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Abstract: This research work investigates how RSS information fusion from a single, multi-antenna
access point (AP) can be used to perform device localization in indoor RSS based localization systems.
The proposed approach demonstrates that different RSS values can be obtained by carefully
modifying each AP antenna orientation and polarization, allowing the generation of unique,
low correlation fingerprints, for the area of interest. Each AP antenna can be used to generate
a set of fingerprint radiomaps for different antenna orientations and/or polarization. The RSS
fingerprints generated from all antennas of the single AP can be then combined to create a multi-layer
fingerprint radiomap. In order to select the optimum fingerprint layers in the multilayer radiomap
the proposed methodology evaluates the obtained localization accuracy, for each fingerprint radio
map combination, for various well-known deterministic and probabilistic algorithms (Weighted
k-Nearest-Neighbor—WKNN and Minimum Mean Square Error—MMSE). The optimum candidate
multi-layer radiomap is then examined by calculating the correlation level of each fingerprint pair by
using the “Tolerance Based—Normal Probability Distribution (TBNPD)” algorithm. Both steps take place
during the offline phase, and it is demonstrated that this approach results in selecting the optimum
multi-layer fingerprint radiomap combination. The proposed approach can be used to provide localisation
services in areas served only by a single AP.

Keywords: information fusion; polarization; multiple antenna; indoor positioning; localization;
positioning accuracy; single access point positioning; fingerprinting

1. Introduction

During the last decade, several localization methods have been proposed [1–3], and with the
advancement of computational power and the introduction of new technologies, more sophisticated
localization solutions have emerged. These solutions typically include hybrid approaches where
information from different sources are fused, aiming to improve localization accuracy. Such approaches
may combine different wireless technologies, such as Wi-Fi and Bluetooth Low Energy (BLE) beacons [4,5],
Wi-Fi with Visual Light Positioning (VLP) [6], or even VLP with ultrasound [7]. Localization approaches
may also fuse data retrieved from maps [8], inertial, magnetic, or other sensors’ input [9–11]. In all
cases, and depending on the technology and equipment available, the localization methodology utilizes
parameters such as Received Signal Strength (RSS), Time of Flight (TOF), and Angle of Arrival (AOA).
Methods based on TOF and AOA require complex equipment able to measure time (TOF) or signal arrival
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angles (AOA) with high accuracy. These processes may also require synchronization of transceivers and
calibration of antennas [12].

When it comes to RSS localization, the popularity of the method lies on the utilization of existing
wireless communication infrastructure, the simplicity of the localization algorithms, and the achieved
levels of accuracy. In RSS fingerprint-based localization, the procedure involves an offline and an on-ine
phase. During the offline phase, a dataset of RSS fingerprints, named a radiomap, is generated by recording
the RSS value of each Access Point (AP) at multiple locations in the area of interest. The RSS values are
then calibrated in order to improve the quality of the radio-map [13]. It has been shown that such datasets
can be generated rapidly and at a relatively low cost, through the use of a deterministic radio propagation
simulator [8,14,15]. The conventional approach involves performing time-consuming measurement
campaigns in the actual environment [14]. The generated radio-map from such a campaign represents a
static snapshot of the APs RSS values at each measured location. It has to be noted that every time the
environment or the wireless network is modified, one requires a repeat of the measurements. During
the online phase, the Mobile Station (MS) performs real-time RSS measurements. Different positioning
algorithms are then applied to identify the best match between the observed RSS fingerprint and the
respective mean value of the fingerprints recorded in the radiomap during the offline phase. An overview
of typical fingerprint-based methods is provided in [16].

A significant drawback of these systems is that they require the deployment of several APs in order
to generate unique fingerprints at each location, in order to achieve satisfactory positioning accuracy [15].
Due to this characteristic, RSS fingerprint-based localization systems cannot be easily utilized in small-scale
environments, that is, residential places or open plan spaces, where a single AP is deployed.

In this paper, we examine the generation of unique fingerprint radiomaps from a single, multi-antenna
AP by exploiting antenna polarization effects and combining these radiomaps into a multi-layer radiomap
concept. Result analysis indicates that each antenna from the AP device can be considered as an
independent transmitting source. Different polarization configurations are then utilized in order to ensure
that RSS values from different antennas, at the same location, are not correlated. The proposed method’s
performance is evaluated in a two-step procedure, initially by implementing and testing the performance
of deterministic and probabilistic algorithms (Weighted k-Nearest-Neighbor—WKNN and Minimum
Mean Square Error—MMSE) for a set of different antenna orientations, hence different polarization set-ups.
Subsequently, the uniqueness of all candidate radiomaps is examined by calculating the correlation level
of each fingerprint pair. High correlation scores indicate high probable localization errors, and vice
versa. This method requires the implementation of the “Tolerance-Based Normal Probability Distribution
(TBNPD)” algorithm [15].

The rest of the paper is organized as follows: Section 2 includes related research work on the impact
of polarization. In the same section, an overview of RSS fingerprint-based localization methods and
general evaluation techniques are included. In Section 3, the proposed approach is analyzed in more detail.
Section 4 provides a description of the testing environment and the simulation parameters. Section 5
focuses on result analysis and performance evaluation. Finally, Section 6 draws conclusions and provides
suggestions for future work.

2. Related Work

This section provides an overview of fingerprint-based localization methods and the related work
that considers multipath and polarization effects in indoor localization procedures. The section also
summarizes relevant localization evaluation techniques.
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2.1. Fingerprint-Based Positioning Methodologies

Since the proposed approach primarily focuses on indoor RSS-based positioning, the main localization
methods corresponding to such types of systems are presented below.

Two main types of localization algorithms are used in RSS-based indoor positioning
platforms—deterministic and probabilistic. The deterministic algorithms estimate location ̂̀ as a convex
combination of the K reference locations [17]. ̂̀ is calculated as the shortest distance between ri and s in
the n-dimensional space by using the following equation:

̂̀= K

∑
i=1

(
wi

∑K
j=1 wj

`′i

)
(1)

The data set {`′1, . . . , `′l} denotes the reference locations between the respective fingerprint ri and
the observed measurement during positioning s, with respect to an increasing distance—that is, ‖ri − s‖.
The distance can be calculated using standard norms, such as the Manhattan (1-norm) [18], the Euclidean
(2-norm) [19], or the Mahalanobis norm [20].

In its simplest form, the prescribed algorithm can assume K = 1, resulting in the simple Nearest
Neighbour (NN) method [19,21]. If several candidate locations are taken into consideration, but with
equal weight factor wi, the formula represents the K-Nearest Neighbour (KNN) method. In more complex
environments, for improved accuracy, the full implementation of the Weighted K-Nearest Neighbour
(WKNN) [18] is employed by setting the non-negative weight factor wi in Equation (1) as the inverse of
‖ri − s‖.

In probabilistic methods, location ` is estimated by calculating and maximising the conditional
posterior probabilities p(`i|s), i = 1, . . . , l given an observed fingerprint s and a fingerprint database. In
order to estimate the expected value of `, the method may implement either the Maximum A Posteriori
(MAP) [22] or the Minimum Mean Square Error (MMSE) approach [23].

The posterior probability p(`i|s) is obtained by applying Bayes’ rule:

p(`i|s) =
p(s|`i)p(`i)

∑l
i=1 p(s|`i)p(`i)

, (2)

where p(s|`i) is a conditional probability calculated through statistics at the survey stage, and p(`i) is the
a priori probability. The a priori probability is a weighting factor based on the probability distribution
of the target over the reference position candidates that exist in the fingerprint data set. Similarly to
the deterministic method, the formula can be simplified if no prior knowledge is assumed. In such a
case, this prior can be assumed to be a unity, meaning that an equal a priori probability exists for all
fingerprint candidates.

Both deterministic and probabilistic methods are implemented in more sophisticated
fingerprint-based hybrid solutions, where data and information are fused in an effort to improve
localization accuracy. Such approaches may combine different wireless technologies, such as Wi-Fi
and Bluetooth Low Energy (BLE) beacons [4,5], Wi-Fi with Visual Light Positioning (VLP) [6], and VLP
with ultra sound [7]. Hybrid solutions are also presented, including utilization of map information [8],
inertial data, or other sensors’ input [9].

2.2. Mitigating Multipath and Polarization Effects

Research on polarization and multipaths referring to indoor localization techniques tends to focus
on the minimization of their influence on the received signal, instead on how to use polarization to
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improve the localization process. In this scope, authors of [24] presented a method for decreasing errors of
TOA-based indoor positioning systems, based on directional antennas with small side lobes.

Authors of [25] investigated the effects of polarization on the accuracy of an indoor location tracking
system, and established an experimental model that includes parameters which take into account
environmental effects. Based on their observations, they concluded that the accuracy of the location
estimation is mainly dependent on the accuracy of the range measurements and the antenna polarization
angle, which influence RSS, and thus, range accuracy.

In [26], another approach is presented where researchers investigated potential accuracy
improvements in the RSS indoor localization process, through the introduction of directional antennas in
the radio network infrastructure. The position and orientation of the directional antenna was carefully
selected in order to decrease the correlation levels of the RSS fingerprints that form the radiomap.

The research community also proposed sophisticated and specialized RF designs for enabling
spatial re-usability, as well as polarization diversity to mitigate multipath propagation. Authors of [27,28]
designed a switched beam array optimized for 2.45 GHz wireless indoor applications. The proposed
antenna appears to support 2D target localization using measurements from a single anchor node,
achieving an average localization error of 1.7 m.

Polarization Scenarios were also investigated through ultra wide-band (UWB) fingerprinting [29].
Comparisons between vertical and horizontal polarization cases at a frequency range from 3 GHz to
11 GHz suggested that horizontal polarization provides greater accuracy than vertical polarization.

The usage of linear and circular polarized antennas for indoor RSS positioning techniques was
proposed in [30]. In this work, it was shown that the utilization of linear and circular polarized antennas,
instead of only linear polarized antennas, decreases the standard deviation of the received power and
enhances the effective range.

All the aforementioned work focuses on mitigating multipath and polarization effects, rather than
utilizing their inherent properties for the benefit of improving RSS localization accuracy. To the authors’
best knowledge, no previous research has investigated how polarization can be utilized to provide low
correlation fingerprints.

2.3. RTLS Performance Evaluation Techniques

A typical RTLS evaluation method refers to the development of benchmark standards for the
comparison of the performance of different localization schemes [31]. Such schemes usually include
environment type categorization, as well as their dynamic behaviour. The main disadvantages of these
benchmarks are the complexity and abstract procedures that need to be implemented.

More precise methods were presented by researchers in [32,33], who suggested the enumeration
of a number of critical factors that influence the performance of localization platforms. These factors
include the number of transmitters, the number of reference measurements, and the signal measurement
dynamics. They examined a set of localization mechanisms and evaluated their performance robustness
under various configuration settings using two typical types of building environments: an office building
and an underground floor-plan. Although they enumerated several critical factors, they did not provide a
direct relation between these factors. The difficulty of assessing the performance of different localization
systems was also reported in [34].

The performance of radiomaps was also exploited in [35]. In this research, radiomaps were generated
from dynamically collected measurements during the offline phase. The KNN algorithm was then
employed for positioning during the online phase. In the dynamic data collection process, signals
were collected automatically, while collectors were moving along the pre-designed paths. During the
conventional data collection process, the measurements were collected statically: first, the service area
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was divided into pre-designed cells, which usually had a rectangular shape; then, the collectors gathered
signals for each cell, until a sufficient number of samples were collected. Although more accurate, this is a
much more laborious and cumbersome data collection process. The positioning performance in the case of
the dynamic collection process was compared with different grid spacing, and with various K numbers for
a KNN algorithm. However, the proposed methodology is algorithm-specific, and the general outcome
was that the positioning performance is affected by various parameters that should be thoroughly decided.
Authors do not define such critical factors, and they also do not propose a holistic evaluation methodology.

In order to assess any positioning platforms which have already been deployed, in a previous study
we proposed the application of binomial distribution [36]. To evaluate of the quality of RSS fingerprint
databases, we also developed a dedicated correlation algorithm, named the “Tolerance-Based Normal
Probability Distribution (TBNPD)” [15]. This algorithm calculates the correlation level for every pair
of fingerprint entries forming the radiomap, while also considering possible RSS fluctuations (RSStol),
occurring due to the dynamic nature of the environment. The TBNPD algorithm offers the possibility
to assess the uniqueness of each fingerprint entry in a radiomap, prior to its utilization in a Real-Time
Locating System (RTLS). For this reason, the TBNPD algorithm is considered suitable and convenient to be
used for the assessment of the candidate radiomaps generated in the current paper.

Based on the analysis of this algorithm, the Correlation Score (CSpairAB) of any pair of random
fingerprint entries, A (xA, yA) and B (xB, yB), for any active AP (APi), without introducing the
RSStol parameter, is given by the formula:

CSpairAB =
1

σRSSAPi

√
2π

e
− 1

2 (
RSSB−RSSA

σRSSAPi

)2

(3)

where random fingerprint entries A, B ∈ Arearadiomap, and σRSSAPi
is the standard deviation of the RSS

values observed from each APi as:

σRSSAPi
=

√√√√√∑n
i=1 RSS2

i −
(

∑n
i=1 RSSi

n

)2

n− 1
, (4)

where n is the number of fingerprint entries in the radio map and RSSi ≥ MSSensitivity.
By introducing the RSStol parameter in Formula (3), the correlation score CSTBNPD, is formulated.

The CSTBNPD for a pair of random points A, B ∈ Arearadiomap and for any APi is calculated by (5) below:

CSTBNPDpairAB =
1

σRSSAPi

√
2π

e
− 1

2 (
RSSdi f f
σRSSAPi

)2

(5)

where
RSSdi f f =

∣∣∣(RSSA
)

APi
−
(

RSSB
)

APi

∣∣∣− 2RSStol . (6)

In Formula (6), RSSdi f f ≥ 0. For RSSdi f f < 0, the value was set to 0, since the range of the RSS values
of the two fingerprint entries overlap, indicating a high level of correlation.

The total correlation score (CSTBNPDtotal ) to be utilized to assess any candidate radiomap is the product
of the correlation scores of all active APs:

CSTBNPDtotal =
m

∏
AP=1

(
CSTBNPDpairAB

)
. (7)
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3. Proposed Approach

High-Level Description of the Proposed Approach

In this paper, we present a new localization approach based on a single, multi-antenna AP, where each
AP antenna acts as a separate transmitter. By carefully configuring the orientation and polarization of each
antenna, one can influence the RSS values that form the fingerprint radiomap. RSS from different antennas
can then be combined in order to generate a multi-layer radiomap. The multi-layer radiomap is defined
as the unified data set created, from the fusion of RSS and antenna identification data recorded at each
receiver location. In order to practically achieve such a task, the APs’ wireless drivers should be capable
of supporting Radiotap, which is a de facto standard for 802.11 frame injection and reception. Radiotap
offers the capability to retrieve additional information about 802.11 frames, from the driver to userspace
applications, and defines two important antenna fields: Firstly, the IEEE80211_RADIOTAP_ANTENNA
field, a unit-less indication of the Rx/Tx physical antenna identification (Antenna ID), which is a parameter
important for identifying the exact transmitting source of the RSS recorded by the Mobile User (MS);
and secondly, the IEEE80211_RADIOTAP_DBM_TX_POWER field, which provides the RF signal power.
A typical code snippet of transmission definitions for the Atheros driver is presented below:

# def ine ATH_TX_RADIOTAP_PRESENT ( \
(1 << IEEE80211_RADIOTAP_TSFT ) | \
(1 << IEEE80211_RADIOTAP_FLAGS ) | \
(1 << IEEE80211_RADIOTAP_RATE ) | \
(1 << IEEE80211_RADIOTAP_ANTENNA) | \
(1 << IEEE80211_RADIOTAP_DBM_TX_POWER) | \
(1 << IEEE80211_RADIOTAP_XCHANNEL) | \
0)

s t r u c t ath_tx_radiotap_header {
s t r u c t ieee80211_radiotap_header wt_ihdr ;
u i n t 6 4 _ t wt_ ts f ;
u i n t 8 _ t wt_f lags ;
u i n t 8 _ t wt_rate ;
u i n t 8 _ t wt_antenna ;
u i n t 8 _ t wt_txpower ;
u i n t 3 2 _ t wt_chan_flags ;
u i n t 1 6 _ t wt_chan_freq ;
u i n t 8 _ t wt_chan_ieee ;
i n t 8 _ t wt_chan_maxpow ;

As mentioned earlier, each combination of different antenna orientations will potentially generate a
different candidate radiomap. For example, in the case of a single AP with two dipole antennas, a Scenario
could include both antennas to be set in the vertical-z axis direction. Another Scenario may assume that
the first antenna is kept at the vertical orientation, while the second antenna is at a horizontal orientation
pointing at zero degrees. A different Scenario may maintain the first antenna at the vertical orientation,
and the second antenna to be reconfigured at 45 degrees or 90 degrees at the horizontal level, and so forth.
Scenarios may also assume different antenna orientations at the receiver site. The aforementioned typical
Scenarios are illustrated in Figures 1 and 2.
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After preparing the desired Scenarios, simulations were run in order to generate the
respective radiomaps. Each radiomap was evaluated through various localization algorithms, noting the
resulting positioning error. Based on the results, the best performing radiomap was finally selected to be
implemented in the RSS-based fingerprint localization platform. For the purposes of our experiment, we
utilized TruNET wireless, a deterministic radio planning simulator.

(a) (b)

Figure 1. Typical antenna orientation set-ups: Part 1. (a) Tx-01 Vertical -Tx-02 Vertical; (b) Tx-01 Vertical
-Tx-02 Horizontal 90 deg.

(a) (b)

Figure 2. Typical antenna orientation set-ups: Part 2. (a) Tx-01 Vertical -Horizontal 0 deg; (b) Tx-01 Vertical
-Horizontal 45 deg.

Initially, the area of interest was designed in a TruNET wireless simulator, taking into consideration
the different building structure geometries, dimensions, and material constitutive parameters. A list of
different Scenarios was also created by configuring the wireless network antennas, as described previously.
The wireless network consisted of a single Access Point (AP) with a minimum of two monopole antennas.
The proposed approach is applicable to any antenna type.

Afterwards, a simulation took place for each Scenario, and a candidate multi-layer radiomap was
generated based on the fused antenna information. More specifically, each AP antenna was considered
as a separate transmitter. The calculated RSS values, linked with the transmitting source (Antenna ID),
were registered in the receiver cells. Depending on the Scenario set-up (different combination of antenna
orientations/polarization), the RSS values were expected to vary significantly. The candidate radiomaps
were then exported to a standardized template format, and their localization accuracy assessed.

In order to perform the assessment, a testing dataset sample was required, which is a set of RSS
fingerprints at a number of a priori known locations within the study area. Such a sample could either be
retrieved during the online phase, as described in Section 2.1, or can be generated through a simulation.
The size of the aforementioned sample and the distribution of the test locations were both selected in such
a way as to ensure reliable and objective testing, as per [13].

For the purpose of the radiomap assessment, two types of localization algorithms were implemented:
a deterministic (WKNN) and a probabilistic (MMSE) algorithm. Each candidate radiomap was tested
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and its performance evaluated with respect to the achieved localization accuracy. Lastly, the correlations
between all pairs of fingerprints in the dataset were examined, and an overall correlation score for the
candidate radiomaps was calculated [15]. A high correlation score designates a higher probable localization
error, due to high similarities between different fingerprint pairs (locations). After the completion of
the aforementioned iterative procedure, the most suitable radiomap among the candidates was selected.
The selection was based on two performance metrics: ‘minimum mean localization error’ and ‘minimum
correlation score’.

4. Test Environment

This section analyses realistic multipath Scenarios. The Scenarios refer to a laboratory area of
approximately 100 m2, which approximates a typical residential indoor floor. The 3D environment and the
various different wireless network set-ups were simulated in TruNET wireless, a 3D polarimetric ray-tracing
simulator [37]. The transmitter was a single AP with two dipole antennas, transmitting 20 dBm at 2.4 GHz,
which is a typical IEEE 802.11 setup. The aforementioned transmitter was placed in the room most
north-east of the laboratory, at a height of 2.2 m, in order to minimize the LOS area as much as possible
and allow the multipath and fast fading effects to have a higher impact. The building structure and large
furniture were configured using material constitutive parameters obtained from the literature [38], as per
Table 1.

Table 1. Material constitutive parameters of the test environment.

Material El.Per. (F/m) L. Tangent

Concrete 3.9 0.23
Wood 2 0.025
Brick 5.5 0.03
Metal 1 1,000,000
Plasterboard 3 0.067
Glass 4.5 0.007

The generated candidate radiomaps include 406 receiver cells at a height of 1.2 m. A series of
11 different Scenarios (numbers 2 to 12) were created by combining different polarization set-ups. The 11
Scenario configuration parameters are shown in Table 2.

Table 2. Antenna configuration per Scenario ID.

Scenario ID 2 3 4 5 6 7 8 9 10 11 12

Antenna 1 Pol V H0◦ H45◦ H90◦ H135◦ H180◦ H0◦ H0◦ H0◦ H0◦ H0◦

Antenna 2 Pol V V V V V V H0◦ H45◦ H90◦ H135◦ H180◦

Finally, for reference purposes, a typical Scenario (No. 1) with five APs was created for the
same environment. Results were compared with the 11 single AP Scenarios.

The effects of polarization, antenna orientation and multipath are depicted in the snapshots of
Figures 3 and 4. In Figure 5, we present the changes in Power Delay Profile (PDP) for a randomly
selected cell. It can be easily observed that the PDP may vary due to the changes in polarization and
antenna orientation.
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(a) H090Tx1-RSS (b) H045Tx2-RSS

Figure 3. Radiomap vs. antenna polarization, H090 and H045.

Figure 4. Multipath effect in indoor environment (Rx Cell 198).

(a) H090Tx1-TDP (b) H045Tx1-TDP

Figure 5. Time delay profile vs. antenna polarization, H090 and H045.

5. Performance Evaluation

The proposed methodology was implemented for all 11 Scenarios. For testing purposes, the sample
size of the test points was determined at 48 for WKNN and 53 for MMSE localization algorithms.
The aforementioned samples were selected with a “Simple Random Sample” procedure, as presented
in [13]. The calculated mean error and Circular Error Probable (CEP) 95% for both WKNN and MMSE
localization algorithms are presented in Table 3 and Figures 6 and 7, respectively. The quality correlation
score (CS) for each radiomap is illustrated in Figure 8.
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Table 3. Localization algorithm performance and correlation score per candidate radiomap.

Decision Factor 2 3 4 5 6 7 8 9 10 11 12

WKNN Mean Error (m) 1.91 2.21 1.91 1.98 1.69 2.09 2.27 2.72 3.01 2.67 3.25
WKNN CEP 95% (m) 3.41 4.27 3.69 3.36 3.45 3.48 6.22 4.45 2.99 9.00 9.85
MMSE Mean Error (m) 2.17 2.48 2.11 2.49 2.29 2.55 2.82 2.71 3.08 3.09 2.52
MMSE CEP 95% (m) 3.78 4.14 4.19 5.60 4.27 4.37 4.97 4.54 6.07 5.86 5.01
Correlation Score 0.371 0.440 0.355 0.363 0.314 0.398 0.442 0.525 0.591 0.488 0.657

(a) (b)

Figure 6. WKNN Algorithm performance. (a) Mean error per polarization Scenario; (b) CEP95 per
polarization Scenario.

Based on the aforementioned results, a significant variation of the localization accuracy can
be observed, which depends on the transmitter configuration setup. Scenarios of special interest are
Numbers 4 and 6 (marked with a circle) and Scenario No. 2, illustrated with a triangular marker.
When implementing WKNN (k = 4), the mean error varies from 1.69 m for Scenario No. 6, and 1.91 m
for Scenarios 2 and 4, to 3.25 m for Scenario No. 12. Similar behaviour can be noted for the mean error
achieved when utilizing the MMSE (σ = 9) algorithm. We recorded a minimum mean error of 2.11 m for
Scenario No. 4 and 2.29 m for Scenario No. 6, to a maximum of 3.09 m for Scenario No. 11. The quality
evaluation of the candidate radiomaps supports the above findings, indicating that the most appropriate
radiomaps in this setup are No. 6 (CS = 0.314) and No. 4 (CS = 0.355). The localization accuracy that
can be achieved with the proposed methodology is comparable with the benchmark Scenario No. 1,
where five APs were used. More specifically, although utilizing the information from five different APs
leads to a minimum of 1.04 m mean error, the 1.69 m error still able to be accomplished by a single,
two-antenna AP appears to be satisfactory for performing RSS fingerprint localization in small areas, like
residential environments. Typical residential applications may include remote monitoring of patients,
elderly people, children, and animals. Such localization solutions could be also integrated in smart homes,
where different sensors can be activated depending on the proximity of the user. Another observation that
is worth mentioning is related to Scenario 2, where the configuration of both antennas was set to Vertical
Polarization. The RSS differences occurred only due to the spacial separation of the antennas. On the other
hand, it is noted that Scenario numbers 4 and 6, which performed best, were configured with antennas at
45 degrees. Finally, it can be safely assumed that by utilizing various MIMO configurations and a proper
antenna polarization configuration, localization accuracy will be improved.



Sensors 2019, 19, 3711 11 of 14

(a) (b)

Figure 7. MMSE algorithm performance. (a) Mean error per polarization Scenario; (b) CEP95 per
polarization Scenario.

Figure 8. Correlation score per Scenario.

6. Conclusions

In this paper, a novel indoor RSS localization approach was presented. The novelty of the approach
lies on the generated RSS, resulting from the various antenna polarisation states, and the antenna elements
direction of a single AP system. Testing and evaluation of the proposed methodology indicates that
high-quality radiomaps can be generated, leading to satisfactory localization accuracies. The work
demonstrates the ability to implement RSS-based Real-Time Localisation Systems (RTLS) in areas where
only a single multi-antenna AP exists. This research may be further expanded by investigating various
MIMO configurations.

Author Contributions: All authors contributed equally to this work.
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Abbreviations

The following abbreviations are used in this manuscript:

AOA Angle of Arrival
AP Access Point
BLE Bluetooth Low Energy
IoT Internet of Things
KNN K Nearest Neighbour
MAP Maximum A Posteriori
MDPI Multidisciplinary Digital Publishing Institute
MMSE Minimum Mean Square Error
MS Mobile Station
NN Nearest Neighbour
RSS Received Signal Strength
RTLS Real Time Localization System
TDOA Time Difference of Arrival
TOA Time of Arrival
TOF Time of Flight
VLP Visual Light Positioning
WKNN Weighted K Nearest Neighbour

References

1. Hossain, A.M.; Soh, W.S. A survey of calibration-free indoor positioning systems. Comput. Commun.
2015, 66, 1–13. [CrossRef]

2. He, S.; Chan, S. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun.
Surv. Tutor. 2016, 18, 466–490. [CrossRef]

3. Lausnay, S.D.; Strycker, L.D.; Goemaere, J.P.; Nauwelaers, B.; Stevens, N. A survey on multiple access Visible Light
Positioning. In Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative
Business Practices for the Transformation of Societies (EmergiTech), Balaclava, Mauritius, 3–6 August 2016;
pp. 38–42. [CrossRef]

4. Kanaris, L.; Kokkinis, A.; Liotta, A.; Stavrou, S. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for
Improved Indoor Localization. Sensors 2017, 17, 812. [CrossRef] [PubMed]

5. Antevski, K.; Redondi, A.E.C.; Pitic, R. A hybrid BLE and Wi-Fi localization system for the creation of study
groups in smart libraries. In Proceedings of the 2016 9th IFIP Wireless and Mobile Networking Conference
(WMNC), Colmar, France, 11–13 July 2016; pp. 41–48. [CrossRef]

6. Kanaris, L.; Kokkinis, A.; Liotta, A.; Stavrou, S. Combining smart lighting and radio fingerprinting for improved
indoor localization. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and
Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 447–452.

7. Rabadan, J.; Guerra, V.; RodrÃguez, R.; Rufo, J.; Luna-Rivera, M.; Perez-Jimenez, R. Hybrid Visible Light and
Ultrasound-Based Sensor for Distance Estimation. Sensors 2017, 17, 330. [CrossRef] [PubMed]

8. Kokkinis, A.; Raspopoulos, M.; Kanaris, L.; Liotta, A.; Stavrou, S. Map-aided fingerprint-based indoor
positioning. In Proceedings of the 2013 IEEE 24th International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 270–274. [CrossRef]

http://dx.doi.org/10.1016/j.comcom.2015.03.001
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.1109/EmergiTech.2016.7737307
http://dx.doi.org/10.3390/s17040812
http://www.ncbi.nlm.nih.gov/pubmed/28394268
http://dx.doi.org/10.1109/WMNC.2016.7543928
http://dx.doi.org/10.3390/s17020330
http://www.ncbi.nlm.nih.gov/pubmed/28208584
http://dx.doi.org/10.1109/PIMRC.2013.6666144


Sensors 2019, 19, 3711 13 of 14

9. Mirowski, P.; Ho, T.K.; Yi, S.; Macdonald, M. SignalSLAM: Simultaneous localization and mapping with mixed
WiFi, Bluetooth, LTE and magnetic signals. In Proceedings of the 2013 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–10. [CrossRef]

10. Li, L.; Yang, W.; Wang, G. Intelligent fusion of information derived from received signal strength and inertial
measurements for indoor wireless localization. AEU Int. J. Electron. Commun. 2016, 70, 1105–1113. [CrossRef]

11. Li, Y.; Zhuang, Y.; Zhang, P.; Lan, H.; Niu, X.; El-Sheimy, N. An improved inertial/wifi/magnetic fusion structure
for indoor navigation. Inform. Fus. 2017, 34, 101–119. [CrossRef]

12. Wen, F.; Liang, C. Fine-Grained Indoor Localization Using Single Access Point With Multiple Antennas.
IEEE Sens. J. 2015, 15, 1538–1544. [CrossRef]

13. Kanaris, L.; Kokkinis, A.; Fortino, G.; Liotta, A.; Stavrou, S. Sample Size Determination Algorithm for fingerprint-
based indoor localization systems. Comput. Netw. 2016, 101, 169–177. [CrossRef]

14. Raspopoulos, M.; Laoudias, C.; Kanaris, L.; Kokkinis, A.; Panayiotou, C.; Stavrou, S. 3D Ray Tracing for
device-independent fingerprint-based positioning in WLANs. In Proceedings of the 2012 9th Workshop on
Positioning Navigation and Communication (WPNC), Dresden, Germany, 15–16 March 2012; pp. 109–113.
[CrossRef]

15. Kanaris, L.; Kokkinis, A.; Liotta, A.; Stavrou, S. Quality of Fingerprint Radiomaps for Positioning Systems.
In Proceedings of the 2017 24th International Conference on Telecommunications (ICT) (ICT 2017),
Limassol, Cyprus, 3–5 May 2017.

16. Kjærgaard, M. A Taxonomy for Radio Location Fingerprinting. In Proceedings of the 3rd International
Conference on Location-and Context-Awareness, Oberpfaffenhofen, Germany, 20–21 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 139–156.

17. Honkavirta, V.; Perala, T.; Ali-Loytty, S.; Piche, R. A comparative survey of WLAN location
fingerprinting methods. In Proceedings of the 2009 6th Workshop on Positioning, Navigation and
Communication (WPNC), Hannover, Germany, 19 March 2009; pp. 243–251.

18. Li, B.; Salter, J.; Dempster, A.G.; Rizos, C. Indoor positioning techniques based on wireless LAN. In Proceedings
of the LAN, First IEEE International Conference on Wireless Broadband and Ultra Wideband Communications,
Hangzhou, China, 6–9 November 2006; pp. 13–16.

19. Bahl, P.; Padmanabhan, V. RADAR: An in-building RF-based user location and tracking system. In Proceedings
of the 2000 IEEE International Conference on Computer Communications INFOCOM, Tel Aviv, Israel, 26–30
March 2000; Volume 2, pp. 775–784.

20. Yeung, W.; Zhou, J.; Ng, J. Enhanced Fingerprint-Based Location Estimation System in Wireless
LAN Environment. In Emerging Directions in Embedded and Ubiquitous Computing; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 273–284.

21. Saha, S.; Chaudhuri, K.; Sanghi, D.; Bhagwat, P. Location determination of a mobile device using IEEE 802.11b
access point signals. In Proceedings of the 2003 IEEE Wireless Communications and Networking, New Orleans,
LA, USA, 16–20 March 2003; Volume 3, pp. 1987–1992. [CrossRef]

22. Youssef, M.; Agrawala, A. The Horus WLAN location determination system. In Proceedings of the 3rd
International Conference on Mobile Systems, Applications, and Services, MobiSys ’05, Washington, DC, USA,
6–8 June 2005; ACM: New York, NY, USA, 2005; pp. 205–218. [CrossRef]

23. Roos, T.; Myllymaki, P.; Tirri, H.; Misikangas, P.; Sievanen, J. A Probabilistic Approach to WLAN User Location
Estimation. Int. J. Wirel. Inf. Netw. 2002, 9, 155–164. [CrossRef]

24. Szumny, R.; Kurek, K.; Modelski, J. Attenuation of multipath components using directional antennas and
circular polarization for indoor wireless positioning systems. In Proceedings of the 2007 European Microwave
Conference, Munich, Germany, 10–12 October 2007; pp. 1680–1683. [CrossRef]

25. Barralet, M.; Huang, X.; Sharma, D. Effects of antenna polarization on RSSI based location identification.
In Proceedings of the 2009 11th International Conference on Advanced Communication Technology,
Phoenix Park, Korea, 15–18 February 2009; Volume 1, pp. 260–265.

http://dx.doi.org/10.1109/IPIN.2013.6817853
http://dx.doi.org/10.1016/j.aeue.2016.04.017
http://dx.doi.org/10.1016/j.inffus.2016.06.004
http://dx.doi.org/10.1109/JSEN.2014.2364121
http://dx.doi.org/10.1016/j.comnet.2015.12.015
http://dx.doi.org/10.1109/WPNC.2012.6268748
http://dx.doi.org/10.1109/WCNC.2003.1200692
http://dx.doi.org/10.1145/1067170.1067193
http://dx.doi.org/10.1023/A:1016003126882
http://dx.doi.org/10.1109/EUMC.2007.4405536


Sensors 2019, 19, 3711 14 of 14

26. Kanaris, L.; Kokkinis, A.; Raspopoulos, M.; Liotta, A.; Stavrou, S. Improving RSS fingerprint-based localization
using directional antennas. In Proceedings of the 8th European Conference on Antennas and Propagation
(EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 1593–1597. [CrossRef]

27. Cidronali, A.; Maddio, S.; Giorgetti, G.; Magrini, I.; Gupta, S.K.S.; Manes, G. A 2.45 GHz smart antenna
for location-aware single-anchor indoor applications. In Proceedings of the 2009 IEEE MTT-S International
Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1553–1556. [CrossRef]

28. Cidronali, A.; Maddio, S.; Giorgetti, G.; Manes, G. Analysis and Performance of a Smart Antenna for 2.45-GHz
Single-Anchor Indoor Positioning. IEEE Trans. Microw. Theory Tech. 2010, 58, 21–31. [CrossRef]

29. Sangthong, J.; Promwong, S.; Supanakoon, P. Comparison of UWB fingerprinting with vertical and horizontal
polarizations for indoor localization. In Proceedings of the ECTI-CON2010: The 2010 ECTI International
Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,
Chiang Mai, Thailand, 19–21 May 2010; pp. 588–592.

30. Szalay, Z.; Nagy, L. Utilization of linearly and circularly polarized antennas for indoor positioning. In Proceedings
of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9
July 2015; pp. 1–4. [CrossRef]

31. Wallbaum, M.; Diepolder, S. Benchmarking Wireless LAN Location Systems Wireless LAN Location Systems.
In Proceedings of the 2005 The Second IEEE International Workshop on Mobile Commerce and Services, WMCS
’05, Munich, Germany, 19 July 2005; pp. 42–51. [CrossRef]

32. Ji, Y.; Biaz, S.; Wu, S.; Qi, B. Optimal Sniffers Deployment On Wireless Indoor Localization. In Proceedings of the
2007 16th International Conference on Computer Communications and Networks, ICCCN 2007, Honolulu, HI,
USA, 13–16 August 2007; pp. 251–256. [CrossRef]

33. Ji, Y. Location Determination within Wireless Networks; VDM Publishing House Ltd.: Hong Kong, China, 2009;
p. 136.

34. Ji, Y.; Chen, L. Dynamic Indoor Location Determination: Mechanisms and Robustness Evaluation. In Proceedings
of the 2010 Sixth Int Autonomic and Autonomous Systems (ICAS) Conference, Cancun, Mexico, 7–13 March
2010; pp. 70–77. [CrossRef]

35. Kim, J.; Ji, M.; Cho, Y.; Lee, Y.; Park, S. Performance evaluation of fingerprint based location system using
dynamic collection. In Proceedings of the 2013 International Conference on ICT Convergence (ICTC), Jeju, Korea,
14–16 October 2013; pp. 950–954. [CrossRef]

36. Kanaris, L.; Kokkinis, A.; Liotta, A.; Raspopoulos, M.; Stavrou, S. A Binomial Distribution Approach for
the Evaluation of Indoor Positioning Systems. In Proceedings of the 20th International Conference on
Telecommunications (ICT 2013), Casablanca, Morocco, 6–8 May 2013.

37. TruNET Wireless, Fractal Networx Limited. Available online: www.fractalnetworx.com (accessed on 26 August 2019).
38. Stavrou, S.; Saunders, S. Review of constitutive parameters of building materials. In Proceedings of the Twelfth

International Conference on (Conf. Publ. No. 491). IET, Antennas and Propagation, (ICAP 2003), Exeter, UK,
31 March–3 April 2003; Volume 1, pp. 211–215.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/EuCAP.2014.6902090
http://dx.doi.org/10.1109/MWSYM.2009.5166006
http://dx.doi.org/10.1109/TMTT.2009.2035947
http://dx.doi.org/10.1109/ICTON.2015.7193446
http://dx.doi.org/10.1109/WMCS.2005.7
http://dx.doi.org/10.1109/ICCCN.2007.4317828
http://dx.doi.org/10.1109/ICAS.2010.19
http://dx.doi.org/10.1109/ICTC.2013.6675525
www.fractalnetworx.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Fingerprint-Based Positioning Methodologies
	Mitigating Multipath and Polarization Effects
	RTLS Performance Evaluation Techniques

	Proposed Approach
	Test Environment
	Performance Evaluation
	Conclusions
	References

