in the UK 
 
 

1.5.1 Cornwall Solar Parks 
 

 
 
Figure 3 5MW Trenouth Solar PV Farm, Source: (Rugg, 2012) 

Cornwall is one of the most attractive locations for large-scale photovoltaic (PV) projects in 

the UK, due to its high yearly insolation. A report produced by Cornwall Council (Rugg, 2012) 

includes a few of the notable solar farms, such as the site pictured (Figure 3) at Trenouth, a 

1.4MW facility at Hendra Holiday Park, Newquay and a 1.4MW solar farm at Wheal Jane, 

Truro. 

 
According to Rugg (2012), the Wheal Jane site consists of 5,760 solar panels installed over an 

area of 3.88ha. A report from Solar Century (2012) estimated the plant output at 1,427MWh 

per year, enough energy to power 432 homes, saving 737 tonnes of carbon. The plant is built 

on a disused tin mine, re-using waste land rather than greenfield (un- developed land).  A 

number of issues, common to most solar installations were overcome in the development of 

the plant, consideration of the visual impact – work was carried out on landscaping the site 

to reduce any potential impact, ecological impact – surveys carried out to ensure the 

ecological impact was limited and the effect on land use was also considered with reference 

given to the value held in the site to the mining industry – it was determined that the site posed 

no risk regarding future mineral extraction efforts. 

 
The considerations mentioned above also bore resemblance to the planning requirements 

for the development of the site in Dalkeith.  
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1.5.2 Other UK Installations 
 
Some other large-scale plants currently being developed/commissioned across the UK include 
(OrtaSolar, 2012): 

 Shipton Bellinger Solar Park: 5.4MWp, 21,500 panels built on farmland. Issues 

included proximity to archaeological sites and bird nesting sites. 

 Hatchlands Farm Solar Park: 5.1MWp, 20,500 panels built on farmland. Issues 

included shooting rights over the land in question, which had to be resolved. 

 Westmill Solar Park, 5MWp, 22,500 panels. Here, the plant had to be planned 

around archaeological sites, and also existing wind turbine infrastructure. 

A report from Stepnell (2011), a construction company, gives a closer insight into the 

performance of a set of four 5MW solar parks built around the West Midlands. The energy 

generation figure is quoted at 4,500MWh per year per park, enough energy to power 1,350 

homes. Construction times were extremely short at only10 weeks (this timescale is mirrored 

by the short time to produce the Edinburgh College site, once the initial groundworks were 

completed). The whole project required high initial investment, £48M, paid for by the 

construction company, however £26M of this was ‘re-financed’ by RBS. This indicates the 

strong financial viability of the project, shown in the willingness of both parties to invest 

substantial sums of money based on economic and production forecasts. The report makes 

a comparison with domestic systems, which it claims would cost 30% more to produce the 

same amount of energy per year, highlighting the advantage of large-scale over small-scale 

PV.  The parks are estimated to have a 30-year operational lifespan (as a minimum), very low 

operation costs, and to offset 225,000 tonnes of CO2 over this period (Stepnell, 2011). 

 

1.5.3 Errol Estate Solar Farm 

Construction was completed on Scotland’s largest solar farm on the Errol Estate in Tayside in 

2016. The 13MW scheme has been developed on 70 acres of land on the estate. The solar 

farm was completed and operational in March 2017 and provides power for over 3,500 homes.  

Errol estate was one of the first locations in Scotland, alongside Edinburgh College site, to be 

identified as a potential solar farm site, with this land being promoted for development by 

Savills Smiths Gore in 2011.  The college site was developed in-house by the College.  The 

site is shown in figure 4 over. 
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Figure 4 Errol Estate Solar Farm (Source: ROAVR 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

1.6 Further Education Colleges Overview 

 

This Section will provide an overview of the Further Education Sector in Scotland.  It will 

provide relevant information and background to the reasoning and requirement for Colleges to 

begin to make progress against the Scottish governments expectations set out in their Climate 

Change Act 2009.  It will also provide information on the learner demographic and their role in 

providing a skilled workforce within a country of aging population (Canning, 1999). It will also 

outline the key policy drivers the sector currently engages with. Finally it will point towards 

particular initiatives one College has undertaken that the Sector could participate in more 

widely. 

1.6.1 Scottish FE college regionalisation 

 

Between 2012 and 2014, the Scottish Funding Council (SFC) and the Government approved 

ten mergers involving 26 colleges and one Higher Education Institution (HEI); one of the 

college mergers involved a two phase merger (New College Lanarkshire). The programme of 

mergers was prompted by Government policy which outlined the benefits of a regional 

structure for the college sector. Mergers were chosen by the colleges in most regions with 

more than one college to be the most effective and financially efficient way to achieve the 

desired outcomes of improving the delivery of education through coherent provision within the 

region, with benefits for all stakeholders.  

 

The creation of larger colleges of scale, operating mainly on a regional basis, has led to a 

reduction in the number of publicly-funded colleges from 43 in August 2010 to 25 now. Outside 

the Highlands and Islands region there are now only 15 general colleges (and Newbattle Abbey 

College).  

 

At the outset, the Scottish Government indicated that they expected the reform programme to 

deliver a number of high-level benefits, including reduced duplication, better outcomes for 

students and high quality learning, enhanced engagement with employers and financial 

savings for the sector. In addition, it was anticipated that there would be improved planning, 

co-ordination and delivery of skills provision in a region to meet the needs of employers at a 

local level but also for Scotland’s economy. SFC later confirmed that they anticipated recurring 

savings of about £50 million each year from 2015-16 (Scottish Funding Council, 2016).  

 
Colleges are located throughout Scotland and within 13 regions outlined in figure 1.  The 

reasoning outlined above give a clear rationale for the merger process to take place. 
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Figure 5 Map of Scotland (SFC, 2013) 

1.6.2 Expectations of FE colleges and the Scottish Governments STEM agenda 

 

Scotland's college sector creates value in a number of ways. The Colleges play a key role in 

helping learners increase their employability and achieve their individual potential. With a vast 

range of courses and apprenticeships, the colleges’ provision enables learners to acquire 

qualifications and develop the skills they need in order to have the skills necessary to succeed 

in employment. 
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However, the contribution of the sector consists of more than solely influencing the lives of 

learners. The expenditures of Scotland's colleges, along with the spending of their staff and 

learners, further support the local economy through the output and employment generated at 

local level. (EMSI, 2015) 

Colleges cater for all people, regardless of background, age or gender. The learner 

demographic is outlined in section 1.6.3.  Colleges also play a crucial role in widening access 

into education for learners with additional needs and those from deprived communities. By 

providing opportunities in the community, colleges help reduce poverty and promote social 

inclusion (Scottish Funding Council, 2016).  

 

Colleges are a key driver for the Developing the Young Workforce (DYW) agenda through their 

partnership working with local schools, universities and businesses across within their region 

and across Scotland. Through these partnerships, colleges are able to provide the right 

courses to students that match the demands of local economies around the country.  With the 

assistance of Skills Development Scotland’s (SDS) Regional Skills Investment Plans (RSIPs) 

local industry needs are met, and planned, for the future to ensure the relevant skills are 

delivered through the FE sector across Scotland. This is monitored by the SFC through the 

Regional Outcome Agreement (ROA) which monitors the agreed targets for individual colleges 

(Scottish Funding Council, 2016).  

 

To deliver the best learning experience possible, colleges are constantly investing in upgrading 

campuses to provide modern, fit for purpose facilities for students.  In the last ten years £900m 

has been spent on modernising college campuses across Scotland (Scottish Funding Council, 

2016). 

 

1.6.3 Learner Demographics 

 

Scotland's colleges provided education to 267,226 learners, with an average learner 

representing roughly 50% of a full-time equivalent (FTE) in session 16/17. Included within 

these learners are 2,322 learners for whom Scotland's colleges contracted with other 

institutions to carry out provisions.  The average age of learners attending Scotland's colleges 

was 17 years old. The breakdown of these learners by gender was 48% male and 52% female, 

and the breakdown by ethnicity was 85% white and 15% minority. Data on ethnicity and gender 

becomes important in the calculation of marginal earnings change since earnings by gender 

and ethnicities differ, sometimes widely, depending on the area under analysis (EMSI, 2015). 

This is important when the nature of regional skills requirement is taken into account.  The 
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likelihood of skilled labour requirements being met by the FE sector in terms of vocational 

training should not be overlooked.  This will provide the sector training requirements in growing 

industries across their regions, with a key growth industry being renewables and energy, 

across Scotland, it is important the opportunity to deliver relevant training is captured through 

the ROA and RSIPs to create real job opportunities for learners. 

 

1.6.4 DYW 

 

Scotland's colleges play an important role in helping young people of all backgrounds and 

abilities develop skills that are vitally important to our economy while exposing them to the 

more independent and self- reliant environment of college education. They cover a wide 

spectrum from their distinctive and significant contribution to higher education through the 

development of higher level applied technical skills to engagement with those young people 

furthest from the labour market. The option of full-time college education plus the range of 

options offered by colleges for those in work are critical elements of Scotland’s education 

system.    

The regionalisation of Scotland’s colleges provides a significant opportunity for the sector to 

continue to enhance the perception of college education. Larger colleges will be well placed 

to play a key role in the planning and delivery of education within their regions, in the 

development of highly valued vocational education pathways starting with school pupils 

leading onto higher education, apprenticeships and employment, and in the development of 

advanced.    

1.6.5 FE in the Future 

 

Scotland’s colleges must continue to build and grow on the success of the sector to date. The 

SFC’s Regional Outcome Agreement process is a powerful lever in ensuring that colleges 

deliver in return for public investment, and reporting on those measures is now reinforced by 

Education Scotland’s new quality framework, “How good is our college?” (Scottish Funding 

Council, 2016).   There are also a number of other specific ways in which improvement is being 

sought in Scotland’s colleges including: College Improvement Programme boosting retention 

and attainment rates among FE students, and in particular for those students currently most 

at risk of withdrawing without achieving a qualification or moving to a positive destination.  A 

national college improvement programme has been introduced to look in detail at individual 

college level solutions to raise attainment and improve retention. On behalf of the college 

sector, five colleges will form an improvement team and undertake testing, gather information 

about what works to share across the sector, contributing to an increase in attainment and 
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retention within and between the five colleges. Their success will also be used to drive 

improvement across the sector as a whole.  

 

1.6.6 College Innovation 

 

There is also a desire for colleges to be more involved in innovation - our economy needs a 

highly skilled, adaptable and confident workforce, and colleges have excellent links with SMEs. 

An action plan has been put in place by the SFC’s College Innovation Working Group to ignite 

collaboration between colleges and businesses. This includes bringing colleges further into 

the community of Scotland’s eight Innovation Centres, while the Scottish Government 

announced a College Innovation Fund (£500,000 in 2017/18) to support Scotland’s colleges 

to work with businesses on innovation activity (Scottish Funding Council, 2018).  

   

1.7 Further Education Estate targets  

 

The college estate across Scotland is reasonably old on the whole, with a number of colleges 

being refurbished or new builds in the last decade.  This process of renewal is long overdue 

with some buildings being no longer fit-for-purpose for teaching vocational training.  

Maintaining facilities and also moving with technological change within organisations that are 

now fully in the public sector and governed through ONS makes it more difficult to invest.  That 

being said, a sizable amount of investment has be made to manage current estate but very 

little has been invested in sustainable technologies to enable colleges to do their part in 

meeting carbon reduction targets and participating in the move to a low carbon economy.  

Whether green technologies are planned within refurbishment and/or new builds it would 

appear, on the surface, that these are the first things to go when feasibility studies are 

undertaken (Scottish Funding Council, 2017).  
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1.7.1 Overview of Scotland College Estate 

 

Over the past ten years nearly £900 million has been invested in the college sector estate. 

Table 1 shows the capital value of the most significant new builds and major refurbishments 

completed in the last ten years: 

Table 1 College Building expenditure (SFC, 2017). 
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This first independent review of the college estate in Scotland for 10 years was undertaken 

when Gardiner and Theobald were appointed by SFC in January 2017 to undertake an estates 

condition survey across Scotland’s colleges. For colleges with a campus capital project 

completed in the last 3 years, those campuses were excluded from the exercise. For colleges 

that held condition survey information less than 5 years old, that college information was used 

to inform the exercise. Where information was available but it was 5 years old or more and 

where there was little or no information, those colleges were surveyed.  The purpose of an 

estate condition survey like this is to assess the general fabric and services of a building and 

estimate the cost to bring that building up to a generally sound (wind and watertight) condition, 

defined by the Royal Institute of Chartered Surveyors (RICS) as ‘condition B’. It is important to 

emphasise that these surveys take no account of any costs required to improve fitness-for-

purpose or redevelopment and enhancement, such as curriculum changes, improved flexibility 

or space efficiency, digital/ICT infrastructure or carbon reduction measures.   

If tackled over a five-year period, the total backlog maintenance figure is around £360M. This 

does not take into account work that would not be undertaken where the relevant estate is 

being completely replaced or significantly refurbished. In addition to an assessment of backlog 

maintenance, the survey also provides a comprehensive information base to feed into high-

level considerations of complete replacement or significant refurbishment of campuses 

(Scottish Funding Council, 2017).  

1.7.2 Funding options 

 

This analysis will feed into the Scottish Government’s Learning Estate Investment Plan 

(Scottish Funding Council, 2017) which will include examination of opportunities to collaborate 

across education and the wider public sector to support joined-up services and efficient use of 

assets. This will include how colleges should develop their estates strategies in conjunction 

with local partners and taking full account of the Scottish Government’s Learner Journey 

review and new developments in curriculum delivery.  It should be noted that currently much 

of this funding is made up through European Structural Funds (ESF), which is potentially 

limiting due to the impacts of BREXIT being unknown.  Further campus improvements will be 

hindered in the short term. 
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1.7.3 College Surveys 

 

The task of surveying a College comprised a combination of site surveys.  The survey and 

update follows on from the previous high-level desktop backlog maintenance assessment in 

November 2016. Resulting from this survey process, the estimated nett total backlog 

maintenance and renewals cost is £163,308,518 excluding contingencies, any related 

operational and management costs of the colleges, professionals Fees, VAT, Optimism Bias, 

and inflation allowance.  It is also prudent to apply a level of the Optimum Bias to the estimated 

numbers. Based on the nett figure of £163,308,518 the additional costs when taken into 

account are as follows:  

 Professional Fees, Contingencies, Other Costs and VAT £81,654,259 

 Optimism Bias £73,488,833 

 Inflation Allowance £44,869,418 

 

This results in a total gross estimated backlog maintenance and removals cost, taking all of 

the above cost headings into account, is £363,321,028.  Whilst noting that a notional allowance 

of client contingency costs has been made, it is important to note that the operational costs 

associated with facilitating any remedial works or renewals especially in and around occupied 

buildings, will vary on a building by building basis, its surroundings and function, and will 

depend entirely upon the colleges own preferred programming and packaging of works which 

may need to align with their specific wider estate strategy and other considerations. It should 

therefore be understood that variable packages of major works which may or may not also 

desirably include potential redevelopment and campus improvement strategies would have to 

be considered for further budgetary enhancement on a case by case basis at the time of 

presentation and further substantiation. An assessment was made of the cashflow uplift to the 

figures based on a 10 year programme of works. The complication with this is that the buildings 

that have identified issues and are not actioned, deteriorate further and what would be 

previously have been dealt with as a remedial / refurbishment exercise could actually result in 

a complete replacement. The added cost of these elements cannot be allowed for until a 

sequence of works required is agreed and an appropriate expenditure profile developed. 

For the avoidance of doubt, the surveys and resulting costs also do not consider 

works and the costs associated with fitness-for-purpose or (re)-development and 

enhancement of colleges’ campus or facilities or other initiatives, such as changes 

in curriculum delivery, carbon footprint reduction or similar upgrading works as 

may be determined by separate agenda or other focused individual college or 

sector wide strategies.  
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1.7.4 Scotland’s Energy Efficiency Programme (SEEP) 

 

Energy efficiency is fundamental to Scotland meeting its ambitious climate change targets. 

Heating and cooling Scotland’s homes and businesses costs £2.6 billion a year and accounts 

for just under half of the country’s greenhouse gas emissions (Scottish Governement, 2017b).  

Scottish Ministers announced, in June 2015, that they would take long-term action to reduce 

the energy demand of our residential, services and industrial sectors through designating 

energy efficiency as a national infrastructure priority, as subsequently confirmed in the Scottish 

Government’s Infrastructure Investment Plan 2015. Ministers announced that the cornerstone 

of this will be Scotland’s Energy Efficiency Programme (SEEP) which is under development 

and will be rolled out from 2018. It will be a co-ordinated programme to improve the energy 

efficiency of homes and buildings in the commercial, public and industrial sectors (Scottish 

Governement, 2017a).  

 

1.7.5 Aims of SEEP  

In making a long-term commitment to SEEP, the Scottish Government recognises the multiple 

benefits that can, and must, accrue from a programme of this magnitude and duration. These 

benefits not only include substantive contributions to meeting our climate change targets 

through the decarbonisation of heat and reduced energy demand, but also offer significant 

wider economic, social, health and regeneration benefits: measures to make homes warmer 

and places of work more comfortable, promoting more affordable energy for consumers, 

helping to tackle fuel poverty and improve the competitiveness of the Scottish economy; the 

opportunity to create a substantial Scottish market and supply chain for energy efficiency 

services and technologies, with an estimated 4,000 jobs per annum across Scotland, including 

in remote areas, based on an initial estimated minimum investment of around £10 billion;  

measurable health and early years improvements through people living in warmer homes; 

regeneration of communities through upgraded building stock; and substantially reduced 

greenhouse gas emissions contributing to meeting the  ambitious climate change targets 

(Scottish Governement, 2017b). 

 

1.7.6 Pathfinder Fund  

As the first step in preparing for the launch of SEEP in 2018, the Government offered funding 

for a range of SEEP pilot projects last year. Eleven local authorities are receiving over £9million 

of funding to carry out SEEP pilots in 2016-17. This investment started the process of 

demonstrating ways of delivering an integrated programme before the wider roll out from 2018, 

of which Edinburgh College is one.  The Government is now inviting local authorities and/or 
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their partners to submit new proposals for SEEP pilot projects for delivery by February 2019. 

This second phase of pilot projects will further help the development of SEEP, contribute to 

the design of future programmes aimed at tackling fuel poverty and reducing greenhouse gas 

emissions and inform how future SEEP funding is best deployed to achieve Ministerial 

objectives. Alongside the ongoing consultation on the draft Energy Strategy (and the related 

consultations on the broad design and objectives of SEEP1, and on Local Heat & Energy 

Efficiency Strategies (LHEES) and District Heating Regulation2),this call will help us to further 

test and demonstrate some of the issues in delivering a Programme of this scale (Scottish 

Governement, 2017a).  

 

1.7.6 College sector activity 

 

The College Sector in Scotland must embrace emergent technologies and more sustainable 

sources of energy if it is to reach a sustainable position moving forward.  Guidance should be 

produced to direct college estate funding in the direction of affordable, sustainable and future 

focussed buildings in order to get best value for money from the public purse.  This should 

include a requirement for more ongoing improvements being made to refurbishment or new 

build activities in the sector and a drive towards utilising available funding streams such as 

SEEP funding.  Colleges are also committed to moving towards Environmental management 

systems (EMS) with  growing public pressure on organisations to adopt production systems 

that do not unduly impinge upon the natural environment is reflected in the adoption of of EMSs 

in business activities.  An EMS can change an organisation’s structure, responsibilities, 

practices, procedures, processes and resources for environmental management, so that it is 

able to reduce negative environmental impact while improving management control (Renwick 

et al., 2008; Bansal and Hunter, 2003).  In addition, a certified EMS such as ISO 14001, a 

globally recognised standard for environmental management, provides a strong signal to 

external stakeholders of its environmental management commitment (Linnenluecke and 

Griffiths, 2010; Jiang and Bansal, 2003). 

Therefore, it is expected that EMS implementation, in colleges, brings about organisational 

benefits with an increase in the demand of environmentally conscious customers, achievement 

of environmental objectives and cost reductions through improved productivity.  According to 

Segersen and Miceli (1998) and Welch et al. (2002), it is widely believed that organisations 

adopt such environmental standards because they recognise that the accrued benefits, not 

just production and economic benefits (Jabbour et al., 2008) of doing nothing.  Although the 

effect of EMS implementation through an increase in demand is a direct effect, and an 

improvement in productivity is regarded as an indirect effect, because an EMS only provides 
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a management framework for environmental objectives, it is expected that several 

environmental management activities for the objectives actually improve productivity and 

provide an economic benefit (Hertin at al., 2008). 

 

1.7.6.1 Edinburgh College (A Case study for good practice) 
 

Edinburgh College is committed to becoming a leading low-carbon organisation. The carbon 

management plan, it has created, is the key mechanism for delivering the college’s vision and 

sets out the formalised approach to reducing carbon emissions from college activities over the 

next six years.   The introduction of EMS will contribute to a more thoughtful organisation with 

the aim to reduce carbon emissions by a minimum of 18% by 2020 from the 2013-14 baseline. 

This will be tackled by undertaking a variety of carbon-reduction projects across energy, water, 

waste and transport including encouraging positive behaviours by our students, staff and 

visitors (Edinburgh College, 2016)   

 

In 2012/13 Edinburgh College spent approximately £1.6million on utilities and transport. With 

rising utility prices and the additional costs of water and waste management, it’s clear how 

important it is that the College actively engages in reducing this cost. A Carbon Management 

Plan (Edinburgh College, 2016)is a proven mechanism for reducing carbon emissions from an 

organisation’s activities. Since 2009, Napier University has seen a 25% decrease in carbon as 

a result of its plan (Edinburgh College, 2016). There are many drivers to reduce carbon 

emissions, including: 

 

Climate change, although contested, there is near universal agreement that it is driven to a 

large degree by human activity and will have significant impacts on our future (Metz, 2013).  

The Scottish Government introduced the world-leading Climate Change (Scotland) Act 2009, 

which places a public duty on public sector organisations to reduce carbon emissions by 42% 

by 2020 and 80% by 2050.  The college has signed up the Universities and Colleges Climate 

Commitment for Scotland, which requires them to take steps to reduce the impact on climate 

change.  

 

Edinburgh College, as a case study for good practice, is committed to being a sustainable and 

socially responsible institution.  In order to achieve this, the college aims to integrate and 

encourage sustainable practices across the organisation, from how it runs the estate through 

to what curriculum is taught. A dedicated sustainability team are an integral part of ensuring 



23 

 

action is taken and promoted through the sustainability strategy (Edinburgh College, 2017).  

The main areas of focus for the Sustainability strategy are: 

 Carbon Management - The College’s carbon footprint in 2014-15 from electricity and 

gas alone was around 7500 t/CO2. – something the college will need to reduce, not 

only because the College is identified as a ‘Major Player’ in the Climate Change 

(Scotland) Act 2009, but because it will also save money.  Currently the College’s 

utilities spend is over £1million. 

 Carbon Management Plan – The College’s Carbon Management Plan is the main 

mechanism for addressing this.  A commitment to reducing carbon emissions by a 

minimum of 18% by 2020 from a 2014-15 baseline.  In order to achieve this the College 

will implement a number of projects.  Some, such as the recently installed voltage 

optimisation at 3 campuses, are already making savings. Other projects are relatively 

low cost and involve raising awareness amongst staff and students to encourage 

positive behaviours – sometimes as simple as switching the lights off.   The facilities of 

the College include photovoltaic panels on the roof of our Granton campus which 

provide energy for the campus and offset around 18t/CO2 per year.  One of their Hair 

and Beauty Salon is eco-friendly and has the latest technology installed including a fuel 

cell, LED lighting and heat recovery system. Whilst this is just the start and there will be 

major challenges ahead if the college is to meet the targets, there will also be many 

opportunities – particularly linking the curriculum, where it can effect positive change. 

 Waste - In 2014-15 the college produced around 900 tonnes of waste and had an on-

site recycling rate of only 27% - something the College is committed to changing.  The 

College has developed a waste strategy aimed at improving the recycling rate and are 

working with Zero Waste Scotland to deliver improvements.  We have started our ‘sort 

it’ campaign in 2015-16 and will be looking to make significant inroads in the first year. 

 Sustainable Travel - The College has a major impact on the transport infrastructure 

around Edinburgh and have developed a ‘Green Travel plan’ with the aim of reducing 

our impact from all aspects of travel and we want to encourage a shift towards more 

sustainable travel.  For us that means, investing in facilities, such as our new secure 

cycle parking at Sighthill or the eCycles for staff use.  On top of that the College is 

providing information and advice on using public transport through ‘real time information 

screens’ at all the main campuses.  Edinburgh College has an entirely-electric pool car 

fleet, which has resulted in enormous benefits for the college, staff, community and 

planet.   Aside from the reductions in tailpipe emissions and lower carbon, the electric 

vehicles are fully integrated into the curriculum, offering hands on experience to 

students on Engineering, Automotive and Electrical courses.  This experience 
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increases their understanding of environmentally friendly transport technologies and the 

associated infrastructure, and provides them with the skills to work with electric vehicles 

as their use becomes more widespread.  To date College Staff have travelled over 

90,000 miles in them and seen a £40,000 saving compared to business mileage 

expenses.   The electric car project has been selected as a finalist in the 2015 Green 

Gown award. 

 

1.7.7 College Energy Efficiency Partnership (CEEP) 

 

The college also received an offer of funding for the CEEP project which amounted to 

£2,147,434. This was accepted and the college has to provide reports on future carbon 

emissions as part of their outcome agreement, with government, from 2018 until 2020. 

A number of Energy Saving Measures (ESMs) were considered and developed, taking 

cognisance of the available energy saving and carbon reduction measures. The measures 

included: 

 LED lighting and controls 

 Main Boiler Replacement for Milton Road Campus 

 Combined Heat and Power plant for Granton Campus 

 Replacement of electric heating with gas heating for motor vehicle workshops at 

Sighthill Campus 

 Variable Speed Drive (VSD) installation and optimisation of air handling units 

 Building Management optimisation of operating schedules 

 Heat Exchanger installation to improve hot water supply temperature in the Club 

Building 

 Various time controls on vending, hot water and refrigeration equipment 

As with all energy and carbon reduction measures this project brings several benefits for the 

college and will provide a platform to further improve the estate in years to come. Immediate 

benefits include a measured and verified savings guarantee of £200K per annum.  A summary 

of the main benefits of these ECMs are: 

 12% reduction in annual energy costs 

 Extended life of and optimisation of existing equipment 

 Improved comfort levels for students, staff and visitors 

 Introduction  of new technologies such as  LED lighting and CHP  

 Maximisation of  energy efficiency measures available 



25 

 

 Verification of savings by independent consultant for a period of one year 

 

1.8 Edinburgh College Electricity Consumption 
 

Table 2 shows the electricity consumption of Edinburgh Colleges Midlothian Campus.  One of 

the aims of the installation was to support the college’s ambition of creating an offgrid campus 

and provide a means to reducing the carbon footprint of the campus.  This research will provide 

an evidence base to prove or disprove the assumptions made prior to installation.  It is 

important to point out that the information below notes a 12% decrease on the previous 

financial year (kWh consumption for previous financial years available in appendix I). This 

pushes the previous year’s consumption above 700kWh thus making it unlikely that array will 

generate enough electricity to meet the expectations of the college, when the notable shading 

is factored in, and the likelihood of supporting an offgrid FE campus unlikely.  

Table 2 Electricity consumption (kWh) of the Midlothian Campus 
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1.9 Edinburgh College Travel Costs 

 

1.9.1 Scottish Government decarbonisation of the road transport sector 

The Scottish government has committed to almost complete decarbonisation of the road 

transport sector by 2050. As such a major element of this transformation will be a shift towards 

the electrification of road transport. A sustainable fleet of electric vehicles aligns with Scottish 

investment in a renewable energy sector. Furthermore, there is a 100% funding for the 

installation of home charging points. 

 

1.9.2 Edinburgh College green fleet – research project 

The e-car project is monitoring 15 plus vehicles data with respect to location, acceleration, 

start/stop, speed and plug-in charge time. The research includes drivers’ usage across all 

partners. The partners involved in this project are: SQA, Edinburgh College, Siemens, 

Midlothian Council and SESTran. There are also interested parties that are looking to become 

partners; East Lothian Council and Lothian and Borders Police.  

The aim is to give vehicle life cost as a low/zero carbon alternatives to conventional 

transportation. All journeys will be full monitored through GPS and the vehicles planned route 

will be determined as the optimum. The route efficiency can be determined for a journey. 

The electric vehicle has to be taken as a serious alternative to the conventional engine vehicle 

and there are many questions surrounding their practical use. From purchase costs, running 

costs to their practicality and what changes have to occur to the users’ lifestyle, journey route 

and time.  This is a real-time project that will have the research requirement as well as solving 

a commercial transportation requirement. 

 

1.10 Edinburgh College eCar research 

 

1.10.1 Edinburgh College BEV - early adopters 

 

The College has twelve electric vehicles, two located at each campus with the exception of the 

Midlothian Campus, where there are three vehicles. There is also an electric mini-bus available 

for staff use. There are a total of twelve charging points, three located at each campus. The 

electric vehicles are for staff use only and for College business. Figure 5 indicates the user 

plots captured over a five year period. The College has leased the electric vehicles since 2011 

with the first year operating as a trial period, following full roll out of vehicles to the four main 

campuses. Trials are still frequently undertaken to understand the efficiency of the vehicles in 
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serving the operational needs of the staff at the College to maximise the integration to the 

changing business requirements. 

 

 

Figure 6 Battery electric vehicle usage 2011-2016 (Edinburgh College, 2016) 

As an alternative option to purchasing Edinburgh College opted to design and manufacture 

our own model of electric vehicle (EV) charging post designed with on-charge/off-charge 

illumination for the user. These will be strategically positioned on routes and at businesses 

that will have the maximum impact to the BEV user without the attached high cost from a 

proprietary version. 

1.10.2 Edinburgh College travel  

A research study at Edinburgh College conducted analysis to determine the most suitable 

method of vehicle procurement. It was decided that due to the nature of the business the lease 

option was most applicable.  

The advantages of leasing a fleet vehicle may include:  

 reduced capital costs 

 operation of a more fuel efficient fleet 

 reduced fuel costs in the longer term 

 removing maintenance and servicing issues 

 flexibility to choose the vehicle that meets the College’s requirements 

 ability to select low carbon vehicles with the latest technology 

 easy disposal of used vehicles 
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The disadvantages of leasing a fleet vehicle may include: 

 restrictions within the terms and conditions of the lease 

 vehicle is not owned 

 repayments may be higher than financing the purchase 

 vehicle cannot be modified 

 high penalty costs can be incurred at end of lease period  

 potential limitations to vehicle use and mileage restrictions 

 

1.10.3 College commuting requirements 

Post-merger and consolidation of the three Edinburgh Colleges a decision was taken to 

develop an innovative idea to the inter-campus travel initiative using electric vehicles.  

Introducing the battery electric vehicle into Edinburgh College brings important societal 

benefits as it improves energy efficiency, air quality and reduces urban noise, and CO2 

emissions when conducting the inter-campus commute. As part of the corporate travel plan all 

mobility activity should be subject to the required analysis as reported by Baddeley (2008), 

initially determining whether the journey is absolutely necessary. 

 

1.10.4 Edinburgh College and staff mobility  

Due to the nature of the College transport requirements over 85% of journeys are under 10 

miles long due to the travel distance between campuses and the local journeys that the 

vehicles are mainly used for. Similar figures have been reported by Weiss et al. (2014) in a 

previous study. Figure 7 confirms the frequency of travel over 19000 recorded trips for BEV 

short range mobility. 

 

Figure 7 Percentages of travel distance (Edinburgh College, 2016) 
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The field data used in this study was collected as part of a nationwide BEV project in 

Midlothian, Scotland, UK. Nissan LEAF’s, eNV200’s and Mitsubishi i-MiEV’s were trialled for 

a six-month period. The participants were selected from different genders and geographical 

areas in order to achieve a representative sample of the drivers in the area.  

The data loggers installed in the vehicles were configured to read information from vehicle 

sensors available on the vehicle’s CAN (Control Area Network) bus and to store these data in 

the logger’s internal memory along with the vehicle’s GPS position. GPS data and CAN bus 

messages were logged every five seconds and every one second respectively when the 

vehicle ignition was on. Specifically, the vehicle’s velocity was logged every second from the 

CAN bus (Milligan, 2016).  

 

1.11 Future developments 
 

The total energy required to charge the College’s eFleet has been estimated at 18,027.75 

kWh, what is the feasibility of charging the college’s eFleet through the use of solar charging 

stations situated on site supporting the college aspirations of creating a carbon neutral 

campus?  In theory about 2.5% of the Solar Meadow’s generated electricity would be required 

to fulfil the full charging of the eFleet at a cost of £1,261.94.  This will be reviewed in chapter 

6. 

This chapter has outlined the research to be carried out, the main areas of interest for the 

researcher, provided an overview of the research site, facility and provided a contextual 

overview of the FE sector in Scotland along with a sector wide estate summary that highlights 

the current condition of College buildings.  The consumptions of Edinburgh College’s 

Midlothian campus has been presented in order to justify the need for research to provide an 

evidence based review of the viability of such an installation, of scale, in Scotland. 
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Chapter 2 – Literature Review, review of worldwide trends in solar 

photovoltaic technologies 

2.0 Chapter Summary 
 

The following chapter will look at the implementation and policy drivers in the world in more 

detail, particular attention will be paid to Scotland and Scottish government targets due to the 

location of the array in question.  This section will also show the influence the international 

solar PV market is having across the leading countries and how individual country uptake can 

support growth in other countries. 

2.0.1 Existing Literature and previous works 

 

There is a vast amount of information available within the field of Solar Energy, most of which 

has been carried out in countries centred on, or in close proximity to the equator. 

Almost all of the research agrees on the fact that Solar PV is a promising source of energy 

production, electricity generation and CO₂ reduction. Sherwani and Usmani (2010) report that 

further development in the efficiency of solar cells, the amount of material used in their 

composition and the amount of recycled material used will greatly benefit the overall 

sustainability of this for technology.  Muneer et al. (2006) have shown that in order to maximise 

the output and efficiency of a photovoltaic facility, it is paramount to optimise the orientation 

and tilt of the solar panels.  Myrans (2009) found that solar PV results show that it is the best 

choice of technology for meeting the criteria of carbon displacement.  et. al. (2011) carried out 

research in Libya and have concluded that in Libya a solar PV system can have the capacity 

factor and Solar capacity factor of 26% and 63% respectively.  This determines that the 

payback period of a 50MW system will be only 2.7 years, therefore, what will the conclusions 

for such systems in Scotland be, such as the facility at Edinburgh College?  Although the 

current research agrees that Solar PV is a real competitor in the renewables market, efficiency 

and cost reduction are very important aspects of their installation.  Further research and 

development is required to realise the true potential of Solar PV. 

This analysis of a Scottish solar array will assess a number of aspects associated with the 

development of solar PV and any potential impacts throughout the products life.  This research 

will serve to further the current research in terms of utilisation at high latitudes. 
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2.0.2 Previous works relevant to this research 

Slope Irradiation, Cell Temperature and Cell Efficiency Model 
 
In their paper, Aldali et.al.(2013) report on a similar investigation to that in this research on a 

small experimental PV setup in a city in southern Turkey. The experimental setup measured 

the current and voltage output of the PV modules, the cell temperature, ambient temperature 

and solar irradiance (horizontal, and in the plane of the modules). This work formed a strong 

basis for the research carried out on the Dalkeith solar array. 

 
Data from each of the sensors was logged automatically every 30s; the only variable not 

recorded was the wind speed, where climactic average speeds for the location were used. 

Slope irradiation was calculated using solar geometrical equations and the diffuse irradiation 

model proposed by Muneer (2004) and cell temperature from a thermal model based on 

the work of (Mat te i ,  2006) . Cell efficiency was calculated directly from the current and 

voltage output (not compared with cell temperature-based calculations, as in this project). 

 

 

 

 

 

 

 

Figure 8 Correlations between measured and calculated Slope Irradiation and Cell 
Temperature, Source: Aldali et al.(2013) 

The results (Figure 8) show very good model performance for the slope irradiation and cell 

temperature, with R2 values of 0.97 for both. This indicates that good results should be 

achievable in this research. 

2.1 Worldwide countries leading PV development and installation 

By the end of 2014 the total global PV cumulative installation reached 415GW (International 

Energy Agency, 2018) this means 1.7% of world electricity generation comes directly from PV.  

By the end of the same year there were 20 countries worldwide which have passed the gross 

recorded output of 1GW from the combined solar installations in that country (International 

Energy Agency, 2015). 

2017 was the fourth year in a row that Asia has led the world for PV capacity with around 60% 

of the total global PV installations.  China, one of the largest PV contributors in Asia in the last 

decade, has installed 131.1 GW by 2017.  The USA installed 51GW in the same year 
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consisting mostly of large scale installation and new business models dominating the market.  

Europe, on the other hand, has significantly declined from an annual installation total of 22GW 

down to around 7GW in 2014.  Nevertheless, 2017 saw PV contributing 3.5% of electricity 

demand in Europe and 7% of the total peak demand (International Energy Agency, 2017).  

Germany sits top of the European countries list for PV installation with 42.4GW of PV projects 

in 2017, with U.K and France at 12.7GW and 8GW respectively. 

The International Energy Agency (IEA) 2017, reports that the top countries for PV installation 

in 2014 were China, Japan, USA, Germany and the UK.  The Renewable Energy Country 

Attractive Index (RECAI) is a report published by multinational the consultancy firm Ernst & 

Young (EY), which ranks the countries on the basis of their potential in terms of renewable 

energy investment and opportunities for growth. The RECAI and European Photovoltaic 

Industry Association (EPIA) reported that the highest ranking countries for PV installation in 

2016 were China, Japan, USA, Germany and the UK (International Energy Agency, 2018).  

These five countries combined PV installation accounted for 65% in the year 2012, around 

three quarters in 2013 and almost 80% of the world's total PV installation in 2014 and in 2016 

supply more than 1GW.   Figure 9 represents the leading countries by PV installation in 2017. 

That being said it should be noted that China and Japan installed five times the amount than 

that of Germany and therefore four times the amount of the UK and the USA have just over 

half the number of Chinese installations. Figure 10 shows the combined total installations from 

the leading countries for 2017.   
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Figure 9 PV installation in the year 2017 for leading countries (Statista.com) 

 

 

Figure 10 Cumulative installation capacity of the leading countries for 2017 (Statista.com) 

 

2.2 China 

2.2.1 Key policy drivers 

The solar industry of China is growing faster than any other country in the world, mainly due 

to the extremely rich solar energy resources found there (Liu et. al. 2010).  The Chinese 

government has created policy and incentivised the solar industry which has allowed such 

rapid growth in the use of solar technologies. 

The Renewable Energy Law (China) was planned in 2005 by the National People Congress 

(NPC) (Calde´s et.al. 2009) and implemented in 2006. It is based on five key structures: (a) 

national targets for the development of renewable energy (it focuses the investment towards 

all sources of renewable energies) (b) a mandatory connection and purchase policy created 

between grid companies and renewable energy electricity generating schemes, grid 

companies need to sign an agreement stating that they will purchase renewable electricity 

from all renewable electricity generating schemes and provide the grid connection services (c) 

Feed in Tariff (FiT) system and price, FiT prices are fixed and will be paid to the renewable 

electricity generating schemes owners for each kWh of electricity generated (d) a cost sharing 

mechanism, the cost of the grid connection and the renewable energy generation will be 

divided between utility companies and the end users (consumers) by implementing a 

surcharge on sold electricity and (e) the renewable energy development special funds, funds 
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will be provided and apportioned to activities such as research and development of renewable 

energy technologies and schemes, setting up pilot projects or renewable resources 

assessments (Solangi et.al 2013).  

Additionally, following this law, several different policies were implemented in China by the 

government to support growth, such as the Tentative Management Method for Renewable 

Energy Development Special Fund (2006), Provisional Administrative Measure on Pricing and 

Cost Sharing for Renewable Energy Power Generation (2006), the Medium and Long term 

Renewable Energy Development Plan (2007) and the 11th Five year Plan of Renewable 

Energy Development (2008). 

The Brightness and Township Electrification Programme is a group of programmes which 

is one of the main driving forces behind the expansion of the solar PV market in China. The 

brightness programme was implemented in 1996 with an aim to use PV modules and provide 

electricity for the day-to-day requirements of the population of china, which are without any 

grid connections (Zhang et.al. 2013). Thereafter, in 2002, the National Development and 

Reform Commission (NDRC) put forward a Township Electrification Program for more remote 

areas and the western regions of China. Under this programme, 20MW of solar PV stations 

was installed in 688 towns and resulted in the first large scale attempt, by Chinese government, 

to solve the problem of electricity supply requirements for un-electrified areas within China. 

Based on the success of this attempt, the government is now supporting the programme with 

funding and development and therefore the manufacture PV modules and associated industry 

is rapidly rising (Actions taken by the Chinese Government, 2015).  

The Rooftop Subsidy Programme and Golden Sun Demonstration Programme 

implemented by the Ministry of Finance (MOF), Ministry of Housing and Urban Rural 

development of China (MOHURD) were initiated in 2009 (Finance, 2009a). This programme 

allows eligible consumers, access to a subsidy for £1.54/W (RMB 15/W) for a rooftop system. 

The Ministry of Science and Technology (MOST) and the National Energy Administration 

(NEA) initiated the golden sun demonstration programme, which provides 70% of the total cost 

of an off-grid system and 50% for an on-grid system (Finance, 2009b), there is an attached 

condition to this subsidy in that the size of the plant should be more than 300kW et.al. 2011). 

By 2012 both programmes had approved more than 500MW of solar PV projects clearly 

showing the government incentivisation of solar PV projects in country (PJM, 2011).  

In July 2011 the NDRC introduced the first national FiT Scheme, named as Notice on 

perfection of policy regarding FiT of power generated by solar PV. The first phase, under this 

scheme, was for the projects approved prior to July 2011, and for those due to have completed 

construction and commercial operation prior to 31st December 2011.  All projects meeting 
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these requirements are entitled to a tariff of £0.12/kWh (RMB 1.15/kWh). The second phase 

of the scheme is allocated to those projects which were approved post July 2011 or approved 

prior to that date but cannot be completed by the end of 2011, these projects are entitled to a 

tariff of £0.10/kWh (RMB1/kWh) (Wigmore, 2012). 

Another important policy is the Free grid-connection services policy, provided by the State 

Grid Corporation of China (SGCC).  It declared that, as of November 2012, it would provide 

free connection services for distributed solar PV electricity producers that are located in close 

proximity to customers and meet the requirements of having installed capacities of less than 

6MW for each installation (The Golden Sun of China, 2015).  

2.2.2 Photo Voltaic Research & Development activities and associated funding  

Numerous R&D activities have been reported on technologies such as crystalline silicon solar 

cells, thin-films, Concentrated Photovoltaic (CPV), Balance of System (BOS) components and 

testing technologies. China has been conducting all PV R&D under the National High tech 

R&D Programme since 1986 (Thornley et.al. 2011). All basic research in relation to PV 

technology is carried out under the National Basic Research Programme of China (2015) and 

further research into storage, transmission and demonstrations of PV generated electricity is 

held by MOST. Under China’s 12th Five Year Plan (2011–2015) for R&D, targets are set to 

increase the conversion efficiency of crystalline silicon solar cells and amorphous thin films 

solar cells with a view to commercialise the use of CIGS and CdTe thin-films. In 2005, NDRC 

funded £3.51 million (€5.02 million) for development and demonstration projects for PV 

manufacturers and R&D institutions. Similarly, from 2006 to 2010, £15.38 million (€22 million) 

was spent on basic research programmes as well as high-tech programmes for R&D on PV 

(Grau, 2011).  

In addition, MOST created a programme to support small firms specialising in high-tech PV 

manufacturing plants.  This programme provided about £2.06 million (¥ 20 million) to support 

high-tech PV projects in 2009. Chinese state banks (government) provide a variety of support 

packages for investment for PV manufacturers including refund of loan interest, refund of 

electricity consumption fees, refund of land transfer fee, refund of corporate income tax, refund 

of value added tax payment, loan guarantees and credit facilities are all available (Grau, 2011). 

The Chinese government has set ambitious targets, based on the policies mentioned 

previously, of installing 100GWp of PV projects by 2050 (Dincer, 2011). In fact, China's 

cumulative solar PV (photovoltaic) capacity reached 131.1 gigawatts at the end of 2017 

(Statista.com). 
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2.3 Japan 

2.3.1 Key Policy Drivers 

The Japanese government has set policies which greatly favour the use of PV technology. The 

government has consistently applied these policies and are targeting the investment in R&D 

on PV technology or on the issue of climate change. After the 1973 oil crisis, Japan introduced 

the Sunshine Project in 1974 in response.  This was the countries first solar PV industry 

support programme.  This scheme was introduced by Ministry of Economy, Trade and Industry 

(METI) (Lewis, 2009). The main aim of this scheme was to carry out research and development 

in clean energy technologies.  At the outset of the scheme the majority of the focus, and 

budget, was on solar thermal technology (Kurokawa and Osamu, 2001).   1993 (Chowdhury 

et.al. 2014) saw the introduction of a new scheme, the New Sunshine Project, with a particular 

focus on the PV technologies and its residential PV system monitoring programme. This 

scheme also saw rise to providing subsidies to consumers for offsetting the initial cost of 

residential PV systems. A 3kW PV system was installed in Japan in 1994 and was 50% 

subsidised by this programme.  The total cost of this installation was £0.03 million (¥5 million).  

Due to the success of this type of incentivisation and subsidy, a new programme was 

introduced to support the development of large scale PV installations in 1997.  The Residential 

PV System Dissemination Programme provided a means for consumers to sell their excess 

electricity back to the government through the grid.  This was monitored by the introduction of 

a net monitoring system.  To support this a significant amount of funding was provided to 

national R&D labs for more research on PV technology (Osamu, 2003).  

Japan started reducing the available subsidies to an average low from £319.12 (¥60000) to 

£372.31 (¥70000) per household in 2005. Unfortunately 2006, the Japanese government 

removed subsidies at national level which resulted in a significant fall in solar PV technology 

related installations.  

The government’s estimated PV target of 2020 and 2030 is, however, 10 to 40 times greater 

than the current level. METI recognised, in 2008, that to achieve these targets, it was important 

for the government to  reintroduce the residential PV system subsidies (Takase and Suzuki, 

2011), which would consequently rank Japan as the largest installer of solar PV worldwide 

(Negishi and  Lawson, 2008). In the same year, METI, the Ministry of Education, Culture, Sport, 

Science and Technology, Ministry of the Environment, The Ministry of Land, Infrastructure, 

Transport and Tourism mutually implemented an Action Plan for Promoting the 

Introduction of Solar Power Generation. Through this programme a 50% subsidy will be 

provided for the cost of installing solar power generation systems in public facilities including 

airports, highway service areas and within railway infrastructure (METI, 2008b). Local 
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government will also support the subsiding of local PV projects by providing budget to support 

a range of other subsidies.     

The Japanese prime minister introduced the country’s Cool Earth Initiative (Cool Earth 50) 

(METI, 2008a)in 2007.   The main aim is to see a reduction of greenhouse gases by 50% by 

2050.  This initiative includes the development of 21 of the latest technologies which includes 

solar cell technology.  One of the key policies under this initiative is the development of low 

cost solar cells with a conversion efficiency of up to 40% and generate power at £0.04/kW 

(¥7/kW) compared to the current rate of £0.21/kW (¥40/kW) (METI, 2008b).  In 2008 Japan 

introduced an Action Plan for Achieving a Low Carbon Society, to support the cool earth 

initiative, with the ultimate goal to make Japan a world leader in solar electricity generation, 

cutting the current price of solar electricity by 50% within 3 to 5 years and creating a significant 

amount of reduction in the countries carbon emission 

2012 saw the introduction of a FiT scheme (Muhammad-Sukki et.al. 2014), which resulted 

more than 20.9GW of PV installation projects, all of which were approved by the end of May 

2013 (GreenPeace International, 2011).  

The Japanese government has set an ambitious goal of installing 53GW of PV projects by 

2030 (Kumar and Sahu, 2015) as a result of the policies, R&D activities and funding as outlined 

in the next section. 

2.3.2 Photo Voltaic Research & Development activities and associated funding 

Japan has a number of on-going R&D programmes including the New Energy and Industrial 

Technology Development Organization (NEDO) funding programmes such as Innovative 

Solar Cells and High Performance PV Generation Systems for the Future.  Also, 

Development of Organic Photovoltaics supporting a move toward a Low-Carbon Society and 

low carbon economy. The Innovative Solar Cells and High Performance PV Generation 

Systems for the Future programmes have a key focus on crystalline silicon, thin-film silicon, 

thin-film CIGS, and organic thin-film solar cells.  Within the  Innovative Solar Cells programme 

there are 5 research projects to be completed by the end of 2015 (Japan International 

Corporation Agency, 2011).  The University of Tokyo is running a programme focusing 

specifically on organic PV technology, under the Development of Organic Photovoltaics 

towards a Low-Carbon Society.  

Other Japanese projects include the Photoenergy Conversion Systems and Materials for 

the Next Generation Solar Cells (2009) and Creative Research for Clean Energy 

Generation Using Solar Energy (2011), both are funded by the Ministry of Education, 

Culture, Sports, Science and Technology and Japan Science and Technology Agency (JST).  
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In 2013 NEDO initiated a project of demonstration in the diversification of PV application 

programmes in order to extend installation areas for PV systems i.e. agricultural lands, tilted 

slopes and water surfaces. METI introduced a practice demonstration project on the 

development of power output forecasting technology for PV power generation programmes, in 

order to enhance the country’s power system infrastructure and to promote and increase the 

use of PV power generation. In October 2013 the National Institute of Advanced Industrial 

Science and Technology (AIST) founded a new research facility, Fukushima Renewable 

Energy Institute (2014), for research & development in photovoltaic technologies (Fukushima 

Renewable Energy Institute, 2014).  

 

2.4 USA 

2.4.1 Key Policy Drivers 

The USA differs from most other countries in that the regulation of investment and growth in 

renewable energy happens at state and/or regional level and not at national level.  This makes 

it more difficult to analyse the impact of specific state policy affecting the growth of solar PV.  

There are a few major policy drivers that are worth noting in terms of impact. 

The Renewable Portfolio Standards (RPS) is one of the most common policies in place to 

actively encourage the utilisation renewable energies (Wiser, 2010). Washington D.C adopted 

this policy, with another 29 states, at the end of 2011 to help stimulate the renewable energy 

sector in the USA. It covers the whole spectrum of renewable energy technology (including 

PV), however its uptake and implementation varies state by state.  

Renewable Energy Certificates (REC) are made available across all states in the USA and 

it is mandatory for utilities companies to hold a renewable energy certificate, which is the 

equivalent of 1MWh of energy created via renewables.  The REC can be compared to a 

European policy such as a Tradable Green Certificate, which can be produced or purchased 

by energy providers by paying an Alternative Compliance Payment (ACP) however the price 

of each ACP varies region by region. There is a provision within the RPS, known as Set Aside 

or Carve Out, where utility companies have the opportunity to take into account a certain 

percentage of PV electricity generation, depending on their sales. For example, Ohio’s RPS 

has a 2025 target of 12.5% renewable energy production out of which 0.5% is from solar, as 

per its solar set-aside terms (US Energy Information Administration, 2015).  

Solar Renewable Energy Credit (SREC) has been implemented in nine out of the fifty states 

in North America. An SREC can be generated for every MWh of solar energy produced in a 

given energy year. There is no consideration given to the usage of the solar PV electricity, 
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either it is consumed by residential/owner themselves or sold back to the government through 

the grid.  It is good practice for utilities companies to build on current solar production or they 

can purchase SRECs from private solar PV energy producers or pay the Solar Alternative 

Compliance Payments (SACP). To generate SREC, installed PV systems must be approved 

by the state authorities on the basis of safety and technical requirements (DSIRE, 2015). 

SREC registration is a simple, straightforward process that takes around 2 months (PJM, 

2011), roughly ten times shorter compared to other Green Credit Market processes in the USA 

(Dusonchet and Telaretti, 2010). The tracking of SRECs generated is also fairly 

straightforward; the solar PV system owner must set up an approved tracking system, which 

monitors the generated kWh and creates an SREC for each MWh produced (Burns and Kang, 

2012).  

Tax Credit policy is a policy allotted by the federal government meaning it applies to all 50 

states in the USA and is known as the Residential Renewable Energy Tax Credit and is a non-

refundable personal tax credit. However, it can only be to residential renewable energy 

systems. It was established in 2006 and was set to expire in 2011 but due to an extension in 

its use it was extended to the end of 2016 (Verbruggen, 2004). Under this policy, a taxpayer 

can claim a credit of up to 30% of qualified expenditures for a PV system that serves a dwelling 

unit that is owned, and used as a residence, by the taxpayer (Tax Credits, Rebates & Savings, 

2015).  

Net Metering is one of the most widespread mechanisms for supporting PV systems in the 

USA (Darghouth, 2011). This policy specifies that every person generating electricity through 

a PV system should have a specified meter which records the amount of electricity generated 

by the owner of the PV plant and the electricity consumed from the government grid. In 

addition, if there is an excess amount of electricity generated by the PV plant, termed as Net 

Excess Generation (NEX), then this can be returned to government grid. This net total and 

included adjustment of inflow and outflow of electricity is monitored by these meters. The 

payment of the NEX will be settled at the end of each year, however due to the way the states 

within the USA are run each state has different price/rate of electricity, so it is quite difficult to 

glean a generalised summary (DSIRE, 2015; SEIA, 2015). 99% of all USA PV installations 

were net metered in 2012 (Brown, 2013).   

Cash Rebates is a form of financial incentive, where the scheme helps during the initial 

installation a PV system. Under this policy every installer of PV plant will be rewarded with a 

dollar per watt installed. According to Wiser et al., (2010) and Barbose et al., (2011), this is a 

useful scheme, as it reduces the installation cost and outlay of PV projects.           
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2.4.2 Photo Voltaic Research &Development activities and associated funding  

In the US Department of Energy (DOE) is accelerating its PV research under a programme 

known as the Solar Energy Technologies Programme (SETP). SETP funded research includes 

sub-programmes on: applying scientific research in solar PV to improve its efficiency, progress 

on new concepts of innovating new materials and manufacturing processes, R&D on BOS, 

demonstrate the increase in the installation of rooftop PV technology to name a few. In 2011, 

the SunShot initiative was introduced and supported by the DOE, with an aim to lower the cost 

of solar technologies. Their goal is to reduce the cost of solar electricity by up to £0.04/kWh 

($0.06/kWh). In order to achieve this reduction the DOE is receiving help and support from all 

sectors such as: education, private industry and national laboratories, which in turn will lead to 

increase the share of electricity, generated by solar PV, up to 18% by 2030. According to a 

2014 SunShot Initiative Portfolio Book (Sunshot Initiative, 2014), the projects in the portfolio 

currently represent nearly £131.34 million ($200 million) of investment, in which 66% is 

invested by National Laboratories, 30% by participating academic institutions and 4% by 

private industries.   

There are other funding sources and programmes which provide loans and mortgages for solar 

PV such as: Energy Efficient Mortgage (2015), FHA PowerSaver (2015), High Energy Cost 

Grants (2015), Multi-Family Housing Loans and Grants (2015), Rural Energy for America 

Programme (2015). All of these funding sources and programmes are supported by  

Department of Housing & Urban Development and the Department of Agriculture (2015).   

2.5 Germany  

2.5.1 Policy Drivers 

Germany hosts more than 80% of all solar PV installations in the whole of EU (comprising of 

27 countries). The Electricity Feed-in Act (Stromeinspeisegesetz 1991-1999/2000) was the 

first policy to provide incentives for PV electricity generation. The first PV-specific policy 

scheme to provide low interest loans for PV installation was the "1000 Solar Roofs Initiative", 

which was implemented between 1991 and 1995 and was followed up by the "100,000 Solar 

Roofs Initiative" and funded by the German development bank Kreditanstalt fuer Wiederaufbau 

Bank (KfW). A FiT scheme for solar installations was established in 2000 (Renewable Energy 

Sources Act, Ernaeuerbare-Energien-Gesetz (EEG)) and has been amended several times 

since.  

EEG have played a major role in the expansion of renewable energy in the electricity network 

of Germany. Since 2012 the FiT is has been adjusted on monthly basis and from July 2013 

the residential tariff was set to £0.11/kWh (€0.151/kWh). Furthermore, from November 2013 
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under FiT scheme, PV installations over 1 MW receive £0.07/kWh (€0.0974/kWh) and systems 

under 10kW receive £0.10/kWh (€0.1407/kWh). Due to favourable policies for solar in 

Germany there are 3500 PV companies, of which 50 are manufacturing PV cells, modules and 

other components, utilised within solar PV technologies (Jager-Waldau, 2014b). 

Other projects such as Waschen mit der sonne (doing laundry with the sun), is helping to 

increase people participation and reduce peak demand during morning and evening hours 

(Lichner 2010).  Under this scheme, customers will receive a phone call between 10am to 

1pm, stating that their PV systems are generating a substantial amount and whoever responds 

to the call will be rewarded with £0.35/reply.  

2.5.2 Photo Voltaic Research & Development activities and associated funding 

The German Federal Government, the Federal Ministry for the Environment, Nature 

Conservation, and Nuclear Safety (BMU) hold the responsibility of developing and 

encouraging the utilisation and use of renewable energy (including solar PV). R&D in different 

aspects of PV is supported by the BMU as well as the Federal Ministry of Education and 

Research (BMBF). In 2008, BMBF granted 8 PV projects for R&D totalling £13.63 million 

(€19.5 million). This budget was increased to as total of £37.90 million (€39.9 million) in 2009 

and was shared between 130 projects (Grau, 2011). Alongside these R&D projects, the public 

PV R&D budgets, industrial R&D investments totalled £113.96 million (€163 million Euro) in 

2008. In 2010, BMU and BMBF started a joint programme to promote Innovative Alliance PV 

for the reduction in PV production costs. Together they have supported this programme with 

£69.91 million (€100 million) of investment. Due to its success, to date, a new programme FuE 

for Photovoltaic was created in 2013, with £34.96 million (€50 million) funding 

(Innovationsallianz Photovoltaik, 2015).  This incetivisation has had a positive impact in 

reaching the 80% share of all solar PV installations in Europe. 

In 2011, a new programme, the countries 6th, was introduced.  The Research for an 

environmentally friendly, reliable and economically feasible energy supply, under which the 

current R&D is carried out. This programme covers almost all sectors, from the basics of PV 

through to its application and is carried out with support from BMU and BMBF departments 

(Research for an environmentally sound, reliable and affordable energy supply., 2011). That 

being said, both departments are working on separate concepts of PV, BMU has prioritised 

the use of silicon technology, thin-film technologies, systems engineering, alternative solar cell 

concepts and new research approaches (such as concentrator PV), as well as general issues 

such as building-integrated photovoltaics and recycling while BMBF focuses its R&D on 

organic solar cells and thin-film solar cells (including nanotechnology) (Research for an 

environmentally sound, reliable and affordable energy supply., 2011).  
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In 2013 BMU funded 242 projects costing £34.05 million (€48.7 million) (Energieforschung, 

2013). According to EuPD the research PV industry was supported by £245 million 

(€300million Euro) for R&D during 2010. Furthermore, the German patent and Trademark 

office registered 290 German patents in PV technology during the same year (Grigoleit and 

Lenkeit, 2011).    

Germany offers funding options, alongside this R&D, as investment incentives to 

manufacturing plants. These incentives and support can be categorised into three major 

groups. The first group, grant/cash incentives (including the Joint Task program and the 

Investment Allowance program). These incentives reimburse direct investment costs during 

the initial investment phase of projects (before operations have started). The second group is 

known as reduced interest loans (at national and state level). These loans are provided by 

publically owned banks, to investors in Germany.  Most often these loans have a lower interest 

rate compared to the actual market interest rate and provide an attractive grace period. The 

third group is known as public guarantees (at state and combined state/federal level). In order 

to facilitate the financing of investment projects in young and innovative businesses, through 

the capital market, companies lacking security guarantees may apply for public guarantees 

(Naam, 2011). 

As a result of these policies, R&D activities and funding, Germany has set a target of reaching 

51GW PV generation by 2020. Overall, Germany’s long term policies and funding have had  

significant impact on reducing the setup costs that are associated with solar installation, such 

as permitting, inspection, interconnection, financing (Naam, 2011).  

 

2.6 U.K 

2.6.1 Policy Drivers 

It should be noted that the UK government has been trying, for a long time, to make valuable 

changes in policy and increase the awareness of PV in order to attract more public interest in 

solar technology. The first programme, SCOLAR, was introduced in 1998, as a coherent 

programme by British commercial companies and academicians to spread awareness and 

understanding of PV nationwide, with an integral research extended to the applications of PV. 

This programme was valued as £2.5 million which included £1 million from the Government's 

Foresight initiative and the remainder from participating schools and colleges (Wolfe and 

Conibeer, 1998). Under this programme 100 small PV projects were initiated and installed for 

schools and colleges each sizing between 2-3kW. These projects were possible due to the 

main polices in place in the UK at the time.  In 2002, the Renewable Obligation (RO) came 
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into effect in England, Wales and Scotland, followed by Northern Ireland in 2005. Its main aim 

is to place an obligation on the UK electricity suppliers to source an increasing proportion of 

the electricity, which they supply, is from renewable energy sources. ROCs is a green 

certificate issued to operators of accredited renewable generating stations for the eligible 

renewable electricity which they generate. Operators can trade ROCs with other parties, ROCs 

are ultimately used by suppliers to demonstrate that they have met their obligation. Where 

suppliers do not present a sufficient number of ROCs to meet their obligation, they must pay 

an equivalent amount into a buy-out fund. However, an amendment (referred to as the RO 

Closure Order 2015) closes the RO and the Renewable Obligation (Scotland) (ROS) schemes 

for large-scale solar PV systems on the 1st April 2015. The report by Office of Gas and 

Electricity Markets (Ofgem) (Chowdhury et.al. 2014) explains the details of this closure 

scheme. 

In October 2012 UK government launched a new policy called the "Green Deal" which was 

operational at the start of 2013. The purpose of the Green Deal is to allow householders to 

apply for loans for energy efficiency and renewable energy technologies (including solar PV) 

supporting them with the upfront costs.  This money is paid back through instalments via their 

energy bills. The repayments are arranged in such a way that, the money householders are 

due to pay is about equal to the savings they are making as a result of the installation 

(Nicholson J, 2015). This scheme can be merged with FiT to increase the net savings. For 

example, a typical 3.5kW domestic solar PV system installation under FiTs (over the whole 20 

year duration) will generate a net saving of £5835 to the homeowner (DECC., 2015).  The 

Green Deal was thought to ‘revolutionize the energy efficiency of British properties’ (DECC, 

2015), but was pulled in July 2015 due to low uptake (Fawcett and Killip, 2014). Currently the 

deployment of renewables schemes in the  UK (under the FiT scheme) has exceeded all 

expectations, to the point where spending has breached the limits of the government’s Levy 

Control Framework, which itself sets limits on the amount of money that can be added to 

consumer bills to support low carbon electricity generation. The DECC proposed (at the end 

of August 2015) a range of reductions, including an 87% cut to the FiT provided for electricity 

generated by solar rooftop panels from 12.4p to 1.6p from January 2016 (Energy Institute, 

2015).  

The current PV market, in the UK, is driven by two policies: FiT’s and Renewable Obligation 

Certificates (ROCs). The FiT scheme was introduced in 2010 (Sweetnam et.al. 2013), which 

led to installation of 1.8GW of solar PV capability by the end of 2012. This significant rise in 

installation was also due to the fast track review of large-scale solar projects by Department 

of Energy and Climate Change (DECC) (Smit et.al. 2011; Feed-in Tariff, 2015) which expects 
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that UK will install up to 20GW worth of of installations by 2020 (Department of Energy and 

Climate Change, 2011). In order to be eligible for the FiT scheme, PV installations must 

undertake an accreditation process to determine with Fit scheme each installation is eligible 

under.  PV installations below 50kW are eligible under (Microgeneration Certification Scheme) 

MCS-FiT accreditation process (2015) and PV installations greater than 50kW are eligible 

under the ROO-FiT process (2015). OFGEM website publishes the rates that PV system 

owners receive under the FiT scheme (2015).   

2.6.2 PV Research & Development activities and associated funding 

Between the years 2000 to 2006, the PV Field Trials Programme was introduced with 

associated funding of £9.4million and as a result 1.5MW of PV plants were installed under this 

programme. During the same time period, the Major Photovoltaic's Demonstration Programme 

was also introduced with £31 million supporting 8MW projects. From 2006 through 2010, the 

Low Carbon Building Programme was introduced with £13.4 million support for 4428 PV 

projects. 

Currently, R&D funding is provided by the Engineering and Physical Sciences Research 

Council (EPSRC). The UK Energy Research Centre (UKERC, 2015) Research Atlas provides 

details of publicly funded, past and ongoing research activities within in the solar sector. 

Research is, in the main, carried out at academic institutions and by a few companies 

(increasingly with those who have a collaborative approach with academic institutions). Overall 

in 2008, EPSRC provided £8.6 million of funding for 82 PV and PV related research 

programmes. Of this total funding, £6.3 million was invested in new PV materials for the 21st 

Century (PV-21) programme, which, was in collaboration with eight universities and nine 

industrial partners aiming to make solar energy more economically reasonable. Prior to this 

activity, Woking Borough Council invested in PV projects and had installed 10% of the UK’s 

solar PV by 2004 (Allen SR, 2008) and had also proved that a typical solar PV system can 

provide 51% of electricity demand (DTI, 2006). 

In 2012, the Research Council UK (RCUK) research portfolio was around £40 million for solar 

PV which encourages and supports the UK PV manufacturing industry through the innovation 

of both existing products and new products. In 2013, the UK National Solar Centre (NSC) was 

launched in collaboration with Building Research Establishment (BRE) jointly aiming to grow 

the PV industry in the UK. During Intersolar (2013) the U.K government announced that it will 

provide £7.6 billion per year by 2020 of targeted subsidy to support the deployment of 

renewable energy technologies (including PV) in Britain (Department of Energy and Climate 

Change, 2013). 
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2.7 PV electricity production in leading countries 

PV technology has seen rapid installation growth and its contribution to electricity demand is 

significantly rising. Around 415GW of PV is installed by 2017 across the world, which is at least 

10 times higher than in 2008. It has been calculated that, globally, at least 443TWh of PV 

electricity was generated in the 2017 (Statista.com). 

It is relatively easy to measure the electricity production of an individual PV plant, but much 

more complicated to accurately estimate it for an entire country. Unfortunately, it is also difficult 

to compare the installed PV systems to date with the production of electricity. For example, for 

a PV system installed in December it will only contribute a small fraction of its regular annual 

generation, it should also be noted variations in the weather conditions will have an impact the 

reliability of a long term average.  There are several other issues that need to be accounted 

for, such as, the optimum orientation or partial shading for Building Integrated PV Systems 

(BIPV) which can also impact the output of PV systems. For these reasons, the PV electricity 

production calculation is theoretical and is based on cumulative PV capacity for specific 

countries. Figure 11 (Statista, 2017) shows the largest solar photovoltaic power plants, based 

on optimum siting, panel orientation and average weather conditions (statista 2017). India has 

installed the largest PV system called Kurnool Mega Solar Park producing 1000MW, as shown 

in figure 11. 

 

Figure 11 Largest solar photovoltaic power plants worldwide by capacity (MW) (Statista.com) 
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There are nineteen other countries, alongside the 5 leading countries, around the world whose 

PV electricity contribution to total electricity demand has surpassed 1% (International Energy 

Agency, 2015). It should be noted that 5% of European electricity demand is fulfilled through 

PV generation and Italy is contributing 7.92% in 2015.  This is more than any of the major 

leading countries mentioned previously. That being said China and USA are still leading the 

market in terms of yearly installations as well as cumulative installed capacity but they are 

behind in terms of generation of PV electricity compared to the countries actual demand. 

2.8 PV cost analysis 

For several decades the price of production of solar modules has been decreasing.  This 

decrease in price has largely been due to the following factors (a) innovations in material 

technology and design (b) an increase in the overall amount of production (c) improvements 

in the efficiency by innovative design (d) increasing lifespan of PV systems (e) favourable 

policies for solar technology (GreenPeace International, 2011). From figure 12 (GreenPeace 

International, 2011; Naam, 2011; Cost of solar panels-10 charts tell you everything, 2013, 

German Solar Industry Association, 2015, Growth of Photovoltaics, 2015; Department of 

Energy and Climate Change, 2013; Feldman et.al. 2014; SolarBuzz, 2015), it can be observed 

that the price of PV cells has drastically reduced from £15.18/W ($23/W) in 1980 to £0.79/W 

($1.2/W) in 2014, and in June 2015 it has reached a new low of £0.20/W ($0.30/W), which is 

a decrease of more than 75 times, over a period of thirty five years.  

 

Figure 12 - Solar PV cells price trend (Cost of Solar, 2013; Feldman 
et al., 2014; German Solar Industry Association, 2015; Growth of photovoltaics, 2015; 
GreenPeace International, 2011; Naam, 2011; SolarBuzz, 2015; UK Solar Photovoltaic 
Roadmap, 2013)  
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A complete PV system combines PV modules with a set of additional application dependent 

system components like the mounting frame structure, inverters, charge controllers, electrical 

components, to name a few, which are known as Balance of System (BOS) to form a complete 

PV system. Similarly, like PV modules, BOS components are also decreasing and this trend 

can be seen from an example within the US market. There are several reasons to use the USA 

as an example including, government investment, market diversity, climate diversity and high 

labour costs. Figure 13 shows the BOS system cost from 2010 to 2013 for 10MW fixed tilt 

blended c-Si projects. It shows that BOS costs have reduced by almost 20 times since 1980 

and reduced to approximately £0.18/W ($0.29/W) between 2010 and 2013.  

 

Figure 13 - BOS price trend for 10MW fixed-tilt blended c-Si projects in USA (Aboudi, 2011; 
Media, 2013).  

According to a GreenTech Media (GTM) Research report Solar PV BOS Market: 

Technologies, Cost and leading companies, 2013 - 2016, in 2011, the ratio of cost of BOS to 

module was 68:32 and by 2012, the ratio had reached 50:50 (Greentech Solar, 2012), which 

clearly shows that not only the price of modules is decreasing but BOS costs are also 

decreasing in line with modules. This significant fall in both, module price and BOS price has 

gained the attention of investors and as a result, there are several new projects being built all 

over the world.  
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To get the broad overview of installed project costs worldwide, Table 3 lists 98 installed PV 

projects and  describes the total building cost and cost per watt (£/W) of all PV projects.  The 

table shows China is the cheapest country in terms of total installation costs of PV project, 

while South Africa is the most expensive country for total installation costs of a PV project. 

More importantly it shows there is a significant difference of £3.97/W between the minimum 

and maximum cost of projects.  In considering the overall size of a project, the table shows 

that for a 5MW installed PV plant in Panama is the costliest when compared to the likes of 

Bulgaria, China and India.  Similarly, for 10, 20 and 30 MW plants, South Africa is the most 

expensive when compared to China, the Dominican Republic, India and Thailand.  However, 

for 50MW projects Chile is the most expensive when compared to the likes of the Dominican 

Republic, Ecuador, India, Indonesia and even (the notably more costly) South Africa. This 

differential can be attributed to many factors such as the cost of modules, BOS and labour 

costs which vary from country to country.  Please note that this table is based on the availability 

of data and not specifically on any one country.   

 

 

 

 

Table 3 Size and cost of PV projects (D. C, 2011; I, 2011; S. C, 2011; T, 2011; Tech, 2014; 
Lieberose Photovoltaic Park, 2015; Lopburi Solar Farm, 2015; Bank, 2015; Energy, 2015; 
Ranch, 2015; Station, 2015) (over) 
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2.9 Discussion and recommendations  

It is important to review current materials in light of reducing costs as solar PV technology has 

enormous potential and benefits for society. Currently, several new materials are emerging on 

the PV market. Notwithstanding these new materials, efficiency improvement is still one of the 

key factors for the establishment of all PV technology in the market. Due to the availability of 

silicon, as a raw material, and its relatively simple manufacturing process, multi crystalline 

efficiency has reached 20.4%, at a maximum, and as a result it holds 80% et.al. 2011) of the 

PV market. However, to achieve PV as a major player in the power sector, efficiency of other 

types of materials need to increase with no compromise in the cost (Powalla and Bonnet, 

2007). It is believed that under all scenarios, solar PV will continue to increase its share of the 

energy mix in Europe and around the world.  

Table 4 (Fthenakis et.al. 1999; Razykov et.al. 2009; Razykov et.al. 2011) provides a brief 

comparison and comments between all type of material utilised along with their advantages, 

disadvantages, industrial manufacturing aspects and R&D areas.  Table 7 shows that 

crystalline materials have the highest percentage of module efficiency (circa 20.4%) when 

compared to all other available POV materials.  However, CIS/CIGS (categorised as thin film 

materials) and Hybrid cell materials (categorised as emergent technologies) have a 

commercially available module efficiency of 15% and 17.8% respectively.  Then general 

advantages and disadvantages of each material are noted in the fourth and fifth column of the 

table.  The R&D activity based around these materials, all five leading countries have their 

own individual programmes as noted in the Leading PV countries section.  The sixth and 

seventh columns summarise the main areas of R&D of each material that researchers, from 

all countries, are working towards.  In general, the overall aim of all of these programmes is to 

innovate with new PV materials, minimise production costs and increase the PV market share 

within electricity generation.  This project aims to add to this by developing a clearer 

understanding of PV installation at high latitudes and what the unique factors are that impact 

on solar PV generation at 56° north, the detail of this is discussed in chapter 3. 
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Table 4 Comparison and comments on all PV materials and their development (Fthenakis et.al. 
1999; Razykov et.al. 2009; Razykov et.al. 2011) 

 

 

After analysing the policies of the five leading countries in ‘Leading PV countries Worldwide’ 

section (Dusonchet andTelaretti, 2015), it should be noted that the PV market still remains as 

a policy-driven market and the right decisions of creating smart and sustainable support 

schemes for PV, along with a valuable amount of funding for R&D activities, can influence the 

overall market. So far, FiTs are the most utilised and widespread support mechanism adopted 

all over the world, with a market share equal to approximately 60% in 2012 (IEA - PVPS, 2015). 

Direct subsidies and tax rebates are in second place, with a share of 20%, followed by self-
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consumption (12%) (Dusonchet and Telaretti, 2015), RPS (4%) and net-metering (2%). 

However, the following section recommends a few changes that could be made in policies for 

deployment of PV systems. These recommendations could be applied globally, including in 

the five leading countries.  

2.9.1 Policy recommendations – Change is required 

To achieve high deployment of PV systems, a complete PV analysis from raw material, module 

technologies and BOS components, to product development, demonstration and deployment, 

need to make a number of changes. This section presents a set of key actions required to 

create an effective policy framework, which will directly or indirectly support solar PV to be 

successful in the market (International Energy Agency, 2015). 

2.9.2 Incentive and framework 

A. Financial incentive scheme and regulatory framework 

To gain more interest, from investors, for high capital investment for PV installations and the 

PV module manufacturing industry, it is essential to have clear, long term, effective and 

predictive financial incentive schemes like FiT, portfolio standards and investment subsidies 

with a framework like access to grids. Governments should implement long term schemes and 

energy policies for PV deployment. Additionally a framework should continue to be developed 

for the actual market, where net metering systems are involved with an economic incentive 

scheme for PV electricity generators and users.  

Providing only economic support is not enough, it would help if proper regulations for non-

economic hurdles, which can hinder the effectiveness of polices and supportive schemes, 

were put in place.  There are additional administrative problems such as planning delays, lack 

of coordination between authorities, long lead times for approval and connectivity with grids.  

There should be some timescales set out for each legal step and a procedure developed to 

allow for good coordination between all departments, authorities and government bodies.  

The majority of PV incentive schemes are provided for grid connected systems with standalone 

systems hardly ever being supported, despite the fact that they can offer an efficient and 

effective solution (replacing diesel generators with PV systems) within many settings.  

B. Regulatory framework for PV grid integration  

The two main issues with a PV system is its connection to the grid and load management. This 

will require better ways of generating and distributing electricity which is simple, safe and 

reliable. One way of mitigating this issue is by improving transmission and management 

technologies, which include smart grids, metering and improved energy storage systems. 
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Therefore, for better grid integration, governments should initiate long term planning for system 

flexibility and grid management. For example, a region with a high irradiation can be connected 

with a greater number of grid connected PV installations with a better distribution management 

system and time dependent electricity tariffs.  

2.9.3 Market transformation 

A. Globally accepted standards and codes 

With the aim to continue to introduce large scale PV deployment IEA has identified that, there 

should be internationally accepted set of standards, codes and certificates for PV products 

(International Energy Agency, 2015). This will support safety and quality but will also avoid the 

bureaucratic barriers. The set of standards, codes and certificates will need to include energy 

and performance of PV modules, quality assurance, reuse and recycling and for grid 

connections. Overall, an accepted standard agreed on a worldwide level will enhance the 

deployment of a wider variety of PV technologies.    

B. Promote new investment and business models 

There is a high initial outlay for PV system installation but results in a low operating cost. At 

present, most of the incentive schemes are for large scale grid connected projects. However, 

the high capital investment requirements are a major hurdle for residential and small 

commercial customers with an offgrid application. One option to resolve this issue is to 

support/partner with Energy Service Companies (ESCOs), which will own the system and 

provide the energy to end user for a periodic fee (like the partnership set up to support the 

Solar Meadow and Edinburgh College). The user will never be the owner of the system and 

are not responsible for any maintenance.  

According to the IEA, PVPS (Photovoltaic Power System Programme), in 2008 there should 

be some sort of financing mechanism options like direct cash sales, credit sales or lease 

purchase arrangements(IEA - PVPS, 2015). 

C. Skilled PV workforce 

From research, to installation and on to maintenance, the PV market requires a highly skilled 

workforce.  Highly skilled and suitably trained people are required for technology development, 

customer's confidence in quality of installation, reliability and cost reduction. To ensure this 

workforce is in place and available, there should a programme of delivery adopted by 

educational institutes and training providers to target specific professional groups such as 

government planners, architectures and home builders (US Department of Energy’s 

Programme, 2015).   Training of new and upskilling of current workers will be a big part of 

meeting the growing demand for PV installation and maintenance in the years to come.  This 
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will require curriculum development in vocational areas to ensure the training is fit-for-purpose 

and at the level required to meet the demand.  Development of apprenticeships and 

embedding within STEM curriculum and agenda’s would go some way to supporting this, 

however, vocational curriculum at a skills level requires further development.  

2.9.4 Development of technology and Research & Development 

A. Assured long term R&D funding 

The PV sector utilises several different materials and technologies, which required ongoing 

improvements. Appropriate long term high level funding assurance is required to develop and 

improve system technology and to introduce innovative concepts to the market as outlined in 

table 5. It should be noted that R&D Funding for PV has increased in recent years, however, 

it still needs to be increased further over the next few years to achieve the targets like BLUE 

MAP and to reduce carbon emissions by 50% by 2050 (IEA, 2010).   

B. Develop smart grids and energy storage technologies 

As described in section 2.9.2 B, the requirement for improved smart grid technology will 

significantly increase as the numbers of installed PV systems increases.  Smart Grids provide 

a wide range functions for both the generator and the end user in the monitoring of bidirectional 

flow of electricity. This technology can keep a controlled monitor of conventional generation 

with variable PV electricity generation and storage. It can maintain the proper flow of electricity 

in times of peak demand, from the storage to the end user with an accurate calculation of 

generated electricity from both conventional sources and PV. It can also process real time 

meteorological data and an evaluation to predict the PV electricity generation. An advanced 

metering system, which is an integrated part of smart grids, can be deployed alongside the PV 

systems because it will provide a better operational characteristic consumption of grid 

electricity and generated PV electricity i.e. if the user has installed its own PV plant and learn 

from the usage of the end user making a more adaptive system that can meet individual user 

requirement and maximise delivery back to the grid and/or storage.   

The IEA vision for PV electricity to hold 5% of global share of electricity after the year 2030. At 

that stage, there will be need to see major improvements made with storage technologies, 

which will provide flexibility to the system and minimise the impact of variable PV generation. 

Various R&D activities are ongoing on redox flow batteries, Compressed Air Energy Storage 

(CAES), electric double layer capacitors, flywheel systems, Li-ion batteries, and 

Superconducting Magnetic Energy Storage (SMES). We are yet to see a long term solution to 

PV energy storage but progress is being made. This is an area of study which requires more 

detailed analysis to provide robust commentary on R&D activities.  Hopefully this research can 

add to the argument for further research to assist in the storage of generated energy.   
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2.9.5 International expansion and collaborations 

A. Expansion of Research & Development internationally 

It is necessary to have R&D activities, taking place in individual countries & across the globe 

and therefore, it is important that both short term and long term issues are addressed by each 

country and existing infrastructure facilities will be provided for the improvements made of PV 

materials and BOS components. One of the examples of such international collaborations is 

PVPS by IEA between 21 expert countries, of the 66 sunbelt countries, in the EPIA.  

B. International aid 

Since 1993, the World Bank (WB) and Global Environmental Facility (GEF) have been 

providing funds and support for renewable energy technologies to developing countries. From 

1997 through to 2007, the WB and GEF supported China with $40 million in the form of grants 

and loans (The World Bank, 2015). Due to that support, within the time period stated, China 

became one of the top manufacturers globally, for solar PV modules and BOS components. 

Another Similar example is of the German state owned bank KfW (see ‘Driving Policies 

section’), who financed £160.80 million (€230 million) for renewable energy products in 2008. 

Growth is clearly linked to sustainable funding and therefore, this sort of funding facility for the 

PV sector should be increased.  

 

2.10 Scotland’s Key policy drivers 

2.10.1 Kyoto Protocol 

 

Over 10 years’ worth of climate policy negotiations have produced the Kyoto Protocol, the first 

legally binding international agreement on climate protection with a focus on reducing 

greenhouse gas emissions, based on the consensus within the scientific community that 

climate change is indeed a real effect impacting heavily on the planet and that it is becoming 

an agreed position that human activity and man-made CO2 emissions have contributed to the 

effect of global warming and indeed speeded the process up.  This protocol came into force in 

2005 and includes 192 parties from across the globe (United Nations, 1998). 

 

2.10.2 Paris UN Climate Conference 

At the Paris summit in December 2015, 196 countries met to sign a new climate change 

agreement. The Paris agreement seems set to achieve where the Kyoto agreement has fallen 

short, in that the USA did not ratify the Kyoto protocol and have since left the agreement with 

the introduction of a new president. Ambitious Global outcomes have been set that will have 
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a real impact on tackling climate change, by keeping the rise in global temperature below 2 

degrees Celsius and by tackling global greenhouse gas emissions (United Nations, 2015). 

Originally countries like the US and China were working to ensure an outcome is likely in 2015; 

and the years since the 2009 Copenhagen negotiations have seen some significant 

breakthroughs, however this has become more challenging since the USA left the agreement. 

The 2009 negotiations were fraught and chaotic, with a last minute agreement emerging after 

frantic scenes on the conference floor. Yet international negotiations remain vital for countries 

to build on national approaches, providing reassurance that they are not acting alone, and 

making it easier for nations to work together towards a low carbon future (United Nations, 

2015).  

This is why the 2015 Paris summit was so important. To ensure meaningful action on climate 

change, the deal must contain the following elements: 

 ambitious action before and after 2020  

 a strong legal framework and clear rules 

 a central role for equity 

 a long term approach  

 public finance for adaptation and the low carbon transition  

 a framework for action on deforestation and land use  

 clear links to the 2015 Sustainable Development Goals 

The strong deal will make a significant difference to the ability of how individual countries plan 

to tackle climate change. It will provide a clear signal to business, to guide investment toward 

low carbon outcomes. It will reduce the competitiveness impacts of national policies, and 

create a simpler, more predictable framework for companies operating in different countries. 

For instance the French government’s plan to ban petrol and diesel vehicles by 2040 (United 

Nations, 2015).  

However, on June 1st 2017, the President of the USA withdrew the US from the Paris accord 

under the premise that it will undermine the US economy and put the USA at a permanent 

disadvantage compared with the other countries who have signed up (United Nations, 2015).  

A four year period, as set out in article 28 of the Paris Agreement, means the earliest 

withdrawal for the USA will be November 2020.   

2.10.3 Climate Change (Scotland) act 2009 

The Scottish Government’s ambition to achieve carbon reduction and climate change targets 

are bound within its plan for an inclusive, improving sustainable low carbon economy.  In 
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tackling the climate change issue it is assumed that general wellbeing, air quality and 

employment opportunities will all be improved.  Therefore the Climate Change (Scotland) Act 

passed by the Scottish Parliament in 2009 has helped to elevate Scotland to a world leader in 

terms of its climate change agenda and ambitious target setting.  In the years since, Scotland 

has made significant progress against the targets set out in the act.  GHG emissions are 

reported annually by the government in order to monitor the achievement of targets being met.  

The Scottish Government is playing a vital role in the Paris agreement by limiting global 

temperature rises and in turn allowing for opportunities and access to $23 trillion worth of 

climate smart incentives and investments by 2030 (International Finance corporation – climate 

investment opportunities) (Scottish Governement, 2017a).   Within the Climate Change 

(Scotland) Act 2009 there are specific requirements for reporting and planning to be published 

by the Scottish Government in order to maintain the required scrutiny of progress being made.  

The final climate change plan, expected in February 2018, is a directive on how the 

Government plans to cut emissions by a further 66% by 2032.  In order to maintain the positive 

momentum garnered by the government there is a proposed Climate Change Bill, set out by 

the government in Scotland that will introduce even more ambitious targets to ensure Scotland 

meets its obligations within the Paris Agreement around GHG emissions and set out the bold 

commitments required to decarbonise the Scottish economy with a progressive move towards 

a low carbon economy (Scottish Governement, 2017a).  

2.10.4 Low Carbon Scotland  

Even though climate change is contested, it is seen as one of the greatest threats faced around 

the globe, real action must be taken to reduce its impact regardless. Moving towards a low 

carbon economy and in turn creating a low carbon society is regarded as a key investment 

strategy for the Scottish government as the country strives to minimise the impact of global 

climate change for future generations.  It is also a real contribution being made to the global 

economy but also sets a standard for other countries looking to follow Scotland’s lead.  With 

world leading target on emissions reduction of 42% by 2020, Scotland’s Climate Change 

(Scotland) Act is deemed one of the most ambitious climate change legislations in the world.  

With the rest of the UK set to reduce its emissions by 34% (Committee on Climate Change, 

2017). in the same time period it is clear that the framework adopted by the Scottish 

Government and the annual reporting strategies set their legislation apart from other parts of 

the UK and indeed the wider world. 

Despite positive progress being made by Scotland against its own targets for GHG emissions 

baseline revisions, stalling talks at both EU and international levels have led Scotland missing 
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its original targets set out in the Climate Change (Scotland) Act 2009 in both 2010 and 

2011(Scottish Governement, 2017b).    It is useful to reiterate that these negative results are 

based against a backdrop of poorly performing EU-15 members and fall in emissions of 25.7% 

in 2011 compared with a planned 23.9%.  A planned over achievement of targets would help 

recover the position lost in 2010 and 2011 but with ambitious targets already set in years up 

to 2020, this will be a very challenging realisation especially with potential impacts after 

BREXIT. 

Five themes have been identified by the Scottish Government that apply to all six of the sectors 

requiring improvements in a low carbon economy.  The key themes are; 

 Understanding external factors driving the pace of change 

 Transition to the low carbon economy 

 Funding and Financing opportunities 

 Understanding and influencing behaviours 

 Planning frameworks  

These five themes outline potential moves in the future that highlight the need to be agile, 

adaptive and flexible, providing a sound economic decision making process to progress 

towards the planned targets and utilising natural resources in renewable energy sources whilst 

upskilling and reskilling the workforce, capitalising on funding methodologies and opportunities 

such as Green Deal, influencing the ten main household behaviours ‘installing a more energy 

efficient energy system; keeping the heat in; better heating management; saving electricity; 

walking, cycling, using public transport and or car sharing; avoiding food waste; eating a 

healthy diet in season where we live; and reducing and reusing, in addition to the efforts we 

already make on recycling (Audit Scotland, 2011).  And finally utilising the National Planning 

Frameworks down to local improvement plans at locality level.  Only by making progress in all 

themes will the Scottish Government manage to realise the targets set out in the plan. 

2.10.5 Scottish Government Climate Change Plan (2018) 

In 2009, the Scottish Parliament passed the most ambitious climate change legislation 

anywhere in the world. In 2017 the government developed its third Report on the Policies and 

Proposals, the Climate Change Plan (CCP), which will take Scotland’s climate agenda to 2032. 

Between 2009 and the present time much has changed and we are in a fundamentally different 

political, economic, social and technological landscape to that of 2009.  The Climate Change 

(Scotland) Act 2009 outlines a set of criteria that can be used to monitor progress and ensures 

that the government reports effectively on progress made against targets.  To date there have 
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been three such reports published which includes the draft CCP outlining the proposed 

emission reduction targets set for 2017-2032 (Scottish Government, 2018).  

 

Internationally the UN Paris Agreement, as discussed earlier, is the first global legally binding 

agreement to limit greenhouse gas emissions. With the agreement coming into full force in 

2016 it surprised the international community by coming significantly earlier than anticipated. 

The world is now seeing much more momentum towards environmental management in a low 

carbon future which, although it will not be a straightforward or smooth journey, appears to be 

a real force for change.    

 

While the UN climate change processes provided much-needed confidence at the global level, 

many people have expressed fears about the potential impact of the UK’s damaging Brexit 

vote on the climate change agenda. One major concern is a potential hampering of climate 

ambition. 

 

There were a number of emission reduction pathways suggested, with the government 

selecting what they have deemed, the most beneficial to the people of Scotland. 

Consideration has been given to emergent technologies, issues of delivery, costs and 

disruption (as discussed earlier in this chapter). Further efforts have been made to ensure 

future growth in the Scottish economy by taking steps to prevent industries moving away from 

Scotland due to the carbon reduction constraints, set by the government, are perceived to be 

too tight and challenging to meet in comparison to other economies, especially that of the rest 

of the UK, leading to the potential for ‘carbon leakage’.  Innovation within best business 

practice will also be heralded and the emerging economic opportunities being demonstrated 

will drive change within the low carbon economy (Scottish Government, 2018).  

 

Alongside the Sottish Government’s CCP a further strategy has been developed, the Scottish 

Governments first Energy Strategy. Designed to sit alongside and complement the CCP, the 

Energy Strategy sets out a number of key questions which lead to successful decarbonisation 

the supply of affordable, clean safe and reliable energy. The ambitions held within the 

Economic Strategy for Scotland have been used to set the Energy strategy and CCP, with an 

aim to boost productivity and secure competitive advantage, protect and preserve the 

environment and deliver a low carbon economy within Scotland (Scottish Government, 2018).  

 

The CCP sets out outcomes in transport, heat, electricity generation, and energy efficiency 

along with increased natural carbon sinks and more efficient and profitable agricultural 
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practices. By the start of the 2030 it is expected the low carbon economy will have positively 

impacted on Scotland by drastically reducing the emissions from buildings, residential and 

industrial settings, by dramatically improving progress made against the decarbonisation of 

heat and improvements made in energy efficiency measures across the country.  Electricity 

generation in Scotland is expected to be carbon neutral by 2025 through increasing the mix of 

energy generation technologies and their uptake, through the large scale introduction of 

carbon capture and storage gas utilisation from plant materials and biomass waste.  The 

heating of the countries homes is set to move towards the use of electricity and the countries 

daily travel requirements are also expected to move towards electrically powered vehicles.  

Current EU and UK legislation determines the reduction required in industrial emissions and 

the Scottish Government’s planning is in line with the expected fall in industrial emissions of 

19% by 2032 through the use of emissions trading, fuel diversification and energy mix and 

savings related to energy efficiency and heat recovery.  The Scottish Government’s plans for 

reducing transport emissions by a third by 2023 also fit with their low carbon economy plans 

but actively promoting the wide-scale uptake of low carbon vehicles, improvements made to 

the efficiency of freight and improvements made to zoning for low carbon emission areas 

(Scottish Government, 2018). Recently Scottish & Southern Energy (SSE) announced that 

they will be the first green energy provider in 2018 by generating solely through wind. 

 

There is ongoing good work in the reduction of the GHG emissions from waste, with the phase 

out process planned for landfilling of biodegradable waste ahead of the statutory ban coming 

into force from 2021 (Scottish Government, 2018).  The UN’s Sustainable Development Goals, 

set to facilitate the reduction of food waste by 50% by 2030 have been adopted by the Scottish 

Government  who plan to employ a circular economy approach to deliver on the emission 

reduction targets set by 2050. 

 

The planned move away from fossil fuel based technologies for energy generation, heating 

and transportation and progress made towards the circular economy will provide the Scottish 

business and research community with real opportunities for innovative practice along with the 

knowledge transfer of this leading practice.  The co-development of policy with business 

leaders will allow for this transformation to take place in the face of difficult choices in terms of 

maximising commercial potential, export and employment opportunities on a cohesive scale.  

The Scottish Energy Efficiency Programme will support supply chain and market activity by 

supporting thousands (Scottish Government, 2017) of jobs within Scotland within the energy 

sector, providing a skilled workforce that can operate in country and indeed in the international 

arena for renewable heat services and related technologies.  With the likelihood of millions 
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saved in fuel bills, having a positive impact on fuel poverty and recycling money back into local 

economies, this will drive community development and planning through the 31 community 

planning partnerships across Scotland.  The CCP is a plan that, if it is to be realised in its 

entirety, must sit at the heart of the Scottish people. Climate conversations must be developed 

through local economy impact plans and community planning partnerships will need to play a 

role in supporting the development of inclusive local plans.  If done right, improvements 

towards a low carbon economy based on the way travel, freight logistics, heating and energy 

utilisation within domestic and industrial settings, agricultural developments and the newly 

created jobs will sit at the heart of community and the people of Scotland.  The Climate 

Challenge Fund is an example of how CPP’s and their localities can raise awareness and 

become more involved in the climate debate.  Change will inevitably only achieve the ambitions 

of the government should the public react and get behind the many initiatives discussed here.  

In this section I have shown the importance of this research it the ambitions of the Scottish 

Government, and the world, are to be met. 

 

2.10.6 Political Background 

In this section I will provide an overview of the current Scottish position against UK policy.  This 

will set out the direction of travel for Scotland, as a country, in combatting the effects of global 

climate change and highlight the importance of understanding local impacts on renewable 

installation decisions. 

Scottish Position on UK policy 

Scottish Renewables is the representative body for the renewable energy industry in Scotland, 

providing a voice for more than 320 member organisations working across the full range of 

technologies delivering a low-carbon energy system integrating renewable electricity, heat and 

transport. Scottish Renewables has been created to ensure Scotland harnesses the full 

economic, social and environmental potential of all forms of renewable energy in order to 

provide the country with secure, low-carbon supplies of energy at the lowest possible cost.  

District Heating Projects   

More than half the energy consumption in Scotland is in the form of heat, therefore the 

decarbonisation of this sector will have a big impact on the reduction plans in Scotland. There 

is recognised support for the Scottish Government’s ambition for district heating, in order to 

achieve the wider renewable heat targets by 2020; however, there is a significant proportion 

of these schemes that will need to include renewable heat. The Scottish Government’s draft 

Heat Generation Policy Statement had indicated that, to achieve the required emission 

reductions, a much higher proportion of heat will need to come from renewable sources such 
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as geothermal, solar thermal, biomethane or biomass as well as low-carbon sources like 

excess unused industrial heat (Scottish Government, 2017).  There is however no clear 

indication of the reduction targets recommended, the inclusion of the 11% renewable heat 

target needs to be clearly defined here to ensure the challenging target is realised. 

Community Scale Energy Storage  

The importance of energy storage in shaping our future energy systems, is becoming more 

prevalent as the move towards introducing more renewable generation gains momentum. A 

systems approach should be taken to ensure a joined-up approach to electricity, heat and 

transport in particular.  There are real benefits to the range of energy storage schemes but 

more should be made to the variety of ancillary services provided to the grid by energy storage, 

such as frequency response. 

Cost is often the key barrier to the roll out of energy storage. There is a growing expectation 

that the capital costs of storage technologies will fall while a number of projects taken forward 

under the Low Carbon Networks Fund have shown that it is possible to significantly improve 

commercial viability by realising the additional value that such technologies can add to the 

system (Energy Savings Trust, 2015).  

Post EU referendum 

Scotland is recognised as a leader in climate change and setting even more ambitious targets 

through the new climate change bill cements the need for change as an over-arching priority 

for the government.  Membership of the EU has ensured progress on a range of important 

issues due to protocols such as the Paris Agreement and thus has enabled the application of 

high standards in vital environmental protections to the benefit of natural assets found in the 

country.  There is widespread acceptance that the EU has been a catalyst for driving up 

environmental standards since the UK joined in 1973.  Scotland provides the major part of the 

UK’s contribution to Natura 2000, with over 15% of land area designated for a wealth of 

habitats and species (Scottish Government, 2018).  With BREXIT looming there is the 

realisation that by no longer being part of the EU negotiating block on climate change will make 

the ambitious targets set out by the Scottish Government harder to achieve, however it is 

impingent on the nation to ensure the drive to strive to achieve the targets are maintained.  

The loss of access to financial support programmes and the loss of influence on the big 

decisions will likely impact on Scotland’s ability to negotiate in terms of international recognition 

but alignment to policy making can still be achieved.  Climate change targets are challenging, 

and the best way of achieving them is to continue with collective effort, which is vital for 

delivering on Paris Agreement commitments.  With colleges expected to become more 
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sustainable, in terms of aging estate (as discussed earlier), BREXIT impacts and potential loss 

of EU funding will make this particularly challenging. 

2.11 Solar PV Technologies 
 

This section will look at the specifics of current PV module materials, outline the efficiencies of 

the materials and modules and the companies producing the modules.  I will then introduce 

new technologies on the market and summarise their position within the market.  Finally I will 

present the economics of the installation at Edinburgh College, site layout and design and the 

plant specifications. 

2.12 Solar PV Materials 

In a technological age seeing great changes and developments in electricity systems and low 

carbon economies across the globe, demand for, and a growing dependence on, electricity is 

increasing.  The environmental impact of electricity generation is being thrown into the 

spotlight, due to the effect of global warming, resulting in a  worldwide focus on reducing 

carbon footprints and greenhouse gas emissions (World, 2015).  This has led to the promotion 

of a more diverse mixture of developing technologies in renewable generation, namely solar 

photovoltaic (PV) and wind generation.  This is leading to a decarbonised, low carbon economy 

in many countries.  In developing clean, affordable, scalable, and importantly, reliable 

electricity generation solar PV has a great role to play (Tyag et.al. 2013).  In realising the 

ambitions of governments the world over, incentivisation schemes have been introduced to 

promote and facilitate the installation of solar PV.  On the world stage hundreds of 

manufacturers are providing a range of PV technology and producing modules with varying 

efficiencies and weaknesses.  Cost of installation also fluctuates depending on type of module, 

location in the world and they type of system being installed in specific projects.  This chapter 

will look at recently published information from a range of projects and focus on materials, 

efficiency, policy drivers, research & development (R&D), funding sources and the global 

status of solar PV including its potential for electricity generation. 

The most common PV materials and associated efficiencies will be reviewed under the 

following headings, crystalline silicon, thin film technology and newer emerging technologies.  

The efficiencies of 143 manufacturing firms and their modules are highlighted with the aim to 

review the most current improvements in material testing and efficiencies (lab based) and 

compare & contrast them against the common PV modules available on the market. This 

chapter will provide a list of the 143 manufacturers and outline the 29 countries of origin of the 

manufacturers.  When looking at the installation of an array such as the one at Edinburgh 
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College this type of information is important to offer an overview of the growing market with a 

large amount of variables. 

As this thesis is focussed on a solar array in Edinburgh, Scotland, this section will focus on 

manufacturers from the United Kingdom and its leading competitors, namely United States of 

America, China, Germany and Japan.  For detailed analysis of the cost implications for the 

Edinburgh Array see chapter 3 (3.4). 

2.13 Photovoltaic module material and associated efficiencies 

The 20 largest solar PV manufacturers worldwide were identified in a 2014 report by JRC 

(2014) which also states that some 350 companies are involved in the manufacture of PV cells 

worldwide (Jager-Waldau, 2014b). However an internet search has heralded the manufactures 

listed in table 6.  This 143 manufacturers in this table falls short of the above reported figure 

but illustrates well the countries of manufacture and supports the above decision to focus on 

the UK and its 4 main competitors.  It is clear from this list that China boasts the highest number 

of companies at 43, with Germany at around half that of China, 21, the USA at 19 and Taiwan 

at 15.  These countries are manufacturing and developing more compared with the UK, Spain, 

Italy, Japan and India, all around the 7 mark, with the remaining 20 countries supporting 1 or 

2 manufacturers.  The table 5 lists the countries and manufacturers with the country initials 

and numerical position of the company in the list, for example the first country listed in Australia 

(AU) with the first manufacturer being E-solar giving the reference AU1.  These identifiers will 

aid in the company identification later in this chapter.  This list does not account for popularity 

or success but is yielded from internet research. As these factors are of no merit to this study, 

they have been left out to remain focussed and within context.   
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Table 5 List of companies based on relevant countries and their reference numbers (Frankl 
and Tanaka, 2014) 
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The following section will discuss and review a number of different materials and their 

associated efficiencies utilised in the manufacture of PV modules.  These are the raw materials 

utilised to create the desired efficiencies based on supply chain and company business model. 

2.14 Crystalline Silicon (c-Si) 

Bruton (2002) states that silicon is the most prevalent semiconductor utilised in PV technology.  

The original designs of PV modules used a crystalline structure of silicon. Due to the 

development of the bipolar transistor in 1948, a new age of research and development of 

silicon semiconductors was ushered in and due to this development the efficiencies of silicon 

based solar cells were increased to 15%.  The next leap forward happened in 1970 where the 

efficiency was pushed to 17% based in the development of micro-electronics. Since then 

ongoing R&D has led us to circa 25% efficiency being reached by the 2000’s et.al. 2001). 

Efficiency levels of 24.7% and 24.5% have been reached through research by the University 

of New South Wales by means of Passivated Emitter, Rear Locally (PERL) on Flat Zone (FZ) 

silicon substrate and Passivated Emitter, Rear Totally (PERT) diffused silicon solar cells 

fabricated on Magnetically Confined Czochralski (MCZ) substrates respectively (Zhao, 2011).  

Goetzberger et al. (2000) have reviewed the background history of photovoltaic materials and 

suggested possible future scenarios for silicon based technologies. 

In the broadest sense of classification, mono crystalline and multi crystalline are two basic 

forms of crystalline technology. As compared to all other types of solar PV technology, 

crystalline silicon technology has the highest commercial efficiency and therefore the most 

developed.  This has led to a market dominance worldwide of some 80% market share today 

and has proven efficiencies based on standard test conditions (Key and Peterson, 2009). 

2.14.1 Mono crystalline  

Mono crystalline structures are widely used due to a high level of efficiency compared to multi 

chrystalline structures. Zhao et al.  (1998) reported that with a honeycomb textured, mono 

crystalline solar cell can achieve an efficiency of 24.4%. It must be noted that overall module 

efficiency will be lower than this tested 24.4% efficiency. SunPower Corporation (2015) (US17) 

measured 20.4% overall module efficiency at the National Renewable Energy Laboratory 

(NREL), 2015.  The next table (6) presents 60 companies and their associated module 

efficiencies which utilise monocrystalline silicon technology.  From this table it is seen that a 

range of 16-16.9% module efficiency is achieved by 36 of the 60 companies (the majority being 

Chinese and German manufacturers) with the global leader being SunPower (US17) with its 

20.4% module efficiency.  
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Table 6 Efficiency of mono crystalline PV modules ((NREL), 2015) 

 

 

2.14.2 Multi crystalline or Poly crystalline 

As previously mentioned Zhao et al.  (1998) also reported on the honeycomb textured solar 

cells, with an efficiency of 19.8% for multi crystalline based silicon structured technology.  

Being cheaper to manufacture, multi crystalline are the preferred silicon structures for modules 

across the market. However, they are less efficient than their mono crystalline counterparts as 

shown in section 2.15.1. In table 7 a list of multi crystalline modules and associated efficiency 

is given and shows, again, that half of the 38 companies are from either China or Germany.  It 

is also clear that the majority of the manufactures are sitting with module efficiency of 15-

16.9%, some 4-5% lower than their mono crystalline counterparts.  In fact the highest module 

efficiency of the multi crystalline modules listed is 16.9% from Neo Solar Power Corporation in 

Taiwan.  In comparison, the highest efficiency in mono crystalline modules is 20.9%.  R&D is 

currently underway to improve the efficiency found in multi crystalline technology to reach 

comparable efficiencies found in mono crystalline technology et.al. 2011).  

Table 7 Efficiency of multi crystalline PV modules ((NREL), 2015) 
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2.15 Thin film technology 

 

Thin film is an alternative to the silicon based technologies, this alternative used less or no 

silicon in the manufacturing process. There have been extensive reviews undertaken in the 

field of amorphous and crystalline thin film silicon solar cells, one such review has been carried 

out by Roedern (2003) and reports that in the initial phases of this technology development of 

thin film solar cells, the achievement of 10.7% efficiency has been demonstrated by Yamamoto 

et al. (2004).   

 

2.15.1 Amorphous Silicon (a-Si) 

The most developed form of non-crystalline allotropic silicon is amorphous silicon.  Even 

though it is prone to degradation, it is still the most commonly used form of thin film technology.  

Some examples of a-SI are amorphous silicon-nitrite (a-siN), amorphous silicon germanium 

(a-SiGe), amorphous silicon carbide (a-SiC) and microcrystalline silicon (µ-Si) (Parida et.al. 

2011).  A-Si has a high band gap of 1.7eV due to the random nature of its structure (Boutchich 

et.al. 2012) and when compared to mono crystalline silicon. It has a much higher rate of light 

absorptivity, 40 times higher (Mah, 1998).  It is also the most common thin film material found 

in the commercial market today.  In 1976 the first amorphous thin film solar cell has produced 

an efficiency of 2.4%, from a cell of ~1 μm thickness, achieved by Carlson and Wronski (1976).  

Furthermore, improvements in the potential of thin film solar cell is detailed by Rech and 

Wagner (1999). 

A list of 49 manufacturers utilising a-Si in their commercial modules is shown in table 8.  Stion 

Corporation, based in the USA, is currently manufacturing a-Si modules with an efficiency of 

13.8%, the highest in the market.  However, as we have seen with the previous technologies 

described, China and Germany still have the majority of manufacturers with more than half 

situated within the 2 countries.  We also see that there is a higher disparity between highest 

and lowest available efficiency with a 10% difference shown.  Efficiency of the modules from 

the majority of manufacturers listed is in the range of 5-9.9%.  When comparing tables 9,10 & 

11  it is clear that a-Si has some development required in order make it a viable market 

alternative to both mono and multi silicon varieties. It can be seen that the maximum efficiency 

of current a-Si modules is a mere 13.8%, when compared to the other 2 module types. This 

sits around the lowest efficiency found. In reviewing the maximum module efficiency found, in 

a-Si modules, this technology lags behind mono crystalline by 6.6% and multi crystalline by 

3.1%.  
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Table 8 Efficiency of a-Si PV modules ((NREL), 2015) 

 

 

2.15.2 Cadmium Telluride (CdTe) / Cadmium Sulphide (CdS) 

Cadmium Telluride solar cells are created by combining from cadmium and tellurium to form 

a thin film material. Due to the ideal band gap found in this particular material, 1.45 eV, and 

better long term stability (Boer, 2011)(in comparison with a-Si) it is a very promising technology 

for use in thin film solar modules.  It should be noted that there are several remarkable results 

reported by Compaan (2004), Schock and Pfisterer (2011), Razykov et al. (2004) and an 

efficiency of 10.6% and 11.2%  obtained on thin film 0.55-μm- and 1-μm-thick CdTe by 

Nowshad et.al. (2001).   Upadhyaya et al (2007) have reported an efficiency of 11.4% on CdTe 

on plastic foil.  In general 15 to 16% cell efficiency has been obtained by Britt and Ferekides 

(1993), Aramoto et al. (1997)and Wu et al. (2001). In July 2011, First solar (2011)  company 

set the world record for cell efficiency at 17.3%, confirmed by NREL.  

 

2.15.3 Copper Indium Gallium Selenide (CIGS) / Copper Indium (Di) Selenide (CIS) 

There has been a multitude of advanced research carried out into Copper Indium Gallium 

Selenide.  This material is created by adding Gallium to Copper Indium (Di) Selenide (Schock, 

A; Shah, 1997)to form the semiconductor structure.  In 2006 the best cell efficiency of CIGS 

was recorded at 20% (Repins et.al. 2008) which is circa 13% module efficiency (Powalla, 

2006).  However, in 2013, Siva Power reported the highest cell efficiency of 18.8% confirmed 

by NREL (Osborne, 2014). 
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In table 9 a list of top CIGS/CIS manufacturers is provided.  This shows that of the 26 listed 

manufacturers half reside in the USA and Germany.  This is unlike mono, multi and amorphous 

silicon technologies described previously, in that China is not a leading manufacturer of this 

technology.  It is also clear from table 12 that the majority of the manufacturers deal within a 

module efficiency range between 9 and 12.9% with the maximum efficiency of a commercial 

module, utilising this form of material, of 15%.  The most efficient modules here are 

manufactured by Mia Solé in USA (US7).  However, this material is still lagging behind both 

mono and multi crystalline silicon materials by 5.4 and 1.9% respectively.  It is important to 

note that CIGS/CIS based modules are an improvement on a-Si modules by a higher efficiency 

of 1.2% in comparison.  As with a-Si modules research and technology advancement is 

required to ensure CIGS/CIS technology is a viable alternative to mono or multi crystalline 

modules. 

Table 9 Efficiency of CIS/CIGS PV modules ((NREL), 2015) 

 

 

 

2.15.4 Gallium Arsenide (GaAs) 

 

Gallium Arsenide is a compound semiconductor formed of Gallium (Ga) and Arsenide (As). It 

has a similar structure to silicon cells with high efficiency and less thickness. In addition, it is 

lighter as compared to mono crystalline and multi crystalline silicon cells (Iles, 2001). Its energy 

band gap is 1.43eV (Streetman, S; Banerjee, 2005; Saas, 2009) which can be improved by 

alloying it with Aluminium (Al), Antimony (Sb), Lead (Pb), which in turn will form a multi junction 

device (Satyen, 1998).  

The Dutch Radboud University Nijmegen made a single junction GaAs cell that reached up to 

28.8% efficiency (Yablonovitch et.al. 2012)while Sharp Company has reached up to 36.9% 
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(Sharp, 2011)and Spire Corporation, has manufactured the most efficient triple-junction, GaAs 

cell, with an efficiency of 42.3%, which was verified by NREL (Osborne, 2010). However, this 

technology is still under research and hence, there are negligible commercial modules 

available in market. 

2.16 New emerging technologies 

2.16.1 Hybrid cell 

Hybrid cell technology is comprised of crystalline silicon with non-crystalline silicon (Itoh et.al. 

2001), which makes the manufacturing process of combining them complex. It has been found 

that a high ratio of performance to cost is evident in hybrid cell Wu et al. (2005). As a result of 

this, Sanyo has manufactured a hybrid cell with module efficiency of 17.8% (Zipp, 2011). 

Panasonic manufactured a hybrid cell, in 2014, that is a combination of a thin crystalline silicon 

wafer coated with amorphous silicon which gives better performance in low light situations and 

at high temperature with the highest conversion efficiency of 25.6%.  This was confirmed by 

the National Institute of Advanced Industrial Science and Technology (AIST) (Panasonic, 

2014; Evoenergy, 2015). 

2.16.2 Carbon Nanotube (CNT) cells 

Carbon nanotube cell is a cutting edge technology where a transparent conductor material 

made of CNT provides excellent current flow. CNT is manufactured by forming a hexagonal 

lattice carbon (Manna and Mahajan, 2007). It is believed that this type of cell technology can 

convert as much as 75% of light to electricity, (Meiller, 2013). In 2012, a Titanium Dioxide 

(TiO2) coated CNT silicon solar cell with efficiency up to 15% was delivered et.al. 2012). 

2.16.3 Dye Sensitized Solar Cells (DSSC) 

Due to the issues encountered with the manufacture of solar cells, namely their lack of 

efficiency, relatively high production costs and environmental issues with some of the materials 

utilised researchers have produced a new technology and material called Dye sensitized solar 

cells(Twidell and Weir, 1986).  Research into the sensitization of wide band gap semiconductor 

materials, such as Zinc Oxide (ZnO), by way of organic dyes for photoelectochemical (PEC) 

process was undertaken (Gerischer and Tributsch, 1968; Hauffe et.al. 1970). The first use of 

TiO2 in PEC process was reported by Deb et al.(1978), although these cells are still considered 

under early stage development.  École Polytechnique Fédérale De Lausanne (EPFL) scientists 

recorded 15% exceeding the power conversion efficiencies of conventional, amorphous 

silicon-based solar cells and they believe that this will create a new market place for DSSC 

solar cells (Ayre, 2013; Papageorgiou, 2013).  It is also surmised that this technology will be a 
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leading competitor over existing materials available in market for solar cells (Gratzel, 2003), 

however this is yet to be realised. 

2.16.4 Tandem cells / Multi Junction solar cell   

Another emerging technology is Tandem cells.  In this technology several cells of differing 

band gaps are stacked together so that the gap energy decreases from the top of the stack so 

that each cell converts the solar spectrum at its maximum efficiency. Overall this means that 

there will be an increase in the efficiency of a completely stacked cell. In this stacked, Tandem 

arrangement different thin film materials are used according to their individual band gaps  

(Goetzberger and Hoffman, 2005).  A review of the efficiency and status of multi junction solar 

cells was carried out by Yamaguchi et al. (2005; 2008).  In theory the efficiency of a single 

junction cell is around 31% (Shockley and Queisser, 1961), the stabilised efficiency is 9.3% 

for a single junction cell, 12.4% for  double junction cells and 13% for a triple junction cell 

(Guha, 2004).  Fuji Electric & Co and Phototronics (Japanese and German respectively) 

created a double junction cell of intrinsic layers of Hydrogenated amorphous silicon (a-Si:H) 

which had a stabilised cell efficiency (lab based)  of circa 8.5% and 5.5% efficiency for the 

commercially available modules on the market (Diefenbach, 2005).  An efficiency of 14.7% 

has been recorded by Yamamkoto et al. (2004) for intermediate Transparent Conducting 

Oxides (TCO) reflector layer for light trapping based on the stacked concept. Sharp, in 2013, 

heralded the highest recorded efficiency for a triple junction solar cell of 44.4% which was 

verified by the Fraunhofer Institute (Wesoff, 2013). 

 

This section has outlined the various types of solar PV module technology available on the 

market, it has covered new and emerging technologies along with the more traditional forms 

of the technology.  This has served to provide an overview in order to highlight the options 

available to installers.   

2.17 Conclusion 

Every year, global energy consumption is increasing (an expected rate of 28% between 2015 

and 2040 (International Energy Agency, 2017) and several different technologies are used to 

meet this increasing energy demand. One of the emerging technologies, solar PV is reviewed 

in this research. In the last decade it is clear that solar PV technology is rapidly growing and 

becoming a mainstream player within the power industry. Several countries are installing 

significant amounts of solar PV plants every year, which proves its importance. This 

progressive growth of PV was put in perspective with the development of renewable power 

sources in several countries in 2014. 
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The concepts which are explored in this chapter are, (a) leading countries - this section looked 

into the policies drivers for the lead countries, R&D activities and funding for the five leading 

countries China, USA, Japan, Germany and U.K. Based on this review it can be said that, PV 

is still a policy driven market and rest of the world should take into account the policies of the 

leading countries in order to participate in PV deployment. (b) PV electricity production - it has 

been shown that it is difficult to analyse the precise amount of PV electricity generated for an 

individual country. However, analysis has shown that 1% of global electricity demand will be 

fulfilled, by PV electricity, by the end of 2015. (c) PV cost analysis – for more than a decade, 

the PV materials price and BOS components system prices are decreasing. Consequently, the 

overall costs of a PV project has decreased to £0.32/W ($0.48/W).  

In conclusion, a look at all the major aspects covered in this chapter, it is difficult to define an 

exact global pattern. Though, it can be said that PV hasn't reached widespread development 

and deployment across the globe but is still driven by a few leading countries. PV technology 

has gained a significant amount of attention by policymakers in numerous countries and 

hence, plans for PV development have increased all over the world. However, this hasn't 

contributed drastically to an increase of the PV market with deployment up to 2014 was in less 

than 40 countries. Hence, all the concepts explored and covered in this chapter would be 

useful for the solar PV system installers, academicians and researchers.  This study can 

contribute knowledge transfer to inform decisions around installation of solar PV arrays at high 

latitudes.  The assumption that the bad weather in Scotland deems PV irrelevant will be 

challenged through the findings in this thesis. 
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2.18 Thesis Outline 

 

This thesis will follow the structure outlined below, the structure also represents the order in 

which various studies, experiments and theoretical research which has taken place throughout 

the process of carrying out this research. 

Chapter 2 covers the extensive literature review undertaken within this study which forms the 

basis of understanding current worldwide solar PV trends, module materials and types and 

how these can be implemented in modern solar PV farms at high latitudes. 

Chapter 3 explains, in detail, the cost of Scotland’s first solar meadow and attributed payback 

periods. This chapter will present how the accuracy and applicability of existing methods of 

solar resource modelling and solar photovoltaic (PV) module performance are investigated in 

the case of a ground array installation at Edinburgh College, Midlothian Campus, the principal 

derived quantities consisting of slope irradiation, cell temperature, and cell efficiency. 

Experimental data were obtained on site through both automated and manual measurements 

for comparison with the calculated quantities.  

Chapter 4 will investigate the importance of solar panel positioning in maximising energy 

delivery, especially at higher latitudes.  As solar altitude decreases obstacles and blockages 

become more of a hindrance and careful planning is required to ensure the amount of shading 

on the panel surface is kept to a minimum. This chapter looks at the impacts of shading on the 

Edinburgh College Solar Meadow from obstacles along the Southern and Eastern edges.   

Chapter 5 describes how this research has provided scope for further research in an array 

linked, but not directly, is around the pedagogical impact of having a resource, such as the 

solar farm studied, on the site of a college campus.  This study has provided a good example 

of a research approach that breaks away from the more traditional University based research 

work.  One of the real advantages of this particular work is the partnership between FE and 

HE institutions (Edinburgh College and Edinburgh Napier University in the case, and Industry 

(SSE). 

Chapter 6 provides conclusions to the study, contribution to knowledge and recommendations 

for further study within the solar farm at Edinburgh College.   It also outlines lessons learned 

which should be taken into account within further study. 
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Chapter 3 – Evaluation of Solar Modelling Techniques Edinburgh College – Midlothian 

campus, Scotland 

3.1 Chapter Summary 

This chapter shows, in detail, the cost of Scotland’s first solar meadow and attributed payback 

periods.  This information is pertinent to other PV projects, particularly those local to the college 

and further afield in Scotland.  It also lends relevant information to other Colleges looking to 

consolidate sustainability issues and further their environmental management in a low carbon 

economy.  As we will see the investment required and opportunities vary as much as panel 

efficiency itself and are heavily influenced by the country in which the project is based. 

This chapter will present how the accuracy and applicability of existing methods of solar 

resource modelling and solar photovoltaic (PV) module performance are investigated in the 

case of a ground array installation at Edinburgh College, Midlothian Campus, the principal 

derived quantities consisting of slope irradiation, cell temperature, and cell efficiency. 

Experimental data were obtained on site through both automated and manual measurements 

for comparison with the calculated quantities. Results indicate that the horizontal-to-slope 

conversion models used are extremely accurate, with a greater than 99% degree of confidence 

in the calculated results. Likewise, correlations between measured and calculated cell 

temperature were very high at up to 94%. Estimations of the cell efficiency and hence module 

output were less reliable however, with only one of the models used, for one of the days 

studied, giving reasonable results. Efficiency values were, however, in the correct range of 15-

20%.   

 

3.2 Introduction 

Solar energy has not traditionally been a focus of investment in Scotland, where the weather 

is generally considered to be unfavourable and the amount of solar irradiation low. However, 

a thriving domestic solar market and developing commercial market (examples given below) 

both indicate that this intuitive judgement may not match the reality. In fact, the average solar 

resource available in the south of Scotland is only 10% lower than that of middle-England 

(Rugg, 2012). When factoring in regional variation, some sites in Scotland are likely to be very 

favourable to solar development indeed. 

A critical factor in the swift uptake of solar generation in Scotland and the whole of the UK has 

certainly been governmental incentivisation, largely through the Renewables Obligation. 

The Renewables Obligation (RO) refers to an incentivisation mechanism which was introduced 

in 2009 and effectively penalises electricity suppliers for failing to source a percentage of their 



79 

 

energy from renewable sources (House of Commons, 2012). These percentage targets are 

met through the purchase of Renewable Obligation Certificates (ROCs) from certified 

renewable generators. At the end of an accounting year, any shortfall must be paid off into a 

buy-out fund, which is then divided amongst suppliers who met their targets. 

The purpose here is two-fold: suppliers are pressured to conform to government-set (and 

increasing) targets; and generators are afforded an extra source of income.  

 

The equivalent scheme for the small-scale (<50kW) and domestic market is the Feed In Tariff 

scheme (FIT), introduced in 2010. This is somewhat simpler than the ROCs, in that generators 

are paid directly for each unit of electricity they generate, and are offered a guaranteed price 

for any energy they would like to sell. The introduction of the FITs brought about massive 

uptake in solar systems in the UK, leading to greater production volumes, higher efficiencies 

and falling system prices   (Cherrington, et al., 2013). FIT rates were cut dramatically at the 

end of 2011, leading to a severe slump in the domestic market which is only just starting to 

recover. 

An important point to be noted in the recent changes in solar funding is that government 

incentives are becoming less critical.  Drops in incentives, coupled with dramatic decreases in 

module and system prices, are making the savings on electricity an increasingly important 

factor. Martin (2012) gives the case of a 5MW plant in Cornwall, which was built despite a 

massive reduction in incentives, simply because capital costs had fallen to the point that it was 

worth it even on the reduced incomes. 

A specific example of a successful implementation of medium-scale solar is the 15kWp façade-

mounted array at Edinburgh Napier University. This system, installed in 2005, produces 

approximately 8MWh of electrical energy each year, avoiding the use of 1.4 metric tons of 

carbon (Muneer, et al., 2006). All this with next to zero maintenance or upkeep requirements. 

Other systems successfully using the power of solar in Scotland include: 

A 150kWp, 792-module array installed on the Malcolm Allen House builders warehouse in 

Kintore, predicted to generate 114MWh per year (Solar Power Portal, 2012). 

A solar installation of 150kW of solar panels on the roof of the byre to reduce the company’s 

dependence on fossil fuels even further. All the solar energy produced is used on site to power 

the byre and the milking robots, replacing the dependency on power from the National grid 

produced by fossil fuels at Westerton Farm, Aberdeenshire  
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3.3 Summary of Analysis Process 
 
The research methodology is covered throughout the chapters within this thesis, however in 

summary the following steps were employed to collect data, understand and analyse: 

 
1. Experimental data was recorded on site over a set period. Data collected includes 

horizontal and slope irradiation, air and cell temperature, rate of heat loss from the 

module and module power output.   

2. The expected slope irradiation will be calculated from the recorded horizontal 

irradiation, and the results compared with those measured. 
 

3. The expected cell temperature will be calculated from the recorded solar irradiation and 

air temperature, and the results compared with those measured. 

4. The expected cell efficiency will be calculated from the recorded cell temperature, and 

the results compared with those derived from the module power output. 

 

 
By completion of the above steps, it is expected that the reliability of the chosen models can be 

verified in a real-world situation. 

 

3.3.1 Methodology 

 

This research will utilise quantitative data in order to analyse the feasibility of the facility.  Aliaga 

and Gunderson (2002) describe quantitative data collection in research studies as ‘Explaining 

phenomena by collecting numerical data that is analysed using mathematically based methods 

(in particular statistics)’.  This is a good explanation of this type of collection method and 

explains the purpose and methods of analysing quantitative data and this is the data collection 

technique that will predominantly be used.  There will be data collected from other sources, 

not just the meadow.  Met office data will be utilised to cross-reference the findings along with 

data collected from SSE used in their modelling process.  Other forms of data and data 

collection methods are to be neglected as they will have little use in this particular piece of 

research, however, future study into the impact of the array on the biodiversity of the solar 

farm will require other forms of data (such as qualitative) to analyse a full life cycle analysis..  

Given the nature of this research quantitative data will give in-depth detail that could be used 

in future research and provide its presentation with real relevance to the field of solar energy. 

The following section provides an overview of the methods, calculations and experimental data 

recording utilised in this study to provide practicable data and analysis to support the findings 

of this research.  
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3.3.2 Solar Geometry Calculations to be utilised in this research 
 
An analysis of the solar resource requires detailed knowledge of the movement of the sun 

across the sky, as the minute-by-minute position of the sun in the sky affects both the 

irradiation received on a plane, and the effect of any possible sources of shading. The sun’s 

position in the sky relative to an observer can be described by the use of two co-ordinates, 

the solar altitude (ys, or SOLALT) and azimuth (as, or SOLAZM). This position can then be 

related to the plane of a solar module as shown below (Figure 29). 

 

 
 
Figure 14 Solar Position Relative to a Plane, Source: Thomas Markvart in(Grassie, 2012) 

The data derived here is the angle between horizontal (0°) and the plane of the PV module 

and a vector drawn to the centre of the sun (INC). A smaller angle will give higher irradiation on 

the PV module’s surface and hence a higher electrical output. In addition, the reflectivity of a 

solar module’s glass cover increases significantly with a large angle of incidence (Muneer, 

et.al. 2000).  The sun’s absolute position is also important, as the higher in the sky the more 

solar irradiation hits the earth’s surface (on low cloud days). 

 
The solar altitude and azimuth can be calculated from the latitude (LAT) and longitude (LONG) 

of the chosen position, and the exact time (ie year (y), month (m), day (D), hour (h), 

minute (min), Second (s)). This time indicates the current equation of time (EOT), which relates 

clock time to solar time, and the solar declination (DEC), which indicates the ‘tilt’ of the earth 

(ie the angle between the earth-sun vector and the equatorial plane). 

 

These quantities are calculated using the following process. First, the time must be encoded 

in an appropriate way and the DEC and EOT derived. A quantity called the Greenwich Hour 

Angle (GHA) is also used. This is calculated by Yallop in the following way Equation 1. 
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Equation 1 - Yallop Solar Equations, Source: ((Muneer, 2004)) 

𝑡 =  

𝑈𝑇

24
+ 𝐷 + [30.6𝑚 + 0.5 + [365.25 (𝑦 − 1976)] − 8707.5

365.25
 

 

𝑊ℎ𝑒𝑟𝑒 𝑈𝑇 = ℎ +  
𝑚𝑖𝑛

60
+  

𝑠

3600
, 𝑜𝑡ℎ𝑒𝑟 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑎𝑠 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ 

 

𝐺 = 357.528 + 3599.05𝑡 
𝐶 = 1.915 sin 𝐺 + 0.020 sin 2𝐺 

𝐿 = 280460 + 36000.770𝑡 + 𝐶 
𝛼 = 𝐿 − 2.466 sin 2𝐿 + 0.053 sin 4𝐿 

𝐺𝐻𝐴 − 15𝑈𝑇 − 180 − 𝐶 + 𝐿 −  𝛼 
𝜀 = 23.4393 − 0.013𝑡 

𝐷𝐸𝐶 = 𝑡𝑎𝑛−1 ( 𝑡𝑎𝑛 𝜀 sin 𝛼) 
 

𝐸𝑂𝑇 =  
𝐿 − 𝐶 −  𝛼

15
 

 
Finally, SOLALT and SOLAZM may be calculated (equations Equation 2 and Equation 3): 
 

Equation 2 - Solar Altitude, Source: ((Muneer, 2004)) 

 

sin 𝑆𝑂𝐿𝐴𝐿𝑇 = sin 𝐿𝐴𝑇 sin 𝐷𝐸𝐶 − cos 𝐿𝐴𝑇 𝑐𝑙𝑠 𝐷𝐸𝐶 cos 𝐺𝐻𝐴 
 

Equation 3 - Solar Azimuth, Source: (Muneer, 2004) 

 

cos 𝑆𝑂𝐿𝐴𝑍𝑀 =  
cos 𝐷𝐸𝐶 (cos 𝐿𝐴𝑇 tan 𝐷𝐸𝐶 + sin 𝐿𝐴𝑇 cos 𝐺𝐻𝐴

cos 𝑆𝑂𝐿𝐴𝐿𝑇
 

 

Also, the apparent solar time (AST) (where the sun is at zenith at exactly 12 noon) can be 

calculated from these parameters and the position of the local standard meridian (LSM) shown 

in equation 4: 
Equation 4 - Apparent Solar time 

𝐴𝑆𝑇 = 𝑠𝑡𝑎𝑛𝑑 𝑡𝑖𝑚𝑒 (𝐿𝐶𝑇) +  𝐸𝑂𝑇 −
+  

𝐿𝑆𝑀 − 𝐿𝑂𝑁𝐺

15
 

As well as direct calculations, these equations can be used to produce a sun chart or sun 

diagram for the location in question, showing the path that the sun takes across the sky for 

different days in the year. The following sun chart was downloaded from the University of 

Oregon’s extremely helpful sun chart program (Figure 30): 
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Figure 15 Solstice Sun Chart for Dalkeith, Source: (UO Solar Radiation Monitoring Laboratory, 
2007) 

This contains much of the information required for a solar analysis, for example it can be seen 

that the sun rises at an (azimuth) angle of 40° from north (ie NE) on the summer solstice and 

that the day is only a little over 6 hours long on the winter solstice, with a maximum angle of 

elevation from horizontal of around 9.5°. The angle of incidence (INC) for a solar panel can 

then be derived from (Equation 5): 

 
Equation 5 - Angle of Inclination, Source: (Muneer, 2004) 

𝐼𝑁𝐶 =  𝑐𝑜𝑠−1 [cos 𝑆𝑂𝐿𝐴𝐿𝑇 cos(𝑆𝑂𝐿𝐴𝑍𝑀 − 𝑊𝐴𝑍) sin 𝑇𝐿𝑇 + cos 𝑇𝐿𝑇 sin 𝑆𝑂𝐿𝐴𝐿𝑇] 
 
Where W A Z  indicates  the  angle  of  orientation  of  the  panel  and TLT indicates  the  

angle  of inclination from horizontal.
 

 
 

3.3.3 Solar Data Recording 
 
Solar data measurements are often taken using pyranometers, global and diffuse values 

being recorded separately. ‘Global irradiation’ indicates the total solar energy density received 

by a collector, while ‘diffuse irradiation’ only consist of the light coming from the sky, not 

directly from the sun. From QUARSC (2012), “…this device essentially measures the 

difference in temperature between a perfect absorber and perfect reflector, the difference in 

temperature is proportional to the solar radiation.” Recording diffuse irradiation is 

accomplished with the same device as for global, but with a ‘shade ring’ attached. This covers 

the arc that the sun will take across the sky, so preventing beam irradiation arriving at the 
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receiver (a mobile sun-tracking disc may be used instead). The ring requires weekly 

recalibration. Pyranometer examples are shown in figure 31 below (Note: diffuse measurements 

were not taken as part of this research.) 

 

 
 
Figure 16 Diffuse, and Global (with N,S,E,W detectors) Pyranometers, Source: (Muneer, 2012) 

 

There are many possible sources of error associated with solar data recording.  Problems 

with correct sensor setup, the position of the shade ring as mentioned, and defects in the 

equipment (such as a non-uniform glass dome) can all cause errors. The most likely cause 

for this is the offset caused by the sensor re-radiating to the sky (as the sky is cold and 

the sensor, being an operating piece of electronic equipment, is relatively warm). 

 
According to UO Solar Radiation Monitoring Laboratory (2007), this error occurs due to the 

sensor using variations in temperature to record irradiation. Radiating to the sky introduces 

an error here of up to 20W/m2, and should be corrected for. Inadequate or inexact correction 

could well produce negative values of irradiation. They experimented with a Schenk 

pyranometer, which removes this particular error source. 

 

 

Muneer (2004) includes an exhaustive list of sources of error (Table 10 over): 
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Table 10 Sources of Error in Solar Recording, adapted from (Muneer, 2004) 

 

3.3.4 Effects of Shading on String Output 
 
The primary effect of any shading on a PV module or string of PV modules is apparent: a 

proportion of the available solar energy will be blocked from the PV module by the obstruction 

causing shade, and so will not be translated into electrical output. However, there is a 

secondary, and perhaps more problematic, effect caused by shading which is the increase in 

resistance of the shaded cells. 

 
Since all cells in a series string carry the same current, the shaded cells still have a high 

current flowing through them despite only generating a small photon current themselves. 

According to Ramabadran & Mathur (2009), this causes reverse-biasing in the affected cells, 

turning them into loads rather than sources of power. They performed a software analysis, 

showing that a high degree of power will be dissipated in module cells when only a few of the 

module total are shaded (Figure 32). As well as power loss, this can cause damage to the 

cells. 

 

Figure 17 Power Dissipation as a function of shaded cells, Source: (Ramabadran, R; Mathur, 
2009) 
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Deline, et al. (2012)compare two cases, that of a regular string inverter and the use of 

‘micro- inverters’ (effectively, having an inverter per module, avoiding any serial connection 

shading issues). They show that for ‘light shading’, performance is increased by 4% when 

using micro-inverters; 8% for ‘moderate shading’ and 12-13% for ‘heavy shading’. This 

increase indicates the approximate additional losses associated with using a string inverter, 

and should correspond roughly to a case such as Dalkeith. An additional complication is 

highlighted, in that each individual module is often supplied with bypass diodes which ‘turn off’ 

a portion of their cells to avoid shading losses and damage (for example, if there is severe 

shading on one cell, of a 60-cell module, with bypass diodes the result would indicated 20 cells 

may be bypassed, reducing the output by a third). 

 

3.3.5 Data Presentation 

 

The data will be presented through tables, charts and calculations.  The information from the 

quantitative research will be coded to allow for charts to be produced which will give a pictorial 

representation of the findings.  This highlights any themes or differences more clearly, and is 

visual proof to any interpretations made. The data will be presented in a simple form to allow 

for deductions to be made and clearly shown.  The charts back up the findings from the tables 

in a simpler, graphical manner to allow for triangulation and consistency in the resulting 

findings. Tools, such as NVIVO, will be used to determine correlations and trends through 

analysis.  This research will mainly utilise quantitative collection techniques due to the nature 

of the data, some quantitative data will be harnessed, however the research offers a solid 

foundation of data collected from the source which will be used comparatively against other 

projects currently underway in the UK.  Data will be collected on shading analysis techniques, 

irradiance calculations, cell temperature, cell efficiency, modelling and will be presented 

against comparative analysis of current solar ventures around the UK.  This is covered at 

length in chapters 3 and 4. 

 

3.3.6 Horizontal to Slope Irradiation Conversion 
 
Clarke et. al. (2008) proposed a more accurate set of relationships to complete an important 

step in determining the slope irradiation. As directly measuring the diffuse irradiation is difficult, 

requiring calibrated shading rings, it is advantageous to be able to work from the global 

horizontal irradiation value only. In fact, only 9 out of 93 UK Met Office stations record diffuse 

irradiation (Clarke et al., 2008). The diffuse value must be calculated, and this is achieved by 

utilising a polynomial regression relationship between the ‘beam clearness index’ and the 
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‘diffuse ratio’. (Clarke et al., 2008) produced a set of equations, to use for the Edinburgh area, 

in particular: one yearly, 4 seasonal and 12 monthly average. 

 
From a number of attempts, they determine that a cubic equation with limits is the best to use, 

and that while the monthly regressions give better accuracy for some months, the advantage 

over the use of seasonal regressions is marginal. The increase in accuracy over previous 

methods shown indicates that these equations would be a reliable basis to work from in 

the current project. 

 

3.3.7 Thermal Model for Cell Temperature 
 
Mattei, et. al. (2006) investigate the use of a thermal model of a solar cell to determine the 

cell temperature, as opposed to using a simple equation with only solar irradiation as an input. 

In an experimentally-verified process, they show that by modelling the mechanisms of heat 

gain and loss from a cell, more accurate predictions of the cell temperature can be made. Some 

important points made are: 

 
 There are a large range of coefficients in the model, such as that for convective heat 

transfer, which need to be selected and, if possible, optimised. 

 Wind speed has a strong effect on model output. High-resolution wind data is required 

to get the best results from this type of thermal model. 

 Radiative heat transfer is neglected (this is included in the model used by Aldali, et.al, 
2011), Aldali et al. 2013) 

 
 
 

3.3.8 Alternative Thermal Model 
 
Lobera & Valkealahti (2013) have produced a much more complex thermal model for predicting 

cell temperature, which is a little beyond the scope of this investigation. An important feature 

of their work is that they take into account the thermal mass of the PV cell, and incorporate 

the rate of change of cell temperature with respect to time into the energy balance equation. 

In addition, they incorporate the radiative heat transfer, providing an alternative model for how 

to do this.  This more complex model produces good quality predictions of the cell temperature, 

but requires a larger range of input variables than the Mattei, et.al. (2006) model, some difficult 

to ascertain, such as the module heat capacity. Again, Lobera & Valkealahti (2013) highlight 

high-resolution irradiation and wind data as important in implementing the model. 

 

This section has summarised the main renewable technologies available and given some 

context around the Solar Meadow installation at Edinburgh College. It has covered the main 

research question, aims and objectives, briefly summarised the analysis process and 
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methodologies utilised within the research, presented expected outcomes and how the data 

will be presented.  It also covers existing literature in brief and presents previous works of note 

within this research. 

3.4 Edinburgh College Solar Meadow Technology 

3.4.1 Purpose and Investors  

The solar plant at Dalkeith, which is the focus of this research, is a joint project between 

Edinburgh College and Scottish & Southern Energy, who installed and maintain the site. The 

plant was commissioned and built for a number of different purposes, not only to take 

advantage of the aforementioned Renewables Obligation Certificate programme. In addition, 

the site constitutes an important source of carbon-free energy. For the college, there is also 

the opportunity to use it as a research and learning environment, where students can get 

hands-on experience with modern renewable technology. The site will also be made dual-

purpose by planting wild meadow-grasses and encouraging the growth of local wildlife. An 

area of wetland, and a bank of beehives on the site will further exploit the potential ecological 

benefit to the area.  

 

3.5 The Solar Meadow Farm 

The solar plant at Edinburgh College, Midlothian Campus, South East Scotland, (Figure 14) is 

a £1.2M, equal-partnership project between Edinburgh College and Scottish & Southern 

Electricity (SSE) Energy Solutions, who installed and maintain the site. Located in Dalkeith, to 

the south-east of Edinburgh, the plant was commissioned and built for a number of different 

purposes: to produce carbon-free, renewable energy, to generate an extra revenue stream for 

the college and to make good use of previously waste land. For the college, there is also the 

opportunity to use it as a research and learning environment, where students can get hands-

on experience with modern renewable technology. The site has now been made dual-purpose 

by planting wild meadow-grasses and encouraging the growth of local wildlife, making this 

plant Scotland’s first solar meadow. An area of wetland, and a bank of beehives on the site 

will further expand the potential ecological benefit to the area. 

 

 

 

 

 

Figure 18 Midlothian Solar Meadow Farm 
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The 627.5kWp installation, as shown in Figure 15, comprises 2,560 solar panels each rated at 

245W, 32 P Aurora power one trio-20.0-TL inverters 20kW inverters and attendant cabling, 

framing and housing. In fact, over 11km of cable was laid out to connect the AC and DC sides 

of the system, while almost 1,000 ground screws were planted to support the module 

mountings. In one year, the site is predicted to produce 568MWh of electrical energy, enough 

energy to power 170 homes. Feeding directly into the National Grid, this energy will offset 

conventional electricity production to save approximately 293,000 kg of CO2 per year. 

 

Figure 19 Site Plan of the Meadow 

The photovoltaic modules used for the plant are CSUN245-60P series modules.  The 

polycrystalline modules have a nominal power output of 245W, with an overall module 

efficiency of 16.78%. Modules are connected in series strings of 20 modules each, with 4 

parallel strings per inverter. Power-One Aurora Trio inverters are used, with a maximum power 

input of 20kW each a nominal efficiency of 98%.  The modules are mounted on framing 

orientated due south, with an inclination of 30° degrees. 

 



90 

 

While the site has now been completed, and in fact started producing on the 28/03/2013, 

contractual details have only recently been finalised.  This proved problematic for the 

completion of this project, and for the College in general, as the site and data access were not 

always available. 

 

There were a number of issues to overcome in the first year of operation.  Initially 6 out of the 

32 inverters were not available for the parallel connection, thus preventing maximum yields for 

the first 2 months of operation.  This limiting effect culminated in the inverters only being able 

to operate at 12kW instead of the 20kW expected, i.e. these inverters were only operating at 

60% of their maximum input power.  A problem with transformer balancing and variable 

phasing problems caused the substation to trip out on the Solar Meadow side.  This has meant 

that a total of 4-5 weeks generation have been lost.  Both of these factors have contributed to 

the shortfall in production during year 1 of operation.  By May 2014, 440MWh of power had 

been generated against a projected SAP projection of 431MWh which included reduction due 

to shading.  Subsequently further works have been carried out to install fans and heatsinks to 

all the inverters to increase heat dissipation. In addition the transformer taps have been 

changed on the national grid side to lower the operating level to a point where phase shifts 

and grid fluctuations will have less impact at peak times. 

 

3.6 Specifics of Location and Site  

 

The plant was constructed adjacent to Edinburgh College Midlothian Campus, just south of 

the village of Eskbank in the Dalkeith area. The map over (Figure 16) shows the undeveloped 

site as a satellite image from Google Maps. The solar site roughly corresponds to the green 

area bounded by a road to the right, while the college is just out of frame to the north. 
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Figure 20 Google Maps Satellite Image of Site 

The area to the left of the image has been developed into parking for the new Eskbank railway 

station, and so site access between the two projects had to be coordinated carefully.  
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Figure 21 Initial Site Layout and Design, Source: (Archial, 2013) 

Figure 17 shows the initial site design and photovoltaic (PV) module layout, modules aligned 

to south, following the shape of the field, with spaces in between the rows of modules to allow 

for access and to avoid any self-shading between rows. As part of the planning requirement a 

raised embankment was stipulated in order to isolate the site from the surrounding area. Apart 

from the modules themselves, and the plant room to house the transformers and electrical 

board, the site is due to contain:  

 A classroom (top-left), allowing students access to live data from the site.  

 A demonstration/experimentation area (at the north end) where students can set up 

their own modules and framing, and experiment with factors such as orientation and 

inclination of the panels.  

 A pond/wetlands area at the south of the site, to collect water from drainage and to 

encourage wildlife.  
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 A set of beehives, likewise set up at the south end of the site.  

 A range of meadow grasses and wild plants, to be seeded over the whole site.  

 Some trees, to be planted around the site. These will be planted on the far side of the 

embankment, and are assumed not to cause any shading issues.  

 

A computer-generated image, based on the above design, is shown below in Figure 18. 

 

 

Figure 22 Computer-Generated Image of Completed Site, Source: (SSE, 2013) 

A number of photos of the site were taken during an initial inspection for the purposes of this 

project: 
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Figure 23 View from SW of Site towards College 

This photo (Figure 19) shows a view across the site towards the college in the background. 

The plant room can just be seen to the left of the picture. Also visible is the module 

configuration: aligned in portrait, two modules one above the other. The framing raises the 

modules roughly a meter above the ground at the lowest end, at an angle of 30°. The ground 

is still bare, sandy earth at this point, but will be seeded as mentioned above. 

 

Figure 24 View from W of site (front of panels) 
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Another view across the site Figure 20 Here the earth wall on the east side (which is 

considered in the shading analysis) is shown more clearly, also the east-side side stand of 

trees can be seen along the horizon. 

 

 

Figure 25 View from W of Site (back of panels) 

Figure 21, showing the rear side of the modules and framing, the locations of inverters 

mounted on the framing of the rows of modules can be seen. 
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Figure 26 -View from NE, showing Classroom and Plant Room 

In Figure 22, the site entrance is from the right while the plant room (completed) and space for 

the classroom are centre-frame. The walls of the classroom area are constructed from tire 

bales, cutting costs and environmental impact. 

 

Figure 27 View from NE across Site 
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Figure 23 shows the whole site, looking towards the south-west line of trees. These are 

significant as they will have a shading effect on the solar modules, particularly on those at the 

south end of the site. 

 

Figure 28 Inverter and AC Distribution Box Setup 

Figure 24 shows a closer view of two inverters and one of the distribution boxes, which collects 

the inverter outputs before transmission to the plant room. The wiring along the back of the 

modules is also visible.  



98 

 

 

Figure 29 Front View of Inverter and Detail of Display Screen 

The inverters used are Power One Aurora Trio inverters (Figure 25). The display screen shows 

(among other data) the power output, at this time registering 12.1kW for this inverter. 

 

Figure 30 View along Central Trench 

The inverters are located along a central trench dug for the power cables (Figure 26). There 

are 32 inverters on the site, which are fed into the distribution boxes and then to the plant room 

for input into the college or the grid. 

3.7 Plant Specifications  

The 2,560 photovoltaic modules used for the plant are all CSUN 245-60P modules produced 

by China Sunergy. Polycrystalline, they have a nominal power output of 245W each at a cell 
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efficiency of 16.78%, and consist of 60 photovoltaic cells per module. The module datasheet 

is included in Appendix B: Datasheets, containing all the relevant technical specifications.  

As mentioned, the inverters are Power One Aurora Trio inverters, with a maximum power input 

of 20kW each and nominal efficiency of 98% (datasheets reproduced in Appendix B). These 

each have 2 maximum power point tracking inputs, which ensure that the power conversion 

efficiency of the system is as high as possible regardless of the amount of solar irradiation. 

 

Figure 31 Site String Plan, Source:  (Archial, 2013) 

In the above plan (Figure 27), the string configuration is shown, with the modules that are 

connected to each inverter highlighted in different colours. This is important as it allows 

expected inverter outputs to be determined, and also the approximate power output per 

module if the inverter output is known. It can be confirmed from this plan that each of the 32 

inverters is fed by an equal number of modules (80). These each consist of 4 strings of 20 

modules each, pairs connected in parallel into each MPP input of the inverter (this was 

confirmed through inspection of the site). Another factor to note is that module groups are often 

split across rows, requiring extra cable runs (and hence greater wiring losses). The ‘y’-shaped 

shaded area indicates the main trenches for cabling, connecting the inverters and distribution 

boxes through to the plant room. 
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Figure 32 Solar Module Mounting Initial Design, Source: (SSE, 2013). 

Figure 28 shows the initial plans for the module framing. This was not the design ultimately 

used, as it was decided to raise the modules a height of 1m off the ground, however is included 

as many of the important features remain the same. As shown clearly in Figure 18, the modules 

are mounted in portrait (ie. with the short side horizontal) with two modules per vertical section. 

Two points of connection run along the back of each panel, where they are bolted to the 

framing. At an angle of inclination of 30° from horizontal, the top of the rear panel is 

approximately 1.75m higher than the bottom of the front panel.  

The system cost for the entire project was quoted by SSE at £879,356, while the annual 

generation figure given was 568,611kWh (see Appendix D: SSE System Documents).  The 

payback period for this installation is expected to be 9.3 years with a life expectancy of 25 

years of operation.  The average income is anticipated to be circa £90,000 with an overall 

income and saving of £1,730,434 across a 25 year period.  This equates to a profit of nearly 

£1 million over the lifetime of the installation (Appendix J has full cost recovery). 

This chapter has discussed the ongoing and emerging PV materials and efficiency – where it 

was found that mono crystalline modules have the highest efficiency of 22.5% and other 

emerging materials like CNT are still under lab R&D and will take some time to become 

commercially viable. Overall, the common concepts of R&D for all materials is to increase 

efficiency, develop new methods of manufacturing and cost optimisation. 
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This chapter has outlined the number of different modules materials currently on the market, 

the main manufacturers and countries of origin.  It has covered the associated efficiencies 

dependant on material selection and has given plant specifications for the Solar Meadow on 

which this research is based.   It has also given the expected costs and savings anticipated 

across the lifetime of the array.  These forecasts will be tested in the following chapters to 

ascertain whether the expectations will be met. 

3.8 Shading Analysis 

The two main sources of shading on site are stands of trees along the south-west and east 

sides of the site (see Figure 22). The east trees are further away, across the road, and so 

have a lesser effect but the south-west trees could significantly affect the output of modules 

at the south end of the site, particularly in the winter when the sun is much lower in the sky. 

There is also a 3m high earth wall or ‘bund’ surrounding the site, as mentioned previously 

as part of the planning consent. 

 
5 points were considered as part of the shading analysis, toward the south and east limits of 

the site (see Figure 33). The goal of the shading assessment was to obtain an accurate 

shading sun chart for each which would allow the severity of shading to be determined. It 

should be noted that SSE, in their site survey and generation forecast, assumed zero 

shading on the site (see SSE shading analysis, Appendix D: SSE System Documents). 

Any significant shading will impact significantly on this forecast. 

 

 

 

                                                                                                          
 
 
 
 
 
 

                                                                               
 
 
 

                                                                           
 
 
 
 
 
 
 
 
 
 
 
Figure 33 Shading Reference Points, Adapted from (SSE, 2013) 
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These 5 points of interest were selected due to their proximity to the main identified 

obstacles, the trees and/or surrounding 3m bund. 

3.8.1 Site Survey and Triangulation 
 
A visit was made to the site with the surveying technician from Edinburgh Napier University in 

order to survey the site accurately.. The pictured surveying instrument (a theodolite) was used 

to make the necessary measurements (Figure 34). 

 

 
 
Figure 34 Theodolite 

First, a baseline was set up for each line of trees (as Figure 35). The theodolite required to 

be positioned accurately at a known point (A or B) and levelled accurately. 0° was set when 

sighting along the baseline, then the angle between this and a known point on the treeline 

(T1 or T2) could be measured (the instrument also gave the vertical angle from horizontal). 

 

                                           T2 T1 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                    A baseline B 
 
 
Figure 35 Determination of Tree Distance and Height (Angles/Lengths not to Scale) 

Points A and B are the two ends of the original baseline, 1.6m above which the surveying 

instrument was placed to take the measurements. T1 and T2 indicate the tops of two trees 



103 

 

on the SW treeline, which were chosen to be distinct, allowing them to be found from different 

locations. 

 
The distances to, and heights of, the trees chosen were then determined through triangulation 

for each point separately (explanation follows). 

 
 
 

                                                                         b 
 
 

                                                    A C 
 
 
 
 

                                                   c a 
 

                                                                        B 
 
Figure 36 Triangulation 

 
Figure 36 shows three arbitrary points, in an x-y (horizontal) plane. 

 
Equation 6 - Sin Rule 

𝐴

sin 𝑎
=  

𝐵

sin 𝑏
=  

𝐶

sin 𝑐
 

 
By rearranging Equation 6 once two angles and one side of a triangle (Figure 36) have been 

measured, all the other properties of the triangle may be calculated. Furthermore, if one point 

of the triangle (for example that at the top) were raised vertically (ie, in the z-direction), this 

would then form a right-angled triangle with the ground, allowing the height to be found from 

(Equation7):  

Equation 7 - Height Determination 

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑡𝑎𝑛(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑔𝑙𝑒) 

 

Where the ‘horizontal distance’ is that seen on the original triangle, figure 36. 
 
This process was performed using the solar plant site plan as shown below (Figure 37) (base-

line at top-right) with the angles measured on site, and repeated for the east-side line of trees: 
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Figure 37 Tree Line Triangulation, detail from (SSE, 2013) 

 

3.8.2 Shading Charts 
 
From each of the 5 shading reference points indicated (Figure 33), measurements were taken 

at a range of angles of orientation (0-360°), and the distances to and heights of any obstacles 

(trees or surrounding bund) were recorded, in order to work out the horizon line elevation 

angle. The results are shown in section 3.13, Experimental Results. 
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3.9 Experimental Setup 
 
 

3.9.1 Position on Site 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38 Location of Experimental Setup, Adapted from (Archial, 2013) 

In Figure 38 above, the location of the experimental setup is indicated by the red circle. The 

module on which sensors were placed is part of the group of modules shown in blue, and was 

connected to ‘Inverter 15’. Pyranometers were installed adjacent to this module, in a gap 

between modules (see figure 39). 

 
 

3.9.2 Sensor Specifications 
 
The experimental setup consisted of the following: 
 

 4 Hukseflux HPF01 heat flux sensors mounted on the back panel of one of the PV 

modules. These were used to determine the rate of heat transfer between the module 

and its surroundings. Calibration was performed by the manufacturer, certification is 

shown in appendix B 

 4 K-type thermocouples. Two of these were mounted similarly to the heat flux sensors 

to determine cell temperature, while two were twisted together and attached to the 

module framing to record air temperature. 

 3 K i p p  &  K o z e n  C M 1 1  solar pyranometers. These were mounted on tripods, 

one above the modules, facing directly upwards to record the horizontal solar 
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irradiation, and two in the plane of the modules to record the slope irradiation 

(Specification available in appendix B). 

 2 Grant 2020 series ‘Squirrel’ data-loggers, which the sensors were wired into and 

which recorded periodic averaged values of the sensor outputs.  Specifications for 

these data-loggers is shown in appendix B. 

 
Setup and calibration of the thermocouples and data-loggers, and equipment setup on site 

was performed by the author with technician support from Edinburgh Napier University. 

 

Calibration certificates for the heat flux sensors and pyranometers can be seen in Appendix 

B: Datasheets as the calibration was carried out by the manufacturer. 

 
 

3.9.3 Pyranometer Setup 
 
 
 
 
                                                                                              p1 
 
 
 
 
 
 
                                                                                                                 p3                                                                                               

                                                                                                    p2  

 
 
 
 
 
 
 
 
 
 
 
Figure 39 Pyranometer Setup (Front and Back) 

 
Here (Figure 39) can be seen the 3 pyranometers set up for the experiment. The meter for 

measuring horizontal irradiation, designated ‘p1’, can be clearly seen at the top of the right-

hand photograph. The two meters for measuring the slope irradiation, designated ‘p2’ and 

‘p3’, are situated lower, in the plane of the solar modules. When these photos were taken, 

the covers (like that visible in Figure 43) had not yet been applied. 

 
Figure 40 & Figure 41 below show the positioning of the sensors in greater detail. The close 

proximity of p1 and p2 will be returned to in section 3.13, Experimental Results. 
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Figure 40 Detail of Horizontal and Upper Slope Pyranometers (p1 & p2) 

 
 

Figure 41 Detail of Lower Slope Pyranometer (p3) 

 

The following two figures (Figure 42 & Figure 43) show the alignment of the slope 

pyranometers in the plane of the solar module. While not perfect, the angle of inclination is 

considered to be as good as reasonably achievable with purely visual inspection. 
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Figure 42 Alignment of Upper Slope Pyranometer (without cover) 

 

 
 

Figure 43 Alignment of Lower Slope Pyranometer (with cover) 
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3.9.4 Flux Sensor and Thermocouple Setup 
 
 
 
 

                                                                                                                t1 
 
 
 
 
                                                                                         flux1 
 
 
 
 
 
                                                                                       flux2 

 
            flux3 
 
 
 
 
 
 
 
 
 
flux4 t2 

 
 
 

                                                          t3 & t4 

 

 
 
Figure 44 Placement of Flux & Temperature Sensors 

The photos in Figure 44 show the overall placement of the flux sensors and thermocouples 

on the back of the solar module. (The solarometers are located just to the left of shot.) The four 

flux sensors were affixed at symmetrical locations, two cells out from the centre of the module, 

while the two thermocouples were located near the top and bottom centre. Flux sensors are 

designated ‘flux1’ to ‘flux4’, thermocouples ‘t1’ to ‘t4’. 

 

 
 

Figure 45 Detail of Thermocouple
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The thermocouples were simply affixed with electrical tape (Figure 45), one piece to cover the 

end pair completely, and one to support the wire. 

 

 
 

Figure 46 Detail of Flux Sensor 

The flux sensors were more difficult to affix, as they required a good contact with the module 

back cover across the whole of their top surface, and at the same time no obstruction or 

covering of the bottom surface to allow efficient heat transfer. A thermally-conducting glue 

would have been the perfect solution, however damage to the module itself had to be 

avoided and ease of removal ensured. The sensors fixed firmly in place as shown in Figure 

46. A small amount of oil was applied to the top surface prior to this to increase the heat 

transmission between panel and sensor.  In future study heastsink compound will be utilised 

to improve heat transfer as opposed to oil.  This will provide better clarity in data collection 

and more reliable data analysis.
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3.9.5 Data-Loggers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 Data-Logger Housing 

 

 
The data-loggers were kept in this metal storage box (Figure 46), bound to the solar panel 

framing using only cable ties to avoid any damage. A hole was drilled in the bottom of the box to 

allow the sensor wires to enter. The holes through the back of the container were sealed to 

ensure no water could enter. 

 
Grant 2020 series ‘Squirrel’ data-loggers were used, and are pictured over (Figure 48). 

Technical information is supplied in Appendix B: Datasheets. 
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Figure 48 Data-Loggers, Source: (Grant Instruments, 2011) 

As one logger was insufficient for the number of sensors used, two of this same type were 

used in tandem, one for the flux sensors and the other for the thermocouples and 

pyranometers. Data was extracted periodically from the loggers by a college based technician 

assisting on the project. This was carried out using the ‘SquirrelView’ software supplied with 

the loggers (Grant Instruments, 2013) and collected manually, due to WiFi signal strength 

issues, on a weekly basis.  

 
 
 
 

3.10 Experimental Measurements at Solar Meadow Farm 
 

Experimental data was collected at the site to fulfil two goals. Firstly to obtain detailed, specific 

data on the day-to-day operation of the plant, and secondly to assess the accuracy of solar 

models used to predict such values as in-plane (or slope) irradiation, PV module cell 

temperature, and cell efficiency. 

The experimental setup consisted of the following: 

 heat flux sensors mounted directly on the back panel of one of the PV modules. These 

were used to determine the rate of heat transfer between the module and its 

surrounding air. 
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 K-type thermocouples. Two of these were mounted in a similar way to the heat flux 

sensors to determine cell temperature, while another two were used to record air 

temperature under shade. 

 solar pyranometers. These were mounted on tripods: one above the modules facing 

directly upwards to record the horizontal solar irradiation, and two in the plane of the 

modules (with equal inclination and orientation) to record the slope irradiation. 

 Two data-loggers, which the sensors were wired into and which recorded 5-minute 

periodic averaged values of the sensor outputs. 

The sensors were positioned around the solar modules as shown in Figures 49 & 50. 

 

Figure 49 Position of Pyranometers 
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Figure 50 Position of Flux Sensors 

 

Data from each of the temperature, flux and irradiation sensors was logged using two Grant 

2020 series ‘Squirrel’ data-loggers, taking measurements every 5 minutes throughout the day. 

These data points constituted the average value (temperature, irradiation or heat flux) 

registered over the 5-minute period, forming the basis for the calculation process. 

The final data values required were the power output of the solar module being measured. 

Unfortunately, no method of automated logging of module output was available, and a 

compromise had to be made. Manual readings from the string inverter corresponding to the 

chosen PV module were taken, 9am, 12 noon and 4pm, over the course of three days. The 

module output was simply estimated as a fraction (1/80) of the input power to the inverter; as 

per technical specifications.  In future study it is suggested that time lapse cameras are setup 

up as required to better capture accurate data sets. 
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3.11 Calculation Process 

The comparison of measured and calculated variables was completed according to Figure 51. 

 

Figure 51 Calculation Flow Chart 

This being a linear calculation process, each stage relying on the previous, any errors or 

inaccuracies picked up would be propagated through the calculations, making an accurate, 

independent assessment of each stage difficult. For this reason, calculations were based on 

measured data along with previous-stage calculated values. 

3.11.1 Slope Irradiation 

As indicated in Figure 51, the principal input variables to determine the slope irradiation (once 

the position of the slope has been decided) are the horizontal irradiation and the time of day 

(and date), which allow the position of the sun in the sky to be calculated. As data readings 

were taken over 5 minute time intervals, not at an exact time, it was decided to follow the 

approach used by (Clarke, 2007) and take the mid-point of the time period as the data point, 

i.e. 2.5 minutes before the logged time.  

As used by Muneer (2004) Figure 52 demonstrates how time/date and irradiation data was 

used with solar geometry equations to calculate slope irradiation. 
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Figure 52 Solar Geometry and Slope Irradiation 

The final important factor to be determined was the diffuse irradiation component, i.e the solar 

energy emitted across the whole hemisphere of the sky rather than directly from the sun. This 

was achieved through use of separate models for relating the relationship between the global 

clearness index 𝑘𝑡 = 𝐼𝐺/𝐼𝐸, and the horizontal diffuse to global ratio 𝑘 = 𝐼𝐷/𝐼𝐺. (Where 𝐼𝐺 is the 

global irradiation, 𝐼𝐸 is the extra-terrestrial irradiation and 𝐼𝐷 the diffuse). 

This relationship allows us to calculate the diffuse irradiation, rather than directly measure it, 

which is a critical step towards determining the slope irradiation. 

Three different equations (8, 9, and 10) were selected to generate a range of results, one from 

Muneer et al. (2000), the others from Clarke et al.(Clarke, 2007). They are shown below with 

coefficients selected for Edinburgh: 

Equation 8 - Clarke Seasonal (Summer) Calculation, Source (Clarke et.al. 2007) 

𝑘 = 0.8721 + 1.7619𝑘𝑡 − 6.2135𝑘𝑡
2 + 3.9467𝑘𝑡

3
, 0.25 ≤ 𝑘𝑡 ≤ 0.8𝑓𝑜𝑟 𝑘𝑡 > 0.8 

Equation 9 - Clarke June Calculation, Source: (Clarke et al., 2007) 

𝑘 = 0.8798 + 1.7195𝑘𝑡 − 6.1193𝑘𝑡
2 + 3.8769𝑘𝑡

3
, 0.2 ≤ 𝑘𝑡 ≤ 0.85 

Equation 10 - Muneer Calculation, Source: Software Program Calc4-08 in (Muneer et.al, 
2000)   

𝑘 = 1.006 − 0.317𝑘𝑡 + 3.1241𝑘𝑡
2 − 12.7616𝑘𝑡

3 + 9.7166𝑘𝑡
4
 

Once both the diffuse and global (total) horizontal irradiation are known, it becomes possible, 

for a given collector inclination and orientation, to calculate the global slope irradiation 
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(generally referred to as the slope irradiation). This method is adapted directly from the 

Windows in Buildings (Muneer et. al. 2000) software. Three quantities are calculated 

separately for the plane of the collector: 

 beam irradiation 

 diffuse irradiation 

 ground-reflected irradiation 

Beam irradiation depends on the global and diffuse horizontal irradiation, the Sun’s angle of 

incidence on the centre of a solar panel (SOLINC) and the Sun’s Altitude as seen in the sky 

above a solar panel (SOLALT).  It is set to zero if either SOLALT is less than 7°, or SOLINC is 

greater than 90°. In other words, if the sun is not in ‘view’ of the collector. Otherwise, the beam 

component is given by (equation 11): 

Equation 11 - Beam Component of Slope Irradiation, Source: Software Program Calc4-08 in 
(Muneer, Tariq; N, Abodahab; G, Weir; J, 2000) 

𝐵𝑒𝑎𝑚𝑠𝑙𝑜𝑝𝑒 = 𝐵𝑒𝑎𝑚ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

cos 𝑆𝑂𝐿𝐼𝑁𝐶

sin 𝑆𝑂𝐿𝐴𝐿𝑇
 

Diffuse slope irradiation is more complex to determine, as in the model proposed by 

Muneer(2004), the sky is not considered isotropic.  This method has been shown to give better 

results for diffuse irradiation (Muneer, 2004).   Complete algorithmic details for the calculation 

of the above mentioned slope irradiation and computations are provided in the latter reference.  

The final value used for the slope irradiation during the given time period is simply the sum of 

the beam, diffuse and ground-reflected components. 

3.11.2 Cell Temperature 

The cell temperature, similarly to the slope irradiation, was estimated through the use of three 

different models. The Nominal Operating Cell Temperature (NOCT) model is based on the 

behaviour of a solar module under certain test conditions, and utilises a simple calculation 

relating the solar irradiation to the temperature (equation 12): 

Equation 12 - NOCT Cell Temperature Calculation 

𝑇𝑐 = 𝑇𝑎 +
𝐺𝑠𝑙𝑜𝑝𝑒

𝐺𝑛𝑜𝑐𝑡
(𝑇𝑐,𝑛𝑜𝑐𝑡 − 𝑇𝑎,𝑛𝑜𝑐𝑡) (1 −

𝜂𝑠𝑡𝑐

𝜏𝛼
) 

Where: 𝑇𝑐 is the cell temperature, 𝑇𝑎 is the air temperature, 𝐺𝑠𝑙𝑜𝑝𝑒 is the global slope irradiation, 

𝐺𝑛𝑜𝑐𝑡 equals 800W/m2, 𝑇𝑐,𝑛𝑜𝑐𝑡 and 𝑇𝑎,𝑛𝑜𝑐𝑡 are the cell and air temperatures at NOCT, 𝜂𝑠𝑡𝑐 

indicates the cell efficiency at STC (standard test conditions) and 𝜏𝛼 is related to the 

transmissivity-absorptivity of the module to solar irradiation. 
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The HOMER software model alters equation 12 to include a linearly variable, rather than static 

cell efficiency (equation 13). 

Equation 13 - HOMER Cell Temperature, Source: (HOMER Energy, 2013) 

𝑇𝑐 =
𝑇𝑎 + (𝑇𝑐,𝑛𝑜𝑐𝑡 − 𝑇𝑎,𝑛𝑜𝑐𝑡)

𝐺𝑠𝑙𝑜𝑝𝑒

𝐺𝑛𝑜𝑐𝑡
[1 −

𝑛𝑠𝑡𝑐(1−𝛼𝑝𝑇𝑐,𝑠𝑡𝑐)

𝜏𝛼
]

1 + (𝑇𝑐,𝑛𝑜𝑐𝑡 − 𝑇𝑎,𝑛𝑜𝑐𝑡)
𝐺𝑠𝑙𝑜𝑝𝑒

𝐺𝑛𝑜𝑐𝑡

𝛼𝑝𝑛𝑠𝑡𝑐

𝜏𝛼

 

 

In the third case, a thermal model was implemented based on the method proposed in (Aldali 

et.al. 2013). This avoids the assumption of the previous methods: that the module’s thermal 

parameters will not change under different circumstances such as air temperature or 

irradiation. 

 

Figure 53 Heat Transmission from a Solar Module, Source: (Aldali et.al. 2013) 

In Figure 53, it can be seen that there are three main mechanisms for thermal energy transfer 

from the cell (or module) to its surroundings. These correspond to convective losses to the air 

on both sides of the cell, and radiative losses to the sky (radiative losses to the ground are 

much smaller, and are neglected). 

The convective losses are a function of the temperature difference between cell and air 

(equation 14): 

Equation 14 - Convective Loss 

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑜𝑠𝑠 = 2ℎ𝑐𝑎(𝑇𝑐 − 𝑇𝑎) 

The radiative losses likewise, but to the sky (equation 15): 

 

Equation 15 - Radiative Loss 

Radiative Loss = hcs(Tc − Tsky) 
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In which 𝑇𝑠𝑘𝑦, the effective sky temperature, and ℎ𝑐𝑎 and ℎ𝑐𝑠 can be determined from equations 

16, 17 and 18: 

Equation 16 - Effective Sky Temperature, Source: (Aldali, Y; Celik, A.N; Muneer, 2013) 

𝑇𝑠𝑘𝑦 = 0.0552𝑇𝑎
1.5 

Equation 17 - Air Heat Transfer Coefficient, Source: (Aldali, Y; Celik, A.N; Muneer, 2013) 

ℎ𝑐𝑎 = 5.67 + 3.8𝑣 

Equation 18 - Sky Heat Transfer Coefficient, Source: (Aldali, Y; Celik, A.N; Muneer, 2013) 

ℎ𝑐𝑠 =
𝜎𝜀𝑐(𝑇𝑐

4 − 𝑇𝑠𝑘𝑦
4)

𝑇𝑐 − 𝑇𝑠𝑘𝑦
 

The cell temperature value is found by combining the energy losses with the heating effect 

from the sun (equation 19): 

Equation 19 - Thermal Model Cell Temperature 

𝑇𝑐 =
𝐼𝑠𝑙𝑜𝑝𝑒𝜏𝛼(1 − 𝜂𝑐𝑒𝑙𝑙) + ℎ𝑐𝑠𝑇𝑠𝑘𝑦 + 2ℎ𝑐𝑎𝑇𝑎

ℎ𝑐𝑠 + 2ℎ𝑐𝑎
 

Where: 𝐼𝑠𝑙𝑜𝑝𝑒 is the incident irradiation. The value for 𝑇𝑐 is derived iteratively as 𝑇𝑐 affects the 

heat transfer coefficients ℎ𝑐𝑠 and ℎ𝑐𝑎. 

3.11.3 Cell Efficiency 

While the other variables could be measured fairly directly, the cell efficiency had to be 

estimated from the measured data (using equation 20). 

Equation 20 - Cell Efficiency from Output 

𝐶𝑒𝑙𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑃𝑚𝑜𝑑𝑢𝑙𝑒
𝑁𝑜. 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠⁄

𝑆𝑜𝑙𝑎𝑟 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝐴𝑟𝑒𝑎
 

𝑃𝑚𝑜𝑑𝑢𝑙𝑒 was derived from the manually-recorded inverter power readings at each time interval. 

This was done in two ways to get the best possible result: first of all as an average of a set of 

instant power readings taken around the sample time, and secondly from the change in total 

inverter energy reading over the time period, divided by the sample time. Each reading had its 

own advantages. In general, the instant readings were highly variable, whereas the averaged 

readings were adversely affected by the low resolution of the energy counter (nearest 0.1kWh). 

 

Equation 21 - Cell Efficiency 

𝜂𝑐𝑒𝑙𝑙 = 𝜂𝑠𝑡𝑐[1 + 𝛼𝑝(𝑇𝑐 − 𝑇𝑐,𝑠𝑡𝑐)] 
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3.12 Results & Discussion 

3.12.1 Slope Irradiation 

The measurement of slope irradiation was relatively simple and reliable, as the use of a 

manufacturer calibrated pyranometer (see appendix B for calibration certificate) aligned to 

match the slope and orientation of the solar module in question gave accurate readings with 

which to check the calculated values against. More complex was the method used for 

calculating the slope irradiation from only the horizontal global irradiation, requiring a number 

of different steps and intermediate quantities; regardless it was expected that the calculation 

accuracy would be relatively high, as has been demonstrated in the papers presenting the 

methods used (Aldali et. al. 2013) (Clarke, 2007) . 

 

The three models for determining the clearness index and hence the slope irradiation gave 

similar results, the best of which is shown in Figure 54, derived from the Clarke Summer model 

(Clarke at.al. 2007) 

 

 

Figure 54 Slope Irradiation Results 

 

It can be seen that Figure 54 shows an excellent, almost entirely linear, correlation for the site 

studied.  

While all three methods show a high degree of accuracy, as expected the calculations 

optimised for the given location give slightly better results. Table 11 makes a direct comparison 
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in terms of the same quantities highlighted in Figure 54: gradient, y-axis intercept and 

regression coefficient, R2, between the computed and measured quantities. 

Table 11 Slope Irradiation Model Results 

 

 

 

The difference between using the seasonal and monthly models follows the assessment in 

Clarke et al.(Clarke, 2007), namely that the increased complexity of using monthly coefficients 

(as in the June model) in a project gives a low return in increased accuracy (in this case, little 

to none). 

3.12.2 Cell Temperature 

 

As detailed in Section 3.13.2, the cell temperature was modelled in three ways; the simple but 

widely-used NOCT or nominal operating cell temperature model, the slightly more complex 

one used in the HOMER software, and finally the full thermal model. It was expected that each 

would give successively better results when compared with the cell temperature directly 

measured from the back of the PV module, with the thermal model being significantly more 

accurate than the other two due to its consideration of a greater number of factors. Figure 55 

shows the output of the thermal model only across the full time range of the experiment, while 

Table 12 compares the outputs of the three models. 
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Figure 55 Cell Temperature Results 

 

Table 12 Cell Temperature Model Comparison 

 

 

These results clearly show the relatively high reliability of the simple NOCT method. 

Comparing the three methods, we can see the reliability (or R2 value) of every method is 

around 94%. A larger difference can be seen in the gradient, which indicates the average 

percentage error if we utilise the given method of calculation. Here, the thermal model gives 
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the best results, corresponding to only a 1.5% degree of error compared to 6.6% for the NOCT 

model and 11.3% for the HOMER model. 

It is proposed that with the inclusion of reliable and high-resolution wind data, the thermal 

model could be optimised to give even better results than it has done, particularly at higher 

temperatures when the measured value starts to vary further from that calculated.  This 

requires further study and with the college undertaking wind measurements on site through a 

meteorological test station being set up, a prime opportunity to further this work. 

3.12.3 Cell Efficiency 

The cell efficiency differed from the other two quantities since it is not a directly-measured 

quantity. Efficiency is derived from the power in to and useful power out from a system, in this 

case solar irradiation and electrical power. Since automatic logging of electrical power was not 

possible as part of the experiment and manual measurements had to suffice, two problems 

arose: which method of determining the average power value for the time period to use (as 

described in Section 3.13.2) and assuring accuracy in the timing of measurements. Thus only 

a very limited set of data, recorded manually, could be used for evaluating the efficiency model 

and results for equation 21 are presented in figure 56. 

 

 

Figure 56 - Clear-Day Efficiency and Cloudy day efficiency 
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As can be seen in Figure 56, a good correlation is seen over the course of a clear day. 

The range over which the measured cell efficiency varied was within the correct range, and 

had a close concordance to the computed values, as shown in Figure 57.  An average 

efficiency value of close to 16% is observed.  

 

 

 

Figure 57 - Cell Efficiency: measured and computed values (note y-axis is the frequency count) 

 

3.13 Experimental Results 
 
 

3.13.1 Overview 
 
 
This section presents the numerical data obtained from the experiment. Solar irradiation and 

flux readings were recorded via the data-logger as voltage levels, and so needed to be 

converted into meaningful units by use of the sensor sensitivities given in the calibration 

documents (Appendix B: Datasheets). The thermocouples used for recording air and cell 

temperature were already calibrated with the data-logger, and so did not require any further 

conversion. All times displayed are local civil time (LCT), not GMT or solar time, and as 

mentioned previously (section 3.13.2) each datum represents an average of the value over 

the previous time period. This was initially set at 10 minutes for the 28th through to the 30th, 

however was changed to 5 minutes for the remainder of the experiment to allow for greater 

detail in the data. 
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Graphs are largely produced by the software developed in excel (see section 3.17) and, due 

to limitations discussed, formatting is incomplete. Units are given in the figure captions, other 

information in the accompanying text. Any blank areas in the graphs correspond to missing 

data, most often due to the downtime caused by data from the data-loggers being 

downloaded mid- experiment.  More detailed research should be undertaken here to aquire 

more accurate data, with the sign off of contract between SSE and Edinburgh College taking 

place in July 2018 accurate data analysis can now be undertaken through the data sharing 

protocol now in place. 

 
 

3.13.2 Sensor Readings 
 
 
Shown below and over (tables Table 13 and Table 14), are examples of the output direct from 

the data- loggers. (These can be seen in greater detail in Appendix A: Data Tables.) The 

two data-loggers’ clocks were off by about 30s; for simplicity’s sake the time from the second 

logger (which recorded both irradiation and temperature) was used. This inconsistency is small 

in comparison to the 5 or 10 minute period over which the data has been averaged.  Clock 2 

was checked against atomic clock on first activation (accurate), Inaccuracy is 19% of the 

sample time this introduced a small error, however quantities are generally slow-changing, 

Change in alignment is 1.5% of the sample time this was deemed small for this initial study. 

 

Table 13 Data Logger Output  
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Table 14 Table of Results Extract 

 

Table 14 shows an example of the tabulated results used to produce the graphs in this section, 

and is derived directly from Table 13. The time (here at 5-min intervals) can be seen on the 

left, while the data values for each time period can be seen in the table itself. The decoded 

values, in W/m2, were obtained from the following formula: 

Equation 22 - Data Conversion 

𝐷𝑎𝑡𝑎 𝑉𝑎𝑙𝑢𝑒 [𝑊 𝑚2⁄ ] =  
𝐷𝑎𝑡𝑎 𝑉𝑎𝑙𝑢𝑒 [𝑉]−

+

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 [𝑉 𝑊⁄ /𝑚2]
 

 
Equation 22 is used to represent heat leaving the solar module as an absolute value. 

 

3.13.2.1 Solar Irradiation Data Readings 
 
Here, reference will be made to the three solarometers (or pyranometers) as ‘p1’, ‘p2’ and 

‘p3’. These were the designations used in the data-logger and excel workbook so will be kept 

for consistency. ‘p1’ refers to the horizontal irradiation sensor, while ‘p2’ and ‘p3’ refer to the 

sensors in the plane of the solar module. In the plots below, these are represented by green, 

blue and red- orange lines. 
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Figure 58 - Example Slope Irradiation Measurements (29th May) (W/m²) 

Figure 58 shows an example of a typical, mixed-cloud day. Only p2 and p3, the slope 

irradiations, are shown. It can be seen that the sensor values correspond extremely closely; 

this largely holds true across the days when both sensors were active. Once it was ascertained 

the slope irradiation readings were accurate, the experiment was completed using one slope 

solarometer only. 

 
 
 
 
 

 
 
 
 
Figure 59 - Slope Irradiation Shading (30th May) (W/m²) 
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A problem was identified in the setup of p2 and figure 59 (colours as previous), shows the 

issue by noting the high irradiation due to a sunny afternoon, it can be seen that the output 

of sensor p2 drops significantly at around 6pm. This is due to the poor relative positioning of 

sensors p1 and p2 (see Figure 46 in section 3.9.4) where not enough distance was allowed to 

avoid shading. The effect is not visible on cloudy days, only clear high-irradiation days, but 

as p3 did not have any similar shading issues the experimental results are not adversely 

affected by this error. The blank section around 2pm corresponds to the data-loggers being 

read and reset, as mentioned previously. 

 
Once data had been recorded for a clear, sunny day, it became apparent that the remaining 

slope irradiation sensor had been poorly oriented towards south (see Figure 60). 

 

 
 
 

Figure 60 - p3 Misalignment (4th June) (W/m²) 

Unfortunately, when setting up the sensors care was taken to ensure the correct inclination, 

that the sensor was closely aligned with the plane of the solar module, however a mistake 

was made with the sensor orientation. While variations in intensity between the horizontal and 

slope sensors align well, indicating there was no error in data handling, the peaks of each 

graph occur at different times: horizontal at 13:15 and slope at 13:35. This 20 minute 

inconsistency is caused by the slope sensor facing a few degrees towards the west (a simple 

calculation of 360/72 returns 5°). 

 
While the error is immediately apparent from viewing this graph, the same thing cannot be 

said of the other days recorded, with mixed or heavy cloud. The error will be present 

throughout the recorded data, but is not likely to be significant as there were few clear-sky 

periods within the test period.  However, in further study more care needs to be taken to 

ensure that test equipment is set up with better correlation to remove the potential for error.  

This assumption is borne out by the high correlations between calculated and recorded slope 
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irradiation (seen in section 3.11), and also the good match between sensor p2 and p3 outputs 

as reported previously.  However, further tests should be undertaken to verify this assumption. 

 

 
 
 
 
 
Figure 60 Slope and Horizontal Measurements (6th June) (W/m²) 

Figure 60 shows both p1 (horizontal), green, and p3 (slope), orange, readings for a single 

day. A number of characteristics may be observed and meet expectations. With heavy cloud, 

horizontal and slope readings are very similar, with horizontal even a little higher. This is due 

to the low levels of beam irradiation rendering the angle of incidence between the sun vector 

and a normal to the collector plane less important, while p1 picks up slightly more diffuse 

irradiation, being exposed to the whole hemisphere of the sky. 

 
During sunny periods, p2 gives significantly higher readings for much of the day, as it is facing 

more directly into the sun. This is, in fact, the main reason for positioning solar modules on a 

tilt. In the evening, this advantage decreases until p1 is actually picking up slightly more beam 

irradiation in the hour or so before sunset (when the sun is slightly to the north). 

 
There were no possible sources of shading on the horizontal detector and no inconsistencies 

observed in the recorded data. It is inferred that the horizontal irradiation readings are 

accurate. 

 

3.13.2.2 Air and Cell Temperature Readings 
 
The temperature readings were made using thermocouple sensors calibrated in the lab 

(see section 3.12).   
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The thermocouples were then denoted as ‘t1’, ‘t2’, ‘t3’ and ‘t4’, the first two sensors indicate 

those measuring the cell temperature from the back panel of the solar module, the second two 

giving air temperature. The graph shown, in figure 61, corresponds to the same day as 

previously shown for irradiation readings (Figure 61). 

 
 
 

Figure 61 - Thermocouple Temperature Readings (6th June) (°C) 

Here, t1 is shown in purple (with dashes), t2 is shown in orange, t3 is shown in blue and t4 in 

green. Comparing figures 60 and 561 shows a close correlation between the cell temperature 

and level of solar irradiation measured. The air temperature, meanwhile, shows a much 

smoother curve, increasing in temperature throughout the day and peaking in the late 

afternoon. This corresponds to expectations. There is a slight variability between t1 and t2, 

as these are placed at different locations on the panel; t3 and t4 were intertwined and rarely 

differ by even as much as 0.2°C.   

 

A few erroneous readings were recorded during the following day (see figure 62), most likely 

down to poor connection of the termocouples themselves. 
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Figure 62 – Erroneous readings in t3 (3rd June) (°C) 

Curiously, sensor t3 gave some single readings of over 200°C for this day. It is not known 

why these values were recorded, however an electrical connection or software issue is likely 

to be the fault as no physical change in the sensor could cause such a fast temperature 

change. This magnitude of error was observed on this day only, and on no other. Discounting 

these few error readings, the remainder of the data from sensor t3 is judged to be reliable. 

 
 
 
 

3.13.2.3 Heat Flux Readings 
 
The heat flux sensors were denoted ‘flux1’, ‘flux2’, ‘flux3’ and ‘flux4’ and are represented 

by dark orange, grey, orange and blue respectively. 

 

 
 
 
 
 
Figure 63 - Example Heat Flux Readings (1st June) (W/m²) 
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The example day shown in Figure 63 displays most of the characteristics observed across the 

range of recorded days. Clearly, only two of the sensors are responding correctly. Flux2 and 

flux4 centre around a value of 100W/m2, even into the night, whereas flux1 and flux3 follow the 

expected trend of high heat loss during the day (relating well to cell temperature) and even 

slightly negative heat loss at night, where the panel becomes cooler than the surrounding air. 

No reason to explain the roughly consistent, yet incorrect, operation of flux2 and flux4 has 

been found, and so these results are excluded from further analysis. A problem likely existed 

with the sensors themselves, or with the connection to or operation of the data-logger. 

 
Sensor ‘flux4’ was replaced part-way through the experiment it was judged the instantaneous 

readings were unreliable. No significant change was seen in the final results, however, which 

reinforces the hypothesis that there was a problem with the data-logger. The graph below 

(Figure 64) shows the 30th May, when the change was made: 

 
 
 

 

Figure 64 - Change of Sensor Flux4 (30th May) (W/m2) 

 

3.14 Manual Readings 
 
 

3.14.1 Inverter Power Output 
 
Unfortunately, it was not possible to arrange access to automatically logged power output data 

from either the inverter in question, or the system as a whole. This was a major setback in 

the implementation of the project, and not only required alternative solutions to be found, but 

limited the applicability and accuracy of the results of the experiment. Only three days of 

manual readings were taken, and the whole-system power output could only be inferred. The 
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College and SEE have now agreed on contract specifics and access to inverter data is now 

available.  This will allow for analysis of 6 years’ worth of inverter data, further study is required 

in this area. 

 
As the power output of the module being measured was a critical data value, it was decided 

to go on-site and take the appropriate readings directly from the display screen of the inverter 

that the module was connected to. This was done for three consecutive days, the 3rd, 4th 

and 5th of June. Readings were taken every 5 minutes to correspond with the data-logger 

period, however there was no way to ascertain the exact sampling time, so there is a small 

inconsistency between the manual reading times and the data-logger times. This will introduce 

a source of error in later results using output power. 

 

 

 

Table 15  Extract of Manual Inverter Power Readings (4th June) (Accuracy of displayed value) 

 
 
 
 

 

 

In Table 15, clock time (LCT) is shown on the left; this was checked and synchronised each 

day to the atomic clock website. Three instantaneous power readings were taken from the 

inverter fed by the module being measured (inverter 15), one 10s before the time shown, one 

during and one 10s after. Following this, the remaining values were taken consecutively, as 
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quickly as possible. These correspond to the total energy produced by the inverter so far that 

day, the voltage and current levels, and lastly the power and energy levels from an adjacent 

inverter (inverter 16), for comparison. Voltage and current values were only recorded for the 

whole of the first day, and were not used in later calculation. 

 
There is a degree of inaccuracy in the reading time shown. For a subset of the data, 6.8%, 

the actual reading time was up to 90 seconds after the time shown. This was due to mistakes 

made during the manual readings, predominantly lapses in concentration, and introduces 

a further (although not severe) source of error into the results.  Better use of technology, such 

as a time lapse cameras, is proposed for use in further study to avoid inaccuracies and the 

potential for cumulative errors occurring. 

 

 

 
 
 

Figure 65 - Inverter 16 Power Readings (4th June) 

Figure 65 plots the three power values recorded for inverter 15 for the same day as the 

tabulated data. They correspond extremely well due to the slow change in inverter output, 

and are so likely very close to the correct value of power output. 
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Figure 66 - Inverter 16 Power Readings (5th June) 

Figure 66, on the other hand, shows results from the 5
th, a much cloudier day. Here, due to 

the high variability in power output, the power readings differ significantly even over the 20 

second reading period. 

 
The power value to be carried on from this data was determined in two ways: as the average 

of the three power readings, and as the difference in total energy from the previous sample 

over the time period of 5 minutes (see section 3.17.1). 

 

3.14.2 Inverter kWh output   

Further data collection was undertaken to review kWh production per inverter.  Due to the lack 

of available data direct from inverter, manual collection was undertaken. On a daily basis, 

readings were collected from the 32 inverters each morning and evening. This gave or daily 

energy production per inverter per day. This data was collected over a period of 3 months, 

November through January. Figures 67 and 68 have been produced for November and 

January due to more data collected (an outage in December meant limited data was secured).  
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Figure 67 daily energy production chart for the month of November 

 

As can be seen from figure x, a variation in production across the inverters can be viewed. 

On better days, the best and worst producing inverters can be out by a factor of 2. This is a 

sizeable variation, which is supports the argument of their being significant shading affecting 

the meadow. 

On days where the energy production values are lower (such as day 18), the range across 

inverters is much lower. The difference between best and worst inverters was 2 kWh, a 

difference from the 25 kWh seen in the better days at the start of the November. 
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Figure 68 daily energy production chart for the month of January 

January provided lower production figures over the course of the month than November, 

though this is much as expected, due to occurring just after the shortest day of the year, and 

the sun being lower in the sky for longer periods of the day.  

Similarly to November, the variation over the course of the day across January is a small range 

between inverters.  

Through the data collected from both months, we can see there is a difference between the 

inverters at the front of the meadow (numbers 1-6) and those at the rear side of the meadow 

(28-32).  This supportive finding of the assumptions made by SSE, that the sight will have little 

impact from shading, led to further study as outlined in chapter 4. 

 

 

 

3.14.2 Overall System Output 
 
In addition to individual inverter readings, at the start and end of each day the total energy 

produced by each inverter was recorded, in order to get a better picture of the whole system 

performance. Recording the data took around 5 minutes from start to finish (sometimes 

longer) as the site is relatively large and so the timing was manually recorded as data was 

collected.  Table 16 shows the kWh readings from each inverter across the entire site (1-32).   
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Table 16 Daily Inverter Totals (condensed) 

 
 
 
The second line of Table 16 shows the order in which readings were taken, starting from 

inverter 1, or from inverter 32. While there is some variation to be seen, the data is mostly 

consistent across the site (taking the time difference into account). It is judged that by 

extrapolating the data of inverter 15 to the whole site will give a reasonable approximation to 

its performance. 

 
However, significant differences can be seen in the afternoon outputs of inverters 27-32 only. 

These are situated at the south end of the site, and so it was initially hypothesised that there 

could be some shading issues with these strings. This was quickly abandoned as shading 

should be a factor in the morning, not in the afternoon when the sun is high, and would be 

unlikely to cause such a large drop in system output across the day unless it was severe. 

 
The second cause considered was that these inverters were fed by smaller numbers of 

panels, contrary to the site string plan. Consistent morning values would have to be 

explained away by assuming these strings over-performed during this period for some 

reason, rendering this explanation unsatisfactory. 
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Alternatively, 1 out of the 4 strings connected to each of these inverters could have been 

faulty (outputs can be seen to have dropped by roughly a quarter). The fact that only afternoon 

levels showed a differentiation and that this was almost non-existent on the first (cloudy) day 

pointed to a problem which only manifested at high outputs/temperatures. A wiring problem, 

perhaps cable overloading at high power outputs, was considered as a cause. 

 
Finally, in a meeting with Scottish and Southern Energy on the 2nd of July, it was found that 

this problem had been identified by them and they were working to fix it. The inverters in 

question had been supplied with the wrong type of cable ends, limiting their power output to 

12.5kW, rather than the full 20kW of the remaining inverters. This explains the inconsistencies 

observed in the data. 

 

3.15 Derived Quantities 
 
 
A large number of quantities were derived in a range of ways from the sensor and manual 

data, coupled with solar calculations based on the date, year and time of day. In deriving 

certain quantities an element of potential inaccuracy is introduced in to the results.  Had 

explicit data been available directly from the source, the accuracy of the data have been 

improved.  This will warrant future data collection once agreement and contracts have been 

signed between the College and SSE.  The data sharing protocol and contract were agreed 

in late 2018 and further data analysis should now be undertaken in through further study.  

Some of the principal results are related here.   

 

3.15.1 Module Power Output 
 
Two methods were used to determine the module power output, a value required to determine 

the cell efficiency. Module output was assumed to be equal to 1/80 of the inverter output. This 

approximation neglects losses between the modules and the inverter, and the inverter 

efficiency. 

 
A comparison between inverter power determined from instantaneous readings (highly 

variable on cloudy days) and energy readings (low decimal accuracy) follows (Figure 69). The 

derivation of these values is explained in section 3.14, and in more detail in section 3.15. 

Instantaneous readings are shown in dark orange, averaged readings in light. 
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Figure 69 Inverter 15 Output, Instant vs. Averaged (4th June) (kW) 

From the smoothness of the graph, and a visual correlation with the irradiation levels (shown 

in Figure 60), it can be inferred that the instantaneous power readings are relatively good. This 

is to be expected, as the main problem with this method is that power output can change 

dramatically from second to second, does not apply on clear-sky days. 

 
The averaged readings, on the other hand, show significant fluctuation around the ‘correct’ 

value. This fluctuation is caused by two factors: the low resolution of the energy data (0.1kWh) 

and the inaccuracy in time of measurement. 

 
Figure 70 shows the same data, but with instantaneous power plotted against averaged 

power. Again, the low resolution of the averaged-power value can be clearly seen with the 

fluctuation apparent in figure 70, this is a result of the energy data resolution and the 

inaccuracy in the time measurement. The correlation between results is poor. 

 
 
Figure 70 Instant vs Averaged Inverter Power Output (4th June) 

This situation is not exactly reversed, but is quite different on the other days measured, when 

there was significant cloud cover and highly variable irradiation levels. 
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Figure 71 - Inverter 15 Output, Instant vs. Averaged (3rd June) (kW) 

It can be said that on a cloudy day, both methods are comparable (Figure 71). The actual 

average value of power output over the time period in question is unlikely to correspond 

well with the instantaneous power reading due to the high variability. However, the averaged 

value still exhibits the low quantisation and fluctuation problems highlighted earlier. This 

creates a problem for quantifying an accurate cell efficiency for use later in the project. The 

instant vs average chart, similar to that shown previously, for the 3rd of June is shown below 

(Figure 72). 

 

 
 
Figure 72 - Instant vs Averaged Inverter Power Output (3rd June)
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3.15.2 Energy Balance 
 
As covered earlier, the energy balance of the solar module could be used to determine the 

expected cell output, and cell efficiency. However, the problems encountered with the heat 

flux sensors and their resultant data streams (see section 3.13.2) made it unlikely that 

this approach would give good quality results. 

 
This assumption is borne out in the following comparison of results (Figures 73, 74 & 75). 

The cell efficiency calculated from the heat flux readings is plotted in grey. 

 

 
 
Figure 73 -Time Series of 5 Different Measures of Cell Efficiency (3rd June) 

 

 
Figure 74 - Time Series of 5 Different Measures of Cell Efficiency (4th June) 
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Figure 75 - Time Series of 5 Different Measures of Cell Efficiency (5th June) 

It can be concluded that the flux measurements taken, or the method used for interpreting 

them, are insufficient to produce a reasonable estimate of either the energy output of a cell, 

or the relative cell efficiency. The calculation method was re-checked to ensure the error 

did not lie within this method, the same results were identified.  Improvement is required 

to the way the heat flux readings have been collected to improve the dataset in future. 

3.15.3 Measuring Correlation 

To determine the accuracy of any type of calculation against measured data, a consistent 

and reliable method of quantifying this correlation is required. As used by Aldali et al. (2013), 

Clarke et al. (2007) and Mattei, et al. (2006), a linear equation and measure of R2 (the 

coefficient of determination) was obtained, the line in this case being produced by Excel’s 

built-in graph-plotting software. While the line equation indicates the difference in absolute 

terms between the measured and calculated values (a gradient of 1 and zero offset shows 

a perfect match), the R2 value indicates how dependent one value is on the other (a value 

of 1 indicating maximum dependence, or correlation). 

3.15.4 The Slope Irradiation 

The measurement of slope irradiation was relatively simple and reliable, as the use of a 

professionally calibrated pyranometer aligned to match the slope and orientation of the solar 

module in question should have given an accurate reading with which to check the 

calculated values against. However, as explained in section 3.11.1, the method of 

calculating the slope irradiation from only the horizontal global irradiation is not so simple, 

and requires a number of different steps and intermediate quantities. Regardless, it was 
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expected that the calculation accuracy would be relatively high, as has been demonstrated 

in the papers presenting the methods used (Aldali, et al., 2013) (Clarke, et al., 2007). 

 

3.15.5 Results 

The correlation of the best calculated value (using a seasonal equation) against the 

measured is shown below (Figure 76). 

 

 

 

Figure 76 Summer Model vs. Measured Irradiation (W/m²) 

It can be seen that figure 76 shows an excellent, almost entirely linear, correlation for the 

site studied, beyond even the high accuracy expected. This is even more surprising when 

considering the small sources of error in slope irradiation data collection as discussed 

previously (section 3.13.2). The small impact on accuracy due to the misalignment is 

attributed to the fact already proposed, the short duration of entirely clear weather during 

the period of the experiment. While this is purely speculative, the misalignment error could 

be the cause of the slight hysteresis visible on the plot. 
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3.15.6 Model Comparison 

Three alternative methods, two proposed by Clarke et al. (2007) and one by Muneer et al. 

(2000) as discussed previously, were also used to obtain similar results. A comparison of 

the four model outputs is shown below (Table 17). 

Table 17 Model Correlations with Measured Irradiation 

 

 

 

 

While all four methods show a high degree of accuracy, as expected the calculations 

optimised for the given location give slightly better results. The difference between using 

the seasonal and monthly models follows the assessment in Clarke et al. (2007), namely 

that the increased complexity of using monthly coefficients (as in the June model) in a 

project gives a low return in increased accuracy (in this case, little to none). 

 

3.15.7 The Cell Temperature 

The cell temperature was again calculated using a range of methods (as detailed in section 

3.11.2), the simple but widely-used NOCT or nominal operating cell temperature model, the 

slightly more complex one used in the HOMER software, and finally the full thermal model. 

It was expected that each would give successively better results, with the thermal model 

being significantly more accurate than the other two due to the consideration of a greater 

number of factors. Graphs and tabulated results are shown below (figures 77 to 80), and 

Table 18). As before, ‘Period 1’ refers to the first two days, while ‘Period 2’ refers to the 

remainder of the data recording period. Only one example of period 1 data is given, the 

larger sample size of period 2 should give clearer results. 
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Figure 77 Measured vs. NOCT-Calculated Cell Temperature during Period 1 (°C) 

 

Figure 78 Measured vs. NOCT-Calculated Cell Temperature during Period 2 (°C) 
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Figure 79 Measured vs. Homer-Calculated Cell Temperature during Period 2 (°C) 

 

Figure 80 Measured vs. Thermal-Model-Calculated Cell Temperature during Period 2 (°C) 
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Table 18 Comparison of Temperature Correlations 

 

These results clearly show the reliability of the simple NOCT method. Focusing on the 

period 2 results, as these are based on a much larger set of data points, we can see the 

reliability (or R2 value) of every method is around 94%, with the HOMER software 

calculation performing very slightly better than the others. A larger difference can be seen 

in the gradient, which indicates the average percentage error if we utilise the given method 

of calculation. Here, the thermal model gives the best results, corresponding to only a 1.5% 

degree of error compared to 6.6% for the NOCT model and 11.3% for the HOMER model. 

It is proposed that with the inclusion of reliable and high-resolution wind data, the thermal 

model could be optimised to give even better results than it has done, particularly at higher 

temperatures when the measured value starts to vary considerably from that calculated. 

 

3.15.8 The Cell Efficiency 

A problem encountered with correctly assessing the accuracy of methods of cell efficiency 

estimation was determining a reliable ‘measured’ value to test the models against. As 

opposed to the slope irradiation and cell temperature, which could be measured directly by 

sensors and so a fairly high degree of confidence could be held in the results, a value for 

the cell efficiency had to be derived from other variables, reducing confidence in the results. 

In this section, ‘estimated’ efficiencies refer to those derived from power readings, while 

‘calculated’ efficiencies refer to those derived from temperature readings. 
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3.15.9 Daily Variability 

Section 3.15 showed the time series data for the cell efficiency. First it should be noted that, 

despite a degree of error, the cell efficiency across each data series is approximately 

consistent, generally lying in the range 12-18%. Below (Figure 81), the same data is 

represented as a correlation between the value calculated from the measured cell 

temperature, and that from either the averaged power, or instantaneous power (see section 

3.15). 

 

 Figure 81 Correlations between Pavg (left) and Pinstant (right) Cell Efficiency against Cell 
Temperature Cell Efficiencies for 3rd June 

This indicates a very low degree of certainty in the calculated value. While a trend line can 

be drawn, the results merely show a cluster of points within the range 8-20%, with little 

indication of any linear relationship. It is proposed that this very low degree of certainty is 

due in part to the low range of values represented in the data, coupled with the high degree 

of variability over time and correspondent uncertainty. These results would be clearer if the 

behaviour of the module could be tested over a much wider temperature and efficiency 

range. 

The results are similar for the 5th of June, however the 4th shows quite different results 

(Figure 82). 

 

Figure 82 Correlations between Pavg (left) and Pinstant (right) Cell Efficiency against Cell 
Temperature Cell Efficiencies for 4th June 
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As discussed previously (section 3.15), the values of Pinstant for the 4th of June can be 

assumed to be more accurate than any of the other power readings, and much less sensitive 

to the exact time. Under these conditions only, a good and reliable result is produced. This 

is important as it indicates the viability of prediction of cell efficiency from cell temperature 

under the right circumstances. The R2 value of 0.77 is relatively high, however the trend 

line still indicates an error of approximately 30% in the scaling which is far from perfect.  

The inclusion of the log of solar irradiation in the cell efficiency formula did not produce any 

significant changes in the correlations between estimated and calculated values, however 

for the 4th (only), the absolute calculated value is pushed significantly closer to the 

estimated with an average offset of 3% as opposed to the 7.4% shown. 

 

3.15.10 Averaged Values 

In an attempt to reduce the impact of minute-to-minute errors in readings and reading times, 

the calculated cell efficiencies were averaged both over each hour of the day, and over 

morning/afternoon of each day. 

 

Figure 83 Hourly-Averaged Efficiencies (3rd, 4th and 5th June) 

In Figure 83, all 5 calculated series follow a similar curve for each given day (which is to be 

expected, as the principal input is the cell efficiency). This curve only seems to bear a 

passing relation to the estimated values, which in general indicate a fairly linear, but shallow, 

decrease in efficiency across the day.  

An example of the correlation is shown below (Figure 84). The other data series’ graphs 

are all very similar, with no R2 values of greater than 0.3 but are shown in table 19 for 

completeness. 
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Figure 84 3-Day Hourly Results for Pavg and Pinstant against Cell Temperature-Cell 
Efficiency 

 

Table 19 Cell Efficiency Correlation Results 

 

 

Finally, even the half-daily results (Figure 85) still show a high degree of variability between 

the estimated and calculated values. The models used seem to predict a much greater 
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variability in efficiency than that observed. It is hypothesised that they are too sensitive to 

input variables: perhaps the published value of αp, the coefficient of power, is too large in 

order to err on the safe side (a high value of αp indicates poor temperature performance). 

 

Figure 85 Morning/Afternoon-Averaged Cell Efficiencies 

 

3.16 Shading Analysis 
 

  
 
Figure 86 -Shading Acquisition, based on (SSE, 2013) 

The five points chosen for the shading analysis (see section 3.8) are shown above (Figure 

86), along with the lines drawn and measurements made to calculate the horizon line. An 

exhaustive method of calculating the horizon elevation angle for every 5° of arc was only 

undertaken for the two southernmost points, the remaining three were characterised by 
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measurements taken at important or notable angles only (where obstacles were clearly 

casting shade ie a tall tree line or the earth bund), the assumption being that this would still 

give a reasonable approximation. A sample of the numerical results are shown below (Table 

20 & Table 21) (full results in Appendix A: Data Tables 

 

Table 20 Shading Data Sample, Points 1 & 2 

 

Table 21 - Shading Data Sample, Points 3 & 4 

 

When there was a question over whether the treeline or bund would be dominant, two 

readings for the same orientation angle were taken. The lower, discountable, reading in this 

case is shown in red. In fact, for the given assumptions, the earth bund never has a larger 

shading effect than the treeline (neglecting relative opacity and proximity), indicating that it 

could possibly be neglected entirely. 

 
5 shading charts based on the Dalkeith sun chart were produced from this data, and are 

reproduced here (figures 87 to 91). Monthly average charts were used, as opposed to the 

20th/21st chart shown in previously. This was done to give a better representation of the 

sun path for each month. 
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Figure 87 - Monthly Average Shading Chart, Point 1 

Point 1 has possibly the most severe shading, with the South West treeline obscuring the 

sun through much of the afternoon in all but the summer months. 

 
 
Figure 88 -Monthly Average Shading Chart, Point 2 

Point 2 has less severe shading, although the effect of the East treeline can be seen to be 

comparable to the closer, South West treeline. 
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Figure 89 - Monthly Average Shading Chart, Point 3 

Much fewer points were calculated for point 3, giving the rougher diagram seen. Shading is 

similar to point 1, although slightly less severe now the reference point is further from the 

site boundary. 

  
 
Figure 90 - Monthly Average Shading Chart, Point 4 

Shading at point 4 is much less severe, although a fair amount of morning sunlight is lost. 
Note: shading falls almost to zero after the last point plotted. 
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Figure 91 - Monthly Average Shading Chart, Point 5 

Point 5 is similar to point 4 (Figure 90) but is affected slightly more by morning shading. 

There is very little shading in the afternoon. 

 
From these results, bearing in mind that these represent some of the most affected points 

on the site, it can be seen that shading, while not being a huge problem, is not only present 

at the site, but will result in a noticeable drop in performance of some of the PV strings. 

Modules at the south end of the site will be affected particularly badly in the winter months, 

when the low sun path will keep it behind the trees for much of the day, and shading from 

the SW line of trees will continue to affect the west end of strings for much of the year.  

Further study and analysis will be required to ascertain the actual impact of shading.  This 

will be covered in chapter 4. 

3.17 Software 
 
The methodology for this project was implemented in the Excel software environment, 

making use of both the embedded functionality and the extension available through VBA, 

Visual Basic for Applications, a programming language which interfaces closely with Excel. 

Full printouts of all code used are available in Appendix C: VBA Code Transcripts. Code 

written by the author is commented. 

 

3.17.1 Workbook Structure 
 
The excel workbook, titled ‘Processed Test Results’ consists of the following tabs or 

‘sheets’. Some are hidden by default to reduce clutter, but can be easily viewed by right-



157 

 

clicking on any tab title (seen at the bottom left of screen) and choosing ‘unhide’ from the 

resultant menu. 

 
 ‘Logger Data’ [hidden] - this sheet contains the raw logger data produced by the 

SquirrelView 

 (Grant Instruments, 2013) software. 

 ‘Crichton Gogarbank Weather Data’ [hidden] - wind data from the nearest available 

weather station operated by the Met Office. 

 ‘Sorted Gogarbank’ [hidden] - wind data processed and sorted for use in the thermal 

model. 

 ‘Processed Data’ - initial calculations done on logger data, including decoding of 

voltage levels. 

 ‘Solar Geometry, Diffuse, Slope’ - solar geometry and horizontal->slope calculations. 

 ‘Manual Data’ - data manually recorded from inverters (3 days). 

 ‘Daily Inverter Totals’ - likewise, manual readings from inverters. 

 ‘Compared Processed + Manual’ - calculations done only over the period when 

manual data was available, including comparisons of cell efficiency. 

 ‘Heat Transfer Model’ [hidden] - subset of data used for development and 

checking of thermal model. 

 ‘Modelled Cell Efficiency’ - all cell temperature and cell efficiency calculations from 

models. 

 ‘Averaged Cell Efficiencies’ - averaged values of the previous sheet’s results. 

 ‘Graphical Display Data’ [hidden] - full table of all data in spreadsheet where columns 

can be 

 ‘turned on/off’, used as input for ‘Graphical Display’. 

 ‘Graphical Display Data 2’ [hidden] - full table of all data in spreadsheet, no column 

switching, 

 used as input for ‘Graphical Display’. 

 ‘Graphical Display’ - described in section 3.20, produces graphs of data (in fact, 

displayed near beginning of tabs in the workbook for easy access). 

 
There is also an additional excel file, ‘Shading Estimation’, which was used to produce the 

lines on the shading sun charts shown in section 3.16. 
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3.17.2 Excel-Only Implementation 
 
Excel affords a fairly wide range of computations to be performed as part of its default 

functionality. In fact, simple multiplications, additions, subtractions and averages make up 

a lot of the required calculations. A summary of the main calculations performed is 

presented here, arranged by section of the workbook. 

 

3.17.2.1 ‘Processed Data’ 

 Average Irradiance (W/m2) is computed as the average of p2 and p3 (to avoid 

errors caused by sensor shading). 

 Average Cell Temp is the average of sensors t1 and t2, while Average Air Temp is 

the average of t3 and t4. 

 Average Heat Loss (W/m2) is the average of sensors flux1 and flux3 only  

The following calculations are performed for both cell and module, and are done relative to 

the cell or module area 

 Solar Power (W) is the multiple of average irradiance and 

area, calculated on solar cell area. 

 Heat Loss (W) is the multiple of Average Heat Loss (W/m2) 

and area, calculated by solar cell area. 

 Energy Balance (W) is given by 80% of the solar power (to simulate reflection losses) 

minus Heat Loss. To provide a better representation of the losses incurred. 

 Estimated η is given by Energy Balance divided by Solar Power. This is only 

calculated if both Energy Balance and Solar Power are positive, and the resultant 

value is less than 20%. 

 
 
 

3.17.2.2 Compared Processed and Manual 
There is some overlap with Processed Data, duplicate calculations are been removed. 

 

 Heat Loss Should be… (W/m2) indicates the estimated heat loss derived from 

80% of ‘Average Irradiance’ minus ‘Estimated Cell Power’ divided by the area of a 

cell. 

 All energy values are calculated for inverter and whole plant, as well as cell and 

module. 

 Instance Inverter Power (kW) is the average of the three power readings P1, P2 and 

P3 from sheet ‘Manual Data’. 
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 5-min Inverter Energy (kWh) is given by the difference between the current 

period’s ‘E-day(kWh)’ and the previous period’s, both from ‘Manual Data’. 

 Estimated Av. Power (kW) is given by ‘5-min Inverter Energy’ divided by the length 

of thetime period (5 minutes unless value is in bold). 

 Inverter-level η is given by ‘Estimated Av. Power’ divided by ‘Solar Power per 

Inverter’. A bold value indicates no ‘Estimated Av. Power’ value available, ‘Instance 

Inverter Power’ used instead. 

 Estimated Cell Power (W) is given by ‘Estimated Av. Power’ divided by the number 

of cells feeding each inverter (80 modules*60 cells per module). Note the unit 

conversion from kW to W. 

 Pavg-Estimated Cell η is given by ‘Estimated Cell Power’ divided by ‘Solar Energy 

per Cell’ 

 Pinstant-Estimated Cell ηis calculated in the same way as ‘Pavg-Estimated Cell 

η’, except using ‘Instance Inverter Power’. 

 

 

 

3.18 Use and Adaptation of solar analysis Software 
 
The solar analysis software, made available to me, was written in VBA and provided with 

the Windows in Buildings textbook (Muneer et.al. 2000) was used as a basis for the solar 

geometry and slope irradiation calculations (in sheet ‘Solar Geometry, Diffuse, Slope’). 

Where code has been used from these software programs, it is clearly indicated in the 

attached transcripts (see Appendix C: VBA Code Transcripts), directly after the macro (or 

‘Sub’) name. Any alterations to the original code are identified by commented asterisk (‘*). 

Note: some functions and variables have the same name (but only when a function defines 

a variable).  This software was deemed most suitable by author due to its use at high 

latitudes (Muneer et.al. 2000) , within solar studies already carried by a number of 

researchers including Gago et.al. (2011). 

 
 
 
 
 
List of Windows in Buildings functions used: 

 EOT - Determines the equation of time using the Yallop algorithm (see section 

3.3.2), from the time/date variable (GMT) and the local standard meridian (LSM). 

 DEC - Uses the same processing and input variables as EOT, above, but determines 

the solar declination. 

 SOLALT - Determines the solar altitude from the apparent solar time (AST), the 

latitude and DEC (see methodology). 
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 SOLAZM - Determines the solar azimuth from the same input data as SOLALT, 

above. 

 DAYNUM - Determines the day number, for use in calculation of ERAD, from the 

time/date variable (GMT). 

 ERAD - Determines the intensity of the extra-terrestrial irradiation, from the 

time/date variable and SOLALT. Utilises function DAYNUM. 

 INC - Determines the angle of solar inclination from the solar altitude and azimuth, 

and the module orientation and inclination (see section 3.3.2). 

 BSRAD - Determines the slope irradiation beam component from the horizontal 

global and diffuse irradiation, SOLALT and SOLINC (see section 3.11). 

 DSRAD - Determines the slope irradiation diffuse component from the same 

variables as BSRAD, above, with the addition of the module angle of inclination 

(TLT) and the extra- terrestrial irradiation (ERAD) (see section 3.11). 

 
 Additionally some extra functions were produced by the author for solar calculations. 

Some of these are simple additions or multiplications, but were rendered in function 

form to keep all the spreadsheet functionality in the same place: 

 
 AST – Calculates the apparent solar time from the clock time (see methodology). 

 decimalhour – converts time in hours, minutes and seconds to a decimal value in 

hours only 

 clearness – simply calculates the ratio of global to extra-terrestrial irradiation, set to 

zero if either input value is zero or less 

 DiffuseCalc – implements the clearness regression formulae (see section 3.11). 

 GroundR – calculates the ground reflected component (see section 3.11). 

 GSRAD – simply adds the ground, diffuse and beam slope irradiation components 

 

3.18 Implementation of Thermal Model 
 
As opposed to the preceding examples, the thermal model was implemented as a macro 

due to its iterative nature. In fact, a central macro runs, calling functions which execute the 

various equations shown in section 3.11 (thermal model methodology). Unlike a function, 

in excel a macro must be called in order to work. This is accomplished in the workbook 

through the use of a button object on the relevant sheet, labelled ‘Calculate’. 
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3.19 Cell Efficiency Calculations 
 
This code implements the following equations as functions (Muneer et.al. 2000): 

 

 SimpleTemp: Equation 12: NOCT Cell Temperature Calculation 
 

 HOMERTemp: Equation 13: HOMER Cell Temperature, Source: 
 

 CellEfficiency: Equation 12: Cell Efficiency 
 

 CellEfficiency2: Equation 21: Cell Efficiency  
 

The following flowchart in figure 92 outlines the VBA model proposed by Aldali et.al  (2011)  

of which elements were utilised to compute the above equations as functions.  The program 

is capable of calculating dew-point, slope radiation, sky and cell temperature, module 

efficiency and maximum power for operation of the PV modules. Furthermore, the program 

calculates the current, voltage and fill factor. The program is designed to compute results 

for 10 h each day for a period of 1 year.  Not all of these paramenters were required in this 

study but it will be useful to have these results for planned further research in the future. 

 
 
 
 
Figure 92 Flow chart for the computer model. Source:(Aldali et. al. 2011) 
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3.20 Graphical Display Interface 
 
Software was used to quickly and easily display the many different data streams was 

developed to aid in the data analysis of the project. The below figure (Figure 93) shows the 

display screen for this software (input values are cut off for purposes of presentation): 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure 93 - Graphical Display Screen (Time Series Plot) 

 

The software allows the user to select any combination of sensor inputs, manually-recorded 

data variables or calculated values to display on the graph. One day only is displayed, from 

midnight until midnight, which can be selected from a list contained in the top-left cell. 

The software works from a reference data table, in which data columns are switched on 

and off dependent on the status of the corresponding check-box, above. The range of rows 

to be displayed (the data table containing the entire 2500 sample times) is changed by macro 

whenever a new date is selected. The chart is set to automatically scale to the given data. 

 
One drawback of this method is that all data sets are selected at once, and so the ‘legend’ 

function of excel which displays which variables correspond to which colours has about 60 

entries. When graphs produced by this software are used in this report, variables are 

identified in the text. 
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Figure 94 - Graphical Display Screen (correlation graph) 

The second section of the display screen allows for the plotting of one variable against 

another, as opposed to showing many variables concurrently against time. The same list 

of data columns as available to the previous graph (Figure 93) can be selected from the 

two drop-down lists ‘Select x- variable’ and ‘Select y-variable’ (Figure 94). A macro, 

triggered by the change in cell value, then deletes the existing plot and creates a new chart 

with the correct cell references and formatting. By default, this plots over the whole range of 

the data variables, however it is possible to manually set the sample range in the table 

shown (the actual data table would have to be referred to in order to determine which 

times/dates these sample numbers refer to). 

 

3.21 Problems Encountered 
 
The entire selection of software developed was implemented as a single excel workbook. 

This was managed with consideration, but did hold the advantage of data continuity: any 

changes made to one section of the workbook could be immediately propagated to all 

other sheets and tables. The serious drawback was that of computer resource demand: with 

some sheets constituting thousands of calculations, some being run in code, even on a 

relatively fast computer a full update of the spreadsheet would take around 2 minutes. Excel 

automatically updates sections of an open file whenever changes are made, and updates 

the whole document periodically.  There is also a risk that errors within complex 

spreadsheets, such as this, could go un-noticed.  It is recommended that a revised 

approach is undertaken win future studies to mitigate against the potential for error. 



164 

 

 

 

 

Figure 95 - Setting Manual Calculation Mode 

This problem was avoided by changing excel to ‘manual’ calculation mode (see Figure 

95). This caused its own problems, unfortunately, as it became difficult to ensure that data 

was correctly updated, particularly when being passed between sheets. Further code was 

developed to deal with this problem, basically updating certain sheets whenever changes 

were made and leaving only the most resource-intensive sections to be updated manually 

by the user. The code is reproduced in Appendix C: VBA Code Transcripts. 

 

3.22 Conclusions 

 

As covered previously, the estimated generation of the solar meadow farm is 568,611kWh 

over a full year’s operation. This is a significant amount of energy, avoiding the production 

of 293,000kg of CO2. The actual energy produced in year 1 was 439,276kWh.  

The solar meadow at Edinburgh Midlothian campus is more than just a valuable financial 

investment, it is a firm indication of the viability and importance of large-scale solar in 

Scotland. It supports the strong likelihood of the future uptake of projects of this kind as part 

of a greener, more sustainable energy solution. 

 

The performance of solar irradiation, PV cell temperature and efficiency models have been 

assessed through a study done on a commercial solar plant in the Edinburgh area. An 

experiment to measure a range of data quantities was designed and implemented, and a 

survey of the site to obtain an estimate of the degree of shading was performed. To 

overcome limitations on data available to the researcher, three days of manually-recorded 

measurements were made to support the experimental data.  
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The shading characteristic of the site was not as detailed at this stage (the next chapter 

covers the impact of shading on the array in greater detail), but it was clearly shown that the 

figure of zero shading for the site assumed by the contractors will prove to be inaccurate, 

particularly in the winter months. Shading was shown to be most severe at the south end of 

the site, and still notable along the east side. Any shading on the solar modules will 

adversely affect the performance of the entire string in question, having a disproportionately 

large effect on plant output. 

The conversion of solar irradiation data from horizontal intensity to intensity received on a 

slope has been shown to be extremely accurate when using location-specific regression 

formulae. It was concluded that the seasonal model proposed by Clarke et al (2007) was 

the most suitable to use over the recorded time period, by a small margin. A further 

advantage of the given method is the slightly simpler implementation compared to the 

monthly model, which requires a different set of regulated coefficients to be used for every 

month. 

The prediction of a solar photovoltaic module’s cell temperature from environmental data 

such as air temperature and solar irradiation was shown to be accurate (within the expected 

tolerance shown) across three different calculation methods. The simplest, based on the 

‘nominal operating cell temperature’ of the module, actually gave results almost as good as 

the much more complex thermal model, indicating that this is a reliable and useful method 

to use. The thermal model was assumed to be limited by the lack of good quality, high 

resolution wind data for the site studied. In addition, the range of assumed input variables 

requires better definition. 

Finally, the calculation of cell efficiency over the three days of manual data recordings was 

performed, the average measured value being 16%. On a clear-sky day when the cell 

efficiency was predicted by the model presented herein and within the tolerance range of 

12-18%, the efficiency being generally lower on hotter days, or in the afternoon. 

The implementation of more accurate and high-resolution data collection methods on the 

site in the future, currently under discussion, will open up excellent opportunities for further 

analysing and refining the results of this investigation.  High level data is now available 

through direct inverter data download along with this use of calibrated sensors will provide 

a detailed analysis for future work. 

 

This chapter has investigated module performance through, modelling, of a ground array 

installation at Edinburgh College, Midlothian Campus, the derived quantities consisting of 
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slope irradiation, cell temperature, and cell efficiency. The experimental data was obtained 

on site through both automated and manual measurements for comparison with the 

calculated quantities. Results indicate that the horizontal-to-slope conversion models used 

provide a greater than 99% degree of confidence in the calculated results. Likewise, 

correlations between measured and calculated cell temperature were very high at up to 

94%. Estimations of the cell efficiency and hence module output were less reliable however, 

with only one of the models used, for one of the days studied, giving reasonable results. 

Efficiency values were, however, in the approximately correct range of 15-20%. 
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Chapter 4 – Analysis of Energy Delivery of the Edinburgh College solar PV meadow: 

Effects of Shading 

4.1 Chapter Summary 

This chapter will investigate how important solar panel positioning is as a factor in 

maximising energy delivery, especially at higher latitudes.  As solar altitude decreases 

obstacles and blockages become more of a hindrance and careful planning is required to 

ensure the amount of shading on the panel surface is kept to a minimum.  Edinburgh 

College’s Solar Meadow comprises of 2,560 solar panels over a 20,000m² site with 32 P 

Aurora power one trio-20.0-TL inverters 20kW inverters.  The site is predicted to produce 

568MWh of electrical energy and is estimated to save approximately 293,000 kg of CO2 per 

year.  This study looks at the impacts of shading on the Edinburgh College Solar Meadow 

from obstacles along the Southern and Eastern edges.  The impact of shading throughout 

the months of 2015 have been analysed and the effect on energy delivery captured 

throughout the year.  The Solar Meadow delivers 90 – 100% energy output for seven months 

of the year.  Only one month of the year is the energy delivery drop to around 50% of its 

expected output due to the shading impact from the obstacles along the southern edge. 

 

4.2 Introduction  

In chapter 3, the research carried out by (Jeffrey et al., 2015) it was recommended that 

further study was required into the effects of shading on the solar array in Dalkeith Scotland.  

The initial site survey that was undertaken to ensure accuracy of the layout and electrical 

connections through the available site plans. The array, figure 96, had clear areas of shade 

impacting on a number of panels around the site and an initial shading analysis was 

undertaken to ascertain its impact. 
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Figure 96 - Solar Meadow layout and markup (SSE, 2013) 

 

 

The analysis undertaken previously (Jeffrey et al., 2015)looked at five critical points towards 

the southern edge of the site where shading was most prevalent due to a line of high trees 

on both the south-east and south-west edges along with the earth bund that surrounds the 

site.  Horizon lines were constructed for each point.  An example is shown in figure 97, this 

initial analysis suggested a significant amount of shading will occur along the southern-most 

row of modules.  This study was undertaken to analyse, in much greater detail, the overall 

shading implications on the array, how much energy will be lost due to modules being in 

shade and the overall cost implications of shade on the site of a planned PV array.  The 

need, or not, for full site shading analysis will also be considered as part of the planning 

process for future large scale installations. 
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Figure 97 - Shading along the southern edge 

 

4.3 PV modules in shade 
 

Researchers have studied the characteristics of PV modules under partial shading 

conditions. Experimental work has been undertaken to characterize the I–V curve during 

partial shading but the scope was limited to module-level shading (Alonso-Gracia, 2006). 

(Sathyanarayana et al., 2015) found that the impact of uniform shading on a panel resulted 

in a linear decrease in power output but not in the efficiency of the panel. Interestingly non-

uniform shading was found to have a greater impact with a drop in current, power and 

efficiency as a result.  It is therefore important to avoid non-uniform shading at the earliest 

stages of installation onwards.  Ekpenyong and Anyasi (2013) confirm this finding and 

Pachpande and Zope (2012) verify, through findings, that the non-uniform shading will 

push a solar panel into operating like a ‘load’ on the string.  All agree that to mitigate this 

occurrence a bypass and blocking diode can be connected in parallel with a particular 

group of panels. However, initial planning will also play an important role in minimising the 

effects of shading. 

In large solar PV farms, PV arrays are constructed by connecting large numbers of PV 

modules to each other in series, or strings. To investigate the shading effect it would not 

be useful to do so at a modular level, but it is necessary to analyse at string level to 

appreciate the actual impact on output.  The string of PV modules can be connected in 

different interconnected topologies. Series–parallel (SP), bridge link (BL), and total cross 

tied (TCT) are the main interconnection topologies used in industry. Figure 98 depicts the 
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stated configurations for a 20 x 3 PV array with different types of shading patterns labelled 

A-D. In series-parallel (SP) configuration, due to the effect of shading the maximum power 

point tracker (Mppt) is forced to move from the non-shaded modules to the modules that 

are in shade. However, for the BL and TCT connections, due to the additional wires in the 

modules connections, new current paths are created and the PV output power can be 

increased under the non-uniform insolation conditions. These connections can be useful 

under certain shading conditions. 

 

Figure 98 - SP, BL and TCT connections for 20*3 array (Ishaque, 2011) 

The characteristics of a PV module in shade with a bypass diode has been described as 

follows; during times where no shade is apparent on the PV module, the bypass diode are 

reverse biased, the current will then flow through the module as presented in figure (99 a). 

During times when the module is in the shade, the module cells act as a load instead of a 

conductor and cause the problem of creating hot spots. To avoid the hot spot issue it is 

necessary to drive the current away from shaded cells. This has been implemented by the 

use of a bypass diode as shown in figure (99 b), this bypass diode is forward biased when 

the module is in the shade, and therefore it conducts the current produced by non-shaded 

modules (Ishaque, 2011) 
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Figure 99 -  (a) Module in normal condition and (b) bypass operation as the module is in 
shade (Ishaque, 2011) 

 

4.4 Problems caused by shading 

 

There are several problems caused by shading that can have a big impact on the overall 

performance of the panels.  Partial (non-uniform) shade, can have a significant impact on 

the performance and result in a reduction in overall output.  Even a small section of the cells 

being shaded will result in the entire series-linked section of cells being affected and a 

significant reduction in power output to due to the string current reducing to the lowest level 

as per the shaded cell.  Partial shade reduces the overall current impacting on overall power 

output (Sathyanarayana et al. 2015).  

 

Another problem caused by partial shading is the phenomena of hot spots caused by 

thermal stresses incurred on the weaker, shaded cell(s).  This stress can cause overheating 



172 

 

which will, in turn, further reduce the power output of the panel.  The cells not in shade will 

generate a high voltage forcing extra current through the good cells resulting in forward bias 

of the ‘good’ string (Ekpenyong and Anyasi, 2013). If the short-circuit current of the shaded 

cell is balanced by the overall current of the unshaded cells the forward bias will become 

reverse bias in the shaded cell.  This results in the entire generating power of the unshaded 

cells dissipating through the shaded cell resulting in localised power dissipation and hot-

spot phenomena. This phenomena will reduce the lifespan of the panel and in extreme 

circumstances can result in catastrophic malfunction through combustion of the panel. This 

ultimately results in the shaded cells acting like a load on the panel string array(Sun et al., 

2014).  

 

4.4.1 Establishing critical points of shade within the Solar Meadow at Edinburgh 
College 

 

In order to better understand the impact and the amount of shading experienced by the 

panels within the Solar Meadow at Edinburgh College, algorithms were used to calculate 

the amount of shade that a surface experiences.  In analysing the impacts of shade affecting 

the solar array a number of these shading algorithms were considered and evaluated.  

Establishing a comprehensive approach to shading analysis is important to the overall level 

of detail required to critically analyse the impact shading can have on a surface within a 

given point on the site.  It was also necessary to further develop the points of shade outlined 

in the initial piece of research (see chapter 3), and create a more accurate representation 

of the shading impact on the array. 

The angle of the solar panels was measured using a theodolite to ensure accurate data on 

the solar plane of the panels. The measurements were taken at each critical point and the 

theodolite was mounted at a height near to the centre (the junction point of two modules) 

and east set as 0°. In intervals of 30° in azimuth, due east, the height of the panel angle was 

recorded. The measurements recorded for the front row where shading is most prolific is 

shown (Table 22).  The setup of the theodolite can be seen in figure 100. 
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Table 22 - Inclination of Trees from specific plots 
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Figure 100 - Theodolite 

From this data it was established that the main areas of shading were experienced in the 

east and south of the farm, where trees and the earth bund are having the highest shading 

effect on the modules. 12 critical points were chosen and are shown in the figure 101.  The 

view of the southern tree line is shown in figure 102.  

 

Figure 101 - Position of critical points of shading (Burns 2015) 
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Figure 102 - View of Solar Meadow from southern obstacles 

 

4.5 Modelling Approaches  

 

After the initial study (discussed in chapter 3) a number of modelling approaches were 

undertaken, sun-earth geometry calculations, solar radiation calculations, manual data 

collection, shading analysis, and energy calculations in order to answer the impact shading 

has on the energy delivery of the farm. It was first important to determine the interaction of 

solar radiation with the atmosphere and the earth’s surface for the site through the following 

three steps: 1- Solar geometry: the available extra-terrestrial radiation on earth’s surface 

which varies due to the earth rotation around the sun and the sun-earth position above that 

horizon,  2- The attributes of the PV surface: surface tilt, aspect of the surface, shade effect 

of the neighbouring objects around the surface and 3- Atmospheric influences on the 

attraction of solar energy on the earth’s surface (i.e. impacts of clouds and all particles in 

the atmosphere). The shading analysis of the Edinburgh College PV farm focussed on the 

first 2 steps in order to demonstrate the impact of shading on the overall output. 

 

4.5.1 Sun-Earth Geometry description 

The geometric relationship between the sun and the earth can be described in terms of the 

latitude of the site, the time of the year, the angle between sun and earth and the altitude & 

azimuth of the sun.  The main factors and variables which are necessary for the calculation 

of the suns position in the sky in respect to a specific plane on earth’s surface has been 
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investigated. The factors included in the investigation are day number (DN), sun declination 

(DEC), equation of time (EOT), solar altitude, solar azimuth and sun inclination.  

4.5.2 Day number description 

Day number is defined as the number of days passed in any given year to a specific date in 

that year. It is used to calculate the extra-terrestrial irradiance and through the use of VBA 

codes which are transferred to MATLAB to calculate all the day numbers for each data point 

with consideration given to leap years. All the MATLAB codes related to this have been 

provided in appendix (F) (Muneer, 2004). 

 

4.5.3 Solar Declination description 

Solar declination is defined as the angle between the earth–sun vector and the equatorial 

plane. Solar declination, as function that varies with the day of the year, is a significant 

parameter for the estimation of solar radiation. As presented in figure 103, the change in 

solar declination throughout the year ranges from 0°at the spring equinox to 23.44° at the 

summer solstice and it drop again to 0° at the autumn equinox and becomes -23.44° at the 

winter solstice. Because the earth’s orbit around the sun is elliptical, the earth’s velocity 

varies during the year and by changing the solar declination, sun light intensity changes 

during this time and results in the different seasons. This is the reason that the declination 

is not a strict sinus tidal curve (Budin, 1995). 

 

Figure 103 - Solar declination in different seasons  

In this research Yallops’s algorithm (1992) has been used to calculate solar declination due 

to it having very high precision and accuracy (1 min of arc) and is valid for the period 1980-

2050 (Muneer, 2004).  

For a given year (Y), month (m), day (D), hour (h), minute (m) and second the amount of 

solar declination will be obtained through this algorithm: 
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Equation 23 -  Sun declination 

𝑡 = {(𝑈𝑇/24) + 𝐷 + [30.6𝑚 + 0.5] + [365.25(𝑦 − 1976)] − 8707.5}/365.25 

Where 𝑈𝑇 = ℎ + (
𝑚𝑖𝑛

60
) + (

𝑠

3600
) and if m>2 then y=y and m=m-3, otherwise y=y-1 and 

m=m+9. The following terms are then determined: 

𝐺 = 357.528 + 35999.05𝑡 

𝐶 = 1.915 𝑠𝑖𝑛𝐺 + 0.020 𝑠𝑖𝑛2𝐺 

𝐿 = 280.460 + 36000.770𝑡 + 𝐶 

𝛼 = 𝐿 − 2.466𝑠𝑖𝑛2𝐿 + 0.053 𝑠𝑖𝑛4𝐿 

𝐺𝐻𝐴 = 15𝑈𝑇 − 180 − 𝐶 + 𝐿 − 𝛼 

𝜀 = 23.4393 − 0.013𝑡 

𝐷𝐸𝐶 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛𝜀 𝑠𝑖𝑛𝛼) 

4.5.4 Equation of Time description 

Equation of time (EOT) is defined as the difference between standard time and solar time.  

Solar day is the interval of the time that the sun crosses from one local meridian to the 

subsequent time it crosses that same meridian. Solar day varies due to the solar declination 

and the earth’s position in the plane of the elliptical orbit containing the sun and the earth. 

The orbital distance of sun-earth varies from a maximum 152 million Km to a minimum 147 

million Km. There is a difference between solar day and a full rotation of the earth due to 

the fact that the earth rotates in a diurnal cycle and has forward movement in its orbit. 

Standard time is a time recorded by clocks that has constant speed (Muneer, 2004). 

Equation 24 -  Equation of time 

𝐸𝑂𝑇 = (𝐿 − 𝐶 − 𝛼)/15 

4.5.5 Solar Altitude and Azimuth description 

The position of sun can be described with consideration given to two angles, SOLALT and 

SOLAZM. SOLALT is defined as the elevation angle of the sun from horizon and SOLAZM 

is described as the angle from north, and that of the perpendicular projection of the sun 

down onto the horizontal plane.  This will proceed from sunrise to sunset in a clockwise 

rotation. The sun position is dependent on Greenwich Hour Angle (GHA), the latitude (LAT) 

and longitude (LONG) of the location and solar declination. SOLALT and SOLAZM can be 

calculated respectively through arc sin and arc cosine of these two equations: 
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Equation 25 - Sun altitude 

sin(𝑆𝑂𝐿𝐴𝐿𝑇) = sin(𝐿𝐴𝑇) ∗ sin(𝐷𝐸𝐶) − cos(𝐿𝐴𝑇) ∗ cos(𝐷𝐸𝐶) ∗ 𝑐𝑜𝑠(𝐺𝐻𝐴) 

Equation 26 - Sun azimuth 

cos(𝑆𝑂𝐿𝐴𝑍𝑀) = cos(𝐷𝐸𝐶)  × (cos(𝐿𝐴𝑇) ∗ tan(𝐷𝐸𝐶) + sin(𝐿𝐴𝑇) × cos(𝐺𝐻𝐴))/cos (𝑆𝑂𝐿𝐴𝐿𝑇)  

 

 

4.5.6 Sun Inclination description 

 

Sun inclination (INC) is defined as the angle of sun’s beam on a sloped surface, which can 

be calculated from the solar altitude, azimuth and the orientation of the surface, which is 

known as wall azimuth angle (WAZ).  Wall azimuth angle is described as the angle of a 

sloped surface from north, same as the azimuth clockwise, see figure 104. Arc cosine of the 

following equation, 27, will reveal sun inclination (INC): 

Equation 27 - Sun inclination 

cos(𝐼𝑁𝐶) = cos(𝑆𝑂𝐿𝐴𝐿𝑇) ∗ cos(𝑆𝑂𝐿𝐴𝑍𝑀 − 𝑊𝐴𝑍) ∗ sin(𝑇𝐿𝑇) + cos(𝑇𝐿𝑇) ∗ sin (𝑆𝑂𝐿𝐴𝐿𝑇) 

 

Figure 104 - Sun geometry in a tilted surface (Team, 2008)  

 

4.5.7 Extra-terrestrial spectrum description 

The spectrum of the solar radiation outside the earth’s atmosphere is known as extra-

terrestrial spectrum (ETS). The first step required in calculating extra-terrestrial spectrum is 

to consider the sun as a blackbody radiating at a temperature of approximately 5780 K, and 

by taking advantage of Planck’s law, the corresponding spectral irradiance from that 

temperature can be estimated.  The sun’s energetic output represents a huge departure 
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from the smooth Planck spectral curve, especially at wavelengths below 800 nm. The recent 

extra-terrestrial measurements represent that ETS is variable on a day-to-day basis 

according to solar activity. Total solar irradiation (TSI) varies because of day-to-day change 

in EST. TSI has been measured between November 1978 to January 2003 and the results 

were respectively 1363 and 1368 W/m2. The extra-terrestrial constant value can be obtained 

as the average value of TSI, defined as the mean between the minimum and maximum 

values of TSI, after a 27 day smoothing filter is applied to reduce the sun’s rotation effect. 

The value of the solar constant is given for the average sun-earth distance, 1 Astronomical 

unit, because the earth’s orbit around sun is not circular but elliptical. Around 3 April and 5 

October sun-earth distance is 1 astronomical unit. For any other days except 3 April and 5 

October, extra-terrestrial value should be multiplied to a correction factor S, to gain the daily 

extra-terrestrial irradiance at normal incidence (Muneer, 2004). For more accurate results 

Day number (DN) and SOLALT have been used in the following equation, 28, to calculate 

the hourly values of extra-terrestrial irradiance (IE):   

   Equation 28 - Extra-terrestrial spectrum (Muneer, 2004) 

𝐼𝐸 = 1367 ∗ (1 + 0.033 ∗ cos(0.0172024 ∗ 𝐷𝑁)) ∗ sin (𝑆𝑂𝐿𝐴𝐿𝑇) 

 

4.5.8 Solar radiation description 

When extra-terrestrial radiation enters to the atmosphere a part of the incident energy is lost 

due to the composition of the earth’s atmosphere. The earth’s atmosphere includes a 

mixture of gases, ozone, water vapour and aerosols which all cause the incident sun energy 

to be divided into two main radiations, beam radiation (which arrives at the surface of the 

earth directly from the sun) and the scattered radiation (which is called diffuse radiation). To 

calculate energy from the sun, hourly beam irradiance and hourly diffuse irradiance must be 

attained. 

4.5.8.1 Hourly horizontal global irradiation (IG) description 
Hourly horizontal global irradiation varies depending on local position (latitude and 

longitude) on earth and time of the year due to the variance in the sun-earth distance. In this 

research hourly horizontal global irradiation for Edinburgh (latitude: 55.95 N and longitude: 

3.32 W) was collected from GOGARBANK site.   
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4.5.8.2 Hourly clearness index (KT) description 
The clearness index (KT), equation 29, is defined as the ratio of the horizontal global 

irradiance to the corresponding irradiance available out of the atmosphere.  The 

transparency of the sky is then indicated (Ndilemeni; Momoh, 2013). 

Equation 29 - Clearness index 

𝐾𝑇 =
𝐼𝐺

𝐼𝐸
 

4.5.8.3 Hourly horizontal diffuse irradiance (ID) description 
Hourly horizontal diffuse irradiance is calculated by the usage of hourly global horizontal 

irradiance and hourly clearness index values with equation 30 (Muneer, 2004).   

Equation 30 - Hourly horizontal diffuse irradiation 

𝐼𝐷 = 𝐼𝐺 ∗ (1.006 − (0.317 ∗ 𝐾𝑇) + (3.1241 ∗ 𝐾𝑇
2) − (12.7616 ∗ 𝐾𝑇

3) + (9.7166 ∗ 𝐾𝑇
4)) 

4.5.9 Hourly global slope irradiance description 

Solar photovoltaic panels are mounted with a specific tilt to take the most advantage of the 

sun. To calculate hourly global slope irradiance, it is necessary to obtain the incident slope 

beam and diffuse irradiance. Diffuse irradiance in a sloped surface consists of sky-diffuse 

and ground reflection. The irradiances that land on PV panel are beam irradiance, diffuse 

irradiance and ground reflection (equation 31). 

Equation 31 - Hourly global slope irradiance 

𝐼𝐺,𝑠𝑙𝑜𝑝 = 𝐼𝐵 + 𝐼𝐷,𝑇𝐿𝑇 + 𝐼𝐺𝑟𝑜𝑢𝑛𝑑 

4.5.9.1 Hourly slope beam irradiance (IB) description 
Hourly slope beam irradiance is calculated from hourly horizontal global irradiance, hourly 

horizontal diffuse irradiance, sun inclination, and solar altitude through equation 32.   

Equation 32 - Hourly slope beam irradiance (Muneer, 2004) 

𝐼𝐵 =
(𝐼𝐺 − 𝐼𝐷) ∗ cos (𝑖𝑛𝑐)

sin (𝑠𝑜𝑙𝑎𝑙𝑡)
 

4.5.9.2 Sky diffuse irradiance models 
The Sky diffuse calculation is important because it is a dominant component of energy 

calculations in an overcast sky or at times when beam irradiance has been blocked. The 

Sky diffuse model has been divided into three different generation models with respect to 

their evolution and precision.  
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4.5.9.3 First generation models 
This model is the simplest and earliest model used to describe the sky diffuse as in this 

model it was assumed an isotropic sky.  Diffuse irradiation is not isotropic in nature and is 

an angular function of the solar altitude and azimuth. Only in the intensity of overcast skies 

case it is possible to consider isotropic as an acceptable case even in the partial overcast 

skies it is unrealistic. Another model which belongs to the first generation is to consider the 

sky diffuse and beam radiation originate from the direction of the solar disc. This model 

unlike the isotropic model is acceptable for the clear sky conditions (Muneer, 2004). 

Equation 33 - diffuse irradiation on a sloped surface 

𝐼𝐷,𝑇𝐿𝑇 = 𝐼𝐷 ∗ 𝑐𝑜𝑠2(
𝑇𝐿𝑇

2
) 

4.5.9.4 Second generation models 
The second generation models offer a better and more precise result than first generation 

because these models differentiate between the radiation distribution of clear and overcast 

skies. By putting functions that vary for different conditions from clear to overcast skies 

(Muneer, 2004). 

 

4.5.9.5 Third generation models    
In these models the sky diffuse component consider as anisotropic. A great majority of the 

models in this generation analyse non-overcast irradiance as the sum of two components, 

circumsolar and background sky diffuse (Muneer, 2004).  

This research adopted a first generation model approach as the main objective is to analyse 

energy delivery.  

4.5.10 Ground reflection 
One of the components of the solar radiation incident on a sloped surface is ground reflected 

radiation. Ground reflection changes due to ground materials and their reflectivity, for 

example, a ground covered by snow has a high value of reflectivity and in northern latitudes 

due to the low elevations of sun. To estimate an accurate amount of ground reflected 

radiation, knowledge of foreground type and geometry, its reflectivity, degree of isotropy, 

the details of the surrounding skyline and the condition of the sky are required (Muneer, 

2004).  

The ground reflected radiation incident on a tilted surface can be calculated by assuming 

that the ground is an isotropic diffuse reflector and by taking advantage of equation 34 (Efim 

and Evseev, 2008). 
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Equation 34 - Ground reflection 

𝐼𝐺𝑟𝑜𝑢𝑛𝑑 = 𝜌 ∗ 𝐼𝐺 ∗ 𝑠𝑖𝑛2(
𝑇𝐿𝑇

2
) 

Where, ρ, is ground albedo which is a constant value 0.2 for temperate and humid tropical 

places and 0.5 for dry tropical places and it will change regarding to geographically position.   

The process of carrying out detailed calculations was important in understanding the 

interaction of solar radiation with the Earth’s surface and atmosphere was important in pin 

pointing the site’s specific attributes for the capture of solar energy.  This last section has 

given an overview of the required site specific attributes identified through the modelling 

process, which are required to accurately model the shading algorithm used to determine 

the shade present at the site.  The next section will discuss the shading algorithm options 

available, in brief, and describe the chosen algorithm in more detail. 

 

4.6 3 Shading algorithms considered: 

4.6.1 Budin shading algorithm 

The shading algorithm proposed by (Budin and Budin, 1982) is a detailed mathematical 

approach requiring coordinates on the earth’s surface used to pin-point the location of a 

point on the surface of the planet.  The sun’s position with respect to the hour angle, site 

altitude and solar declination (DEC) are also required to accurately use this algorithm. Here, 

the relationship between sun’s position (in a spherical coordinate system) and the local tilted 

surface is calculated through two transformations:  

The first consists of the local tilted surface to the horizontal surface of that in the spherical 

coordinate system. 

The second uses the spherical coordinate system of the horizontal surface to that of the 

equator.  

The shading calculation is defined as the calculation of the shadow of a blocked point on 

the plane surface with an arbitrary orientation.  The position of the shade in a particular site 

on a certain day and time can be calculated from solar altitude (SOLALT) and solar azimuth 

(SOLAZM) with consideration to site latitude, solar declination (DEC), surface azimuth 

(orientation), surface tilt and solar hour angle for that day.  A lengthy process when looking 

at a number of potential obstacles. 
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4.6.2 Horn shading algorithm  

(Horn, 1981) proposed an ‘automatic hill shading algorithm’, which, removed the 

mathematics and physics aspect of the Budin’s shading algorithm and replaced it with Digital 

Terrain Models (DTMs) and the reflectance map. In order to accurately demonstrate shade 

through a reflectance map it is necessary that the scene brightness is captured on the 

surface orientation with consideration to slopes and different elevations from east to west 

and south to north direction. Relief shading methods were divided in these groups by Horn: 

 rotationally symmetric reflectance maps-grey tone depends on slope only 

 average reflectance are modulated by methods based on different thickness  

 ideal diffuse reflectance and various approximations 

 the group that only depends on the angle of the plane in the direction away from the 

assumed light source (grey tones) 

 methods which are more dependent on more sophisticated models of diffuse 

reflectance from porous material, such as that covering the lunar surface 

 models for gloss and lustrous reflection-smooth surface, extended source and rough 

surface, point source 

4.6.3 Geographic Information system packages 

The third algorithm is the model used by shading commands in Geographic Information 

system (GIS) packages. The brightness of a specific surface point can be determined by its 

orientation with respect to the observer and the sun. The amount of the radiation that can 

be absorbed by a surface point will depend on its inclination compared to the incident beam. 

It is generally assumed that the radiation received on a surface point is also proportional to 

cosine of the surface elevation, however this is not the main issue here because sun 

radiation is likely to be reflected in different directions.  Shading can be obtained through 

equation 35: 

Equation 35 - Horn shading analyse equation 

𝑆 = 225 × 𝑐𝑜𝑠𝜃𝑍 × 𝑐𝑜𝑠𝛽 + 𝑠𝑖𝑛𝜃𝑍 × 𝑠𝑖𝑛𝛽 × cos (ϒ𝑠 − ϒ) 

Where 255 is the maximum gradient for a 16-bit colour system and 𝜃𝑍 is the incident angle, 

β surface tilt and  𝛾𝑠 is the sun azimuth and  𝛾  is the surface azimuth.  

This method requires a simulation of the Sun’s path through the sky, this can be calculated 

manually through the use of solar altitude (SOLALT) and solar azimuth (SOLAZM) for a 

specific time and location from the solar position and intensity calculator, through the GIS 

package.  For each point of interest, on the surface, the shadow of obstacles around the 
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point will vary and are obtained by calculating the horizon of each point of interest. A profile 

line is the line between two pixels connecting them together. An angle is the dedicated to 

each profile line giving the profile angle. A point of interest not in shade will be the maximum 

of all the possible angles and therefore must be equal to the profile angle.  The profile angle 

𝛼𝑃 is defined by Duffie and Beckman (2013) as the angle through which a plane, that is 

initially horizontal, must rotate around the axis, of the plane in question, in order to include 

the sun. Mathematically the profile angle is calculated through equation 36: 

Equation 36 - Profile angle equation 

𝑡𝑎𝑛𝛼𝑝 =
𝑡𝑎𝑛𝛼𝑠

cos (𝛾𝑠 − 𝛾)
 

 

Where 𝛼𝑠 is the surface angle, 𝛾𝑠 is the surface azimuth, and 𝛾 is the sun azimuth. In different 

sun positions, as it changes with time, the profile angle is checked to investigate whether 

the point of interest is in shade or not. Figure 105 represents the final flow chart of this 

algorithm and shows the clear process required to be undertaken in order to capture the 

losses due to shading (Nguyen and Pearce, 2012).  Within the GIS modelling algorithm the 

site is reasonably easy to evaluate due to the groundworks undertaken to provide a clear, 

flat site for the array to be easily installed.   

 

Figure 105- Final scene construction and irradiance modelling for this algorithm (Nguyen 
and Pearce, 2012) 
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4.7 Algorithm selected – Sky View Factor (SVF) 
 

Sky View Factor (SVF) has been shown to be one of the most useful urban spatial indicators 

for radiation and thermal assessment (Zeng et.al.  2018). Estimating SVF is straightforward 

and convenient and can account for obstruction by buildings and vegetation such as trees.  

Undertaking shading calculations within a cluttered sky space would better suit the 

algorithms described previous, however, with few obstructions within the available sky 

space on the site of the solar farm.  

4.7.1 Sky view factor 

After consideration was given to the previous methods described, this study utilises Sky 

View Factor (SVF) to establish the shading effects encountered in the Edinburgh College 

Solar Meadow.  SVF is the ratio of radiation received by a surface to the radiation emitted 

by the entire hemispheric environment (Nguyen and Pearce, 2012). It expresses the 

relationship between the visible area of the sky and the portion of the sky covered by 

surrounding buildings, and other obstacles, viewed from a specific point of observation. The 

SVF encompasses reduction of visibility due to the slope of an inclined plane and obstacles 

in the surrounding built environment. The diffuse radiation incident is thus obtained through 

the product of SVF (%) by available diffuse radiation on unobstructed horizontal surfaces 

(Carneiro, 2009). In analysing SVF one can acquire the impact of shading on the 12 critical 

points of shade within the array. 

This section will look at the methods used to collect the data required to understand the 

impact of shading on the solar farm.  The Critical points of interest were selected through a 

topographical survey of the entire site in order to analyse areas of high shading as described 

in section 4.4.1. The method used theodolite data and the following equations, 37, 38 and 

39, to calculate the total irradiance being blocked by obstacles surrounding the array.  

The first calculation, from (Muneer, 2004), is used  to calculate the beam and diffused 

irradiation of a point at a given time.  Equation 37 will provide the calculation:  

Equation 37 - Slope beam & diffused irradiation (Muneer 2004) 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑖𝑠𝑖𝑠𝑏𝑙𝑒 𝑆𝑘𝑦, 𝑇𝐹 =  𝑐𝑜𝑠2 (
𝛽

2
) 

𝐼, 𝐵𝑒𝑎𝑚 𝑆𝑙𝑜𝑝𝑒 (𝐺, 𝐺𝑙𝑜𝑏𝑎𝑙 − 𝐷, 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑑)
𝑐𝑜𝑠𝐼𝑁𝐶

𝑠𝑜𝑙𝐴𝐿𝑇
 

𝐼, 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑑 𝑠𝑙𝑜𝑝𝑒 = 𝐷, 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑑 × 𝑇𝐹 
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When the slope beam and diffused values are calculated they need to be cross referenced 

with the angular values of any obstruction to the solar panels this allows the total irradiance 

being blocked to be calculated. This can be done using equation 38: 

Equation 38 - Sky view 

𝑆𝑘𝑦 𝑉𝑖𝑒𝑤 = 1 −  ∑
(𝑑𝜑, deg× 

𝜋

180
)  × (𝑑𝛼, deg×  

𝜋

180
)

𝑐𝑜𝑠2 (
𝛽

2
)

 

Where: 

dϕ, deg: is the angle between two points in degrees 

dα, deg: is the angle of inclination from a 90° plane to the highest point of the obstacle 

By using the results from the previous equations (37 & 38), the total solar irradiance blocked 

can be calculated using equation 39: 

Equation 39 - Total Blocked Irradiance 

𝑇𝑜𝑡𝑎𝑙 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = ((𝐼𝐷, 𝑆𝑙𝑜𝑝𝑒 × 𝑆𝑘𝑦 𝑉𝑖𝑒𝑤) + (𝐼𝐵, 𝑆𝑙𝑜𝑝𝑒 × 𝑆𝑘𝑦 𝑉𝑖𝑒𝑤)

× [𝑆𝑖𝑛2 (
𝛽

2
)]) 

This calculation, 39, gives the cumulative value of all irradiance being blocked and therefore 

shows the total impact of the shading effect incurred by the PV panels. To achieve more 

reliable results, shading analysis was implemented every 30 minutes once a week for the 

whole year.  For this shading analysis four main steps have been used in MATLAB to provide 

the calculated results. 

1. Allocate measured panel’s elevation for specific azimuth in each critical point. 

2. Investigate whether the critical points are in shade, or not, by comparing solar altitude 

and panels elevation in each specific time. In this step panels have been modified 

and divided in two groups. If the panel altitude on that specific time is lower than solar 

altitude the point is not in shade and for (SVF) has been considered as zero.  

3. Calculate sky view factor which varies between 1 & 0. 1 = no shade, 0 = high shade. 

4. Determine global slope radiation in two different conditions. Firstly, where the point 

is not in shade, the following calculation using equation 40 is used: 

Equation 40 - Global irradiation on a sloped surface 

𝐼𝐺,𝑠𝑙𝑜𝑝 = 𝐼𝐵 + 𝐼𝐷,𝑇𝐿𝑇 + 𝐼𝐺𝑟𝑜𝑢𝑛𝑑 
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And when the point is in the shade (no beam radiation therefore diffuse values must be 

multiplied to sky view factor (SVF)) the following calculation through equation 41 is used: 

Equation 41 - Global irradiation on a sloped surface in shade 

𝐼𝐺,𝑠𝑙𝑜𝑝 = 𝐼𝐷,𝑇𝐿𝑇 × (𝑆𝑉𝐹) + 𝐼𝐺𝑟𝑜𝑢𝑛𝑑 × (𝑆𝑉𝐹) 

All the calculated data was transferred into an excel spreadsheet for further analysis. 

Through this process the ability to produce graphical outputs of the calculations was 

achieved.  Each month’s data was separated and, for each day, available energy has been 

evaluated and then available energy in each critical point (with consideration to shading 

effect) has been estimated. Three different approaches have been applied to investigate 

each month’s energy delivery and are described in the next section. 

 

4.8 Calculation Process 

4.8.1 Energy delivery from the solar meadow – the three approaches utilised 

 

In the first approach, equation 42, each day’s energy delivery ratio has been evaluated as 

the average of the 12 critical points.  The available energy, at these points, was divided by 

that day’s available energy without shading effect, and in the end average of those 4 days 

represents the percentage of energy delivered for that month.  

In the second approach, equation 43, the whole the month’s available energy without 

shading has been obtained and the available energy for each critical point during the month 

has been estimated, the ratio of critical point available energy to the whole month available 

energy without shading presents the point’s delivery percentage and average of the 12 

points represents the percentage of energy delivered in that month.  

In Third approach, equation 44, all 18 rows of solar panels, in the solar meadow, have been 

included.  Each row has been divided into three different parts (left, centre and right). All 54 

of these points were included in the shade investigation. This research assumed that the 

2nd and 3rd row have the same shading analysis as the 4th row and all other rows, except 

row 1 and row 17 which have the same shading effect as eighth row. The entire month’s 

energy delivery has been obtained on the basis of these 54 points. 

Equation 42- Approach 1 for energy delivery calculation 

𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 1 =  
∑

(
∑ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑓𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

12
)

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠ℎ𝑎𝑑𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑚𝑜𝑛𝑡ℎ
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Equation 43 - Approach 2 for energy delivery calculation 

𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 2 =
∑

𝑜𝑛𝑒 𝑚𝑜𝑛𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑓𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝑜𝑛𝑒 𝑚𝑜𝑛𝑡ℎ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠ℎ𝑎𝑑𝑖𝑛𝑔

12
 

Equation 44 - Approach 3 for energy delivery calculation 

𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 3

=  
(𝑓𝑟𝑙𝑒𝑑 + 𝑓𝑟𝑐𝑒𝑑 + 𝑓𝑟𝑟𝑒𝑑 + 𝑠𝑟𝑟𝑒𝑑 + 𝑡𝑟𝑟𝑒𝑑 + (𝑓𝑜𝑟𝑙𝑒𝑑 ∗ 3) + (𝑓𝑜𝑟𝑐𝑒𝑑 ∗ 3) + 𝑓𝑜𝑟𝑟𝑒𝑑 + (𝑒𝑟𝑙𝑒𝑑 ∗ 14) + (𝑒𝑟𝑐𝑒𝑑 ∗ 14) + (𝑒𝑟𝑟𝑒𝑑 ∗ 13) + 𝑠𝑟𝑙𝑒𝑑)

54
 

 

 

4.8.2 Calculating Energy Output with relation to shading 

To calculate the overall energy output of the farm, 6 steps have been implemented and 

explained.  Global slope radiation is the major contributor; therefore all the data must be 

highly accurate. Muneer’s (2004) VBA programs (calculation 4.8 and calculation 10) have 

been used to calculate the hourly global slope irradiation.  

Step 1:  To calculate the hourly horizontal diffuse irradiation from measured hourly 

horizontal global irradiation in GOGARBANK, program calculation 4.8 has been used. By 

putting the measured data in the program, hourly horizontal diffuse irradiation has been 

obtained. 

Step 2:  Hourly slope irradiation has been calculated by using inputting the data into 

program calculation 4.10. 

Step 3:  Hourly temperature of Edinburgh has been calculated through equation 45 as 

proposed by ASHARAE (figure 106).  

Equation 45 - Hourly temperature equation 

𝑇𝑎 = 𝑧(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 𝑇𝑚𝑖𝑛 

Where z values are for the diurnal temperature swing in 24 hours proposed by ASHRAE 

which has been presented in figure 94 and maximum and minimum temperature values of 

day 16 of each month has been collect from TUTIEMPO website (10/2015).  The 

performance of the ASHRAE model evaluated with comparing measured hourly 

temperature and computed one in different places and it represented reasonably good 

similarity (Gago et al., 2010). 
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Figure 106 - ASHARAE for diurnal temperature changing (Gago et al. 2010) 

Step 4:  To calculate cell temperature using Normal operating cell temperature (NOCT).  It 

is defined as the cell temperature of a solar module operating in a specific condition as zero 

current, 800 W/m2 irradiation, 20°c air temperature and wind speed of 1 m/s. Here cell 

temperature has been calculated (equation 46) relating to solar irradiation: 

Equation 46 - Cell temperature equation on the basis of global radiation 

𝑇𝐶 = 𝑇𝑎 +
𝐺𝑠𝑙𝑜𝑝𝑒

𝐺𝑛𝑜𝑐𝑡
(𝑇𝑐,𝑛𝑜𝑐𝑡 − 𝑇𝑎,𝑛𝑜𝑐𝑡)(1 −

𝜂𝑠𝑡𝑐

𝜏𝛼
) 

 

Where: 𝑇𝐶 is the cell temperature, 𝑇𝑎 is air temperature, 𝐺𝑠𝑙𝑜𝑝𝑒 is the global slop irradiation, 

𝐺𝑛𝑜𝑐𝑡 is equal to 800 w/m2, 𝑇𝑐,𝑛𝑜𝑐𝑡 is the cell temperature at NOCT, 𝑇𝑎,𝑛𝑜𝑐𝑡 is the air 

temperature at NOCT, 𝜂𝑠𝑡𝑐 is the cell efficiency in standard test conditions (STC), and 𝜏𝛼 is 

the module light absorptivity.   

Step 5:  There are 3 different methods to calculate cell efficiency: 1- from power output and 

available solar irradiation, 2- using the heat flux energy balance, and 3- by using the cell 

temperature. In this instance method 3 was used, in calculating cell efficiency from cell 

temperature a coefficient factor, heat coefficient for power output, is required. This 

coefficient is a value accounting for a drop in power output with an increase in temperature. 

This coefficient is gathered from the manufacturer’s datasheet. The equation (47) for 

efficiency calculation is: 
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Equation 47 - Cell efficiency 

𝜂𝑐𝑒𝑙𝑙 = 𝜂𝑠𝑡𝑐(1 + 𝛼𝑝(𝑇𝑐 − 𝑇𝑐,𝑠𝑡𝑐)) 

Where: 𝜂𝑐𝑒𝑙𝑙 is the cell efficiency   𝜂𝑠𝑡𝑐 is the cell efficiency in standard test condition, 𝛼𝑝 the 

heat coefficient of the cells. 

Step 6: The energy output of the farm in each month, energy output for one square meter 

has been calculated. The area of each cell has been worked out  as 0.0243 m2  and each 

module in the Edinburgh College solar PV farm contains 60 cells, therefore each module 

has a useful area of  1.485 m2 with each module area being  1.62 m2 including margin.  

There are 2560 PV modules in the array giving a net, useful, area of circa 3732.48 m2. By 

using this detail, the energy output for one square metre can be calculated and the overall 

energy output in a specific month has been calculated.   
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4.9 Results 

4.9.1 The three approaches in results 

The shading results will be presented in 2 ways, linear plots and radar plots.  This will 

achieve a clear understanding of the impact of shading on the solar farm.  Table 23 and 

figure 107 show the energy delivery percentage in each month with consideration to different 

approaches is presented with respect to impact of shading on modelled output.  Table 23 

provides a monthly breakdown of energy production of the overall site. 

Table 23 - Shading analysis of three approaches 

 

 

Figure 107 - Shading analysis of the three approaches 
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As presented in table 22 and figure 107 December has the lowest percentage of energy 

conversion power production in the year, with near to half of the energy being lost due to 

shading.  May, June and July are generating at 100% with a further 4 months operating at 

90% or above.  This gives an average of around 90% for the full year.  From this it is clear 

that shading on this site has a significant impact on energy production for one month of the 

year and a further three months where energy delivery is only 70%-80% of maximum 

potential.   

 

4.9.2 Linear plots 

Linear plots have been used here to illustrate the sun’s altitude at two of the 12 critical points 

in the Solar Meadow. The First row-right’s blockage altitude and the eighth row-centre’s 

blockage altitude, on four different days, in each month throughout the year are represented 

by these linear plots and clearly justify the findings of the three approach shading analysis 

undertaken.  

For three months of the year it is clear that Solar altitude is at its highest point at nearly 60° 

which is twice the height of the maximum altitude of the blockages along the southern and 

eastern edges of the meadow.  Figure 108 is an example of one such month, July, and 

clearly shows the differences in altitude in a linear fashion. 

 

Figure 108 - July shading analysis 

December is the worst month in terms of energy delivery, as figure 109 shows, the sun’s 

altitude is at its lowest point above the horizon in the year.  This is as expected but the main 

issue with the 2 points in question is that they are both in shade at all times throughout the 

entire month of December.  This clearly illustrates the poor positioning of the solar panels 
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with respect to the southern and eastern blockages and the impact shading can have on the 

amount of energy produced. 

 

Figure 109 - December shading analysis 

 

Appendix G shows the remaining month’s linear plots and highlights shading impacts 

throughout the year. It can be seen that in most of the hours in January both of the points 

are in shade as the solar altitude is lower than the blockages altitude. In this month the solar 

PV modules also have a shading effect on each other, along with the blockages around the 

site, as the energy delivery at the critical point in the eighth row-centre is only 62%.   

During February the sun’s altitude is increasing and in the last two weeks of the month, 

during the morning, the two points are not in shade as the sun’s altitude is higher than 

blockages altitude. The energy delivery, as a percentage, at the point eighth row-centre 

reaches to 91%, but the first row-right is still low at only 53%. This is a result of the large 

trees that dominate the southern edge having an impact on the first row of solar panels.  

From the second week in March the solar altitude passes 30°and is higher than the 

maximum block altitude which is near to 29°. This means there is an expected increase in 

energy production from March onwards.  In March the energy delivery at the point, first row-

right. reaches 70%.   

In April energy delivery of the two points arrives at 99%, as shown in appendix G.   During 

the times plotted the solar altitude is higher than blockages altitude. As, all the data has 

been collected every seven days, so in this month five days have been investigated.  
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In May 100% of energy is delivered and the plot shows in all the times of the month solar 

altitude is higher than blockages altitude. In June and July the solar altitude remains at its 

highest point above the horizon, near to 60°.  However, during July we do see a slight 

decrease in the energy delivery.  

From the final two weeks of August it appears that the blockages, again, start to impact on 

the  energy delivery of farm.  In September energy delivery of farm has dropped to 95% as 

the sun’s altitude in the sky begins to decrease along with the earth’s tilt away from the sun. 

From the second week of September the first row of solar panels is experiencing shading 

for half of the day, as can be seen in the September plot,  and its energy delivery has 

decreased to 88%. 

During October the energy delivery of farm remained at 88%, until the last week of the month 

when the Sun’s altitude reaches roughly 20° as shown in the October plot.  Finally the 

November plot shows that point, first row-right, is in shade during most of the times 

throughout November. Only during the first week of November is the solar altitude higher 

than the blockages altitude at point eighth row-centre and the energy delivery at this point 

has dropped to 66%. 

 

4.9.3 Radar plots 

A different representation of the sun’s altitude verses the blockages altitude can be shown 

through the use of radar plots.  These plots have also been included for a better visual 

presentation of findings. As shown, in figure 110, the altitude varies as the circle’s radius 

changes and azimuth changes clockwise. Each day is represented by one quarter of the 

radar plot and by three values of solar altitude, the two points, first row-right blockage 

altitude and eighth row-centre, can be evaluated by consideration given to their distance 

from centre. Figure 110 and 111 represent the best and worst months in terms of shading 

impact.  Appendix H shows all remaining months of the year for comparison with the linear 

plots provided.  In essence giving a clear pictorial representation of the impacts of shading 

and the sun’s altitude on the energy delivery of the solar meadow during each month.     
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Figure 110 - July Radar Plot 

 

Figure 111 - December Radar Plot 
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4.10 Energy output of the Solar Farm 

4.10.1 Scenario one 

 

To calculate energy output, two scenarios have been considered and evaluated. In the first 

scenario energy output is on the basis of hourly global irradiation on the 16th day of each 

month and then extended to the monthly value by multiplying that number by the number of 

days on that specific month. Results have been provided in table 24. The total annual energy 

available in the farm is 717,111 kWh and this value after the shading effect is implemented 

will change to 675,943 kWh.  This is 94% of the energy available being delivered. 41,167 

kWh of energy will be lost due to the impact of shading and it is equivalent to a £2,700 

monetary loss in annually. Figure 112 shows these findings in graphical form across the 

year and shows the expected outcome from the energy output with relation to the impact of 

shading outlined in the previous section.  

Table 21 - Energy output scenario one 
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Figure 112 - Energy Output - Scenario 1 
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4.10.2 Scenario 2 

 

In the second scenario, the mean value of hourly horizontal global irradiation for each month 

has been calculated using MATLAB software. Instead of using single day values, the mean 

value of each specific hour, in one day, for whole the month has been calculated. The hourly 

global slope irradiation has been calculated for each month on the basis of the mean values. 

Table 24 and figure 113, show the results related to second scenario. The total annual 

energy available has been estimated as 525,674 kWh, decreasing to 498,776 kWh after the 

impact of shading is applied. 26,898 kWh of energy has been lost due to shading, equivalent 

to £1800 with consideration to FIT scheme of the site. 

Table 22 - Energy output scenario two 

 

 

Figure 113 - Energy output - scenario two 
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4.11 Conclusions 

 

This Chapter set out to research the impact shading, from obstacles around the solar array, 

has, if any, on the solar array at Edinburgh College’s Midlothian campus. The energy 

delivery has been assessed with consideration to the shading effect. Energy production, 

especially in the renewable sector, requires reliable and precise calculations in terms of the 

available source of energy and the net energy production. It is important for installers to 

make the most of available solar sources and to ensure the highest possible energy 

conversion is realised. The installers of the array attributed little to no shading effect on the 

farm during the entire year.  

After an initial inspection of the site, 12 critical points were selected from south, east and 

the centre of the array. All data related to the obstacles around the farm at each critical point 

was collected by the theodolite and for every 30° due east, the height (altitude) of the 

obstacle was recorded for each point. Sun position in the sky (solar altitude and azimuth) 

has been calculated. For each specific azimuth due east, solar altitude (SOLALT) and the 

obstacles height was compared. The duration of shading experienced at each point was 

analysed by taking advantage of sky view factor (SVF) shading model and the relationship 

between the visible area of the sky and the proportion of the sky covered by surrounding 

obstacles was assessed.  

Energy delivery for each month has been calculated on the basis of the energy delivered at 

these points. December has the lowest energy delivery with only 54% with November and 

January second and third lowest with 69 and 70% energy delivery respectively. The energy 

delivery increases gradually until it reaches 100% in May, June and July. The solar PV farm 

at Edinburgh College delivers more than 94% annually when accounting for the impact of 

shade.  

The solar farm’s energy has been calculated by use of the measured 2014 global radiation 

and farm’s PV modules specifications. The available energy in the Edinburgh college solar 

PV farm has been estimated at 525,674 kWh, which, due to the shading effect decreases 

to 498,776 kWh. For this specific installation 95% of the energy is produced in the months 

where energy delivery is higher than 80% and only 5% of energy is produced in the months 

from November through February. The main shading factors have been recognised as the 

trees in the south and south east of the farm.  

This chapter has investigated the importance of solar panel positioning in maximising energy 

delivery, especially at higher latitudes.  The chapter has shown that as solar altitude 
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decreases obstacles and blockages become more of a hindrance and careful planning is 

required to ensure the amount of shading on the panel surface is kept to a minimum.  This 

chapter has presented the impacts of shading on the Edinburgh College Solar Meadow from 

obstacles along the Southern and Eastern edges.  The Solar Meadow delivers 90 – 100% 

energy output for seven months of the year. There is only a single month in the year when 

the energy delivery of the farm drops to around 50% of the expected output.  This chapter 

has shown that shading can have a significant impact on solar PV installations at high 

latitudes, extra care should be afforded in the planning process to ensure maximum potential 

is met through the orientation and positioning of panels. A comparison of Actual, Available, 

modelled and energy output with respect to shading is shown below.  This table (23) shows 

the site suffers from shading as shown in section 4.9.  PV*SOL modelling or a GIS package 

should be utilised to fully appreciate the shading impact across the entire site, not just the 

12 critical points studied in this theses.  This will build a strong picture of the site and shading 

across the array. 

Table 23 Energy output comparison 

Actual Energy 538,388 kWh 

Available Energy 525,674 kWh 

Modelled 560,000 kWh 

Energy output with respect to shading 498,776 kWh 
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Chapter 5 Future plans: Implementation of a solar charging station for e-cars at 

Edinburgh College 
 

5.0 Chapter Summary 
 

One aspect of this study that has provided scope for further research in an array linked, but 

not directly, is around the pedagogical impact of having a resource, such as the solar farm 

studied, on the site of a college campus.  This study has provided a good example of a 

research approach that breaks away from the more traditional University based research 

work.  One of the real advantages of this particular work is the partnership between FE and 

HE institutions (Edinburgh College and Edinburgh Napier University in the case, and 

Industry (SSE). 

This is not an original concept but is one that is not necessarily the norm in the UK. A real 

benefit of this specific site is access to the land, equipment, data and research facility for 

the students, at all times.  The number of partners involved and opportunities this brings to 

study and curriculum, stakeholder involvement and student exposure to industry standard 

technology.  The training opportunities now embedded in the curriculum and the bolt on 

training options now available to students, let alone potential for knowledge transfer and 

upskilling with industry. The sum of the parts is the main output along with the college 

becoming a research active organisation. 

The requirement for the development of higher-level vocational skills within industry, and 

the needs of regional market demands increasingly prioritised by both devolved and national 

governments, has highlighted the need for FE colleges to devise different partnerships with 

HEIs in order to deliver advanced skills training.  Removing the focus on transition through 

FE to HE and providing advanced skills training utilising the benefits of practices already 

associated with FE, could offer opportunities to meet regional and economic requirements 

whilst recontextualising the nature and provision of the higher education offered in FE. There 

are several challenges presented in the pursuit of developing HE in FE and the maintenance 

of partnerships and successful current practices. The intention is not to suggest a 

replacement for HE and HEIs but to add an additional complementary route into valid and 

quality-driven higher education. Ensuring that a distinction is drawn between the respective 

focus and purpose of the alternative routes will provide clarity for employers, students and 

educational providers (Husband and Jeffrey, 2016).  

 

The requirement for universities to continue in the production of high-quality research that 

fuels innovation and knowledge transfer is vital in the development of industry. However, of 



202 

 

equal importance is the recognition of the requirement to focus on higher-level vocational 

routes that allow for skilled implementation of the research outputs. Focusing on advanced 

vocationally based HE delivered in FE, enables the bespoke development of courses and 

apprenticeships that are industry led and directly address the identified skills gaps within the 

current workforce (Scottish Government 2014). 

 

This chapter will present the theoretical next steps the College could undertake to marry two 

active research projects together and present the case for the construction of solar charging 

booths for the Colleges green fleet.  It is important to note at this stage that if the college is 

to succeed in their ambitions of having an offgrid campus it will need to incorporate a number 

of additional measures due to the fact that the installed solar array does not meet 

consumption requirements at the present time.  This issue can be managed in a number of 

different ways however, this chapter introduces an option that could be considered.  Both of 

these projects are curriculum based, active learning research projects where students are 

exposed to real life industry issues.  The impact on student learning is clear, anecdotally, 

but certainly warrants further research and study.  This is an area of suggested work for the 

college going forward and would provide research not currently underway in the sector. 

Given the outlined possibilities by Husband and Jeffrey (2016) for increased access to 

employment opportunities and skills development within the Scottish workforce, perhaps 

there is scope for greater value to be placed on the skills and methods prevalent in FE to 

deliver a vocationally focused HE provision that values the practices of both sectors?  The 

impact on pedagogy in this research warrants further study with potential outcomes open 

of implementation across the curriculum within the college. 

 

 

The college has seen growth in the use of electric vehicles; yet little has been done to 

support a ‘greener’ way to charge them. This chapter aims to determine the optimal 

orientation and inclination of the solar panels according to different designs providing a 

technical and financial analysis as well as an environmental impact assessment of 

Edinburgh College’s Midlothian campus in order to establish the feasibility of such a project. 

 

 

 

 

 



203 

 

5.1 Calculation process: Slope irradiation, cell temperature and cell efficiency 

 

The process to calculate the slope irradiation, cell temperature, and cell efficiency was the 

same carry out in the calculations done for the solar meadow farm; see Section 3.11. 

 

5.1.1 Slope irradiation 

 

The methodology followed in this section was the same as that used in Section 3.11.  The 

different steps to reach the slope irradiation were carried out using a software programme 

adapted directly from Windows in Buildings (Muneer et al., 2000). Some modifications to 

the software programme relating to the process of calculating the diffuse irradiation, were 

carried out and the slope irradiation was calculated according to different tilt angles in order 

to find the optimal orientation and inclination for solar panels at the Midlothian Campus. 

 

To calculate the diffuse irradiation, a new diffuse ratio (k) was used according to the article 

‘Monthly averaged-hourly solar diffuse radiation model for the UK’ (Muneer et. al 2014). 

Figure 114 shows the relation between the diffuse ratio (k) and the clearness index (kt), 

showing a single regression curve for United Kingdom. 

 

Figure 114 - Monthly-average hourly k-kt plot for UK (locations arranged in an increasing 
order of latitude). (Muneer et.al. 2014) 
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To analyse the optimum inclination, the annual slope irradiation for tilt angles between 0° 

and 55°facing south and east-west was evaluated. Table 24 shows the angles and 

orientations considered for the theoretical study. 

 

Table 24 - List of angles and orientations to be studied 

 

Equation 48 was used to establish the resulting regression model (Gago et al.,2010): 

Equation 48 

 

𝑘 = 0.89𝑘𝑡
2 − 1.185𝑘𝑡 + 0.95 

 

 

5.1.2 Cell temperature 

Cell temperature was calculated according to equation 13 and the PV module selected to 

carry out the calculations was an ASP-400GSM monocrystalline, which is a good option 

given the technical specifications shown in Table 25. 

Table 25 - Technical specifications of PV module 

 

 

The cell temperature was calculated according to different scenarios (different tilt and 

azimuth angles) in order to ascertain if the variation of temperature from one tilt and azimuth 

position to another would be significant or not. 

The angles utilised to obtain the cell temperature for every month and every hour were as 

follows: 

South orientation, α = 30°, α = 40°, and α = 50° 

West-east orientation, α = 0°, α = 30°, α = 40°, and α = 50° 
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Table 26 shows the cell temperature for the PV module facing south at 40°.  The cell 

temperature will be different from the hourly temperature only during the hours when 

radiation is emitted (coloured cells in the tables). 

 

Table 26 - Cell temperature - PV module facing south at 40° 

 

 

5.1.3 Cell efficiency 

The equation used to calculate the cell efficiency is equation 11. Finally, the average cell 

efficiency according to different tilt and azimuth angles had a value of 16.2% 

 

5.1.4 Design of the solar charging station: First phase 

In the first phase of the design, three different designs with different shapes were analysed 

(see Figures 103 – 105) to establish, for each case, the total energy output generated, the 

number of panels and the geometry required. This information will be essential in 

determining which design would be the most suitable for a solar charging station in terms of 

annual solar energy available and feasibility. To start with an area of 400 m², 20 × 20 m was 

considered for building the solar charging station. 

 

5.1.5 Design 1: South orientation 

The tilt angles studied for this design were 30°, 40°, and 50°. All dimensions, the number of 

PV modules that may be installed on the roof, the annual energy generated, and the slope 

irradiation of this facility (Figure 115) for different tilt angles are presented in Table 27. 
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Figure 115 - South facing design. Based on Formfonts, 2016. 

 

Table 27 - Main characteristics of Design 1 

 

5.1.6 Design 2: East-west orientation 

In the second design, figure 116, half of the panels will be facing west, and the other half 

will be facing east. The tilt angles studied for this design were 0°(facing any orientation), 

30°, 40°, and 50°. All the relevant data for this designs is shown in Table 28. 
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Figure 116 – East - West facing design. Based on Formfonts, 2016. 

 

Table 28 - Main characteristics of Design 2 

 

 

Design 2A yields the maximum slope irradiation for this orientation (east - west) but with the 

drawback that the number of panels to be installed is the lowest. As a general observation, 

it could be said that this V-shape design is less efficient than that of the south-facing designs 

but it allows for half the height with the same number of panels thus improving the ease of 

installation and reducing the overall costs. 

 

The worst design presented, 2D, in comparison with design 1C, the energy generated is 

24% lower in this design. In design 1C, the total energy obtained was 103.7 MWh/yr 

compared with 78.6 MWh in design 2D. However, if 2D is compared with the previous 

designs in terms of height, 2D with the same height as design 1A, generates the same 

amount of energy, but the uses more PV modules (240 instead of 180). Therefore, making 

it more expensive. 
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5.1.7 Design 3: East-West orientation 

For the third design, Figure 117, shows a curved design and heights of 10 and 5 m were 

reviewed. As the roof is curved, each string of PV modules will be placed at different angles; 

in order to determine the orientation of each string of PV modules and calculate the number 

of strings, some designs were created in AutoCAD (see Figures 118 and 119). Table 29 

presents the main characteristics of the two heights noted above. 

  

Figure 117 – East - West facing curved design. Based on Formfonts, 2016. 

 

 

Figure 118 - Design 3A—Orientation of PV modules on the roof.  
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Figure 119 - Design 3B—Orientation of PV modules on the roof. 

 

 

 

 

Table 29 - Main characteristics of Design 3 

  

ᵅThe height of the solar roof could be any with an area of 400 m2. 
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5.1.8 Design summary 

The results are summarised in table 30 which is arranged according to the shape of the 

design, tilt angle, number of panels used, slope irradiation, generated energy per year, and 

height of the solar canopy. To carry out the second phase of the design, some specifications 

were defined according to the results shown in Table 30; for example, the maximum height 

for the facility is 8.5 m (keeping it below the height of the campus workshop area, which is 

the lowest roof height in the campus); therefore, designs 1A, 1B, 1C, 2C, 2D, and 3A were 

rejected from the first round of design options.  This leaves design 2B &3B the only available 

options with canopy heights of 8.3m and 7.5m respectively. 

 

Table 30 - Data collated from all designs—first design phase 

 

 

This next section covers the next phase of design, where both the designs chosen will be 

studied further and adaptations suggested to optimise the carport.  

 

5.1.9 Design of the solar carport: Second phase 

In the second phase of design, it was important to review Edinburgh College’s Midlothian 

campus, located in the Dalkeith and suggest how new carports could be designed according 

to the available space. Figure 120 shows the area available where the facility could be 

installed. The carpark to the left of the building is an area in which infrastructure is already 

in place with carpark spaces and electric vehicle chargers already installed.  This has the 

benefit of keeping potential costs low as site preparation will not need to be undertaken. 
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Figure 120 - Edinburgh college—Midlothian Campus. From Google maps. 

 

Two aspects have been taken into account: the area of the car park and its accessibility. 

Generally speaking, the dimensions of a standard parking space are 2.4 m width and 4.8 m 

depth (Jackson, 2016). 

 

5.1.10 Design 4: South orientation 

In the initial design phase, all of the south-facing designs were rejected due to their heights 

exceeding the maximum height permitted; therefore, the aim of this secondary phase of the 

design is to reduce this height with new models by: 

 Decreasing the inclination of the roof 

 Modifying the width and length of the area, maintaining a consistent area of 400 m² 

 

Figure 121 - Area selected for designs 4A & 4B, from Google maps. 

 

For a southern orientation, three variations of designs were created. The first with an area 

of 80 × 5 m, the second one with an area of 40 × 10 m and the third one with the dimensions 

established in the first phase, 20 × 20 m, solving the previous problem by decreasing the 

height of the solar carport.  Based on this, the geometrical dimensions of the solar roof and 
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energy output (MWh/yr), slope irradiation (kWh/m²), and number of PV modules will be 

calculated (figure 121). 

 

Design 4A 
This design consists of a string of parking spaces with an area of 80 × 5 m. The tilt angles 

studied were 30°, 40°, and 50°. The geometry of this design and further calculations for the 

following angles are shown in Table 31 and can be seen in figure 122. 

Table 31 - Relevant data for the Design 4A 

 

 

Figure 122 - Area to place the designs 4A. Modified from Google maps. 

 

 

Design 4B 
This design will consist on a double string of parking spaces with an area of 40 × 10m; see 

Figure 123.  For this area, an canopy inclination of >30° will not be possible due to the height 

exceeding the maximum height permitted, therefore, the angles analysed were 20° and 30° 

Table 32. 

Table 32 - Relevant data for the Design 4B 
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Figure 123 - Area to place the design number 4B. Modified from Google maps. 

 

Design 4C 
 

The area chosen to install this solar carport design is shown in Figure 124 located in the 

main carpark at the campus. As shown in Table 33, tilt angles >15° will not be permissible 

due to the roof height being >6 m. 

 

Table 33 - Relevant data for the Design 4C 

 

 

 

Figure 124 - Area to place the design number 4C, Modified from Google maps. 
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5.1.11 Design 5: East-west orientation 

In this solar carport design, the panel orientation will be facing east-west and for this reason 

a new design was created.  The height of the carport was minimised whilst the energy 

production was maximised. For this design the most suitable tilt angle was 0°, and the 

design would look like the diagram shown in figure 125.  

 

Figure 125 – Diagram of design 5 

 

The area chosen to locate this design is shown in Figure 126 and was developed with 

potential canopy panel angles of 30°, 40°, and 50°.  Table 34 summarises the most relevant 

data including the dimensions of the facility, total number of PV modules, and total output 

by all PV modules. 

 

Table 34 - Relevant data for the Design 5 
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Figure 126 - Area to place the design 5 Modified from Google maps. 

6.1.12 Design 6: East-west orientation 

Figure 127 details the different areas chosen within the main carpark of the campus to 

support design 6.  Area A has dimensions of 40 × 10 m and area B’s dimensions being 67 

× 6 m. Heights of 5m and 3m were chosen for these designs. 

 

Figure 127 - Area to place the designs 6. Modified from Google maps. 
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Design 6A 
In this design 2 canopy heights were reviewed, table 35 details the most relevant data for 

the two heights, 6AA and 6AB. 

 

Table 35 - Relevant data for Design 6A 

 

 

For a height of 5m, the tilt angle of each string of PV modules was calculated with AutoCAD 

as shown in Figure 128. 

 

Figure 128 - Design 6AA—Orientation of PV modules on the roof 
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Figure 129 shows a representation of a life-size solar carport based on design 6A with a 

canopy height of 5m.  In this case, the roof can accommodate 12 strings of PV modules and 

20 PV modules along its 40 m of length, totalling 240 PV modules. 

 

Figure 129 – representation of design 6A 

 

For a height of 3 m, the canopy can only be divided into nine parts; the inclination angles for 

the PV modules are shown in Figure 130. 

 

 

Figure 130 - Design 6AB—Orientation of PV modules on the roof. 
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5.2 Summary of results by design shape for the first and second phase 

Table 36 summarises all the designs developed in the first and second phase of the design, 

disregarding the designs height over 8.5 m. This table shows all the relevant data in order 

to choose the best design for the project. 

Table 36 - Summarized data table of all possible designs 

 

aThis height includes the minimum height of 2.5 m. 

bStrings of PV modules oriented at different tilt angles. 

5.2.1 Design Review 

Among all the designs proposed in the table above, the most effective designs were those 

facing south, in particular designs 4AB and 4 AC. These designs feature the best total 

energy output and consisted of only a single row of cars, which allows for an increase in the 

tilt angle of the canopy in order to obtain better slope irradiation. From these two designs, 

design 4AB has better features in terms of height, around 1.8 m lower than design 4AC, and 

because this southern orientation, at 40°, being the most efficient. This results in benefits 

including the amount of energy produced. Therefore, the optimal design is proposed to be 

the design 4AB facing south at 40°.  It is also worth mentioning that southern orientation 

may not always be the most optimal for solar carports; account must be taken of the existing 

solar carport layouts or the shadows cast by blockages in the surroundings such buildings 

or foliage as is evident from the research carried out in chapters 3 and 4 of this thesis. For 

example, according to Table 38, for an east-west orientation, the best design for the solar 

carport would be design 5B, which would generate 64.5 MWh/yr. 

 

5.2.2 Characteristics of the chosen design 

The optimal orientation for the modules in the chosen design, 4AB, is horizontally as shown 

in Figure 131.  This allows for more PV modules to be installed, maximising the space and 
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therfore generating more output.  The dimensions of the carport are 403m² and the roof area 

of 526.5 m². 

 

 

Figure 131 - Horizontal positions of the PV modules 

Design 4AB with southern orientation at 40° consists of 200 PV modules rated at 400Wp 

placed horizontally in a roof area of 526.5 m². This design can generate 87.96 MWh/yr as it 

receives a slope irradiation of 1044 kWh/ m². The installed capacity is 80 kWp in theory.  

Taking into account that the standard car parking area for a single car is 4.8 × 2.4 m, as the 

proposed facility has a ground area of 79.5 × 5.07 m, this solar charging station will be able 

to provide space for 33 vehicles. The solar carport has a minimum height of 2.5 m and a 

maximum height of 6.7 m. Figure 132, 133 and 134 present how the facility would look with 

real dimensions. 

 

 

Figure 132 - Solar carport, rear view 
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Figure 133 - Solar carport, front view. 

 

Figure 134 - Full view of the solar carport. 

 

5.2.3 Design of the PV system 

This section deals with the hardware required for the proposed design 4AB including the 

type and number of inverters, PV modules, charger stations, and its connection to the grid. 

 

5.2.4 Selection of the inverter 

The chosen inverter was a TRIO-20.0-T, as used within the Solar Meadow at the College, 

with a maximum power input of 20 kW and a peak efficiency rating of 98.3% (Power-One, 

2016) see appendix B. In order to calculate the number of inverters needed by the facility, 

an example provided by SMA called ‘Example Design of a PV Array’ (SMA, 2016) was used. 
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Table 37 - Temperature conditions 

 

PV modules per string and maximum number of strings required along with the temperature 

data for Edinburgh, see table 37, are required to perform the following calculations.  

Equation 49 was used to calculate the maximum open-circuit voltage of the PV module, 

which had a value of 65.3 V, the open-circuit voltage of the PV module being 59.62 V, the 

voltage temperature coefficient being _0.4%/°C, and the temperature at STC and minimum 

ambient temperature being _23.8°C: 

 Equation 49 

𝑉𝐷𝐶𝑚𝑎𝑥𝑀𝑂𝐷 =  𝑉𝑂𝐶 (1 +  
𝑇𝐷𝐶𝑈𝑜𝑐𝑀𝑂𝐷 ×  ∆𝑇𝐿𝑂𝑊

100%
) 

where 

- 𝑉𝐷𝐶𝑚𝑎𝑥𝑀𝑂𝐷: maximum PV module voltage 

- 𝑉𝑂𝐶: open-circuit voltage of the PV module 

- 𝑇𝐷𝑈𝐶𝑜𝑐𝑀𝑂𝐷: voltage temperature coefficient 

- 𝛥𝑇𝐿𝑂𝑊: temperature at STC and minimum ambient temperature (Tcellmin-Tstc) 

 

The open-circuit voltage decreases as temperatures rises. The minimum PV module open-

circuit voltage is calculated with Equation 50,  where the value of the voltage of the PV 

module at maximum power is 49.25 V and the temperature at STC and maximum cell 

temperature is 7°C, the result of the minimum PV open circuit voltage being 47.87 V: 

Equation 50 

𝑉𝐷𝐶𝑚𝑖𝑛𝑀𝑂𝐷 =  𝑉𝑚𝑝𝑝 (1 + 
𝑇𝐷𝐶𝑈𝑜𝑐𝑀𝑂𝐷 × ∆𝑇𝑚𝑎𝑥

100%
) 

 

where 

- 𝑉𝐷𝐶𝑚𝑖𝑛𝑀𝑂𝐷: minimum PV module voltage 

- 𝑉𝑚𝑝𝑝: voltage of the PV module at maximum power 

- ∆𝑇𝑚𝑎𝑥: temperature at STC and maximum cell temperature (TmaxMOD-Tstc) 

 

The PV modules within a string will have the same current as the string because they are 

placed in series. Equation 51 was used to calculate the maximum PV module current, which 
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had a value of 8.39 A, the short-circuit current of the PV module being 8.42 A, and the 

current temperature coefficient being 0.05%/°C: 

Equation 51 

𝐼𝐷𝐶𝑚𝑎𝑥𝑆𝑇𝑅 =  𝐼𝑆𝐶 (1 +  
𝑇𝐷𝐶𝐼𝑜𝑐𝑀𝑂𝐷 ×  ∆𝑇𝑚𝑎𝑥

100%
) 

 

where 

𝐼𝐷𝐶𝑚𝑎𝑥𝑆𝑇𝑅: maximum string current 

𝐼𝑆𝐶: short-circuit current of the PV module 

𝑇𝐷𝐶𝐼𝑜𝑐𝑀𝑂𝐷 : current temperature coefficient 

 

 

 

 

 

The maximum string voltage must not exceed the maximum permitted system voltage of the 

photovoltaic modules. The maximum number of modules per string is 15 as per equation 

52, with the maximum input voltage of the inverter being 1000 V: 

Equation 52 

𝑛𝑚𝑎𝑥𝑀𝑂𝐷𝑆𝑇𝑅 ≤  
𝑉𝐷𝐶𝑚𝑎𝑥𝐼𝑁𝑉

𝑉𝐷𝐶𝑚𝑎𝑥𝑀𝑂𝐷
 

where 

𝑛𝑚𝑎𝑥𝑀𝑂𝐷𝑆𝑇𝑅: maximum number of PV modules per string 

𝑉𝐷𝐶𝑚𝑎𝑥𝐼𝑁𝑉: maximum input voltage of the inverter 

 

Equation 53 shows the calculation to obtain the minimum number of PV modules per string 

that should be installed would be 9 with the minimum MPP voltage of  the inverter being 450 

V.  

Equation 53 

𝑛𝑚𝑖𝑛𝑀𝑂𝐷𝑆𝑇𝑅 ≤  
𝑉𝐷𝐶𝑚𝑝𝑝𝑖𝑛𝐼𝑁𝑉

𝑉𝐷𝐶𝑚𝑖𝑛𝑀𝑂𝐷
 

 

where 

𝑛𝑚𝑖𝑛𝑀𝑂𝐷𝑆𝑇𝑅: minimum number of PV modules per string 

𝑉𝐷𝐶𝑚𝑝𝑝𝑖𝑛𝐼𝑁𝑉: minimum MPP voltage of inverter 
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The optimum number of strings per array must not be less than the minimum number of 

strings and must not exceed the maximum number. In order to avoid system damage, such 

as current surge, it is important not to choose the maximum number of strings. Therefore, 

the number of PV modules per string is calculated as follows: 

 

𝑛𝑚𝑖𝑛𝑀𝑂𝐷𝑆𝑇𝑅 ≤  𝑛𝑀𝑂𝐷𝑆𝑇𝑅  ≤  𝑛𝑚𝑎𝑥𝑀𝑂𝐷𝑆𝑇𝑅 

where 𝑛𝑀𝑂𝐷𝑆𝑇𝑅   is the number of PV modules per string. 

 

Therefore; 

9 ≤ 15 ≤ 15 

 

 

In knowing the value of the power of the inverter, 20,000 W, and the maximum power of the 

PV modules, 400 W, the minimum and maximum number of strings needed to achieve the 

total power can be calculated. The minimum and maximum number of strings required, 

according to Equations 54 and 55 was the same in each equation: 

Equation 54 

𝑛𝑚𝑖𝑛𝑆𝑇𝑅 =  
𝑃𝐷𝐶𝐺𝐸𝑁

𝑃𝑚𝑎𝑥𝑀𝑂𝐷 × 𝑛𝑀𝑂𝐷𝑆𝑇𝑅
 

Equation 55 

𝑛𝑚𝑎𝑥𝑆𝑇𝑅 =  
𝐼𝐷𝐶𝑚𝑎𝑥𝐼𝑁𝑉

𝐼𝐷𝐶𝑚𝑎𝑥𝑆𝑇𝑅 
 

 

where 

𝑃𝐷𝐶𝐺𝐸𝑁: power of the inverter 

𝑃𝑚𝑎𝑥𝑀𝑂𝐷 : maximum power of the PV modules 

 

The optimum number of strings per array must not be less than the minimum number of 

strings and must not exceed the maximum number: 

𝑛𝑚𝑖𝑛𝑆𝑇𝑅  ≤ 𝑛𝑆𝑇𝑅𝐶𝐻𝑂𝑂𝑆𝐸  ≤ 𝑛𝑚𝑎𝑥𝑆𝑇𝑅 

Therefore; 

3 ≤ 3 ≤ 3 

The number of PV modules connected to a single inverter and the total number of inverters 

required can be calculated using equations 56 and 57 and ensuring that the maximum 

voltage and current values of the string do not exceed the maximum voltage and current 

values of the inverter.  
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Equation 56 

𝑉𝐴𝑟𝑟𝑎𝑦 = 𝑉𝐷𝐶𝑚𝑎𝑥𝑆𝑇𝑅 = 𝑛𝑀𝑂𝐷𝑆𝑇𝑅  ×  𝑉𝐷𝐶𝑚𝑎𝑥𝑀𝑂𝐷 

Equation 57 

IDCmaxSTRarray = 𝑛𝑆𝑇𝑅 × 𝐼𝐷𝐶𝑚𝑝𝑝𝑀𝑂𝐷
 

 

Once this has been calculated, the total number of PV modules connected to a single 

inverter can be obtained. 

From these calculations,  the maximum number of strings is 13 and that each string consists 

of 3 modules, the total number of PV modules connected to a single inverter will be 39.  

Design 4AB chosen had 200 PV modules, so if an inverter can be connected to 39 PV 

modules, the total number of inverters that the facility would need would be: 

 

𝑛𝑇𝑂𝑇𝐴𝐿𝐼𝑁𝑉 =  
200

39
= 5.1 ~ 5 𝑖𝑛𝑣𝑒𝑟𝑡𝑜𝑟𝑠 

 

5.2.4 Selection of the PV module 

See Section 5.1.2 

 

5.2.5 Selection of the charging station 

There are three main types of EV chargers (Jackson, 2016):  

1. Slow charging (up to 3 kW), suitable for charging during 6–8 h overnight. 

2. Fast charging (7–22 kW) that can fully recharge some models in 3–4 h. 

3. Rapid charging (43–50 kW), able to provide an 80% charge over 30 min. They can 

be used in AC or DC connected configurations. 

 

The charging station chosen for the facility was a twin rapid charger CHAdeMO, an AC rapid 

charger. This type of charger is currently installed at Napier University, figure 135, and 

features a charge time of around 1 hour which results in enough charge to allow for an 80 

mile range from 1 hour of charging. Table 38 shows the charging times for a Renault Zoe. 

For the proposed facility, three twin rapid charger stations were installed. 
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Table 38 - Charging times for Renault Zoe 

 

 

 

 

Figure 135 - Rapid charger CHAdeMO at Napier University. (Plugshare 2016) 
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5.2.6 Layout 

The PV carports will be connected to the grid; as shown in figure 136 below.  This diagram 

outlines how the connection of the PV system to the grid. Battery storage is not considered 

in this grid connection as the purpose is to store the generated electricity in the electric 

vehicles battery.  This creates an advantage of reducing the costs of not requiring battery 

storage in the connection to the grid. 

 

Figure 136 - Typical grid-connected PV system without battery storage From Narayan, N. 

(2013). Solar charging station for light electric vehicles. A design and feasibility study. 

Master of Science Thesis. Delft University of Technology. 

Figure 137 shows the circuit diagram of the proposed 80 kW solar carport facility. It has 

been divided into five arrays, each made up of 39 PV modules rated at 400 Wp connected 

to the inverter that converts DC power from the PV modules into AC power. The facility will 

be connected to the national grid through a transformer. 

 

 

Figure 137 - Schematic circuit diagram of the 80kWp facility. 
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5.2.7 Driving behaviour 

This next section will aim to calculate the average driving distance by a single vehicle in a 

day and the average energy consumption of the vehicle per day. To achieve this, a report 

called ‘Energetic, environmental and economic performance of electric vehicles: 

Experimental evaluation’ (Muneer et al., 2015) is used to gain the required information. 

 

5.2.7.1 Review of average driving distance and trips undertaken 
According to the Department for Transport, in 2014, individual people, in England, travelled 

around 6500 mi annually (covering all means of transport), where cars accounted for 78%, 

i.e. the number of miles travelled by car was around 5067 (8107 km) per year (Department 

for Transport, 2015). Therefore, the average trip length per car and per person would be of 

around 22 km, while in Scotland, the average car journey per person, also in 2014, was 20.8 

km (Transport Scotland, 2015). 

 

Trips in progress by time and day in the UK 
Figure 138 below shows the number of journeys with a vehicle along the day during 

weekdays and weekends. As shown, peak journeys take place around 8 a.m. and 4 p.m. 

 

Figure 138 - Trips by time of day and day of week. From Department for Transport (2015). 

(National travel survey 2014) 

 

According to the National Travel Survey, education and work have a big impact on travel 

patterns, because it is the time when people go to work and school and come back home; 

Figure 139 shows an alternative view of trips made by vehicle and categorises the events 

into trips such as leisure, most of that at weekends; shopping, most shopping trips are made 
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between 9 a.m. and 3 p.m. and one-fifth on Saturdays or commuting; and business where 

68% of the trips start between 6 a.m. to 9 a.m. and 4 p.m. to 7 p.m. 

 

Figure 139 - Trips in progress by start time and purpose, Monday to Friday.(National travel 
survey 2014) 

 

5.2.7.2 Estimation of energy consumption by electric vehicles 
Obtaining information relating to energy consumption by electric vehicles can be carried out 

simply, by analysing and calculating the number of best-selling electric cars in the United 

Kingdom and, based on the manufacturer’s datasheets, calculate the average energy 

consumption of the cars. However, the energy consumption specified by the manufacturer 

rarely matches the reality of actual road conditions, therefore, based Muneer et al.(2015), it 

was decided to take the data from this report instead of any manufacturer’s data to improve 

the accuracy of this theoretical research. 

 

 

Car model: Renault Zoe e-car 
The French manufacturer Renault introduced their e-car Zoe in the year 2013. Edinburgh 

Napier University obtained the very first model that was made available. In this study, the 

Renault Zoe e-car was used for an experimental evaluation, where the speed and energy 

were recorded in a journey from Morningside to Leith. To calculate the consumption per 

kilometre (kWh/km) of this car, information about time, speed, and altitude of this journey 

was required, which was being logged at specific times during the test drives. 

With this data collected, the next step was to calculate the driven distance in metres, the 

gradient in radians (angle of inclination), and the acceleration in metre per second squared 

of the car. Once these unknown quantities are known and some data from the Renault Zoe 

car, table 39, and equation 58 is utilised to calculate the energy consumption by a single 

car: 
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Table 39 - Data Renault Zoe e-car 

 

 

Equation 58 (Walsh et. al. 2011) 

 

𝐸 =  [𝜇𝑚𝑔𝐶𝑜𝑠𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 + 
1

4
𝐶𝑑𝐴𝑝(𝑣𝑓

2 + 𝑣𝑖
2 )] ∆𝑑 +  

1

2
𝑚(𝑣𝑓

2 + 𝑣𝑖
2) 

 

This equation takes the following into account: 

- Tyre friction: [𝜇𝑚𝑔𝐶𝑜𝑠𝜃] ∆𝑑 

- Hill climbing: [𝑚𝑔𝑠𝑖𝑛𝜃] ∆𝑑 

- Wind drag: [
1

4
𝐶𝑑𝐴𝑝(𝑣𝑓

2 + 𝑣𝑖
2 )] ∆𝑑 

- Change in kinetic energy: 
1

2
𝑚(𝑣𝑓

2 + 𝑣𝑖
2) 

The most relevant features of the Renault Zoe for all calculations are shown below 

where 

A: front area of the car 

g: gravity 

μ: friction coefficient 

ρ: air density 

m: weight 

Cd: aerodynamics coefficient 

By applying the time, speed, and altitude data and the manufacturer’s data, Table 41, the 

amount of energy consumed during the different types of driving such as acceleration, 

cruise, and deceleration can be calculated. 

 

The breakdown of events during a driving episode is illustrated in Figure 140 and shows 

that 47% of the driving episode is spent decelerating; in this drive mode energy is generated 

instead of consumed due to regenerative braking and engine braking, where 27% of that 

deceleration is due to a descending gradient which results in a greater potential for energy 

recovery (Walsh et.al. 2011). 
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According to the study conducted by Muneer et al. (2015), the Renault Zoe was reported to 

have a power usage 12% higher than the manufacturer’s values. The analyses shows that 

the average energy consumption by a single car, the Renault Zoe, was 0.164 kWh/km 

compared with 0.146 kWh/km (Muneer et al., 2015).  The purpose of studying the driving 

behaviour has been to estimate how much energy an electric car could use in a day. As the 

carport is going to be placed in Edinburgh, the average number of kilometres travelled by 

car per day is 20.8 km, as noted through Transport Scotland’s data (2015). 

 

Figure 140 - Driving episodes in Edinburgh City (Walsh, J., Muneer, T., & Celik, 2011) 

 

With this data equation 59 can be used to to calculate the energy consumption per day for 

this specific car. 

Equation 59 

E = km travelled by car per day × Energy consumption = 3:41kWh/day 

 

 

5.2.8 Number of vehicles to be charged during a day by the solar carport 

The average daily slope irradiation per year in Edinburgh is circa 2.85 kWh/m², the 200 PV 

modules of the carport could generate a potential daily output of 240.08 kWh/daily as shown 

through the use of equation 60 (Muneer, 2017). 

Equation 60 

𝐸𝑑𝑎𝑖𝑙𝑦 =  𝐴𝑚 𝜂𝑠𝑦𝑠 𝐼𝑡𝑖𝑙𝑡  𝑁𝑜.𝑃𝑉 = 240.08 𝑘𝑊ℎ/𝑑𝑎𝑖𝑙𝑦 

 

According to Section 5.2.7, the consumption of a car was estimated to be 0.164 kWh/ km; 

therefore, with 1 kWh, a car could drive 6.1 km or 3.8 mi. Thus, with an amount of energy of 

240.08 kWh generated by the facility daily, 912.3 mi could be driven in a day. If the average 
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trip per passenger by car was 20.8 km or 13 mi in a day (Muneer T, et.al. 2017), a total of 

70 cars could be charged. Therefore, the energy consumption for these 70 cars per day 

would be 238.7 kWh, the energy that a car consumes per day being 3.41 kWh. 

 

5.3 Energy production and energy consumption by the carport 

 

The monthly energy production and energy consumption for the carport is estimated in figure 

131 for an entire year. 

 

Figure 141 - Energy production vs. Energy consumption. 

Figure 141 shows that during the months of January and December, the energy produced 

by the solar carport does not meet the expected demand. This correlates to findings from 

the earlier research studies highlighting lowest generation within the solar meadow in the 

same months.  This problem could be mitigated due to the national grid connection.  So, 

during the months where the carport does not generate enough energy the grid can feed 

the charging of electric vehicles and when the carport generates energy in excess; this 

energy can be sold back to the national grid. 

 

5.4 Load profile 

In order to model the monthly energy consumption used by electric cars, it is necessary to 

create a load profile that simulates the load behaviour. The number of electric vehicles that 

could be charged was defined in the previous section. This load behaviour can be simulated 

based on trips made during a day according to the journey and peak times, as mentioned 

in Section 5.2.7. However, as this solar charging station is located at the college, it is difficult 

to estimate how the load would change over the months and throughout the year, because 
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staff & students usually do not come and go at the same times, such as during holiday 

periods.  

It was therefore decided to define the range of hours when the vehicles could be charged, 

estimating that this energy supply would be constant in that period, therefore simplifying the 

load profile. The hours range chosen for charging the vehicles was between 07:00 to 22:00, 

these are the opening hours of the college so will capture the most traffic. Figure 142 and 

143 show the energy consumption of the 70 cars and the energy generated by the carport 

during the months of March and May. 

 

Figure 142 - Consumed and generated energy in March. 

 

Figure 143 - Consumed and generated energy in May. 

Figures 132 and 133 show the potential energy generated will vary month to month and 

meet the demand for charging for longer periods throughout the day during the months the 

solar azimuth is higher as shown in the findings in chapter 4. 
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5.5 Financial analysis 

The economic viability of the solar carport facility needs to be ascertained prior to making a 

recommendation. In order to do so a study of the market situation was undertaken, a 

financial plan was developed for three different scenarios: the first scenario for the present 

year 2017; the second scenario for 2020, the year Edinburgh College could implement the 

project, and the third scenario based on unsubsidised generation. Various methods are 

reviewed such as payback period time, net present value (NPV), internal rate of return (IRR), 

and the debt-service coverage ratio (DSCR) were studied to determine the feasibility of the 

project, made even more pertinent in terms of the funding changes and challenges outlined 

in chapter 2. 

 

5.6 Scenario 1 

This scenario will be developed with reference to 2017. 

Expenses: Operating Expenditure (OPEX) and investment costs 

In OPEX the main components of a carport are PV systems, canopies, frames, and 

foundations. The budget needed for the investment (80kWp of installed capacity) is 

presented below, with a breakdown of all components of the PV facility. All the data used 

for this analysis were taken from a study published by Fraunhofer Institute for Solar Energy 

Systems entitled ‘Current and Future Cost of Photovoltaics’ (ISE, 2015). The total operating 

expenditures were found to be 15.4 £/kWp. These costs were categorised and are shown 

in Table 40.  From this table the operational expenses for this 80kWp solar carport facility 

will be £1232 per year. 

Table 40 - Operating expenditures for 2017 

 

The investment costs of the carport represent the measurable technical factors in the money 

involved in the production. For the proposed facility, it will be necessary to take into account 

the costs for the following: 

 PV modules 

 Inverters 

 Balance of system 

 Charging station 
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Frames and foundations 

The balance of system cost includes the cost of the installation, mounting system, 

infrastructure, transformers, grid connection, wiring, planning and documentation (ISE, 

2015), mounting structure, and grid connection accounting for the most expensive cost.  The 

cost breakdown as a percentage for the proposed carport and the breakdown of the balance 

of costs are shown in Figures 144 and 145.  

PV modules, inverters, and balance of system costs are based on a ground-mounted PV 

plant; therefore, charging stations, frames, and foundations costs are not included in this 

document. Presently, the charging stations are manufactured by the staff of Edinburgh 

College at an approximate cost of £600. Three chargers and the frame and foundation costs 

were estimated to be around £200/kWp (Jackson, 2016).  

 

 

 

Figure 144 - Main costs distribution 
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Figure 145 - Balance of System costs distribution. 

 

Table 41 details the breakdown of the distributed costs and the total expenses of the carport 

is £90,832, £1232 from operational expenses annually and £89,600 from the initial 

investment. 

 

Table 41 - Detailed cost distribution 
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Indicative revenues for the proposed installation 

Revenue can be obtained through a variety of methods, as outlined in chapter 2, and for 

simplicity the following have been selected for this proposed installation: 

Feed-in tariffs 

Selling the electricity generated to the electric car fleet 

 

Feed-in tariff (FIT) earnings The feed-in tariff applicable to the proposed facility was 2.70 

p/kWh, and the export tariff was 4.85 p/kWh (Ofgem.gov.uk, 2016). It is important to note 

that if the facility capacity of the project is below 50 kW, the payments from FIT will be much 

better, 4.59 p/kWh instead of 2.70 p/kWh (Ofgem.gov.uk, 2016). According to Ofgem, the 

FIT payments will last for 20 years for PV system (Recc.org.uk, 2016). The total energy 

generated for the facility in the first year is suggested to be 87.96 MWh; thereafter, the PV 

modules will suffer a degradation of 0.4% per year (Stu, 2014), and the generating potential 

of the carport will reduce annually. 

 

Selling the electricity generated to the electric vehicles fleet In order to sell the 

electricity to the electric vehicles, consideration was given to the possibility of setting two 

different pricing options, peak and off-peak. 

The estimated hours during which the vehicles are going to be charged is between 8:00–

21:00. During this period, from 8:00 to 9:00 and from 18:00 to 21:00, the cost of electricity 

is suggested to be 18 p/kWh, during this period most of energy should be bought from the 

grid due to low generation capacity, and therefore creating an additional cost. For the 

remaining hours, the price of the electricity would remain at its present value, 12 p/kWh, 

which means that 70% of the total time the price of electricity would be lower, benefitting the 

consumers. 

 

5.7 Scenario 2 

This scenario has been developed for 2020, where the feed-in tariff will likely be a lower rate 

but the PV system costs is also expected to decrease and should offset one another.  

Expenses: Operating Expenditure (OPEX)  and investment costs 

According to the study published by Fraunhofer Institute for Solar Energy Systems, by 2050, 

the OPEX will have been reduced to 7.7 £/kWp (ISE, 2015). The estimation for 2020 is 14.1 

£/kWp as per table 42.  The operating expenditure for this scenario is estimated to be £1,128 

in 2020. 
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Table 42 - Operating expenditures—2020 

 

Figure 146 shows an approach to estimating investment costs by including the assumptions 

for 2050 where the costs of the PV system will decrease between 610 £/kWp in the worst-

case scenario and 280 £/kWp in the best-case scenario. It is estimated that by 2020, these 

costs will be 935 £/kWp in the worst-case scenario and 880 £/kWp for the best-case 

scenario. For the purposes of this project, the average of these two costs was used. The 

estimated distributed costs for 2020 in pounds are shown in Table 43, where the charging 

station costs were also reduced. The total expenses will decrease by 8.8% by 2020 

compared with 2016. 

 

Figure 146 - PV system costs in 2015 combining minimum and maximum assumptions. 
(Kleiner, 2015) 
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Table 43 - Detailed cost distribution 

 

aTaking into account the replacement of the inverter every 10 years. 

 

Revenues 

Feed-in tariff (FIT) earnings According to Ofgem, feed-in tariffs for 2019 will have a rate of 

1.76 p/kWh, and export tariffs will have a rate of 4.85 p/kWh (Ofgem.gov.uk, 2016). 

 

5.8 Scenario 3 

Feed-in tariffs are decreasing as each year passes; also the costs for PV technology is 

falling quickly; and subsidies are no longer guaranteed in the future. In this scenario, the 

same assumptions as in Scenario 2 have been taken into account, where FIT was 

disregarded. 

 

5.9 Financial assumptions 

Firstly, it was assumed that the bank would support a loan for 100% of the investment costs 

over a term of 15 years at a fixed rate of 3%. The project life is 25 years, and the duration 

of feed-in tariff is 20 years. The inflation rate (RPI) for FIT payments over 20 years was 

considered to be 2% and the electricity price inflation over the 25 years’ lifetime of the project 

3%.  The lifetime for the PV modules, the mounting system, and the wiring was estimated 

to be of 25 years (Narayan, 2013), whereas the lifetime of the inverter was estimated as 10 

years a rolling replacement scheme will need to be employed to ensure timeous 

replacement and ensure downtime is minimised. 

 

Payback period, NPV, IRR and DSCR 

Equations 61 – 64 (over) are applied in the financial analysis in order to determine the 

feasibility of the carport. The payback period time, the net present value (NPV), the internal 

rate of return (IRR), and the debt-service coverage ratio (DSCR) were calculated for the 

different scenarios (Prentice, 2015): 
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Equation 61 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 =  
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠

𝑁𝑒𝑡 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑎𝑠ℎ 𝑖𝑛 𝑓𝑙𝑜𝑤
 

 

Equation 62 

𝑁𝑃𝑉 =  − 𝐶𝑜  ∑
𝐶𝑡

(1 + 𝑟)2

𝑛

𝑡=0
 

where t is the number of years, n the project time, r the discount rate in %, Ct the cash 

flow in year t, and Co the initial investment: 

Equation 63 

 

𝑁𝑃𝑉 =  − 𝐶𝑜  ∑
𝐶𝑡

(1 + 𝑟)2

𝑛

𝑡=0
= 0 

Equation 64 

 

𝐷𝑆𝐶𝑅 =  
𝑁𝑒𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛𝑐𝑜𝑚𝑒

𝐷𝑒𝑏𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒
 

 

Financials the three different scenarios 

Table 44 details the financial results for the carport and shows them to be profitable. The 

payback period between the scenarios ranged from 8.8 to 9.3 years; the NPV that 

determined the profitability of the project was found to be higher in Scenario 1, with a benefit 

of £170,676, and the percentage of IRR showed the financially robust project. According to 

the results, even in Scenario 3, the worst-case scenario (assuming that the facility will not 

benefit from subsidies) the economic benefits are still positive.  This project has broadly 

proved the feasibility of the solar charging stations at Edinburgh College’s Midlothian 

Campus and can provide a more sustainable way of charging their green fleet and other 

electric vehicles on site, further research should be undertaken with a mock investigation 

bay being establishled to verify findings. 

 

Table 44 - Financial results for the solar charging station 
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5.10 Environmental analysis 

To conclude the feasibility study, a life-cycle assessment (LCA) was carried out in order to 

determine the environmental impact of this proposal. As solar charging stations are a 

relatively novel proposal the life-cycle assessment was carried out for the main components: 

PV modules, balance of system, inverters, and mounting system to the limited information 

available.  The amount of CO2 saved when using solar energy, as a source to generate 

electricity, instead of the electricity from the grid will also be reviewed. 

 

5.11 Life cycle assessment (LCA) of the project 

A LCA is important to determine the life of products, materials, system, process, and impact 

on the environment (Asif and Muneer, 2006). 

Eco-audit of the PV module selected 

As the PV module is the most important element in the facility, the LCA was carried out 

using software, CES EduPack, along with the eco-audit tool to evaluate the environmental 

impact of the selected PV module by focusing on two known environmental stressors, CO2 

footprint and energy usage identifying which of the main life phases (material, manufacture, 

transport, use, and end of life) is the most demanding of all, Figure 147 gives an example 

of a products life-cycle. 

 

Figure 147 - The product life-cycle (Granta, 2016) 
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Materials 

A typical structure of a monocrystalline silicon PV (see chapter 2) module can be seen in 

figure 148 (Bagher, 2015).  All the relevant data is entered into the software programme 

including manufacturing materials required for the PV module, the type of process used to 

manufacture them and their masses, based on a study carried out by Phylipsen and Alsema 

(1995). This data was adapted with respect to the characteristics of the PV module used for 

this project. 

 

Figure 148 - Monocrystalline solar cell structure Mohammad Bagher (2015). 

 

Transport assumptions 

The PV modules used, ASP-400GSM, are produced in the United States. The energy and 

CO2 released during transport must be taken into account to carry out the LCA. The 

distance from the United States to Edinburgh is approximately 6500 km The likely distance 

travelled is likely more than this as the route will not be door-to-door, however an accurate 

representation of the distance travelled for the PV panels will not be available. 

 

Use 

Finally, the LCA is used to define the use of the PV module during its lifespan, which was 

25 years. As its mode of operation is static, the power rating, duty cycle, and the product 

efficiency were defined.  With all the data collected, the programme could provide detailed 

information about the breakdown of energy usage and CO2 footprint of a single PV module 

or for the 200 PV modules used for the facility.  Figure 149 shows that the largest energy 

demand and the largest release of CO2 occur during the production phase of the materials 

where the most polluting material was the silicon, with a percentage of 78% as detailed in 

table 45. 



242 

 

 

The results extracted from the CES EduPack report for the 200 PV modules used is detailed 

in Table 46; the table shows all the energy consumption and CO2 footprint of each individual 

phase. A total of 70,300 kg of CO2 would be emitted during all the life phases of the product, 

and 998,000 MJ would be required during the lifespan of the PV module after the end of its 

life. 

 

Figure 149 - Energy and CO2 footprint details of a single module. Data from CES Edupack, 

2016. 

 

Table 45 - Detailed breakdown of individual material phase for a single module 

 

Data from CES EduPack (2016). 
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Table 46 - Individual life-phase CO2 footprint details 

 

Data from ES EduPack (2016). 

 

5.12 Life cycle assessment of the balance of system (BOS) and system mounting 

In order to gain an accurate hypothesis, this LCA was based in a study entitled ‘Life cycle 

assessment of a medium-sized photovoltaic facility at a high latitude location’, at the Napier 

University’s Merchiston Campus (Muneer et al., 2006). 

 

Balance of system 

The components to be taken into account in BOS, as previously mentioned, are the 

inverters, cables, fuses, and transformers. Due to the lack of data, this theory only considers 

the inverter and cables. According to Peyser (2010), the contribution of greenhouse gases 

from BOS is relatively small compared with other components of PV systems.  The inverter 

used for the installation at Napier University was a Fronius (IG60) with a nominal power of 

4.6 kW, the amount of CO2 released per inverter being 850 kg, and the embodied energy 1 

MWh (Muneer et al., 2006). Based on this information, the CO2 released by the inverter 

selected for the solar carport, an Aurora Trio of 20 kW of nominal power, would be 3700 kg 

of CO2 per inverter and 4.35 MWh of embodied energy. As the facility has five inverters, the 

total amount of CO2 released would be 18,500 kg and the energy used would be 22 MWh. 

For the carport, the use of around 450 kg of copper for cabling was estimated; the amount 

of CO2 released was estimated being 2280 kg and 8.4 MWh of embodied energy for the 

facility of 400 m2.  Again a mock investigation bay being installed will further these findings. 

 

System mounting 

The mounting system for the 520m² photovoltaic canopy installation, where the 200 PV 

modules are going to be placed, the use of around 9750 kg including spigots, vertical rails, 
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tie brace, and schuco rails was estimated (Muneer et al., 2006). The amount of CO2 

released was estimated to be 21,000 kg and 159 MWh of embodied energy. 

 

5.12.1 Energy payback time (EPBT) and global warming potential (GWP) summary 

Based on the LCA, it is estimated that the solar carport (PV modules, BOS, and system 

mounting) would release a total of 130 tonnes of CO2 and it would have 488 MWh of 

embodied energy. Table 47 provides a summary of the most relevant data. 

 

Table 47 - Summary embodied energy and CO2 released by the facility 

 

α Assuming the inverters are replaced every 10 years. 

 

Once the total energy used to manufacture the PV system components has been calculated, 

it is necessary to determine if the PV facility is a net positive producer of energy in its 25 

years of lifetime. The energy payback time estimates the energy reimbursement of a 

product; for the proposed facility, the energy payback time calculated was 5.55 years 

Equation 65 (McEvoy et.al. 2012). 

Equation 65 

𝐸𝑃𝐵𝑇 =  
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑜𝑢𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒

𝑌𝑒𝑎𝑟𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
 

 

 

The global warming potential (GWP) is a measurement to quantify the impact on global 

warming, the facility will release 130,580 kg of CO2 and that the lifetime of the installation 

is 25 years, the ratio of the lifetime emissions of CO2 for the solar carport was found to be 

0.059 kg CO2/kWhe Equation 66 (Muneer et al., 2006) is used. 

Equation 66 

𝐺𝑊𝑃 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
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5.12.2 CO2 emissions saved 

In order to determine the amount of CO2 saved by this carport, it was important to take 

account of the carbon content of the UK grid.  Measurements were taken during a 10 day 

period at specific times (10 a.m., 17 p.m., and 22 p.m.) in August through a website that 

provides live data on how much electricity is being made nationally and the percentage from 

fossil fuels, nuclear, or renewable energy, giving information about the grams of CO2 

emitted for every unit of electricity generated in the United Kingdom. 

As the average carbon content of the UK grid was 274 g CO2/kWh during these 10 days of 

measurements and, according to (Muneer and Kolhe 2017) the carbon footprint that solar 

energy has is 50g CO2/kWh, the amount of CO2 saved by this facility yearly generating an 

output of 87.96 MWh is calculated using equation 67.  

Equation 67 

𝐶𝑂2 𝑠𝑎𝑣𝑒𝑑 =  (0.274 − 0.05)  × 87,960 = 19.7 𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑓 𝐶𝑂2   

 

5.13 Conclusions 

Solar charging station at Edinburgh College 

The proposed design of the solar carport has met expectations, proving to be a cost-

effective and environmentally friendly design and technically and financially viable. The main 

findings of this study are: The average solar energy available in Edinburgh is 2.47 Kwh/m2 

daily, and due to the low temperatures in the city, it was determined that the cell efficiency 

of the PV module chosen increased from 15.2 to 16.2%.   It was found that the best tilt and 

azimuth angle to install the PV modules was a southern orientation at 40°, this allows the 

carport to generate 87.96 MWh of energy per year.  The car park area identified for the 

location of the solar charging station is approximately 400 m², providing parking spaces for 

33 vehicles. The canopy area will have enough space to accommodate 200 monocrystalline 

PV modules rated at 400Wp; five Aurora Trio inverters rated at 20 kW, and three twin AC 

rapid charger CHAdeMO charging stations are required. This facility will be connected to 

the national grid. 

According to the average car journey per person in the Scotland, 20.8 km, and the average 

energy consumption by an electric car, 0.164 kWh/km, the total energy demand for a single 

electric car in a day is 3.41 kWh. According to these results, the carport could theoretically 

charge 70 electric vehicles during the day. 

A financial analysis was carried out for three different scenarios. The result of the financial 

analysis for Scenario 2 during a lifetime of 25 years is shown in Table 48 (over). 
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Table 48 - Financial analysis, scenario 2 

 

The payback, i.e. the recovery of the investment for Scenario 2 starts in year 8; the net 

present value (NPV) analysis shows the best-case NPV of £176,676 and an internal rate of 

return (IRR) of 15%. 

In the environmental analysis, the energy payback time (EPBT) was found to be recovered 

within 5 years and 5 months, and the global warming potential was 0.059 kg CO2/kWhe.  

The CO2 saved by installing this facility, compared with the electricity produced by the UK 

grid, was 19.7 t of CO2. 

 

This chapter has presented an option that Edinburgh College could consider in its attempts 

to create an offgrid and carbon neutral campus.  The options presented in this chapter point 

to the use of current space available to the college within its current estate.  Three scenarios 

have been investigated and presented finding that the financial benefit of undertaking the 

second option would create significant benefits of the college.  With this solution, adding to 

the campus’ solar farm, a real opportunity presents itself for the organisation to meet its 

aspirations.  As a result of this initial study a mock carport is planned for summer 2019 to 

further scrutinise the findings and assumptions made in this chapter.  This chapter also 

provides an evidence base warranting future study within the area of pedagogical impact of 

applied research within an FE institution.  The undertaking would not have been possible 

for individual partners, but the combination of partners and stakeholders has given the 

opportunity for students to gain access to a research facility which is not, in the traditional 

sense, normally available to students studying within the FE sector.  The Education Working 

for All report (Scottish Government 2014) outlines several areas of interest that add to the 

debate regarding the nature and validity of HE delivered in FE. The report focussed on the 

requirement to develop and promote higher-level technical vocational training to support the 
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increased requirement for associate professional skills. This training is to be developed and 

delivered in partnership with employers, colleges and universities with a focus on the 

applied, technical and practical skills available within the vocational FE sector (Husband and 

Jeffrey, 2016). 
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Chapter 6 – Conclusion 

6.1 Introduction 

 

Through this research the energy delivery of the Edinburgh College solar PV farm has been 

assessed with consideration to the shading effect. Energy production especially in the 

renewable sector, which is intermittent, requires a reliable and precise calculation in terms 

of available sources of energy and net produced energy. It is important for the installers to 

have the highest efficiency and to take the most of available sources. As in the Edinburgh 

college solar PV farm project, the installers of the farm claimed that there would be little to 

no shading effect on the farm across the year. This project was been implemented to review 

the comparison of actual energy produced/available energy/modelled energy output/output 

with respect to shading. To fully understand this comparison, the secondary study was 

implemented to review the shading impact in greater detail, with the farm being investigated, 

in terms of shading for every 30 minutes across seven day intervals for the entire year. This 

secondary study has relied heavily on the use of MATLAB in order to better analyse the vast 

amount of data.  This thesis shows the importance of the impact shading has on solar 

installations in northern latitudes. 

6.2 Site identification 

 

Site identification was straightforward with the introduction of the Solar farm at Edinburgh 

College’s Midlothian Campus is a 5 acre development which provides 627.5kW of energy 

in the midst of a bio-diversity meadow.  This is a unique installation for Scotland and marries 

aspects of modern technology with key environmental concerns.  The energy produced is 

expected to go some way to reduce the carbon footprint of the Campus and the meadow is 

said to produce enough electricity for the Midlothian Campus to be self-sufficient and not 

rely on the National Grid.  If surplus electricity is produced it will be sold back to the Grid, 

helping to off-set electricity bills at the College’s Edinburgh Campus based at Milton Road 

in Edinburgh.  The site was commissioned in March of 2013 however, complications within 

the contracting process, which were resolved in 2018, has meant access to valuable data 

directly from the site infrastructure has been limited up to this point. Manual methods of data 

collection at the site were adopted to ensure data was available for analysis. 

 

6.3 Site specific data 

 

Chapter 3 sees the performance of a range of solar module parameters studied in this 

research and includes experiments used to measure a range of data quantities designed 
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and implemented.  An initial survey of the site, was carried out to obtain an estimate of the 

degree of shading incurred. To overcome the limitations of the data available to the 

researcher, a period of manually-recorded measurements was carried out to support the 

experimental data. Through the collection the site’s power and energy data, as well as 

providing a useful picture of site operation, a problem with a subset of the inverters on site 

was identified. Upon discussion with the Engineer overseeing the site, it was found to 

correspond with the data collected by SSE, the contractors, who resolved the issues as a 

result of the research taking place.   

 

6.4 Site survey 

 

The shading characteristic of the site was assessed in chapter 4 which describes this 

process in detail, but it was clearly shown that the assumption of zero shading for the site 

assumed by the contractors (see Appendix B: SSE System Documents) was shown to be 

inaccurate, particularly in the winter months. Shading was shown to be most severe at the 

south end of the site, and still notable along the eastern edge of the site. Any shading on 

the solar modules will adversely affect the performance of the entire string in question, 

having a disproportionately large effect on overall output. This certainly requires a revision 

of the initial SAP calculations to be carried out. 

Within this survey of the site an inspection of the farm was carried out and 12 critical points 

of shade have been established within the farm, situated along the south, east and centre. 

All the data related to the obstacles around the farm at each critical point and was collected 

via a theodolite. Increments every 30° due east, the height (altitude) of each identified shade 

creating blockage was recorded for each of the identified critical points. The Sun’s position 

in the sky (solar altitude and azimuth) was also calculated for each specific azimuth due 

east, solar altitude (SOLALT) and blockage height were compared. The periods of shade 

impacting on the critical points was assessed by taking advantage of sky view factor (SVF) 

shade model the relationship between the visible area of the sky and the portion of the sky 

covered by surrounding solar blockage was assessed.  

6.5 Site monitoring 
 

The conversion of solar irradiation data, from horizontal intensity to intensity received on a 

slope, has been shown to be accurate when using location-specific regression formulae. It 

was concluded that the seasonal model proposed by Clarke et al (2007) proved the most 

accurate of those considered over the recorded time period, by a small margin. A further 
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advantage of the given method is the slightly simpler implementation compared to the 

monthly model, which requires a different formula to be used for every month.  

The prediction of a solar photovoltaic module’s cell temperature from environmental data 

such as air temperature and solar irradiation was shown to be within close alignment across 

three different calculation methods. The simplest, based on the ‘nominal operating cell 

temperature’ of the module gave results within tolerance, as the much more complex 

thermal model, indicating that this is a useful method to use. The thermal model was limited 

by the lack of good quality, high resolution wind data for the site studied. In addition, the 

range of input variables require better definition.  Future study should incorporate a thorough 

investigation of the thermal model.  

 

Finally, the calculation of cell efficiency over the three days of manual data recordings was 

performed, giving the results described in chapter 3. The results obtained here require 

further ratification to extract a reliable data set and it is suggested that this work is carried 

out as a matter of interest in further study.  The difficulty encountered was whether to ascribe 

the poor quality of results to the models used, or the data collected. The one exception, on 

a clear-sky day when the related uncertainties were small, indicated that with reliable, 

automatically logged power data the models used could yield much more favourable results 

between 16 – 18%. The cell efficiency was predicted, in as far as lying between 14 – 16% 

and being lower on hotter days, or in the afternoon at 12- 16%. The implementation high-

resolution data collection through longer term study on the site in the future opens up 

excellent opportunities for further analysing the results of this project.  

 

6.6 Site Modelling 

 

Software models were produced or adapted from a range of source material to implement 

the required calculations which formed the investigative assessment, and associated data 

organisation and display tools were developed through the use of Excel (Aldali et. al. 2011).  

 

Software implementation of the data analysis and processing models was successfully 

implemented with the data collected, constituting a valuable learning experience. However, 

time could have been saved and errors avoided with a more organised approach to design 

and testing of the software before full implementation in the project spreadsheet. With the 

site now operational for 6 years, initial technical issues (as outlined in this thesis) have been 

resolved allowing for further analysis of actual energy output versus modelled output.  

MATLAB software was used to carry the calculations and as the day number and sunrise & 
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sunset values vary daily. Excel has been used for data evaluation and to clearly present 

findings in chapter 4.  This has allowed an evaluation of the impact of shading has on the 

solar farm in a visual format.  

 

6.7 Data Analysis 

 

The experimental setup produced results that could be analysed, but introduced some 

unnecessary sources of error (such as shading/misalignment of the slope irradiation 

sensors, and slight inconsistency in data-logger times) and didn’t incorporate enough 

redundancy in the data recording.  

Errors were encountered due to the implementation equipment used. Human error is to blame and 

the researcher should validate these results through further study.  The data-logger evidently 

recorded some spurious data values, and the heat-flux readings were either incorrect or were 

incorrectly interpreted. A much more timely analysis, in particular graphical analysis, of the data 

obtained may have allowed some of these problems to be fixed. (Inspection of the numerical results 

was made as the experiment progressed, but this proved to be insufficient.) This also applies to the 

sensor problems mentioned above. All the data related to the solar blockages has been 

collected in 30° intervals due east improved precision could have been achieved by 

undertaking 10° intervals.  For calculating monthly energy output the mean value of monthly, 

hourly horizontal global irradiation has been used but for more clear results it should be 

carried out every 5 or 10 days to reflect the ever changing air temperature and clearness 

index. Energy delivery for each month, within a year, was calculated on the basis of energy 

delivery at the critical points. December has the lowest energy delivery with only 54%of the 

total available being delivered and November & January are the second and third lowest 

with 69% and 70% delivered respectively. The energy delivery increases gradually until it 

arrives at 100% in May, June and July. The energy delivery of the Edinburgh College solar 

PV farm is more than 94% for the entire year with the impact of shading taken into account.  

 

6.8 Comparison of solar output 
 

The farm energy has been calculated on the basis of measured 2014 global radiation and 

farm’s PV module specifications. Available energy in the Edinburgh college solar PV farm 

has been estimated at 525,674 KWh and by accounting for shading decreases to 498,776 

KWh. 95% of the energy is produced during the months where energy delivery is higher 

than 80% and only 5% of energy is produced in the months from November to February. 

Shading occurs in two main areas along the southern edge, due to the tree foliage, and the 
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eastern edge due to the earth bund which encloses the site.  The modelled output for the 

site was estimated to be 560,000kWh the actual energy based on location and 

meteorological data has been shown to be 538,388kWh with the available energy of the site 

being 526, 674kWh.  With the shading apparent on the site taken into account the value of 

energy delivered drops to 498,776kWh.  The solar farm does not currently provide enough 

energy to cover the campus requirements with the campus energy consumption of 635,635 

kWh for academic year 2017/18.  This represents a shortfall of 136,859 kWh. 

 

6.9 Pedagogical impact on the College 
 

Chapter 5 presented an option that Edinburgh College could consider in its attempts to 

create an offgrid and carbon neutral campus.  The options presented in this chapter point to 

the use of current space available to the college within its current estate.  Three scenarios 

have been investigated and presented finding that the financial benefit of undertaking the 

second option would create significant benefits of the college.  With this solution, adding to 

the campus’ solar farm, a real opportunity presents itself for the organisation to meet its 

aspirations.  As a result of this initial study a mock carport is planned for summer 2019 to 

further scrutinise the findings and assumptions made in this chapter.  This chapter also 

provides an evidence base warranting future study within the area of pedagogical impact of 

applied research within an FE institution.  The undertaking would not have been possible 

for individual partners, but the combination of partners and stakeholders has given the 

opportunity for students to gain access to a research facility which is not, in the traditional 

sense, normally available to students studying within the FE sector.  The Education Working 

for All report (Scottish Government 2014) outlines several areas of interest that add to the 

debate regarding the nature and validity of HE delivered in FE. The report focussed on the 

requirement to develop and promote higher-level technical vocational training to support the 

increased requirement for associate professional skills. This training is to be developed and 

delivered in partnership with employers, colleges and universities with a focus on the 

applied, technical and practical skills available within the vocational FE sector (Husband and 

Jeffrey, 2016). 

 

6.10 Lessons learned 

 

Time management of the project could have been improved. Work was commenced early 

and quickly, however the latter stages of the project, in particular the report write-up, 

suffered from an inconsistent work-rate and poorly-defined work goals. A more organised 
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approach throughout the 15 weeks would have allowed for more to have been 

accomplished, and a more polished report to have been produced. The generation of 

research data and application of (thus far) purely theoretical knowledge in a practical 

environment has provided an extremely positive experience for the author. In addition to 

hopefully making a useful contribution in the field of solar research, the work undergone will 

prove useful to Edinburgh College in their operation of, and knowledge of, the solar plant at 

Midlothian Campus.  The gap in this research is the lack of GIS modelling or PV*SOL 

modelling as part of the review of the site. 

 

 

 

6.11 Recommendations for future study 
 

There are some clear gaps within this study, such as the use of PV*SOL to accurately depict 

a 3D representation of an array and provided detailed information on the shadow cast, 

throughout the year, to provide likely reductions in overall yield.  This should be utilised in 

further study to ratify the results obtained though this research. Furthermore, now that 

contracts between the college and SSE have been agreed access to high resolution data 

will inform further research into the actual output versus modelled output. 

The following recommendations for future work, on areas relating to this study were 

proposed or considered as part of the research, but were abandoned due to time 

constraints, or lack of access to data or equipment.  

 To calculated the farm energy delivery with consideration to cell temperature. 

 To calculate the farm energy delivery with consideration to different module 

configuration.   

Further study in these areas will provide a more robust assessment of the site and present 

excellent opportunities for college students to carry out applied research on a live, fully 

operational system within their coursework. 

 

The comparison of power/energy readings from a single inverter, or indeed all 32 inverters 

across the site, with the overall metered power output being exported to the grid would allow 

for detailed analysis of overall system efficiency, allowing for losses such as through dc and 

ac wiring, module mismatch and inverter efficiency would provide an analysis of other losses 

within the site.  
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The application of the existing findings to a different seasons, or even across the whole 

year, would allow for the solar models to be more accurately assessed, and would give a 

much more detailed representation of system performance. This applies particularly to any 

detailed shading analysis, but also to the cell temperature, slope irradiation and low-power 

performance of the system (inverters, for example, perform less well at low power outputs).  

 

The use of yearly-average climactic data for the given location, in conjunction with the solar 

models used and detailed shading data, would allow for accurate forecasts of plant output 

to be produced with real economic gain for the college and SSE. Knowing what revenues 

the site will generate in years to come (from generation and subsidies) would be a real gain.  

 

The recording and inclusion of detailed wind data into the thermal model used should 

provide more accurate estimates of the cell temperature, and would allow for further 

optimisation and testing of the model. The aforementioned possibility of implementing 

automated data logging of all inverters on site (including power, current and voltage) would 

greatly improve the potential for future study.  

 

The use of modelling packages such as GIS based approached or PV*SOL modelling 

should be undertaken across the site to build a comprehensive analysis of shading across 

the site.  Both studies within this research have highlighted that the site suffers from shading, 

which impacts on the overall energy generated.  An in depth review of the overall site could 

lead to suggested improvements for this site or other proposed fixed frame urban arrays. 
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Appendices 
 
 

Appendix A: Data Tables 
 

 
Logger Details: 

      
Logger Details: 

        Logger Type 1F8 
     

Logger Type 1F8 
       Serial Number KS0718014 

     
Serial Number KS0805005 

       Controller Firmware 4.3 
     

Controller Firmware 4.3 
       Acquisition Firmware 4.3 

     
Acquisition Firmware 4.3 

       Logger ID Logger ID 
     

Logger ID Logger ID 
       

                Job Details 
      

Job Details 
        Number of Analogue Channel 4 

     
Number of Analogue Channel 8 

       Number of Digital Channels 0 
     

Number of Digital Channels 0 
       Total Number of Channels Us 4 

     
Total Number of Channels Us 8 

       
                Arm Time 28/05/2013 14:33 

     
Arm Time 28/05/2013 14:34 

       Disarm Time 28/05/2013 15:31 
     

Disarm Time 28/05/2013 15:32 
       Duration 00:58:01 

     
Duration 00:57:51 

       Job Description Job Description 
     

Job Description Job Description 
       

                Channel Info 
      

Channel Info 
        Description 

 
flux1 (V) flux2 (V) flux3 (V) flux4 (V) 

 
Description 

 
p1 (V) p2 (V) p3 (V) t1 ('C) t2 ('C) t3 ('C) t4 ('C) 

Sample Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 
 

Sample Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 

Logging Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 
 

Logging Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 

                Date/Time Type flux1 (V) flux2 (V) flux3 (V) flux4 (V) 
 

Date/Time Type p1 (V) p2 (V) p3 (V) t1 ('C) t2 ('C) t3 ('C) t4 ('C) 

28/05/2013 14:33 Interval -0.006243 -0.00165 -0.005411 -0.00084 
 

28/05/2013 14:34 Interval 0.002462 0.002866 0.003097 27.9 27 13.1 13.2 

28/05/2013 14:43 Interval -0.007673 -0.006999 -0.006168 -0.005346 
 

28/05/2013 14:44 Interval 0.002152 0.002411 0.002602 28.4 28.7 16.5 16.4 

28/05/2013 14:53 Interval -0.006314 -0.007831 -0.004735 -0.006584 
 

28/05/2013 14:54 Interval 0.002312 0.002651 0.002864 30.2 29.9 16.9 16.8 

28/05/2013 15:03 Interval -0.00429 -0.007902 -0.003794 -0.006589  28/05/2013 15:04 Interval 0.001404 0.001478 0.001602 26.5 26.1 17.2 17.2 

28/05/2013 15:13 Interval -0.00297 -0.007902 -0.002632 -0.006587 
 

28/05/2013 15:14 Interval 0.001398 0.001525 0.001653 24.8 24.2 16.9 17 

28/05/2013 15:23 Interval -0.002285 -0.008076 -0.001919 -0.00759 
 

28/05/2013 15:24 Interval 0.001043 0.001103 0.001193 20.5 21.1 15.7 15.7 

                
                
                Arm Time 28/05/2013 15:38 

     
Arm Time 28/05/2013 15:39 

       Disarm Time 30/05/2013 14:35 
     

Disarm Time 30/05/2013 14:36 
       Duration 1 day 22:57:02 

     
Duration 1 day 22:57:04 

       Job Description Job Description 
     

Job Description Job Description 
       

                Channel Info 
      

Channel Info 
        Description 

 
flux1 (V) flux2 (V) flux3 (V) flux4 (V) 

 
Description 

 
p1 (V) p2 (V) p3 (V) t1 ('C) t2 ('C) t3 ('C) t4 ('C) 

Sample Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 
 

Sample Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 

Logging Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 
 

Logging Interval 
 

00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 00:10:00 

                Date/Time Type flux1 (V) flux2 (V) flux3 (V) flux4 (V) 
 

Date/Time Type p1 (V) p2 (V) p3 (V) t1 ('C) t2 ('C) t3 ('C) t4 ('C) 

28/05/2013 15:38 Interval -0.002865 -0.007589 -0.002534 -0.006987 
 

28/05/2013 15:39 Interval 0.001065 0.001114 0.001249 19.3 20.2 14.5 14.5 

28/05/2013 15:48 Interval -0.002602 -0.008097 -0.00208 -0.006951 
 

28/05/2013 15:49 Interval 0.002545 0.002995 0.003305 20.6 21.1 15.2 15.2 

28/05/2013 15:58 Interval -0.002584 -0.008041 -0.002291 -0.005886 
 

28/05/2013 15:59 Interval 0.001049 0.001177 0.001288 19.5 19.9 14.2 14.3 

28/05/2013 16:08 Interval -0.002874 -0.007848 -0.002121 -0.006126 
 

28/05/2013 16:09 Interval 0.001742 0.002091 0.00235 20 20.3 14.4 14.4 

28/05/2013 16:18 Interval -0.005811 -0.007478 -0.004632 -0.005319 
 

28/05/2013 16:19 Interval 0.001471 0.001604 0.00182 22 22.5 14.7 14.6 

28/05/2013 16:28 Interval -0.002895 -0.007567 -0.002313 -0.005556 
 

28/05/2013 16:29 Interval 0.001441 0.001425 0.001618 19.9 20.6 14.7 14.7 

28/05/2013 16:38 Interval -0.001279 -0.007666 -0.001262 -0.005395 
 

28/05/2013 16:39 Interval 0.000781 0.000761 0.000827 17 17.3 13.9 13.9 

28/05/2013 16:48 Interval -0.001857 -0.00793 -0.00128 -0.006724 
 

28/05/2013 16:49 Interval 0.001074 0.001065 0.001173 17.2 17.4 14 14 

28/05/2013 16:58 Interval -0.00302 -0.008001 -0.002161 -0.006842 
 

28/05/2013 16:59 Interval 0.001404 0.001493 0.001675 17.9 18.1 14 14 

28/05/2013 17:08 Interval -0.003447 -0.007937 -0.002806 -0.005705 
 

28/05/2013 17:09 Interval 0.002322 0.002639 0.003017 19.1 19.5 13.2 13.2 

28/05/2013 17:18 Interval -0.002615 -0.007402 -0.002193 -0.005677 
 

28/05/2013 17:19 Interval 0.001699 0.001949 0.002144 19.6 19.8 14 14 

28/05/2013 17:28 Interval -0.002965 -0.007406 -0.00274 -0.005513 
 

28/05/2013 17:29 Interval 0.001029 0.001217 0.001301 18.7 19.2 13.5 13.4 

28/05/2013 17:38 Interval -0.005356 -0.007734 -0.003839 -0.006712 
 

28/05/2013 17:39 Interval 0.001239 0.001031 0.001475 21.3 21.7 13.2 13.3 

28/05/2013 17:48 Interval -0.003197 -0.007854 -0.002403 -0.006941 
 

28/05/2013 17:49 Interval 0.001632 0.001116 0.002105 21.5 21.5 15.1 15 

28/05/2013 17:58 Interval -0.003817 -0.007805 -0.003327 -0.006746 
 

28/05/2013 17:59 Interval 0.001405 0.00136 0.001699 22.2 21.9 15.8 15.8 

28/05/2013 18:08 Interval -0.00226 -0.007707 -0.002149 -0.005688 
 

28/05/2013 18:09 Interval 0.000799 0.000852 0.000935 20.3 20 15.7 15.7 

28/05/2013 18:18 Interval -0.001821 -0.007589 -0.00147 -0.005726 
 

28/05/2013 18:19 Interval 0.000533 0.00054 0.000593 18.5 18.5 15.5 15.5 

28/05/2013 18:28 Interval -0.000752 -0.007383 -0.000604 -0.005716 
 

28/05/2013 18:29 Interval 0.000213 0.000203 0.000219 16.1 16.1 15 14.9 

28/05/2013 18:38 Interval -0.000407 -0.007929 -0.000391 -0.005953  28/05/2013 18:39 Interval 0.000294 0.000328 0.000346 15.5 15.4 14.8 14.8 

28/05/2013 18:48 Interval -0.000762 -0.007857 -0.000655 -0.006539 
 

28/05/2013 18:49 Interval 0.000482 0.000546 0.000584 16 15.9 14.8 14.8 

28/05/2013 18:58 Interval -0.00112 -0.007755 -0.00087 -0.005859 
 

28/05/2013 18:59 Interval 0.00049 0.000535 0.000571 16.3 16.3 14.7 14.6 

28/05/2013 19:08 Interval -0.000883 -0.007825 -0.000768 -0.00688 
 

28/05/2013 19:09 Interval 0.000431 0.000484 0.000523 16.1 16.1 14.5 14.5 

28/05/2013 19:18 Interval -0.000655 -0.007739 -0.000603 -0.005739 
 

28/05/2013 19:19 Interval 0.00042 0.000483 0.000519 15.8 15.8 14.4 14.4 

28/05/2013 19:28 Interval -0.00077 -0.007846 -0.000654 -0.005797 
 

28/05/2013 19:29 Interval 0.000399 0.000427 0.000459 15.3 15.3 14.2 14.2 

28/05/2013 19:38 Interval -0.000494 -0.007308 -0.000438 -0.006591 
 

28/05/2013 19:39 Interval 0.000431 0.000449 0.000491 14.9 14.8 14.1 14.1 

28/05/2013 19:48 Interval -0.000279 -0.007767 -0.000249 -0.005616 
 

28/05/2013 19:49 Interval 0.000484 0.000432 0.000521 14.6 14.6 14 13.9 

28/05/2013 19:58 Interval -0.000174 -0.007628 -0.00014 -0.005722 
 

28/05/2013 19:59 Interval 0.000468 0.000401 0.00049 14.4 14.4 13.7 13.8 

28/05/2013 20:08 Interval -0.000309 -0.007604 -0.000213 -0.006697 
 

28/05/2013 20:09 Interval 0.000342 0.000313 0.000374 14.1 14.1 13.5 13.5 

28/05/2013 20:18 Interval -0.000077 -0.007486 -0.000067 -0.005463 
 

28/05/2013 20:19 Interval 0.000234 0.000214 0.000233 13.3 13.3 12.9 12.9 

28/05/2013 20:28 Interval 0.000193 -0.007788 0.00013 -0.00657 
 

28/05/2013 20:29 Interval 0.000197 0.000182 0.000201 12.3 12.4 12.8 12.8 

28/05/2013 20:38 Interval -0.000228 -0.007973 -0.000229 -0.006847 
 

28/05/2013 20:39 Interval 0.000126 0.000134 0.000141 11.1 11.1 10.7 10.7 

28/05/2013 20:48 Interval -0.000005 -0.007688 -0.000027 -0.006561 
 

28/05/2013 20:49 Interval 0.000104 0.000109 0.000116 10.6 10.5 10.4 10.4 

28/05/2013 20:58 Interval 0.000481 -0.005462 0.00036 -0.003096 
 

28/05/2013 20:59 Interval 0.000126 0.000046 0.000042 10 9.9 10.5 10.5 

28/05/2013 21:08 Interval 0.000568 -0.007832 0.000443 -0.005702 
 

28/05/2013 21:09 Interval 0.000063 0.000061 0.000047 9.8 9.7 10.5 10.5 

28/05/2013 21:18 Interval 0.000767 -0.007044 0.000568 -0.006157 
 

28/05/2013 21:19 Interval 0.000044 0.000018 0.000012 9.4 9.3 10.5 10.4 

28/05/2013 21:28 Interval 0.000903 -0.008322 0.000798 -0.006562 
 

28/05/2013 21:29 Interval 0.000019 0.000031 -0.000009 8.6 8.5 10.3 10.3 

28/05/2013 21:38 Interval 0.001137 -0.007604 0.001154 -0.005826 
 

28/05/2013 21:39 Interval 0.000009 -0.000004 -0.00002 7.7 7.7 10 10 

28/05/2013 21:48 Interval 0.001249 -0.007644 0.001066 -0.006762  28/05/2013 21:49 Interval -0.00002 -0.000019 -0.00001 7.2 7.1 9.6 9.5 

28/05/2013 21:58 Interval 0.001333 -0.007459 0.000981 -0.006421 
 

28/05/2013 21:59 Interval -0.000006 -0.000019 -0.00002 6.8 6.7 9.3 9.3 

28/05/2013 22:08 Interval 0.001158 -0.007063 0.000938 -0.00619 
 

28/05/2013 22:09 Interval -0.000024 -0.000022 -0.000027 6.5 6.4 9 9 

28/05/2013 22:18 Interval 0.001319 -0.006998 0.001079 -0.005147 
 

28/05/2013 22:19 Interval -0.000021 -0.000021 -0.000025 6.5 6.4 8.7 8.7 

28/05/2013 22:28 Interval 0.001456 -0.007106 0.001301 -0.005623 
 

28/05/2013 22:29 Interval -0.000022 -0.000023 -0.000029 6.3 6.2 8.5 8.5 

28/05/2013 22:38 Interval 0.00118 -0.007072 0.001002 -0.00559 
 

28/05/2013 22:39 Interval -0.000024 -0.000024 -0.000032 5.7 5.6 8.2 8.1 

28/05/2013 22:48 Interval 0.00116 -0.00705 0.000971 -0.005554 
 

28/05/2013 22:49 Interval -0.000024 -0.000022 -0.00003 5.8 5.7 8.1 8 

28/05/2013 22:58 Interval 0.001268 -0.007012 0.001062 -0.005518 
 

28/05/2013 22:59 Interval -0.000024 -0.000022 -0.00003 5.6 5.6 7.9 7.9 

28/05/2013 23:08 Interval 0.001317 -0.006983 0.000922 -0.005487 
 

28/05/2013 23:09 Interval -0.00002 -0.000021 -0.000027 5.8 5.6 7.9 7.8 

28/05/2013 23:18 Interval 0.001362 -0.006949 0.001053 -0.005455 
 

28/05/2013 23:19 Interval -0.000023 -0.000022 -0.000031 5.4 5.3 7.5 7.5 

28/05/2013 23:28 Interval 0.001338 -0.006924 0.001101 -0.005428 
 

28/05/2013 23:29 Interval -0.00002 -0.00002 -0.000027 5.5 5.3 7.5 7.5 

28/05/2013 23:38 Interval 0.001056 -0.006908 0.000876 -0.005405 
 

28/05/2013 23:39 Interval -0.000019 -0.000021 -0.000026 5.6 5.4 7.2 7.1 

28/05/2013 23:48 Interval 0.001523 -0.006877 0.001244 -0.005384 
 

28/05/2013 23:49 Interval -0.00002 -0.000021 -0.000027 5.3 5.2 7.1 7.1 

28/05/2013 23:58 Interval 0.001421 -0.006855 0.001065 -0.005367 
 

28/05/2013 23:59 Interval -0.000017 -0.000019 -0.000024 5.6 5.4 7.2 7.2 

29/05/2013 00:08 Interval 0.00106 -0.00685 0.000834 -0.005346 
 

29/05/2013 00:09 Interval -0.000019 -0.000019 -0.000022 5.6 5.4 7.1 7.1 

 
Sample of Logger Data Spreadsheet 



269 
 

 S
a

m
p

le
 o

f 
P

ro
ce

ss
ed

 D
a

ta
 S

p
re

a
d

sh
ee

t  

 
 
 
 
 

 
 

Sample of Processed Data Spreadsheet 
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Sample of Solar Geometry Spreadsheet (1) 
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Sample of Solar Geometry Spreadsheet (2) 
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Sample of Modelled Cell Efficiency Spreadsheet 
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Point 2 

Azimuth (0=N)  Horizon Height (m)   Distance (cm)  Distance (m)  Elevation 

50 

55 

60 

 
65 

70 

75 

80 

85 

90 

95 

100 

105 

110 

115 

 
120 

125 

130 

135 

140 

145 

150 

155 

 
160 

 
165 

 
170 

 
175 

180 

185 

190 

195 

200 

205 

210 

215 

220 

225 

230 

235 

240 

245 

250 

255 

260 

265 

270 

275 

280 

285 

290 

295 

300 

305 

310 

1.5 4.2 21.336 4.021489 

1.5 3.9 19.812 4.3297 

14.42 20 101.6 8.077988 

1.5 2.9 14.732 5.813773 

14.42 18.75 95.25 8.608699 

14.42 16.5 83.82 9.761346 

14.42 15.5 78.74 10.37783 

14.42 14.25 72.39 11.26579 

14.42 13.75 69.85 11.66441 

14.42 13 66.04 12.31735 

14.42 12.5 63.5 12.79413 

14.42 12.25 62.23 13.04638 

14.42 12.1 61.468 13.20248 

14.42 12 60.96 13.3086 

14.42 12 60.96 13.3086 

1.5 1.7 8.636 9.853487 

14.42 12.1 61.468 13.20248 

14.42 12.1 61.468 13.20248 

14.42 12.25 62.23 13.04638 

14.42 12.5 63.5 12.79413 

14.42 13 66.04 12.31735 

14.42 13.5 68.58 11.87434 

14.42 14.25 72.39 11.26579 

1.5 2.2 11.176 7.644337 

14.42 15 76.2 10.71587 

1.5 2.3 11.684 7.315656 

14.42 16.25 82.55 9.908567 

1.5 2.6 13.208 6.47918 

14.42 18 91.44 8.961686 

1.5 2.9 14.732 5.813773 

14.42 19.5 99.06 8.282278 

1.5 3.5 17.78 4.822308 

1.5 3.9 19.812 4.3297 

1.5 4.2 21.336 4.021489 

15.66 10.9 55.372 15.79167 

15.66 10.3 52.324 16.66187 

15.66 9.9 50.292 17.29562 

15.66 9.5 48.26 17.97785 

15.66 9.25 46.99 18.43129 

16.70615385 9.1 46.228 19.86915 

17.75230769 9.2 46.736 20.79889 

18.79846154 9.3 47.244 21.69769 

19.84461538 9.6 48.768 22.14233 

20.89076923 9.8 49.784 22.76429 

21.93692308 10.2 51.816 22.94595 

21.84181818 10.5 53.34 22.26826 

20.60545455 10.75 54.61 20.6725 

19.36909091 11.25 57.15 18.72238 

18.13272727 11.75 59.69 16.89782 

16.89636364 12.5 63.5 14.90027 

15.66 13 66.04 13.3401 

15.66 14.5 73.66 12.00229 

15.66 16.25 82.55 10.74155 

15.66 18.75 95.25 9.336443 

15.66 23.5 119.38 7.473261 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

 

Point 1 

Azimuth (0=N)  Horizon Height (m)   Distance (cm)  Distance (m)  Elevation 

50 

55 

60 

65 

 
70 

75 

80 

85 

90 

95 

100 

105 

110 

115 

120 

125 

130 

135 

140 

145 

 
150 

155 

160 

165 

170 

175 

180 

185 

190 

195 

200 

205 

210 

215 

220 

225 

230 

235 

240 

245 

250 

255 

260 

265 

270 

275 

280 

285 

290 

295 

300 

305 

310 

1.5 14 71.12 1.208253 

1.5 12 60.96 1.409553 

1.5 10.5 53.34 1.610818 

14.42 24.3 123.444 6.662759 

1.5 9.25 46.99 1.828357 

14.42 22.5 114.3 7.190404 

14.42 20.75 105.41 7.789663 

14.42 19.2 97.536 8.409852 

14.42 18.5 93.98 8.723255 

14.42 17.6 89.408 9.161944 

14.42 17 86.36 9.479535 

14.42 16.6 84.328 9.703664 

14.42 16.4 83.312 9.819712 

14.42 16.2 82.296 9.93854 

14.42 16.2 82.296 9.93854 

14.42 16.25 82.55 9.908567 

14.42 16.5 83.82 9.761346 

14.42 17 86.36 9.479535 

14.42 17.4 88.392 9.265437 

14.42 18.2 92.456 8.864779 

1.5 5.4 27.432 3.129854 

14.42 19 96.52 8.497091 

14.42 20 101.6 8.077988 

1.5 4.9 24.892 3.448492 

1.5 4.75 24.13 3.557117 

1.5 4.5 22.86 3.754184 

15.66 10 50.8 17.13284 

15.66 8.8 44.704 19.30557 

15.66 8.2 41.656 20.60306 

15.66 7.6 38.608 22.07823 

16.51 7.3 37.084 23.99889 

17.36 7 35.56 26.02112 

18.21 6.8 34.544 27.79613 

19.06 6.7 34.036 29.24862 

19.91 6.6 33.528 30.7032 

20.76 6.7 34.036 31.38079 

21.61 6.7 34.036 32.41212 

22.46 6.7 34.036 33.4204 

21.70444444 6.7 34.036 32.52528 

20.94888889 6.7 34.036 31.61197 

20.19333333 6.7 34.036 30.68038 

19.43777778 6.8 34.544 29.36629 

18.68222222 7 35.56 27.71617 

17.92666667 7.3 37.084 25.79945 

17.17111111 7.6 38.608 23.97736 

16.41555556 8 40.64 21.99507 

15.66 8.5 43.18 19.93408 

15.66 9.6 48.768 17.80246 

15.66 10.75 54.61 16.00081 

15.66 12.25 62.23 14.12503 

15.66 14.5 73.66 12.00229 

15.66 18.5 93.98 9.460345 

1.5 10.5 53.34 1.610818 

1.5 15 76.2 1.127724 

1.5 16.5 83.82 1.025227 

 
 
 
 
 

: Shading Estimation Points 1 & 2 
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Point 4 

Azimuth (0=N)  Horizon Height (m)   Distance (cm)  Distance (m)  Elevation 

50 

65 

 
90 

 
113 

 
144 

 
180 

196 

211 

235 

259 

270 

283 

1.5 4.3 21.844 3.928262 

14.42 17.75 90.17 9.085816 

1.5 2.7 13.716 6.24114 

14.42 13 66.04 12.31735 

1.5 1.85 9.398 9.0684 

14.42 11.8 59.944 13.52595 

1.5 1.6 8.128 10.45613 

14.42 13.8 70.104 11.6233 

1.5 1.8 9.144 9.315942 

1.5 2.8 14.224 6.019909 

15.66 13.75 69.85 12.63646 

15.66 12.5 63.5 13.85352 

22.46 13.1 66.548 18.64958 

15.66 14.8 75.184 11.76585 

15.66 17.5 88.9 9.990331 

15.66 23 116.84 7.633827 

 

 

Point 3 

Azimuth (0=N)  Horizon Height (m)   Distance (cm)  Distance (m)  Elevation 

72.5 

 
90 

112 

147 

160 

169 

180 

 
196 

220 

 
246 

270 

289 

1.5 12.75 64.77 1.326668 

14.42 26 132.08 6.230662 

14.42 21.5 109.22 7.521097 

14.42 19.75 100.33 8.178866 

14.42 23.25 118.11 6.960768 

15.66 14 71.12 12.41787 

15.66 10.75 54.61 16.00081 

17.12666667 8.9 45.212 20.74709 

1.5 3.5 17.78 4.822308 

22.46 7.9 40.132 29.2337 

1.5 1.9 9.652 8.833571 

19.196 6.5 33.02 30.17135 

15.66 6.5 33.02 25.37302 

15.66 8.9 45.212 19.10446 

15.66 14.7 74.676 11.84364 

 
 

: Shading Estimation Points 3 & 4 
 
 
 
 

Point 5 

Azimuth (0=N)  Horizon Height (m)  Distance (cm)  Distance (m)  Elevation 

50 

77 

 
90 

 
115 

 
150 

 
180 

194 

201 

228 

248 

270 

1.5 2.9 14.732 5.813773 

14.42 14 71.12 11.46168 

1.5 1.6 8.128 10.45613 

14.42 12.2 61.976 13.09801 

1.5 1.4 7.112 11.90977 

14.42 11.25 57.15 14.1612 

1.5 1.25 6.35 13.2908 

14.42 14.2 72.136 11.30443 

1.5 1.6 8.128 10.45613 

1.5 2.9 14.732 5.813773 

1.5 5.9 29.972 2.865075 

15.66 18.5 93.98 9.460345 

22.46 17.75 90.17 13.98689 

15.66 18.5 93.98 9.460345 

15.66 24.25 123.19 7.244623 

 
Shading Estimation Point 5 
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Appendix B: Datasheets 
 

Solar Module 
 

 
 

CSUN 245-60P Datasheet, page 1 



276 

 

 
 

CSUN 245-60P Datasheet, page 2 
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Inverters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aurora TRIO Datasheet, page 1 
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Aurora TRIO Datasheet, page 2 
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Pyranometer specifications 
 

 

 
 

 

 

 

Pyranometer specdification sheet2 
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Sensor Calibration Certificates 
 

 
 

 
Sample Sensor Calibration Certificate (for Pyranometer ‘p1’) 
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Sample Sensor Calibration Certificate (for Flux Sensor ‘flux1’) 
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Data-Loggers 
 

 
 

 
: Grant 2020 Squirrel Data-Logger Technical Specifications 
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Appendix C: VBA Code Transcripts 
 
 

Solar Geometry 
 

Private Function AST(time, xeot, xlong, lsm, mode) 

'Function to display the apparent solar time, as decimal hour and full 

time (depending on mode) 

If mode = 0 Then 

lct = decimalhour(time) 

AST = lct + xeot + (lsm - xlong) / 15 

Else 

AST = time + (xeot + (lsm - xlong) / 15) / 24 

End If 

End Function 

 
Private Function decimalhour(time) 

'Simple function to convert time format to a decimal hour value 

decimalhour = Hour(time) + Minute(time) / 60 + Second(time) / 3600 

End Function 

 
Private Function EOT(time, YRLNG) 

'Function to calculate the equation of time, adapted from WiB software 

' * indicates a line altered from the original code (for all subsequent 

functions) 

dtor = 3.14159 / 180 'radian conversion factor 

xyr = Year(time) '* splitting of input variable into seperate values 

xmo = Month(time) xdy = 

Day(time) xhr = 

Hour(time) xs = 

Second(time) 

XLCT = decimalhour(time) '* derives hour as decimal value 

UT = XLCT + YRLNG / 15 'something to do with the local meridian and 

SHA, I think 

 
'Need to convert values for formula: If xmo 

> 2 Then 

IYR1 = xyr 

IMT1 = xmo - 3 

Else 

IYR1 = xyr - 1 

IMT1 = xmo + 9 

End If 

 
'Implementation of Yallop formula: INTT1 

= Int(30.6 * IMT1 + 0.5) 

INTT2 = Int(365.25 * (IYR1 - 1976)) 

SMLT = ((UT / 24) + xdy + INTT1 + INTT2 - 8707.5) / 36525 'Why no 

decimal point here? 

EPSILN = 23.4393 - 0.013 * SMLT 

CAPG = 357.528 + 35999.05 * SMLT 

 
If CAPG > 360 Then 'Need to confine this to range 0-360 

G360 = CAPG - Int(CAPG / 360) * 360 'clever piece of code... Else 

G360 = CAPG 

End If 

 
CAPC = 1.915 * Sin(G360 * dtor) + 0.02 * Sin(2 * G360 * dtor) 
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CAPL = 280.46 + 36000.77 * SMLT + CAPC 

 
If CAPL > 360 Then 

XL360 = CAPL - Int(CAPL / 360) * 360 

Else 

XL360 = CAPL End If 

 
alpha = XL360 - 2.466 * Sin(2 * XL360 * dtor) + 0.053 * Sin(4 * XL360 

* dtor) 

'final calculation of EoT 

EOT = (XL360 - CAPC - alpha) / 15 

End Function 

 
Private Function DEC(time, YRLNG) 

'Function to calculate the declination, adapted from WiB software 

dtor = 3.14159 / 180 

xyr = Year(time) '* splitting of input variable into seperate values 

xmo = Month(time) xdy = 

Day(time) xhr = 

Hour(time) xs = 

Second(time) 

XLCT = decimalhour(time) '* UT = 

XLCT + YRLNG / 15 

 
If xmo > 2 Then 

IYR1 = xyr 

IMT1 = xmo - 3 

Else 

IYR1 = xyr - 1 

IMT1 = xmo + 9 

End If 

 
INTT1 = Int(30.6 * IMT1 + 0.5) 

INTT2 = Int(365.25 * (IYR1 - 1976)) 

SMLT = ((UT / 24) + xdy + INTT1 + INTT2 - 8707.5) / 36525 

EPSILN = 23.4393 - 0.013 * SMLT CAPG = 

357.528 + 35999.05 * SMLT 

 
If CAPG > 360 Then 'constrain value to 0-360 

G360 = CAPG - Int(CAPG / 360) * 360 

Else 

G360 = CAPG End If 

 
CAPC = 1.915 * Sin(G360 * dtor) + 0.02 * Sin(2 * G360 * dtor) CAPL = 

280.46 + 36000.77 * SMLT + CAPC 

 
If CAPL > 360 Then 'constrain value to 0-360 

XL360 = CAPL - Int(CAPL / 360) * 360 

Else 

XL360 = CAPL End If 

 
alpha = XL360 - 2.466 * Sin(2 * XL360 * dtor) + 0.053 * Sin(4 * XL360 

* dtor) 

GHA = 15 * UT - 180 - CAPC + XL360 - alpha 

 
If GHA > 360 Then 'constrain value to 0-360 
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GHA360 = GHA - Int(GHA / 360) * 360 

Else 

GHA360 = GHA End If 

 
'final calculation of declination 

DEC = Atn(Tan(EPSILN * dtor) * Sin(alpha * dtor)) / dtor 

End Function 

 
Private Function SOLALT(xlat, xdec, xast) 

'Function to calculate the solar altitude, adapted from WiB software 

dtor = 3.14159 / 180 

sha = 15 * dtor * Abs(12 - xast) 'solar hour angle varies at 15 

degrees per hour from solar noon 

xdum1 = Sin(xlat * dtor) * Sin(xdec * dtor) + Cos(xlat * dtor) * 

Cos(xdec * dtor) * Cos(sha) 

SOLALT = (Application.Asin(xdum1)) / dtor 

End Function 

 
Private Function SOLAZM(xlat, xdec, xast) 

'Function to calculate the solar altitude, adapted from WiB software 

dtor = 3.14159 / 180 

xsolalt = SOLALT(xlat, xdec, xast) '* calculate solalt here, not from 

the worksheet 

 
sha = 15 * dtor * Abs(12 - xast) 

xdum2 = Cos(xdec * dtor) * (Cos(xlat * dtor) * Tan(xdec * dtor) - 

Sin(xlat * dtor) * Cos(sha)) / Cos(dtor * xsolalt) 

SOLAZM = (Application.Acos(xdum2)) / dtor 

If (xast > 12) Then SOLAZM 

= 360 - SOLAZM End If 

End Function 

 
Private Function daynum(time) 

'Function to calculate the day number, adapted from WiB software, used 

for ERAD calculation 

IYR = Year(time) IMT = 

Month(time) IDY = 

Day(time) 

 
If (IMT > 2) Then 

IYR1 = IYR 

IMT1 = IMT - 3 

Else 

IYR1 = IYR - 1 

IMT1 = IMT + 9 

End If 

 
'Calculate first reference point 

INTT1 = Int(30.6 * IMT1 + 0.5) 

INTT2 = Int(365.25 * (IYR1 - 1976)) 

DN1 = (IDY + INTT1 + INTT2) 

 
'Calculate 2nd reference point 

IMT9 = 1 

IYR1 = IYR - 1 

IMT1 = IMT9 + 9 

INTT1 = Int(30.6 * IMT1 + 0.5) 

INTT2 = Int(365.25 * (IYR1 - 1976)) 
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DN2 = (INTT1 + INTT2) 

 
daynum = DN1 - DN2 

End Function 

 
Private Function ERAD(time, xsolalt) 

'Function to calculate the extraterrestrial radiation, adapted from WiB 

software 

dtor = 3.14159 / 180 

DN = daynum(time) '* calculate daynum here 

If (xsolalt > 0) Then 

ERAD = 1367 * (1 + 0.033 * Cos(0.0172024 * DN)) * Sin(xsolalt * 

dtor) 

Else 

ERAD = 0 

End If 

End Function 
 
 
 

DiffuseSlope 
 

Private Function clearness(Ig, xerad) 

'Simple function to calculate the clearness index 

If Ig > 0 And xerad > 0 Then 

clearness = Ig / xerad 

Else 

clearness = 0 

End If 

End Function 

 
Private Function DiffuseCalc(Ig, Kt, a0, a1, a2, a3, a4, a5, lowlim, 

uplim) 

'Function to calculate the horizontal diffuse irradiation from a 

regression formula 

If IsNumeric(a0) Then 'use the Clarke limits 

Select Case Kt 

Case Is < lowlim 

K = a0 

Case lowlim To uplim 

K = a1 + a2 * Kt + a3 * Kt ^ 2 + a4 * Kt ^ 3 

Case Is > uplim 

K = a5 

End Select 

Else 'use the quartic formula 

K = a1 + a2 * Kt + a3 * Kt ^ 2 + a4 * Kt ^ 3 + a5 * Kt ^ 4 

End If 

DiffuseCalc = Ig * K End 

Function 

 
Private Function INC(xSOLAL, xSOLAZ, WAZ, TLT) 

'Function to calculate the angle between the sun vector and the normal 

to the surface, adapted from WiB software 

dtor = Application.Pi / 180 '* Changed to use excel's value for Pi xdum3 

= Cos(xSOLAL * dtor) * Cos((xSOLAZ - WAZ) * dtor) * Sin(TLT * 

dtor) + Sin(xSOLAL * dtor) * Cos(TLT * dtor) 

INC = (Application.Acos(xdum3)) / dtor 

End Function 

 
Private Function BSRAD(GRAD, DRAD, SOLALT, SOLINC) 
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'Function to determine the slope irradiation beam component, adapted 

from WiB software 

dtor = Application.Pi / 180 '* 

 
'If the sun is in view of the surface 

If (SOLALT > 7) And (SOLINC < 90) Then '* Conditional terms combined 

BSRAD = (GRAD - DRAD) * Cos(SOLINC * dtor) / Sin(SOLALT * dtor) Else 

BSRAD = 0 

End If 

End Function 

 
Private Function DSRAD(TLT, GRAD, DRAD, SOLALT, SOLINC, ERAD) 

'Function to determine the slope irradiation sky diffuse component, 

adapted from WiB software 

Pi = Application.Pi '* 

dtor = Pi / 180 

 
If (SOLALT <= 0) Then 

DSRAD = 0 

ElseIf (SOLALT > 0 And SOLALT <= 7) Then 

CLRFRA = (GRAD - DRAD) / ERAD 

DSRAD = DRAD * (Cos(TLT * dtor / 2) ^ 2) * (1 + CLRFRA * Sin(TLT 

* dtor / 2) ^ 3) * _ 

(1 + CLRFRA * (Cos(SOLINC * dtor) ^ 2) * Cos(SOLALT * dtor) 

^ 3) 

Else 

If (SOLINC >= 90) Then 

CAPB = 0.252 

CLRFRA = 0 

Else 

' The user may select one of the following four models: 

' CAPB= 0.003 33 -0.415 F -0.698 7 F**2 [for Northern Europe] 

' CAPB= 0.002 63 -0.712 F -0.688 3 F**2 [for Southern Europe] 

' CAPB= 0.080 00 -1.050 F -2.840 0 F**2 [for Japan] 

' CAPB= 0.040 00 -0.820 F -2.026 0 F**2 [for the globe] 

' Model for Northern Europe 

CAPB = 0.00333 - 0.415 * CLRFRA - 0.6987 * CLRFRA ^ 2 

' End of model for Northern Europe 

CLRFRA = (GRAD - DRAD) / ERAD 

End If 

 
If ((GRAD - DRAD) < 6) Then 

CAPB = 0.168 

CLRFRA = 0 

End If 

 
TLTFAC = (Cos(TLT * dtor / 2) ^ 2) + CAPB * (Sin(TLT * dtor) - (TLT * 

dtor) _ 

* Cos(TLT * dtor) - Pi * Sin(TLT * dtor / 2) ^ 2) 

DSFAC = TLTFAC * (1 - CLRFRA) + CLRFRA * Cos(SOLINC * dtor) / 

Sin(SOLALT * dtor) 

DSRAD = DSFAC * DRAD End If 

End Function 

 
Private Function GroundR(TLT, rho, GRAD) 

'Function to calculate the ground-reflected component of the slope 

irradiation 

dtor = Application.Pi / 180 
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GroundR = rho * GRAD * Sin(0.5 * TLT * dtor) ^ 2 

End Function 

 
Private Function GSRAD(slopebeam, skydiffuse, groundref) 

'Simple function to sum the slope irradiation components 

GSRAD = slopebeam + skydiffuse + groundref 

End Function 
 
 

9.3.3 CellTempEff 
 

Private Function SimpleTemp(Islope, Inoct, Tair, Tcnoct, Tanoct, Effstc, 

taualpha) 

'Simplified cell temperature calculation based on static stc cell 

efficiency 

temp1 = Islope / Inoct temp2 

= Tcnoct - Tanoct 

temp3 = 1 - Effstc / taualpha 

SimpleTemp = temp1 * temp2 * temp3 + Tair 

End Function 

 
Private Function HOMERTemp(Islope, Inoct, Tair, Tcnoct, Tanoct, Tcstc, 

Effstc, taualpha, alphap) 

'More complex cell temperature calculation using linear equation for 

cell efficiency, adapted from HOMER solar modelling software 

kTcstc = Tcstc + 273 'Convert Tcstc to Kelvin, all other T are used 

for differences 

temp1 = Tcnoct - Tanoct 

temp2 = Islope / Inoct 

temp3 = Tair + temp1 * temp2 * (1 - Effstc * (1 - alphap * kTcstc) / 

taualpha) 

temp4 = 1 + temp1 * temp2 * alphap * Effstc / taualpha 

HOMERTemp = temp3 / temp4 

End Function 

 
Private Function CellEfficiency(Effcellstc, alphap, Tcell, Tcstc) 

'Simple function to calculate cell efficiency from cell temperature and 

alpha, the temperature coefficient 

CellEfficiency = Effcellstc + alphap * (Tcell - Tcstc) End 

Function 

 
Private Function CellEfficiency2(Effcellstc, Islope, gamma, alphap, 

Tcell, Tcstc) 

'Function using both cell temperature and slope irradiation to calculate 

cell efficiency, from Mattei et al 

beta = (-alphap) / Effcellstc 

CellEfficiency2 = Effcellstc * (1 - beta * (Tcell - Tcstc) + gamma * 

Application.WorksheetFunction.Log10(Islope)) 

End Function 

 
 

ThermalModel 
 

Private Function SkyTemp(airTemp) 

'Equation to obtain the effective sky temperature for thermal radiation 

SkyTemp = 0.0552 * airTemp ^ 1.5 

End Function 

 
Private Function HeatTransferAir(windSpeed) 

'A range of equations to determine the coefficient of convective heat 



289 

 

transfer to the air 

HeatTransferAir = 5.67 + 3.8 * windSpeed 'McAdams in Duffie & 

Beckman 

'HeatTransferAir = 5.82 + 4.07 * windSpeed 'Nolay 

'HeatTransferAir = 0.5 * (11.4 + 5.7 + 5.7 * windSpeed) 'Cole & 

Sturrock, adapted 

'HeatTransferAir = 14.4 'Sadnes & Reckstad 

'HeatTransferAir = 5 + 1 * windSpeed 'My Optimised Model 

End Function 

 
Private Function HeatTransferSky(phi, sigma, Tc, Tsky) 

'Function to calculate the heat transfer coefficient to the sky 

temp1 = phi * sigma * (Tc ^ 4 - Tsky ^ 4) 

temp2 = Tc - Tsky 

HeatTransferSky = temp1 / temp2 

End Function 

 
Private Function CellTemp(GSRAD, taualpha, cellEffSTC, Tsky, Ta, hcs, 

hca) 

'Implementation of energy balance equation to determine cell temperature 

temp1 = GSRAD * taualpha * (1 - cellEffSTC) + hcs * Tsky + 2 * hca * 

Ta 

temp2 = hcs + 2 * hca 

CellTemp = temp1 / temp2 

End Function 

 
Private Sub CellTempThermal() 

'Macro to calculate the cell temperature via thermal model. Activated by 

button click from spreadsheet. 

Dim flag As Boolean 

 
'read in constants 

cellEffSTC = Cells(2, 9).Value 

taualpha = Cells(3, 9).Value sigma 

= Cells(4, 9).Value 

phi = Cells(5, 9).Value 

 
For i = 3 To 171 'set the range of calculation (time period) 

'read in time-variant values GSRAD = 

Cells(i, 2).Value windSpeed = 4.75 

windSpeed = Cells(i, 4).Value / 3 

Ta = Cells(i, 3).Value + 273.15 

Tc = Ta + 10 'set initial cell temp estimate flag = 

False 'initialise flag 

 
Tsky = SkyTemp(Ta) 

hca = HeatTransferAir(windSpeed) 

 
'Start the iterative calculation 

Do 
 

 
 
hca) 

hcs = HeatTransferSky(phi, sigma, Tc, Tsky) 

Tco = CellTemp(GSRAD, taualpha, cellEffSTC, Tsky, Ta, hcs, 

 
'Compare the newly-calculated value with the previous 

If Abs(Tc - Tco) < 0.01 Then 

flag = True 

Else 

Tc = Tco 

End If 

Loop While flag = False 'Continue until stable value reached 
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'Write the result out to the spreadsheet 

Cells(i, 5).Value = Tc - 273.15 

Next i 

End Sub 

 
 

Sheet10 (Graphical Display Code) 
 

Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range) 

'This sub will select the correct data range for the chart based on the 

day selected 

'Runs whenever the correct cell is SELECTED 

 
If Target.Address = "$B$5" Then 

'Choose the correct range and write to the chart 

ActiveSheet.ChartObjects("Chart 2").Activate Select Case 

Range("B5").Value 

Case "28/05/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A25:BL82") 

Case "29/05/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A82:BL226") 

Case "30/05/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A227:BL427") 

Case "31/05/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A428:BL715") 

Case "01/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A716:BL1003") 

Case "02/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A1004:BL1295") 

Case "03/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A1296:BL1580") 

Case "04/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A1581:BL1868") 

Case "05/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A1869:BL2156") 

Case "06/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A2157:BL2444") 

Case "07/06/2013" 

ActiveChart.SetSourceData Source:=Sheets("Graphical Display 

Data").Range("A2445:BL2600") 

End Select 

End If 

 
End Sub 

 
Private Sub Worksheet_Change(ByVal Target As Range) 

'This sub will change 'Chart 3', the scatter plot, whenever an 

appropriate cell is CHANGED. 

If Target.Address = "$Q$5" Or Target.Address = "$S$5" Or 

Target.Address = "$S$7" Or Target.Address = "$S$8" Then 
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'Delete the existing scatter plot, if any, and create a new one 

based on the two data values selected 

xValue = Range("Q5").Value yValue = 

Range("S5").Value 

If IsEmpty(xValue) = False And IsEmpty(yValue) = False Then 

Dim cht As Chart 

Dim chObj As ChartObject 

 
'Delete all charts on the sheet bar 'Line Chart', the time- series 

plot 

For Each chtObj In Sheets("Graphical Display").ChartObjects 

If Not (chtObj.Name = "Line Chart") Then 

chtObj.Delete 

End If 

Next 

 
startRow = Range("S7").Value endRow = 

Range("S8").Value 

 
With Sheets("Graphical Display Data 2") 

'Determine the source of x data 

xColumn = 2 

Do 

xColumn = xColumn + 1 

Loop Until .Cells(24, xColumn) = xValue 

'Determine the source of y data yColumn = 2 

Do 

yColumn = yColumn + 1 

Loop Until .Cells(24, yColumn) = yValue 

End With 

 
'Create and position the new chart 

Set cht = Worksheets("Graphical 

Display").ChartObjects.Add(Left:=1320, Width:=600, Top:=180, 

Height:=400).Chart 

cht.ChartType = xlXYScatter 

cht.SeriesCollection.NewSeries 

 
'Set the source data for the chart 

With Sheets("Graphical Display Data 2") 

cht.FullSeriesCollection(1).XValues 

= .Range(.Cells(startRow, xColumn), .Cells(endRow, xColumn)) 

cht.FullSeriesCollection(1).Values = .Range(.Cells(startRow, yColumn), 

.Cells(endRow, yColumn)) 

End With 

 
'Remove the legend and add a title cht.SetElement 

(msoElementLegendNone) cht.SetElement 

(msoElementChartTitleAboveChart) cht.ChartTitle.Text = 

"X-Y Comparison" 

 
'Add individual axis titles 

cht.SetElement 

(msoElementPrimaryCategoryAxisTitleAdjacentToAxis) 

cht.SetElement (msoElementPrimaryValueAxisTitleAdjacentToAxis) 

'Doesn't work 

'cht.Axes(xlValue, xlPrimary).AxisTitle.Text = yValue 

cht.Axes(xlCategory, xlPrimary).AxisTitle.Text = xValue 

cht.Axes(xlCategory).HasMajorGridlines = True 
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'Add a trendline 

With cht.FullSeriesCollection(1) 

.Trendlines.Add 

.Trendlines(1).DisplayEquation = True 

.Trendlines(1).DisplayRSquared = True 

End With 

End If 

End If 

End Sub 
 

 
Sub Checkbox_Click() 

'Ensure the data table is updated correctly when a checkbox is changed 

Sheets("Graphical Display Data").Calculate 

End Sub 
 
 

ThisWorkbook (Code applying to the workbook as a whole.) 
 
 
Private Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As 

Range) 

'This sub runs a calculate on any sheet whose data is changed by the 

user, overriding the application 

''manual' mode while still speeding up spreadsheet operation. 

'Special consideration is given to Graphical Display Data, which must be 

updated when the Graphical 

'Display sheet is changed (This now superseded by table control code.) 

 
Select Case Sh.Name 

Case "Graphical Display" 

Sheets("Graphical Display Data").Calculate 

Case Else 

Sh.Calculate 

End Select 

 
End Sub 
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Appendix D: SSE System Documents 
 

 

 

 
SSE System Pricing, Source: (SSE, 2013) 



 

:    C$UN24'5 60P2<15W S NVER.T PYM11 

SSE Energy  Solutions Robert Brown  House 
Thatcham, R.G19 4AZ 
0 1635 272  125 
sa ij  p h j!jp®ssccgntracting com 

 
SSE 

 
Project Nme: Variant  Reference: Desig n er: 

 
Jewel & Esk College 

Option 8 CSun 245 & Siemens  inverter 

SP 

 
ll /05/2012 

 
 
 
 
 
 
 
 
- ··  - Z5600liiWISJnr:!VI' (IW1Jf19) Co. UC'. J2 x s.emens 

4 

•  ······· f-:=v-'.":'.1.:/...,_.  -tt -' _· '"' -------- -i 
 

 
 
 

Location: Climate Data Record: PV Output: 
Gross/Active PV Surface  Area: 

Edinburgh 

Edinburgh (1981-2000) 
627.20   kWp 
4,156.42 I 4,154.07 m 2 

 

 
PV Array Irradiation: Energy Produced by  PV Array  (AC): Grid Feed-

In: 
4,376,046 kWh 
568,611  kWh 
568,611  kWh 

 

 
System Efficiency: Performance Ratio: Inverter Efficiency: PV Array 
Efficiency : 

Specific Annual Yield: 
C02  Emissions Avoided: 

13.0 % 

86.1  % 

95.6 % 

13.6  % 
906.5  kWh/kWp 
322,954   kg/a 

 
TI1e result:> C!re .rJt!termlned by " natllema n al rrodelcak:ulattol'1.The actual yields  or tfle p tlotovoltaie system 
can d t!\llahfrom these  values due  to  fluctuJtions in the weather, th• efficiency modues and klverters, and cthtr fac Ors. 
The Sy:tem Dogrm above does  not represem end c.anoot replcu::e a full te:hntt.al drawill'il of the :K:Iar system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
PV  SOL Expert 5.5   (Rl) 

 
 
 
 
 

 
SSE PVSo/ System Modelling Results, Source: (SSE, 2013) 
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SSE Shading Analysis (note Zpv value of 1) , Source: (SSE, 2013) 
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Appendix E – Solar Farm Blockage Data 

 

 

 

First Row-Left Angel (degrees°) Degrees Minutes Seconds Degrees Inclination

0°(east) 76°05'20" 76 5 20 76.089 13.911

30° 74°15'20" 74 15 20 74.256 15.744

60° 80°03'40" 80 3 40 80.061 9.939

90° 74°33'00" 74 33 0 74.550 15.450

120° 67°19'40" 67 19 40 67.328 22.672

150° 76°34'40" 76 34 40 76.578 13.422

180° - - - -

First Row-Centre 0°(east) 80°33'00" 80 33 0 80.550 9.450

30° 77°52'40" 77 52 40 77.878 12.122

60° 77°36'00" 77 36 0 77.600 12.400

90° 80°38'20" 80 38 20 80.639 9.361

120° 69°59'00" 69 59 0 69.983 20.017

150° 64°50'10" 64 50 10 64.836 25.164

180° 72°49'30" 72 49 30 72.825 17.175

First Row- Right 0°(east) 85°58'10" 85 58 10 85.969 4.031

30° 78°59'40" 78 59 40 78.994 11.006

60° 81°19'50" 81 19 50 81.331 8.669

90° 69°02'20" 69 2 20 69.039 20.961

120° 61°24'20" 61 24 20 61.406 28.594

150° 63°47'10" 63 47 10 63.786 26.214

180° 73°16'50" 73 16 50 73.281 16.719

Second Row- Right 0°(east) 82°59'40" 82 59 40 82.994 7.006

30° 80°09'20" 80 9 20 80.156 9.844

60° 81°55'10" 81 55 10 81.919 8.081

90° 72°47'50" 72 47 50 72.797 17.203

120° 58°59'10" 58 59 10 58.986 31.014

150° 68°59'40" 68 59 40 68.994 21.006

180° 72°23'40" 72 23 40 72.394 17.606

Third Row- Right 0°(east) 85°02'10" 85 2 10 85.036 4.964

30° 81°25'10" 81 25 10 81.419 8.581

60° 82°14'40" 82 14 40 82.244 7.756

90° 71°24'50" 71 24 50 71.414 18.586

120° 60°42'00" 60 42 0 60.700 29.300

150° 62°47'00" 62 47 0 62.783 27.217

180° 72°23'40" 72 23 40 72.394 17.606

Fourth Row- Left 0°(east) 81°13'30" 81 13 30 81.225 8.775

30° 78°25'10" 78 25 10 78.419 11.581

60° 76°02'30" 76 2 30 76.042 13.958

90° 80°49'50" 80 49 50 80.831 9.169

120° 78°03'40" 78 3 40 78.061 11.939

150° 75°43'00" 75 43 0 75.717 14.283

180° 81°41'50" 81 41 50 81.697 8.303
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Fourth Row- Centre 0°(east) 82°59'00" 82 59 0 82.983 7.017

30° 81°01'30" 81 1 30 81.025 8.975

60° 79°39'40" 79 39 40 79.661 10.339

90° 75°06'20" 75 6 20 75.106 14.894

120° 62°33'30" 62 33 30 62.558 27.442

150° 72°13'30" 72 13 30 72.225 17.775

180° 84°02'00" 84 2 0 84.033 5.967

Fourth Row- Right 0°(east) 84°13'30" 84 13 30 84.225 5.775

30° 82°53'20" 82 53 20 82.889 7.111

60° 81°51'20" 81 51 20 81.856 8.144

90° 75°37'10" 75 37 10 75.619 14.381

120° 63°33'40" 63 33 40 63.561 26.439

150° 63°40'50" 63 40 50 63.681 26.319

180° 70°30'40" 70 30 40 70.511 19.489

Eight Row- Left 0°(east) 85°30'00" 85 30 0 85.500 4.500

30° 84°15'10" 84 15 10 84.253 5.747

60° 84°55'30" 84 55 30 84.925 5.075

90° 73°31'50" 73 31 50 73.531 16.469

120° 71°00'50" 71 0 50 71.014 18.986

150° 72°34'10" 72 34 10 72.569 17.431

180° - - - -

Eight Row- Centre 0°(east) 85°36'10" 85 36 10 85.603 4.397

30° 83°07'30" 83 7 30 83.125 6.875

60° 79°04'30" 79 4 30 79.075 10.925

90° 74°04'30" 74 4 30 74.075 15.925

120° 76°55'40 76 55 40 76.928 13.072

150° 71°55'30" 71 55 30 71.925 18.075

180° - - - -

Eight Row- Right 0°(east) 74°26'20" 74 26 20 74.439 15.561

30° 76°27'00" 76 27 0 76.450 13.550

60° 70°40'10" 70 40 10 70.669 19.331

90° 84°50'00" 84 50 0 84.833 5.167

120° 82°06'10" 82 6 10 82.103 7.897

150° 82°24'50" 82 24 50 82.414 7.586

180° - - - -

17th Row- Left 0°(east) 67°14'00" 67 14 0 67.233 22.767

30° 73°36'20" 73 36 20 73.606 16.394

60° 67°12'40" 67 12 40 67.211 22.789

90° 83°61'10" 83 61 10 84.019 5.981

120° 76°55'40 76 55 40 76.928 13.072

150° 71°55'30" 71 55 30 71.925 18.075

180° - - - -
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Appendix F: MATLAB codes 

Reading data from excel primary data 
alldata=xlsread('primarydata.xlsx');                                             

%%all the data from excel sheet is imported to matlab environment. 

month=alldata(:,1);                                                              

%%first column of the transfered data is dedicated to month 

day=alldata(:,2);                                                                

%%second column of the transfered data is dedicated to day 

hours=alldata(:,3);                                                              

%%third column of the transfered data is dedicated to month 

LSM=alldata(:,4); 

year=alldata(:,5); 

ut=hours+(LSM/60);                                                               

%% Exact hour where LSM is minuets    

Yallop’s algorithm to calculate sun declination and equation of time 
if month>2                                                                       

%% Yallop's algorithm to calculate solar declination and equation of time, 

it has been implemented trough three if function to check the conditions. 

year=year; 

month=month-3; 

t=((ut/24)+day+floor(30.6*month+0.5)+floor(365.25*(year-1976))-

8707.5)/36525;    

else 

year=year-1; 

month=month+9; 

t=((ut/24)+day+floor(30.6*month+0.5)+floor(365.25*(year-1976))-

8707.5)/36525; 

end 

d2r=3.14159/180; 

g=357.528+(35999.05*t); 

if g>360 

g360=g-(floor(g/360)*360); 

else 

g360=g; 

end 

c=(1.915*sin(g360*d2r))+(0.02*sin(2*g360*d2r)); 

l=280.46+(36000.77*t)+c; 

if l>360 

l360=l-(floor(l/360)*360);   

else 

l360=l; 

end 

alpha=l360-(2.466*sin(2*l360*d2r))+(0.053*sin(4*l360*d2r)); 

epsilon=23.4393-(0.013*t); 

dec=atan(tan(epsilon*d2r).*sin(alpha*d2r))/d2r; 

eot=(l360-c-alpha)/15; 

Greenwich hour angle 
 lat=55.95; 
horang=15*d2r*abs(12-(1*hours-0.5));                                           

trm12=(-tan(lat*d2r))*(tan(dec*d2r)); 

hafday=(1/15)*acos(trm12)/d2r; 

srt=12-hafday; 

sst=12+hafday; 

minhour=(hours-1); 

if minhour==floor(srt) 

horang=15*d2r*abs(12-0.5*(hours+srt)); 

end 

if minhour==floor(sst) 

horang=15*d2r*abs(12-0.5*(hours-1+sst)); 



299 

 

end 

Solar geometry 
%solalt 

x1=(sin(lat*d2r)*sin(dec*d2r))+(cos(lat*d2r)*cos(dec*d2r).*cos(horang)); 

solalt=asin(x1)/d2r; 

%solazm 

x2=(cos(dec*d2r).*((cos(lat*d2r)*tan(dec*d2r))-

(sin(lat*d2r).*cos(horang))))./(cos(solalt*d2r)); 

  

  

solazm=acos(x2)/d2r; 

%sun inclination (for loop has been used to constrain the values between 0-

360) 

  

for n=1:1357; 

  

if hours(n,1)>12 

solazm(n,1)=360-solazm(n,1); 

else 

solazm(n,1)=solazm(n,1); 

end 

end 

tilt=30; 

aspect=180; 

x3=(cos(solalt*d2r).*cos((solazm-

aspect)*d2r)*sin(tilt*d2r))+(sin(solalt*d2r)*cos(tilt*d2r)); 

inc=acos(x3)/d2r; 

Hourly horizontal global irradiation 
%ERAD (Exteraterrestrial radiation) 

for n=1:1357; 

if solalt(n,1)>0 

   

erad(n,1)=1367*(1+0.033.*cos(0.0172024*daynumber(n,1))).*sin(solalt(n,1)*d2

r); 

else 

erad(n,1)=0 

end 

end 

% Ig (To read the measured horizontal global irradiation values) 

ig=alldata(:,13); 

% Kt (clearness index) 

for n=1:1357; 

if  ig(n,1)>0 && erad(n,1)>0 

kt(n,1)=ig(n,1)/erad(n,1); 

else  

kt(n,1)=0; 

end 

end 

%Id (hourly horizontal diffuse radiation) 

for n=1:1357; 

if erad(n,1)>ig(n,1) 

id(n,1)=ig(n,1)*(1.006-(0.317*kt(n,1))+(3.1241*(kt(n,1))^2)-

(12.7616*(kt(n,1))^3)+(9.7166*(kt(n,1))^4)); 

else 

id(n,1)=ig(n,1); 

end 

end 

Hourly global slop irradiation 
%slop beam irradiation 
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for n=1:1357; 

if solalt(n,1)>7 && inc(n,1)<90 

bsrad(n,1)=((ig(n,1)-id(n,1))*cos(inc(n,1)*d2r))/sin(solalt(n,1)*d2r); 

else 

bsrad(n,1)=0; 

end 

end 

  

%Diffuse irradiation on a tilted surface 

for n=1:1357; 

if solalt(n,1)<=0 

dsrad(n,1)=0; 

else 

dsrad(n,1)=id(n,1)*(cos(tilt*d2r/2)^2); 

end 

end 

  

%Ground reflection 

for n=1:1357; 

if ig(n,1)<=0 

gref(n,1)=0 

else 

gref(n,1)=0.2.*ig(n,1)*(sin(0.5*tilt*d2r)^2); 

end 

end 

Block dedication for specific azimuths (Block first row-left) 
%first row left block (In this loop blocks related to different azimuths 

are dedicated)  

myaz=alldata(:,11); 

solal=alldata(:,8); 

  

for n=1:1357; 

if myaz(n,1)>=0 && myaz(n,1)<=15 

bfrl(n,1)=13.911; 

end 

if myaz(n,1)>=16 && myaz(n,1)<=45 

bfrl(n,1)=15.744; 

end 

if myaz(n,1)>=46 && myaz(n,1)<=75 

bfrl(n,1)=9.939; 

end 

if myaz(n,1)>=76 && myaz(n,1)<=105 

bfrl(n,1)=15.45; 

       

end 

if myaz(n,1)>=106 && myaz(n,1)<=135 

bfrl(n,1)=22.672; 

end 

if myaz(n,1)>=136 && myaz(n,1)<=165 

  

bfrl(n,1)=13.422 

end 

if  myaz(n,1)<0 

bfrl(n,1)=0 

end 

end 

Blocks modification 
Shading analysis (this loop will chechk in which hours the point is in 

%shade) 
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for n=1:1357; 

if solal(n,1)>bfrl(n,1) 

mbfrl(n,1)=0; 

else 

mbfrl(n,1)=bfrl(n,1); 

end 

end 

Sky view factor 
for n=1:1357; 

skyview1(n,1)=1-

(((30*3.141592/180)*(mbfrl(n,1)*3.141592/180))/(cos(15)^2)); 

end 

Global slop irradiation with consideration to shade 
for n=1:1357; 

if skyview1(n,1)==1; 

shadingeffect1(n,1)=((bsrad(n,1)+(dsrad(n,1))+(gref(n,1))))/2; 

else 

        

shadingeffect1(n,1)=((dsrad(n,1)*skyview1(n,1))+(gref(n,1)*skyview1(n,1)))/

2;    

end 

end 

Mean global horizontal irradiation (December)  
alldata=xlsread('december.xlsx'); 

N=1; 

M=1; 

index(1,1)=1; 

while N<=length(alldata(:,2)) 

if alldata(N,1)==M 

else 

index(M+1,1)=N; 

M=M+1; 

end 

N=N+1; 

end 

index(M+1,1)=N; 

m=1; 

for n=1:28 

for x=index(n):(index(n+1)-1) 

daily(m,n)=alldata(x,4); 

m=m+1; 

end 

m=1; 

end 

  

for i=1:24 

meandaily(i,:)=mean(daily(i,:)); 

i=i+1; 

end 
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Appendix G – Linear Shading plots 
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Appendix H– Radar Shading plots 
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 Appendix I - Edinburgh College Midlothian Campus electricity consumption 

2013-2017 

DATA INPUT > ELECTRICITY  - FINANCIAL YEAR (1st April - 31st 
March) 

    Midlothian 

2013-14 Financial Year       

    kWh % Change 

April 2013   76,317.6   

May 2013   76,707.4   

June 2013   63,086.9   

July 2013   55,465.2   

August 2013   58,653.3   

Sept 2013   63,559.9   

Oct 2013   66,937.9   

Nov 2013   69,300.7   

Dec 2013   63,551.6   

Jan 2014   70,999.8   

Feb 2014   63,601.8   

Mar 2014   68,568.4   

TOTAL (by site)   796,750.5   

        

2014-15 Financial year       

    kWh % Change 

April 2014   58,637.2 -23% 

May 2014   63,651.0 -17% 

June 2014   57,376.4 -9% 

July 2014   51,757.8 -7% 

Aug 2014   51,184.5 -13% 

Sept 2014   58,138.5 -9% 

Oct 2014   60,025.3 -10% 

Nov 2014   59,095.6 -15% 

Dec 2014   53,576.9 -16% 

 Jan 2015   59,699.0 -16% 

Feb 2015   55,262.5 -13% 

Mar 2015   63,215.0 -8% 

Total (by site)   691,619.7 -13% 
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2015-16 Financial year       

    kWh % Change 

April 2015   52,044.2 -11% 

May 2015   55,960.0 -12% 

June 2015   48,986.3 -15% 

July 2015   40,234.7 -22% 

Aug 2015   42,388.4 -17% 

Sept 2015   53,192.0 -9% 

Oct 2015   52,041.2 -13% 

Nov 2015   57,362.2 -3% 

Dec 2015   59,840.9 12% 

 Jan 2016   62,317.0 4% 

Feb 2016   66,150.0 20% 

Mar 2016   68,444.4 8% 

Total (by site)   658,961.3 -5% 

        

2016-17 Financial year       

    kWh % Change 

April 2016   59,063.4 13% 

May 2016   57,063.6 2% 

June 2016   54,762.8 12% 

July 2016   44,925.8 12% 

Aug 2016   51,596.3 22% 

Sept 2016   61,009.7 15% 

Oct 2016   61,768.4 19% 

Nov 2016   71,358.0 24% 

Dec 2016   62,847.0 5% 

 Jan 2017   64,992.0 4% 

Feb 2017   63,553.4 -4% 

Mar 2017   66,608.9 -3% 

Total (by site)   719,549.2 9% 
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Appendix J – Edinburgh College Solar Array Cashflow only (SSE)  

 


