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13 ABSTRACT
14
15 Two main approaches can be used to predict road accidents: transferring existing Safety Performance 
16 Functions (SPFs) from other areas (transferred SPFs), and developing local SPFs. Both approaches 
17 have advantages and disadvantages, and are affected by the difficult choice of predictors. Regional 
18 variables or terrain factors may lead prediction improvements. However, results from previous 
19 relevant research are contradictory and transferability assessments are mainly based on North-
20 American experiences. 
21 Because of these inconsistencies, this study is an attempt of providing new insights on the choice 
22 between alternative accident prediction methods by taking into account the geographic variability in 
23 the European context. In particular, it addresses three main issues: 1) it compares the prediction 
24 accuracy of transferred and local SPFs; 2) it determines the significance of regional factors in 
25 explaining safety performances, 3) it assesses the variability of results among the different contexts 
26 considered. Research questions are addressed as based on two-lane rural road sites in Italy and 
27 Scotland.
28 The analysis shows differences between the two countries, due to the different nature of the networks, 
29 but not within each country. Both advantages and disadvantages were highlighted in the evaluation 
30 of transferred and local SPFs. Calibration of transferred SPFs may be less demanding than their local 
31 estimation, even if they may lead to unreliable estimates when compared to comprehensive SPFs. 
32 However, locally developed SPFs may not provide more significantly reliable estimates than 
33 transferred SPFs. Segment curvature and shoulder types are statistically significant predictors in both 
34 the Italian and Scottish models, even having different importance.
35
36 KEYWORDS: Safety Performance Functions, Transferability, Highway Safety Manual, Regional 
37 variables, Two-lane Rural Roads
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1 1. INTRODUCTION

2 The advances in road safety research can assist practitioners in making technical choices. In 
3 particular, the road safety practice may benefit from quantitative predictions of crash occurrence. The 
4 use of Safety Performance Functions (SPFs) and Crash Modification Factors (CMFs) greatly helped 
5 in making quantitative estimates (see e.g. Hauer and Persaud, 1997; Hauer, 1999; Hauer et al., 2012).

6 A Safety Performance Function (SPF) is a regression model which links the crash frequency (and/or 
7 severity) to predictor variables, usually road and traffic features (AASHTO, 2010). It is developed 
8 for different road types, i.e. segments or intersections of rural or urban highways/freeways. Crash 
9 Modification Factors (CMFs) (or functions) are factors/functions that account for the effect of a 

10 change in some default road conditions (change in road geometric characteristics or traffic control 
11 systems) on the accident frequency. They can be applied to the results obtained from a SPF to account 
12 for differences with respect to the SPF base conditions. SPFs were taken into account in this article 
13 since they consider the influence of different variables on accidents through a single model and thus 
14 are used for making predictions.

15 However, the transferability of SPFs developed in given geographic areas to other countries/areas, 
16 may be unfeasible to some extent (see e.g. Sacchi et al., 2012, Farid et al., 2018b). Differences in 
17 road contexts, drivers’ populations and behaviour, crash database, may result in unreliable 
18 transferability of functions to other contexts (see e.g. Bahar and Hauer, 2014; Farid et al., 2016).

19 1.1 Background on transferability of accident predictive methods 

20 Two main strategies may be used to overcome the transferability issue.

21 The first strategy consists in transferring SPFs from other areas (Transferred Functions, TFs), and 
22 calibrating them by correcting their outcomes according to local conditions. A possible basic 
23 calibration method is provided in the Highway Safety Manual (HSM) (AASHTO, 2010). Local 
24 calibration factors are computed as the ratio of the crashes observed on a sample of local road sites; 
25 to those predicted by the base model for the same types of sites. However, a single calibration factor 
26 could not be sufficient for large/not homogeneous areas (e.g. different terrains) (Bahar and Hauer, 
27 2014). Hence, different calibration factors may be achieved in case of different local characteristics 
28 (see e.g. Tarko, 2006; Colonna et al., 2016a). More refined calibration techniques were defined, which 
29 may provide more reliable estimates. For example, the calibration of model parameters through 
30 maximum likelihood estimation (Sawalha and Sayed, 2006); segment-specific calibration (Farid et 
31 al., 2016); calibration functions (Srinivasan et al., 2016); calibration based on local regression (Farid 
32 et al., 2018b) or on the k nearest neighbour data mining method (Farid et al., 2018a), were proposed. 

33 The second strategy consists of developing a local SPF (Local Function, LF) based on data related to 
34 the same local road sites. The number and type of independent variables may be the same, or they 
35 may be locally adapted, according to the relevant road features in the network. For example, while 
36 developing LFs for the Utah State, Brimley et al. (2012) included the multiple-unit trucks traffic 
37 percentage as a variable, usually not considered in other studies. Gooch et al. (2018) highlighted that 
38 separate predictions can be made for curved segments and tangent sections. Moreover, the choice of 
39 the SPF functional form may also be based on the best fitting model. For example, Farid et al. (2019) 
40 tested several possible different SPF modelling techniques, by assessing their outcomes and 
41 advantages in different conditions. An extended review of possible alternative methods for modelling 
42 crash frequency data, together with their assessment, was provided by Lord and Mannering (2010). 
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43 However, the choice between these strategies is not straightforward. In fact, while the estimation of 
44 LFs is generally encouraged (see e.g. AASHTO, 2010), it could require more resources than simple 
45 TF calibration, especially for practitioners. Benefit-cost evaluations could be used to assess if a LF is 
46 really needed compared with calibration of a TF, and if its cost may be justified. However, even if 
47 there are cases in which the lack of necessary and quality data (see e.g. Gomes et al., 2019) may 
48 discourage from trying estimating SPFs; knowing in advance if the LF will outperform results from 
49 calibration of TFs is hard, even in presence of reliable and abundant data. On the other hand, there 
50 are cases in which the transferability of SPFs can be possible. This may depend on the quality of the 
51 reference SPF (Persaud et al., 2002), on the differences between the two areas on which SPFs are 
52 developed and transferred (see e.g. Farid et al., 2016), or on modelling techniques (Farid et al., 2019).

53 1.2 Background on the geographic variability of the transferability issues

54 The transferability issue gets more complex if the variability of the geographic spatial resolution is 
55 considered. In fact, defining 1) the boundaries of the areas within which the performed calibration of 
56 a transferred SPF (TF) is valid, or 2) the boundaries for using a locally developed SPF (LF) in other 
57 parts of the same country/state is arduous. 

58 For example, concerning the first point, calibration factors for TFs may greatly vary for different 
59 regions of the same country (Colonna et al., 2016a), or even in sub-networks of the same state (Tarko, 
60 2006). However, country-wide calibrations were conducted as well (see e.g. La Torre et al., 2014). 

61 Similarly, for the second stated point, contradictory results were found. Qin et al. (2002) found no 
62 statistically significant differences between four US States on crashes predicted through a model 
63 including road and traffic variables. Moreover, Farid et al. (2018b) found that in some cases, US state-
64 specific SPFs may be transferred to other US states. Whereas, calibrations were conducted (e.g. Sun 
65 et al., 2006; Garber et al., 2010; Xie et al., 2011; Shin et al., 2015) for transferring American HSM 
66 SPFs (AASHTO, 2010) to single US States, resulting in some cases in relevant model corrections. 
67 Five different SPFs were developed even in a small State (Virginia, USA), accounting for different 
68 commuting patterns, driver behaviour, routes, crash statistics, topography (Garber et al., 2010). This 
69 approach was also used in Pennsylvania (USA) (Donnell at al. 2014), where a State-wide SPF was 
70 locally adjusted, showing significant prediction improvements, especially at the district level. The 
71 application of geographically weighted regressions within a single US state (Virginia) successfully 
72 led to different LFs accounting for spatial variability of crash predictions as well (Liu et al., 2017).

73 The same transferability issues found for the US States may be replicated, to some extent, for other 
74 countries, even smaller. For example, two SPFs for the Southern Italian two-lane rural road network 
75 (Cafiso et al., 2010; Russo et al., 2016) exist. However, an application of these SPFs in the same area 
76 (Colonna et al., 2018) revealed that their outcomes may be largely different depending on the 
77 application (i.e. assessment of safety measures or predictions in the road design stage). It is important 
78 to note that a consistent part of research about SPFs (both estimation and transferability) was 
79 conducted in the USA, with some notable exceptions, such as some European studies (see e.g. Yannis 
80 et al., 2016). Moreover, apart from jurisdictional variability, other geographic factors may be 
81 influential as well, such as terrain. Zegeer et al. (1987) found that single-vehicle accident rates are 
82 higher for mountainous/rolling terrains than for flat ones. A different influence of flat, rolling, 
83 mountainous terrains on crash occurrence and slight discrepancies between flat and mountainous 
84 terrains were revealed by Srinivasan and Carter (2011) and Bauer and Harwood (2000), respectively.

85 Hence, it is evident how geographic factors (not only jurisdiction-related) may both affect the 
86 transferability of SPFs and the development of calibration factors. Recent studies have then focused 
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87 on considering geographic factors for crash analyses at different levels: i.e. at the provincial level 
88 while taking into account macro-variables (Gonzalez et al., 2018), or even more disaggregate levels 
89 while considering a mix of macro and local variables (Lee et al., 2017). However, several variables 
90 related to road geometry, traffic operations, and boundary conditions should be considered in the SPF 
91 estimation (see e.g. Hauer, 2015). Given their consistent importance revealed in previous research 
92 (e.g. Abdel-Aty and Radwan, 2000; Greibe, 2003; Cafiso et al., 2010), the assessment of geographic 
93 variability should not be conducted independently from other road geometric and traffic variables. 

94 1.3 Research questions

95 For the reasons explained above, different geographic factors (at least jurisdiction and terrain 
96 variability) should be considered while both calibrating TFs and estimating LFs. However, the choice 
97 between calibrating TFs and estimating LFs at the local level is not strongly documented in different 
98 contexts. In this regard, contradictory results were found in previous literature, and they mostly 
99 belong to North America. Thus, this study would provide additional insights in this field, by analysing 

100 datasets from two European case studies. 

101 Hence, this article attempts to address the following research questions. They regard both the choice 
102 between using different strategies for local crash predictions and the need for considering geographic 
103 factors in the European context:

104  Are there significant differences between the outcomes of TFs and estimated LFs?
105  Among all the other variables, are geographic factors significant variables for crash 
106 predictions, by using both TF calibration and LF development techniques?
107  Are the answers to the questions above variable as well, if different geographic areas are 
108 considered?

109 The above reported questions are specifically addressed through the analysis of two separate 
110 European traffic and accident database from Italy and Scotland (United Kingdom). The methods 
111 employed for data analysis are presented in next section. Results are then reported and discussed.

112 Complementary to the research aims, this article provides novel SPFs for Italy and Scotland and 
113 calibration coefficients for Scotland, which may be of practical use for analysts and engineers. While 
114 previous studies report SPFs for Italian two-lane rural roads (Cafiso et al., 2010; Russo et al., 2016), 
115 no similar studies were found for Scotland, to the current authors’ knowledge. Hence, the present 
116 study is deemed useful for enlarging the global dataset of SPFs too (see e.g. PRACT project).

117

118 2. METHODS

119 The general procedure adopted, the database used, the specific variables considered, the calibration 
120 procedure and regression techniques employed are described in detail as follows.

121 2.1 Procedure

122 The general procedure adopted in this study is divided into the following subsequent stages:

123  Transfer the HSM SPF for two-lane rural roads to both the Italian and Scottish contexts, with 
124 different refinements: by determining both a state-wide and more detailed calibration factors;
125  Develop LFs for the same sample of Italian and Scottish sites used for HSM calibration;
126  Compare the results obtained from TF (HSM SPF) calibration with those from LFs estimation;
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127  Assess the general influence of geographic variability factors on crash predictions; i.e. if the 
128 geographic factors (both different geographic areas and terrains) may influence the calibration 
129 factors or be included in the regression analysis;
130  Compare the results obtained through the studies performed in Italy and Scotland, by focusing 
131 in particular on the comparison between the statistically significant variables of the two LFs, 
132 and between the factors which may influence the calibration coefficients of TFs.

133 A concept map of the above described procedure, including links to the structure of this article, to 
134 indicate the sections in which each part of the work is discussed, is provided in Figure 1.

135 Different SPFs may have been considered for TF calibration for both Italy and Scotland. However, 
136 the sequential application of HSM SPF and CMFs for two-lane rural roads includes a wider list of 
137 road and traffic accident predictors than several other alternative models. For example, Colonna et al. 
138 (2018) highlighted that the two-lane rural HSM SPF calibrated for Italy can account for several road 
139 and traffic features, when compared with alternative Italian models (Cafiso et al., 2010; Russo et al., 
140 2016). Thus, the base HSM SPF (and related CMFs) were selected as they may represent a wide range 
141 of road and traffic characteristics. Moreover, the HSM SPF represents a usual benchmark TF in 
142 previous research (see e.g. Sacchi et al., 2012). 

143 The specific choice for two different European areas such as Italy and Scotland was justified by the 
144 following remarks. The European continent has a total area comparable to the United States. Hence, 
145 as transferability issues were highlighted within the US country, it is possible that different outcomes 
146 could result from different European areas, which in addition are different countries. Hence, two 
147 different European contexts were chosen (Italy in the Southern Europe and Scotland in the North-
148 Western Europe), characterized by different extension, population distribution, road infrastructure 
149 system development (see Table 2), and rule of the road. The Scottish case study was not extended to 
150 the whole United Kingdom, to preserve these differences.

151

152

153 Figure 1. Concept map of the general procedure used, and of the results and discussion sections.
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154 2.2 Database

155 Two separate databases, namely, for Italy and Scotland, were used. Both database are composed of a 
156 first traffic volume dataset, and a second accident (fatal+injury only) dataset for two-lane rural roads. 
157 Hence, only the secondary road networks of the two areas were considered, thus excluding roads 
158 belonging to the primary and main road networks (“A” and “B” class in the Italian classification, 
159 Italian Ministry of Infrastructures and Transport, 2001; motorways and “A” class in the UK 
160 classification, UK Department for Transport, 2012). Italian primary and main roads should be 
161 designed as multi-lane roads (whether being motorways or not). Whereas, the main UK roads (“A” 
162 class) may include also some two-lane roads. However, “A” class roads were not considered in the 
163 road network composed of secondary roads, to be coherent with the Italian case.
164
165 Annual average daily traffic counts were collected from the respective road agencies (UK Department 
166 for Transport, covering all the Scottish network; Italian ANAS, covering part of the Italian network). 
167 Accident data were retrieved from different sources: Italian National Institute of Statistics (ISTAT) 
168 and Italian Automobile Club (ACI) for the Italian case and the online portal https://data.gov.uk/ for 
169 the Scottish case. At least three years of accident data were collected (see Bahar and Hauer, 2014). 
170
171 Starting from the overall database, traffic and accident data were coupled for road sections provided 
172 with traffic counts. A road section is defined here as a section on a road trunk included between two 
173 relevant intersections (i.e. with roads of similar importance, excluding driveways or intersections with 
174 minor roads), on which a unique traffic volume is assigned, since it is deemed as constant along it. 
175 The resulting total length of segments inquired is about 213 km (74 segments) for Italy and 180 km 
176 for Scotland (66 segments).
177
178 The total number of observed Scottish crashes is low (101 in total), even if the total length of segments 
179 investigated is comparable with the Italian one. Hence, among all the segments provided with traffic 
180 data, a subset was selected in compliance with both the following requirements: 1) having an 
181 equivalent number of at least 100 accidents/year (AASHTO, 2010), 2) including a sufficient number 
182 of zero-count sites to account for the low mean estimated accidents/km rate in the part of network 
183 investigated. Detailed information concerning the road segments composing the final database 
184 obtained are reported in the following Table. Information about the dataset are also classified 
185 according to the traffic ranges and regions of the segments, which pertains to the main research 
186 questions. Descriptive statistics are also reported about accidents, traffic, geometric and other 
187 characteristics of the segments in the dataset. The variables considered in this study are described in 
188 detail in 2.3.
189
190 Table 1. Descriptive statistics of the variables considered among the sample of segments, showing 
191 the mean values (st. dev. in brackets) or counts associated to each variable over the considered road 
192 segments (in all the database, for the specific region, for the specific traffic range).

Descriptive statistics
Variables

Overall Region 1 Region 2 Traffic 
Range 1

Traffic 
Range 2

Territory: Italy (years of data: 2007-2012)

- Northern 
Italy

Central-
Southern 

Italy
≤10,000 >10,000

Number of Segments (-) 74 20 54 56 18
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Homogeneous 
sub-segments (Sites) (-) 398 112 286 316 82

Total Length of Segments 
(km) 212.57 53.82 158.74 163.53 49.03

Total Accidents (accidents) 530 260 270 242 288
Accident Frequency 

(accidents/year)
1.19

(1.74)
2.17

(2.27)
0.83

(1.35)
0.72

(1.11)
2.67

(2.43)
Accident Frequency per km

(accidents/year/km)
0.44

(0.51)
0.84

(0.60)
0.29

(0.37)
0.25

(0.31)
1.03

(0.54)

AADT (vehicles/day) 6506.53 
(4269.27)

9927.00 
(4811.17)

5239.69 
(3279.70)

4484.14 
(2410.54)

12798.39 
(2019.65)

Length of Segments (m) 287.25 
(1700.58)

2690.95 
(1661.53)

2939.70 
(1725.28)

2920.25 
(1678.85)

2723.83 
(1807.99)

Road Width (m) 8.83
(1.12)

8.79
(1.11)

8.85
(1.13)

8.77
(1.13)

9.01
(1.07)

Shoulder Type (-)
(categorical)

Paved – 30
Gravel - 3

Composite/
Mixed – 25

Turf - 16

Paved – 6
Gravel - 0

Composite/
Mixed – 8

Turf - 6

Paved – 24
Gravel - 3

Composite/
Mixed – 17

Turf - 10

Paved – 22
Gravel - 3

Composite/
Mixed – 19

Turf - 12

Paved – 8
Gravel - 0

Composite/
Mixed – 6

Turf - 4

Radius of Curvature (m) 294.62 
(194.73)

275.32 
(171.66)

301.86 
(204.28)

300.27 
(207.91)

269.22 
(123.75)

Curve Ratio (-) 0.14
(0.15)

0.14
(0.12)

0.14
(0.16)

0.16
(0.16)

0.08
(0.09)

Slope (%) 2.83
(2.06)

1.78
(1.64)

3.21
(2.08)

3.31
(2.09)

1.33
(0.98)

Driveway Density 
(driveways/km)

7.53 
(14.23)

8.82
(15.08)

7.05
(14.02)

5.78
(9.21)

12.99
(23.52)

RHR (-)
(categorical, integers: 1-7)

4.14
(1.16)

3.77
(1.32)

4.27
(1.07)

4.23
(1.09)

3.85
(1.34)

Elevation (-) Flat – 37
Rolling - 37

Flat – 13
Rolling - 7

Flat – 24
Rolling - 30

Flat – 25
Rolling - 31

Flat – 12
Rolling - 6

Territory: Scotland (years of data: 2012-2014)

-

South 
(Western/
Eastern) 
Scotland

Highlands-
Island/
Eastern 
Scotland

≤2,000 >2,000

Number of Segments (-) 66 43 23 41 25
Homogeneous 

sub-segments (Sites) (-) 311 203 108 196 115

Total Length of Segments 
(km) 180.22 117.79 62.43 112.20 68.02

Total Accidents (accidents) 101 59 42 55 46
Accident Frequency 

(accidents/year)
0.51

(0.63)
0.46

(0.51)
0.61

(0.80)
0.45

(0.44)
0.61

(0.85)
Accident Frequency per km

(accidents/year/km)
0.20

(0.32)
0.17

(0.23)
0.27

(0.43)
0.17

(0.20)
0.25

(0.45)

AADT (vehicles/day) 2048.06 
(1620.94)

1934.07 
(1586.63)

2261.17 
(1698.27)

992.07 
(444.50)

3779.88 
(1325.74)

Length of Segments (m) 2730.62 
(1525.36)

2739.30 
(1434.47)

2714.39 
(1716.27)

2736.51 
(1529.61)

2720.96 
(1549.78)

Road Width (m) 8.16
(1.53)

8.19
(1.42)

8.11
(1.75)

7.84
(1.39)

8.70
(1.62)

Shoulder Type (-) Paved - 1 Paved - 1 Paved - 0 Paved - 0 Paved - 1
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(categorical) Composite/
Mixed – 24

Turf - 41

Composite/
Mixed – 14

Turf - 28

Composite/
Mixed – 10

Turf - 13

Composite/
Mixed – 10

Turf - 31

Composite/
Mixed – 14

Turf - 10

Radius of Curvature (m) 348.58 
(274.74)

356.61 
(318.32)

333.55 
(170.90)

276.39 
(173.58)

466.96 
(361.54)

Curve Ratio (-) 0.55
(0.26)

0.55
(0.25)

0.56
(0.28)

0.51
(0.24)

0.62
(0.27)

Slope (%) 3.34
(1.52)

3.51
(1.48)

3.03
(1.58)

3.57
(1.50)

2.97
(1.51)

Driveway Density 
(driveways/km)

3.86
(2.35)

3.61
(2.56)

4.35
(1.84)

3.90
(2.66)

3.80
(1.78)

RHR (-)
(categorical, integers: 1-7)

5.62
(0.76)

5.76
(0.58)

5.36
(0.97)

5.78
(0.73)

5.40
(0.77)

Elevation (m) 105.47 
(63.91)

105.84 
(59.67)

104.76 
(72.60)

109.31 
(67.73)

99.16
(57.88)

193
194 2.3 Variables

195 The independent variables considered for calibrating TFs and developing LFs are here defined and 
196 described. Given the research questions, a separate section is dedicated to geographic variables. 

197 2.3.1 Geographic variables

198 Coherently with the study aims, geographic factors were considered within each country and not only 
199 as the difference between countries (i.e. Italy versus Scotland). Hence, both Italy and Scotland were 
200 divided into regions, used as synthetic variables to capture the influence of socio-economic and 
201 driving behavioural differences. Italy (I) and Scotland (S) are hardly comparable in terms of area 
202 (approx. 300,000 km2 (I) and 80,000 km2 (S)), population (approx. 60 million inhabitants (I), 5 
203 million inh. (S)). However, both Italy and Scotland were divided into two main regions (see Fig. 2). 
204 This was made to avoid excessive fragmentation of the database into several small regional sub-sets 
205 not ensuring statistical representation of the area, given also the length of the sample of segments 
206 inquired. The considered regions are defined as follows:

207  Italy: 1) Northern Italy, 2) Central-Southern Italy;
208  Scotland: 1) “Lowlands” (Southern part), 2) “Highlands” (Northern part).

209 The two Italian macro-regions were chosen based on the EU NUTS 1 level classification (European 
210 Parliament and Council, 2003). This classification was deemed useful to reveal regional differences, 
211 since it is based on socio-economic features (European Union, Eurostat, 2015). Central Italy (which 
212 occupies a limited territory) and Southern Italy were further grouped together, to avoid excessive 
213 fragmentation. The obtained two regions (Northern and Central-Southern Italy) have similar 
214 populations, but they differ in densities and some other socio-economic variables (see Table 2). 

215 The two Scottish macro-regions were chosen based on the division into Lowlands and Highlands, 
216 with historical and socio-cultural roots (e.g. Devine, 1979, Davidson, 2000). The macroscopic EU 
217 NUTS 2 level classification (European Parliament and Council, 2003) divides Scotland into 4 regions: 
218 East, South-West, North-East, Highlands/Islands. However, Scotland (far less wide than Italy) was 
219 divided into two regions as well as Italy. Hence, Eastern and South-Western NUTS regions were 
220 grouped into a “Lowlands” macro-region. Since North-Eastern Scotland is small and less densely 
221 populated than the other Southern areas, it was grouped with the adjoining Highlands and Islands 
222 NUTS region into a “Highlands” macro-region. As can be noted from Table 2, the division of 
223 Scotland into Highlands (North) and Lowlands (South), based on traditional historic classifications, 
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224 is justified by geographic (i.e. population and population density) and infrastructural differences 
225 (variable “density of motorways” in Table 2), rather than other socio-economic comparisons.

226 Table 2. Geographic and socio-economic variables for Italy and Scotland (data source: 
227 http://ec.europa.eu/eurostat/data/database).

Italy Scotland

Variables Northern 
Italy

Southern 
and Central 
Italy

“Highlands” 
(Highlands/
Islands and North-
Eastern Scotland)

“Lowlands” 
(Eastern and 
South-Western 
Scotland)

Population (millions)1 30.94 22.40 0.97 4.43
Area (km2) 120,260 131,275 48,518 31,715
Density (inhabitants/km2)1 257.32 170.61 19.90 139.82
Gross Domestic Product per 1000 
inhabitants2 [€]

32.63 22.34 42.47 33.45

Rate of long-term unemployment 
(≥ 12 months) with respect to 
active population3 [%]

3.78 8.92 2.934 2.73

Life expectancy2 [years] 83.39 82.94 80.33 79.80
Intentional homicides per 100 
inhabitants5

0.06 0.15 - -

Density of motorways6 [m/km2] 33.92 16.76 0.00 18.957

228 1as of 2017; 2average on the period: 2014-2016; 3average on the period: 2012-2014; 4Including only Highlands and Islands 
229 region; 5average on the period: 2008-2010; 6as of 2015; 7based on Transport Scotland (2016).

230

231 Figure 2. Map of regions considered in this study. Left: Scotland (“Highlands” in orange; 
232 “Lowland” in green). Right: Italy (Northern Italy in orange; Central/Southern Italy in green). Based 
233 on: http://ec.europa.eu/eurostat/web/nuts/nuts-maps-.pdf-.

http://ec.europa.eu/eurostat/data/database
https://it.wikipedia.org/wiki/Banconota_da_5_euro
http://ec.europa.eu/eurostat/web/nuts/nuts-maps-.pdf-
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234 Both the above highlighted intrinsic differences between countries (Italy/Scotland) and within 
235 countries (different regions) are helpful for the aims of this study. In fact, they are useful to assess if 
236 both the methods for safety predictions: calibration of TFs and estimation of LFs, may be universally 
237 applied or they are dependent on: 1) the specific area considered, 2) its inner regional variability.

238 Apart from regional boundaries, also terrain type was considered in this study, as it may influence 
239 accident prediction (Carter and Srinivasan, 2011; Bahar and Hauer, 2014). 

240 For the Italian dataset, road sites were classified into: flat and rolling terrain (the latter is the most 
241 widespread in Italy) (Colonna et al., 2016a). In the cited study, a binary terrain class (flat or rolling) 
242 was assigned to each road site according to the average terrain elevation above/below the site. 
243 Mountainous terrains were not present in the database. The elevation threshold between flat and 
244 rolling terrains was set to 400 m above mean sea level. This value was previously identified as an 
245 indicative limit beyond which the alignments of the secondary roads inquired are highly influenced 
246 by surrounding terrains, through exploration of the road segments in the sample (Colonna et al., 
247 2016a). In this regard, the differences between the average gradients of segments and their variation 
248 within the segment are shown in Figure 3. Boxplots clearly show how the two populations of gradients 
249 above and below the 400 m selected threshold are different. Vertical alignments are more varying 
250 and gradients are significantly steeper in the “rolling” than in the “flat” terrain class.

251

252 Figure 3. Boxplots of: (left) the average longitudinal grades on the Italian segments, (right) standard 
253 deviation of grades of Italian sites (sub-segments) within segments; on “flat” and “rolling” terrains.

254 For the Scottish dataset, the average terrain elevation (m) collected for each road site, revealed an 
255 overall distribution of elevations far below 400 m. Hence, in the Scottish case, no variability due to 
256 terrain was inquired.
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257 2.3.2 Other variables

258 Apart from geographic variables (region, terrain), the other variables used in this study are the several 
259 predictors included in the HSM (AASHTO, 2010), both in the base SPF and related CMFs. 

260 Except from traffic data provided by road agencies, road-related information were manually retrieved 
261 by using different software applications, since reliable geometric inventories were scarce or absent. 
262 Most information were collected through Google Earth© and Google Street View©, coherently with 
263 some other previous applications (e.g. La Torre et al., 2014; Shin et al., 2015). 

264 The variables: AADT, length of sites, road width, shoulder type, radius of curvature, presence of 
265 Two-Way Left Turn-Lanes (TWLTL), are deemed as necessary for calibrating a TF, while other 
266 variables are indicated as only desirable (AASHTO, 2010). However, since the aims of this study 
267 include also LF estimation, then information concerning also desirable variables were collected. No 
268 segments with automated speed enforcement, centerline rumble strips were found in the two database, 
269 and no segments with road lighting, passing lanes and TWLTL (right turn-lanes in the Scottish case) 
270 were found in the Scottish database (only few in the Italian one). For this reason, those variables were 
271 not further considered for SPF development. Moreover, the variable: variance of superelevation at 
272 horizontal curves (with respect to the one prescribed) was excluded due to unreliable measures 
273 achievable through the applications used for data collection mentioned above. The rating variable: 
274 Roadside Hazard Rating -RHR- was assigned by visually checking the on-site conditions and 
275 comparing them to the illustrative conditions indicated in the HSM (AASHTO, 2010). Details 
276 concerning the variables taken into account: AADT, length, road width, shoulder type, radius of 
277 curvature, slope, driveway density, are reported in Table 1.

278 The road sections (between two major intersections or significant cross-sectional changes) included 
279 in the database may have a significant length (between 2.5 and 3 km on average, see Table 1). Hence, 
280 they are generally composed of sub-sections (sites) having different characteristics (e.g. presence of 
281 curves, changes in slopes, shoulder widths, etc.). Each site composing the whole section is defined as 
282 being internally geometrically homogeneous (i.e. all the variables taken into account do not 
283 significantly change among it). Due to the noticeable length of most sections in the database, the total 
284 length of sites collected on different parts of the section (henceforth referred to as segment length) is 
285 not equal to the total section length. The “segment” is then composed of different homogeneous sites 
286 (e.g. hs-1, hs-2, hs-5, etc., see Fig. 4). 

287

288 Figure 4. Graphical scheme of road section and homogeneous sites.
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289 The variables: road width, radius of curvature, slope and RHR may then have different values for 
290 each site along the road segment. Hence, for each of the variables listed above, an average value 
291 weighted according to the road site lengths, is then computed and assigned to each road segment.

292 To provide indications concerning the average curvature of each road segment investigated, the 
293 variable “Curve Ratio” (Cafiso et al., 2010) was computed, by dividing the total length of curved sub-
294 segments by the total segment length. The variable “Shoulder Type” may univocally be assigned to 
295 each homogeneous site, if right and left shoulders are similar. In case of right shoulders different from 
296 the left ones, or shoulder type varying along the road segment, “Shoulder Type” is set to ‘mixed’, and 
297 aggregated to the modality ‘composite’, since different materials are combined.
298
299 2.4 Calibration procedure

300 The performed calibration of a transferred SPF (TF) adopts: 1) the HSM (AASHTO, 2010) model for 
301 two-lane rural roads as base reference SPF; 2) the calibration procedure described in the HSM for 
302 transferring SPFs to different jurisdictions, (considering also improvements proposed by Lord et al., 
303 2016); 3) a procedure aimed at assessing the reliability of calibration (Bahar and Hauer, 2014).
304
305 The unit of reference for calibration is the homogeneous road sub-segment (site), to which a set of 
306 parameters should be univocally assigned. The HSM indicates that a reliable calibration should be at 
307 least based on:
308  30-50 homogeneous road sites;
309  100 accidents/year over the total sample of sites;
310  3 recent years of accident data.
311 The minimum number of segments is respected for each subset considered (two regions and traffic 
312 ranges for each territory). The requirement concerning the minimum years of data was met for both 
313 the Italian (6 years) and Scottish (3 years) database. The Italian calibration was limited to 5 years of 
314 data (coherently with other studies, e.g. La Torre et al., 2014), since long periods are discouraged for 
315 calibration studies. In fact, calibration factors may vary over time. 
316
317 For what concerns the minimum number of accidents, these are total accidents. Since fatal and injury 
318 accident data are often more reliable than total accident data (or the only available), a sample 
319 composed of a number slightly minor than 100 fatal+injury accidents per year may be sufficient (e.g. 
320 Sacchi et al., 2012). The Italian database is composed of 422 fatal injury accidents over the period 
321 2008-2012 (84.4 fatal+injury accidents/year). Hence, the requirement is deemed to be met for the 
322 Italian case, and not for the Scottish case (101 fatal+injury accidents in the period: 2012-2014, 33.7 
323 fatal+injury accidents/year). However, based on the information included in the accident database 
324 investigated and their descriptions, the fatal+injury Italian and Scottish were equated to, namely, 
325 KAB accidents (Colonna et al., 2016a; Cafiso et al., 2012) and KABC accidents (which account 
326 namely for about 18 % and 32 % of total accidents, according to HSM estimates). The reference scale 
327 taken into account is the KABCO scale (K = Killed, A = Incapacitating injury, B = Non incapacitating 
328 injury, C = Possible Injury, O = Property Damage Only, PDO), provided in the HSM (AASHTO, 
329 2010). This means that the Scottish 101 fatal+injury accidents may correspond to 316 total accidents, 
330 which could meet the HSM recommendations. However, given this uncertainty, which broadly affects 
331 the significance of results obtained for specific subsets (regions and traffic ranges), the reliability 
332 assessment of calibration results is fundamental.
333
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334 The calibration procedure was firstly run for the entire dataset, i.e. for estimating single Italian and 
335 Scottish calibration factors. Thereafter, the same procedure was repeated by considering different 
336 subsets of data for obtaining more detailed calibration factors (Bahar and Hauer, 2014). Given the 
337 aims of this article, the above defined regions were used to classify data into regional clusters for 
338 calibration purposes. The influence of the traffic volume variability was considered as well to define 
339 subsets of data. This choice is based on the nature of the HSM SPF used as reference. In fact, 
340 according to this function, the accident frequency on two-lane rural roads is linearly dependent on 
341 traffic volume. Since traffic volume is a strongly influential variable on accident frequency 
342 (AASHTO, 2010; Greibe, 2003, Abdel-Aty and Radwan, 2000), and the traffic-accidents relationship 
343 may also be non-linear (e.g. Kononov et al., 2003), the variability of calibration factors for different 
344 traffic ranges was investigated. If calibration factors for different traffic ranges largely differ, then a 
345 non-linear traffic-accidents relationship may have been revealed. 
346
347 For the Italian dataset, 10,000 vehicles/day was identified as a threshold dividing traffic ranges 
348 (Colonna et al., 2016a). In fact, previous studies (Sacchi et al., 2012; La Torre et al., 2014) highlighted 
349 that the HSM SPF tends to underestimate crash frequencies for high-crash sites, roughly for AADT 
350 > 10,000. Whereas, the Scottish dataset is mainly composed of low-volume roads (mean AADT: 
351 approx. 2,000 vehi./day, and standard deviation comparable to the mean). Hence, due to the high 
352 differences in traffic volumes of the two samples, the same Italian threshold was not deemed usable. 
353 Hence, it was set to 2,000 vehi./day; as this is close to the mean value of the sample of segments. In 
354 this way, the variability of calibration factors with traffic was investigated for Scotland as well, in the 
355 range of the traffic volumes in the sample.
356
357 The calibration output is a calibration factor Cx, obtained by dividing the total observed accidents (in 
358 this case fatal+injury accidents) on the considered segments by the predicted accidents on the same 
359 segments (through the application of the base HSM SPF, the appropriate percentage of accident 
360 severities, and the applicable CMFs to each segment, according to the collected variables):
361

362 𝐶𝑥 =  

∑
𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠

∑
𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 (𝑢𝑛𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑆𝑃𝐹)
                                  (1)

363             
364 The calibration procedure was applied for both Italy and Scotland, and for the different subsets 
365 considered (two regions and traffic ranges for each country). Hence, an overall factor and other 
366 specific calibration factors are obtained.
367
368 The Cx factors obtained were assessed by using the approach proposed by Bahar and Hauer (2014). 
369 The reliability assessment is based on values (Bahar and Hauer, 2014), computed as follows. 𝑐𝑣{𝐶𝑥} 
370 They represent an estimate of the coefficient of variation of the associated Cx factors:
371
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372 𝑐𝑣{𝐶𝑥} =  

𝑛

∑
𝑗 = 1

𝑁𝑎,𝑗 +  𝑘𝑗𝑁 2
𝑎,𝑗

𝐶𝑥 (
𝑛

∑
𝑗 = 1

𝑁𝑢,𝑗)

                                                                                                                    (2)

373
374 Where:
375  = uncalibrated predicted number of crashes for the segment j; 𝑁𝑢,𝑗
376  = calibrated predicted crashes for the segment j (replaceable by observed crashes); 𝑁𝑎,𝑗 =  𝐶𝑥 𝑁𝑢,𝑗 
377  = over-dispersion parameter (indicating a variance greater than the mean) of the base HSM SPF. 𝑘𝑗
378
379 Values of less than 0.20 may be related to accurate Cx estimates (Bahar and Hauer, 2014). 𝑐𝑣{𝐶𝑥} 
380 Hence, this value is deemed as a good threshold for assessing the reliability of calibration factors.
381
382 The improved guidelines for HSM calibration studies (Lord et al., 2016) were also taken into account, 
383 which provide the minimum number of road sites for obtaining a given level of accuracy. This number 
384 depends on the coefficient of variation of the observed accidents in the sample. If this minimum 
385 number is not achieved at a sufficient confidence level, the LF estimation is advised. Moreover, the 
386 need for region-specific calibration factors is suggested as well when the following disequation is 
387 satisfied. Otherwise, the State-wide calibration factor may be deemed as sufficient.
388 ,

389            (3)𝑒𝑟 =  | 𝑁𝑜𝑏𝑠,𝑅
𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑅 ∗ 𝑁𝑆𝑃𝐹,𝐻𝑆𝑀(𝐴𝐴𝐷𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑅)

𝑁𝑜𝑏𝑠,𝑆
𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑆 ∗ 𝑁𝑆𝑃𝐹,𝐻𝑆𝑀(𝐴𝐴𝐷𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑆)

‒ 1| > 0.10

390 Where:
391 Nobs,R/S = observed accidents in the Regional (R)/State-wide (S) sample of road sites;
392 NSPF,HSM (AADTaverage,R/S) = accidents predicted from the baseline HSM SPF as a function of the 
393 AADT over the Regional (R)/State-wide (S) sample of road sites;
394 Laverage,R/S = average segment length in the Regional (R)/State-wide (S) sample of road sites (km).
395
396 Alternative recent approaches may have been used for the HSM calibration (see e.g. Srinivasan et al., 
397 2016; Farid et al., 2018a,b). However, a simple calibration approach was preferred (AASHTO, 2010), 
398 to better stress the different predictive capabilities, if any, of two extreme alternatives: LF estimation 
399 and TF calibration. However, guidance from Bahar and Hauer (2014) and Lord et al. (2016) were 
400 taken into account, as previously indicated, to assess the results from the HSM calibration. Additional 
401 references for these selected criteria can be found in Geedipally et al. (2017); Shirazi et al. (2016a,b).
402
403 2.5 Modelling techniques

404 Accident modelling is often conducted by applying General Linear Modelling (GLM) approaches 
405 (Lord and Mannering, 2010), more flexible than linear modelling. Accident counts resulted over-
406 dispersed (variance greater than the mean), thus the GLM regression was conducted by assuming a 
407 Negative Binomial (NB) distribution of the errors, and a natural logarithmic link function (Hilbe, 
408 2011; Chatterjee and Simonoff, 2013). This approach is commonly used for developing LFs (see Lord 
409 and Mannering, 2010 for a list of studies) and specifically for two-way two-lane rural roads (e.g. 
410 Zhang and Ivan, 2005; Cafiso et al., 2010; Russo et al., 2016). Zero-inflated models could be also 
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411 used in these cases, since accident counts are often widely populated of zeros. However, their 
412 application was criticized for highway safety purposes (see Lord et al., 2005b) and the percentages 
413 of zeros in the sample of yearly accident frequencies are about 50 % (Italy) and 60 % (Scotland).

414 The open-source software R was used for modelling and statistical analyses, by using the ‘MASS’ 
415 library (Venables and Ripley, 2002). In this package, the over-dispersion parameter of the NB GLM 
416 model is estimated through maximum likelihood estimation, which is indicated as the most reliable 
417 technique among different possible estimates in the study by Lord (2006).

418 The chosen model form used for both the Italian and Scottish regressions is expressed as follows:

419 𝐸(𝑌) = exp (𝛽0) ∗ 𝐿𝛽1 ∗ 𝐴𝐴𝐷𝑇𝛽2 ∗ exp (
𝑛

∑
𝑖 = 3

𝛽𝑖𝑋𝑖)                                                                                   (4)

420 Where:

421 E(Y) = predicted number of (fatal+injury) accidents per year (accidents/year);
422 L = length of the segment (m);
423  = estimated coefficients of the regression ( is set to 1);𝛽0, 𝛽2, …, 𝛽𝑛 𝛽1
424  = regression variables considered, other than segment length and AADT: road width, 𝑋3, 𝑋4, …, 𝑋𝑛
425 shoulder type, radius of curvature, curve ratio, slope, driveway density, RHR, region, elevation.
426
427 The n variables considered for the regression are the same required for the HSM SPF calibration. The 
428 coefficient of the segment length  was set to 1, as in most of accident prediction models (e.g. (𝛽1)
429 Lord et al., 2005a; AASHTO, 2010; Cafiso et al., 2010; Russo et al., 2016), implying a linear relation 
430 between segment length and accidents. The variables “right shoulder width”, “left shoulder width” 
431 and “lane width” were aggregated into a comprehensive variable “road width” (Cafiso et al., 2010), 
432 since they are strongly inter-related. In fact, the widths of left and right shoulders are mostly similar, 
433 and the widths of lanes and shoulders may both increase with the road importance. The classification 
434 of shoulder types into paved, gravel, composite, turf, was further aggregated as well according to the 
435 lack and/or scarcity of some shoulder types in the database. In the Italian case, gravel shoulders were 
436 aggregated to the composite/mixed ones, due to their scarcity (only 3 segments), thus having only 
437 three classes. In the Scottish case, there were no segments with gravel shoulders and only one with 
438 paved shoulders. Thus, only two classes were considered: paved/mixed/composite, and turf 
439 shoulders, by mixing classes with close effects on safety according to HSM CMFs (AASHTO, 2010). 
440
441 The variables “Curve Ratio (CR)” and “Radius of curvature” are associated due to their intrinsic 
442 definition (the average radius of curves on the segments is finite only if CR ≠ 0). Hence, in order to 
443 keep both information by avoiding collinearity, another continuous variable was defined:

444 𝑀𝐶 = ( 1
𝑀𝑅)

𝑐𝑢𝑟𝑣𝑒𝑑 𝑝𝑎𝑟𝑡
∗ 𝐶𝑅 + ( 1

𝑀𝑅)
𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑡

∗ (1 ‒ 𝐶𝑅) =  ( 1
𝑀𝑅)

𝑐𝑢𝑟𝑣𝑒𝑑 𝑝𝑎𝑟𝑡
∗ 𝐶𝑅              (5)

445 Where:
446 MC = weighted mean of the segment curvature (1/km), equal to zero for straight segments;
447 MR = mean radius of curvature of the curved part of the road segment (km), set to infinity in straight 
448 parts of segments, thus leading to eliminate the second term of the weighted mean.
449
450 The list of variables and their nature is summarized in Table 3.
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451
452 Table 3 – Predictors considered for the SPF development

Variable Symbol Type Unit or Values
Annual Average Daily 
Traffic volume

AADT Continuous vehicles/day

Segment length L Continuous m
Total road width TW Continuous m
Shoulder type ST Nominal Italy: 0 – Paved, 1 – Mixed-

Composite/Gravel, 2 – Turf
Scotland: 0 – Mixed-Composite/Paved, 1 – 
Turf

Weighted mean curvature MC Continuous 1/km
Longitudinal slope i Continuous %
Driveway Density DD Continuous Driveways/km
Roadside Hazard Rating RHR Ordinal Range: [1, 7] (only integers)

Region REG Nominal Italy: 0 – North, 1 – Centre-South
Scotland: 0 – Lowlands, 1 – Highlands

Elevation ELE Nominal (Italy only) 0 – Flat, 1 – Rolling
453
454 Three goodness-of-fit measures related to GLM modelling (see e.g. McCullagh, 1984, or Myers et 
455 al., 2012) were used in this study: the AIC (Akaike Information Criterion), the Pearson χ2 (5 % 
456 significance level), and the Nagelkerke pseudo-R2 (adjusted for non-linear regressions, variable 
457 between 0 and 1). The latter two measures can provide information about the goodness-of-fit of each 
458 single model developed, while the AIC criterion is useful for comparisons between estimated models. 
459 Plots of cumulate residuals (CURE plots) (see Hauer and Bamfo, 1997) were also used to examine 
460 the goodness of fit of the estimated models, with specific reference to each included variable. 

461 Among all the possible models obtainable by combining the 10 variables considered, the model 
462 showing: 1) the highest goodness-of-fit measures and 2) the highest number of variables for which 
463 the estimated parameter is statistically significant at the 90 % confidence level (used in previous 
464 similar studies for relatively small datasets, such as Gomes et al., 2012; Oh et al., 2006), was selected.
465
466 3. RESULTS

467 Results of both HSM SPF calibration and SPF development are shown in this section.

468 3.1 Italian case study
469
470 3.1.1 Italian HSM Calibration 

471 Results from the HSM SPF Italian calibration study (updated from Colonna et al., 2016a) are reported 
472 as follows, including the assessment measure: , and classified according to traffic and regions.𝑐𝑣{𝐶𝑥}
473
474 Table 4 – Results of the HSM SPF calibration - Italy

Variable: 
Region

AADT 
Ranges

Number of 
sites Cx cv[Cx] Need for regional Cx 

(er) (Lord et al.. 2016)
Overall 398* 1.44 0.08 -
< 10,000 316 1.19 0.10 -Italy
≥ 10,000 82* 1.75 0.14 -

Northern Overall 112* 1.66 0.15 Yes (0.23)
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< 10,000 51 1.39^ 0.22 -Italy
≥ 10,000 61* 1.73 0.17 -
Overall 286 1.29 0.09 Yes (0.13)
< 10,000 265 1.16 0.11 -

Central-
Southern 

Italy ≥ 10,000 21 1.81^ 0.21 -
475 Note: Cx coefficients marked with the superscript “^” are deemed less reliable due to either related 
476 number of segments < 30 or cv[Cx] ≥ 0.20. Numbers of segments marked with the superscript “*” 
477 are those representing the more reliable subsets for calibration, associated to estimated “confidence 
478 levels” (based on Lord et al., 2016) around 70 %. 

479 All calibration coefficients in Table 4 are reliable (Bahar and Hauer, 2014), except for low traffic in 
480 Northern Italy and for high traffic in Southern/Central Italy. For some coefficients, including the 
481 overall factor, the estimated equivalent “confidence levels” (Lord et al., 2016) are around 70 %, based 
482 on the number of segments in the sample. This may justify HSM calibration instead of SPF 
483 development. In particular, regional coefficients are advised for both the macro-regions considered 
484 (er values > threshold indicated in Eq. 3), especially for Northern Italy (er= 0.23).

485 The HSM SPF generally underestimates accident frequencies for Italian two-lane rural roads (all Cx 
486 factors are > 1). There is a notable difference between traffic ranges: Cx considerably higher for high 
487 traffic volumes (> 10,000) than low volumes. This result is valid nationwide and even disaggregating 
488 data over regions. However, the high difference between Cx values for different traffic ranges for 
489 both Northern and Centre-South Italy is not enough reliable due to the associated borderline  𝑐𝑣{𝐶𝑥}
490 values. Some reliable Cx factors showing very low  values are those obtained for low traffic 𝑐𝑣{𝐶𝑥}
491 volumes (nationwide: 1.19, Centre-South Italy: 1.16). 

492 A regional effect can be noted in the outputs of HSM calibration. The overall factor for Northern Italy 
493 (Cx = 1.66) is considerably higher than for Centre-South Italy (Cx = 1.29), and indeed a regional 
494 calibration factor was deemed necessary based on Lord et al. (2016). However, this difference may 
495 be attributed to the high percentage of high traffic sites for Northern Italy, considerably higher than 
496 the respective sites for Centre-South Italy. The higher traffic volumes for Northern Italian sites may 
497 have led to the notably high Cx for Northern Italy. Hence, pairwise comparisons between regions 
498 should be made by differentiating for traffic ranges. When comparing low traffic ranges, a notable 
499 difference emerges between Northern (Cx = 1.39) and Centre-South Italy (Cx = 1.16). However, the 
500 reliability of the Northern Italian low-volume coefficient is deemed questionable (  = 0.22). 𝑐𝑣{𝐶𝑥}
501 Whereas, when comparing high traffic ranges, no consistent differences may be noted (North: Cx = 
502 1.73; Centre-South: Cx = 1.81).

503 3.1.2 Local Safety Performance Function: Italy

504 The statistical parameters related to the fitted Italian SPF are presented in Table 5, including the over-
505 dispersion parameter ϑ. The NB model satisfactorily fits accident data, by considering the goodness-
506 of-fit measures (in particular the pseudo-R2).

507 Table 5 – NB model parameters and goodness of fit measures for the Italian SPF, with p-values and 
508 standard errors in brackets

Model Parameters Goodness-of-fit Over-
dispersion

β0 βAADT βST=1 βST=2 βMC AIC 𝛘𝟐
Pseudo𝐑𝟐 ϑ
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IT
-20.998
(<.001,
0.940)

1.423
(<.001, 
0.102)

0.660
(<.001, 
0.133)

0.880
(<.001, 
0.162)

0.223 
(<.001, 
0.058)

1078.1  471.9 
(0.866) 0.622 3.670

(1.100)

509

510 The variables included in the model are: AADT, shoulder type, weighted curvature. They are all 
511 significant at the chosen significance level (p = 0.10), actually exceeding the 99 % confidence level. 
512 As expected, AADT is positively related to the accident frequency, and β is > 1, indicating a more 
513 than linear traffic-accident relationship. Coefficients of gravel, composite, mixed (ST = 1) or turf (ST 
514 = 2) shoulders are positive, which means that they seem less safe than paved shoulders (reference 
515 condition: ST = 0). Weighted mean curvature (MC) is positively related to the accident frequency: 
516 the more curved segments on the section and the more the curvature, the higher seems the accident 
517 frequency.

518 Whereas, the following variables did not result statistically significant in the model development at 
519 the chosen significance level (p = 0.10): total road width, longitudinal slopes, driveway density, RHR, 
520 elevation. The variable region resulted statistically significant at the defined confidence level in the 
521 alternative model IT(A) reported in Table 6 indeed (as well as the longitudinal slope i, positively 
522 related to the accident frequency). However, the AIC value associated to the model IT(A) is greater 
523 than the corresponding value in Table 5 and thus, for this reason, the latter model was selected. 
524 However, given the research questions of this article, it is important to note that region may be 
525 considered as a significant variable in an alternative accident prediction model. Taking into account 
526 the model IT(A) in Table 6, Central-Southern Italy is associated to less accidents than Northern Italy, 
527 other variables being equal.
528
529 Table 6 – Alternative Italian NB model including the regional variable (p-values in brackets).

Parameters
Model

β0 βAADT βST=1 βST=2 βi βREG

AIC

IT(A)
-20.762
(<.001, 
1.133)

1.397
(<.001, 
0.118)

0.637
(<.001, 
0.133)

0.982
(<.001, 
0.163)

0.102
(0.001, 
0.031)

-0.220
(0.096, 
0.132)

1080.0

530

531
532
533 Figure 5. CURE plots for the Italian model (IT) related to the variables AADT and MC. Dashed lines 
534 represent the positive and negative two standard deviations (±2σ).

535 The analysis of the CURE plots in Fig. 5 reveals that the chosen model functional form is appropriate 
536 for the case of the AADT variable, with cumulate residuals oscillating around zero. Instead a 
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537 significant overestimation effect of the model is revealed for the variable MC, in the range 0.2-0.6, 
538 and a subsequent underestimation effect in the range 0.6-2.0. In particular, this means that the chosen 
539 model significantly overestimate accident frequencies for low curvature elements, even if CURE are 
540 included in the confidence interval (dashed lines in Fig. 5), thus still implying acceptable results. The 
541 variable MC shows two high-leverage cases (MC > 4, truncated in Fig. 5 for graphical reasons). Note 
542 that a model similar to that shown in Table 5, estimated excluding these data, results in a slightly 
543 larger but comparable βMC (about 0.4).
544
545 3.2 Scottish case study
546
547 3.2.1 Scottish HSM Calibration

548 Results from the HSM SPF calibration study for Scotland are reported as follows, including the 
549 assessment measure: . They are further classified according to traffic and regions.𝑐𝑣{𝐶𝑥}
550
551 Table 7 – Results of the HSM SPF calibration study – Scotland

Variable: Region AADT 
Ranges

Number 
of Sites

Cx cv[Cx] Need for regional Cx 
(er)  (Lord et al., 2016)

Overall 311 0.71 0.12 -
< 2,000 196 1.20 0.15 -

Overall

≥ 2,000 115 0.48 0.17 -
Overall 203 0.75 0.15 No (0.05)
< 2,000 143 1.23 0.18 -

“Lowlands”
(South-West/East)

≥ 2,000 60 0.41^ 0.28 -
Overall 108 0.66 0.18 No (0.09)
< 2,000 53 1.11^ 0.30 -

“Highlands”
(Highlands-Islands/North-

Eastern Scotland) ≥ 2,000 55 0.54^ 0.21 -
552 Note: Cx coefficients marked with the superscript “^” are deemed less reliable due to either related 
553 number of segments < 30 or cv[Cx] ≥ 0.20. All subsets are associated to estimated “confidence 
554 levels” (based on Lord et al., 2016) significantly < 70 %.
555
556 Most calibration coefficients presented in Table 7 may be deemed reliable (Bahar and Hauer, 2014), 
557 except for the Highlands factors differentiated for traffic ranges and the Lowlands factor for traffic 
558 volumes < 2,000 (subsets having the smallest number of sites). The sample of sites considered (even 
559 if comparable with the Italian ones) lead to estimated “confidence levels” of calibration < 70 %, due 
560 to less observed accidents, for which SPF development would be preferable (Lord et al., 2016). A 
561 regional coefficient would not be needed for both the two regions considered.

562 From the analysis of data in Table 7, the HSM SPF generally overestimates accident frequencies for 
563 Scottish two-lane rural roads (the overall and most of the other Cx factors are < 1). There is a notable 
564 difference between traffic ranges: Cx are considerably higher for low traffic volumes (< 2,000) than 
565 high volumes. This result is valid for the overall estimate (i.e. Cx = 1.20 for low volume sites and Cx 
566 = 0.48 for high volume sites) and even disaggregating data regionally. Hence, the overestimation 
567 effect of the HSM SPF (Cx < 1) is amplified for traffic volumes > 2,000 (associated to low Cx values). 
568 The most reliable Cx factors showing low  values are those obtained for the overall estimate 𝑐𝑣{𝐶𝑥}
569 and the first-level classification in regions and traffic ranges (i.e. not combining regions with traffic 
570 ranges). The Scottish calibration does not highlight any significant regional effect. The overall factor 
571 for the Lowlands (Cx = 0.75) is comparable to the Highlands (Cx = 0.66), as expected from the 
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572 assessment procedure (no need for determining regional factors, based on Lord et al., 2016). This 
573 similarity can be noted even disaggregating according to the different traffic ranges.

574 3.2.2 Local Safety Performance Function: Scotland

575 The statistical parameters related to the fitted Scottish SPF are presented in Table 8, together with the 
576 over-dispersion parameters ϑ. The model satisfactorily fits accident data, according to goodness-of-
577 fit measures. However, the pseudo-R2 is considerably lower than the Italian model, and the over-
578 dispersion parameter is greater.
579
580 The variables included in the model are: shoulder type and weighted curvature. They are all 
581 significant at the chosen significance level (p = 0.10). Shoulders made of turf (ST = 1) are negatively 
582 related to the accident frequency (i.e. less accidents in presence of turf shoulders), with respect to 
583 paved/mixed shoulders (reference condition: ST = 0). Weighted curvature is positively related to the 
584 accident frequency, such as in the Italian case.

585 The following variables did not result statistically significant at the chosen significance level (p = 
586 0.10): AADT, longitudinal slope, total road width, driveway density, RHR, region. Moreover, the 
587 analysis of the CURE plot in Fig. 6 reveals that the chosen model functional form is appropriate for 
588 what concerns the MC variable, with cumulate residuals oscillating around zero. 

589 Table 8 – NB model parameters and goodness of fit measures for the Scottish SPF, with p-values in 
590 brackets

Parameters Goodness-of-fit Over-dispersion
Model

β0 βST=1 ΒMC AIC 𝛘𝟐
Pseudo𝐑𝟐 ϑ

SC -8.625
(<.001)

-0.399
(0.057)

0.122 
(0.022) 360.2 199.5 

(0.602) 0.171 6.630
(8.530)

591
592

593
594
595 Figure 6. CURE plot for the Scottish model (SC) related to the variable MC. Dashed lines represent 
596 the positive and negative two standard deviations (±2σ).

597
598 4. DISCUSSION



20

599 Results obtained from both the TF calibration and LF estimation are discussed as follows, 
600 differentiated according to the main research questions posed in this study. 

601 4.1 Calibration studies versus local SPF development

602 The first research question concerned the assessment of the general predictive capabilities of two 
603 different strategies (TF calibration and LF estimation), based on the case studies.

604 Calibration studies may be less demanding than LF estimations (especially if calibrations are 
605 conducted on base models including only some variables, e.g. traffic volumes, differently than the 
606 HSM calibration procedure, requiring several variables) and they may be conducted by non-experts 
607 through specific operational guidelines. However, the number of possible variables to take into 
608 account while conducting calibrations is some way limited by the necessary sample size for each 
609 combination of the considered variables. In fact, the reliability of a calibration factor may increase 
610 with the sample size, and minimum number of sites are suggested for calibration procedures 
611 (AASHTO, 2010; Lord et al., 2016). In this case, traffic, regions and the combinations of traffic 
612 ranges and regions were considered as detailed disaggregation of the TF calibration study (i.e. a 
613 calibration factor was derived for each combination of these variables). This means that several other 
614 categories may have been considered, by further disaggregating the sample in small samples (e.g. 
615 variables considered in the LF estimation: road width, curves, etc.). 

616 Hence, considering only some variables for conducting detailed calibrations of TFs may lead to hide 
617 the influence of other variables. For example, while in the Italian case, a regional variability was 
618 noted, in the Scottish case, the LF development revealed other variables as influential on accident 
619 frequency (i.e. shoulder type and curve ratio) rather than geographic variables. Thus, a detailed 
620 Scottish calibration of TFs should include at least those other variables beyond regions, to ensure that 
621 the influence of geographic variables does not hide other strong relationships. However, as indicated 
622 above, this may imply an unbearable increase in the sample size (and information collected for each 
623 segment) for a simple calibration study. Moreover, the Scottish calibration proved to give unreliable 
624 indications about the role of traffic volume. Significant differences seemed to be present between 
625 low-volume (AADT < 2,000) and other segments. However, the variable AADT was not included in 
626 the Scottish model due to its lack of statistical significance. A zero-gradient relationship may actually 
627 exist between traffic and accidents, thus explaining the concurrent low calibration factor for high 
628 volumes and the high calibration factor for low volumes. This may be another argument for 
629 proceeding cautiously while selecting variables for calibration, even with variables usually associated 
630 with crashes (such as traffic volume).

631 On the other hand, several variables may be included in SPF modelling, being the mutual influence 
632 between predictors on the dependent variable considered as a part of the process. However, the data 
633 collection stage is more complex than a calibration study, due to the information required for each 
634 variable considered; and statistical applications are required. In LF estimation, some important 
635 variables may be excluded from best fitting models, due to their lack of statistical significance. 
636 However, on the contrary, disaggregating calibration factors according to different variables (e.g. 
637 traffic and region) and assessing their validity based on statistical indexes, may be misleading since 
638 the concurrent influence of other important variables may be ignored. 

639 For what concerns the regional variability, TF calibrations may provide different calibration factors, 
640 but geographic variables may be excluded from finally selected models, as occurred in this study. 
641 Hence, calibration factors for TFs (even disaggregated according to different variables) should be 
642 carefully adopted. Their use may be justified in case of not available/obtainable LF. However, as 
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643 noted in this present study, if a TF is calibrated, other road/traffic related variables should be preferred 
644 to regional variables, given the small dataset size.

645 For what concerns the general specific predictive capabilities of the calibrated TFs and estimated LFs 
646 in this study, they are assessed based on computed residuals (difference between observed and 
647 predicted values of yearly accident frequencies). To reveal possible significant improvements in the 
648 prediction, residuals were computed for each of the subsets considered for calibration (overall, 
649 regionally divided, classified into traffic ranges, classified into regions and traffic ranges). To allow 
650 the comparison between different calibrated TFs and estimated LFs, the synthetic measure: MAD 
651 (Mean Absolute Deviation) was used (such as in previous studies, see Oh et al., 2003; Sacchi et al., 
652 2012; La Torre et al., 2014). It is obtained as the sum of the absolute residuals computed for each 
653 segment in the sample, divided by the number of segments. The closer the MAD index is to zero, the 
654 more the prediction is accurate. The obtained MADs are reported in the following Table 9.

655 Table 9 – Comparison of the Mean Absolute Deviation (MAD) [accidents/year] for the calibrated 
656 TFs and the estimated LFs in this study

Geographic 
area

Overall 
Calibration

Regional 
Calibration

Calibration 
with Traffic 
Ranges

Regional 
Calibration with 
Traffic Ranges

Local SPF

ITALY 0.623 0.590 0.585 0.581 0.541
SCOTLAND 0.430 0.433 0.386 0.384 0.365

657
658 An improvement in the prediction is noted for LFs with respect to calibrated HSM SPFs for both the 
659 Italian and Scottish case studies. An improvement is also noted if different regional and traffic subsets 
660 leading to specific calibration factors are considered, with respect to an overall calibration factor. As 
661 expected, the most relevant prediction improvement is noted while comparing MAD indexes of the 
662 locally developed SPF with the calibrated SPF. Paired t-tests were carried out to check the 
663 significance of the difference of the average MAD of corresponding calibrated and local SPFs. At the 
664 5 % significance level no statistically significant difference was detected.

665 This further result has several implications in light of the aims of this study. In fact, it is important to 
666 note that even if the prediction capabilities of estimated LFs are greater than those of calibrated TFs 
667 (overall and disaggregated), the differences are not statistically significant. This means that the effort 
668 of developing a novel SPF, based on the same sample which can be used for HSM calibration, may 
669 be not justified by a significant prediction improvement. Even if this conclusion is solely based on 
670 the two case studies considered and the associated samples of road segments, it may have important 
671 practical consequence. In this sense, it should be also noted that the LFs developed in this study are 
672 based on small sample sizes and small sample means of observed accidents. This may lead to biased 
673 estimations, including unreliable over-dispersion parameters, which may severely influence the 
674 expected accidents resulting from the application of the Empirical Bayesian (EB) method (Lord, 
675 2006). Hence, the development of local SPFs may be justified only in case of very large sample size, 
676 far greater than those required for HSM calibration, and in presence of several road and traffic 
677 variables collected. All these circumstances may lead to reliable and robust SPFs, which may 
678 significantly improve prediction capabilities with respect to simple calibrations. Otherwise, a detailed 
679 TF calibration (i.e. by at least considering the variability of traffic ranges) may represent a possible 
680 trade-off between computational, time and cost efforts and the reliability of results.

681 4.2 Influence of geographic variability on crash predictions
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682 The second research question concerned the possible significance of geographic variables among all 
683 the variables used in predictive methods. In this study, the influence of geographic variability on crash 
684 predictions was explored through regional and terrain variables. The “region” variable (Italy: North, 
685 Centre-South; Scotland: “Highlands”, “Lowlands”) was considered in both the TF calibration and LF 
686 development. The “terrain” variable was considered in the Italian LF development. 

687 The regional variability does not add significant explanations of the accident frequency as a result of 
688 the Scottish LF. In fact, region was not a significant variable included in the final model. Whereas, 
689 in the Italian study, while terrain was not a significant predictor, the region variable was included in 
690 a model alternative to the model associated with the lowest AIC measure. If the model in Table 6 
691 would be used for accident prediction, estimates for Central-Southern Italy should be multiplied by 
692 exp(βREG), that is about 20 % smaller than predictions for Northern Italy, other conditions being equal. 
693 However, the final Italian model selected does not include the regional variable, but rather curvature 
694 and shoulder types, due to the associated improvement in the AIC score. The selection of model in 
695 Table 5 is not only due to merely computational considerations. In fact, while regional classifications 
696 may not be strongly influential on accident predictions, the influence of curvature is widely 
697 documented (see e.g. Abdel-Aty and Radwan, 2000; Elvik, 2013b). Thus, the model in Table 5 
698 (including curvature but excluding regions) was definitely preferred.

699 A notable difference between calibration factors of Northern and Centre-Southern Italy (low traffic 
700 range: < 10,000) was noted, as expected from guidance by Lord et al. (2016). This may indicate that 
701 more crashes may be experienced in the Northern Italian low volume road segments, in respect to the 
702 Centre-Southern Italian corresponding segments. However, that Northern factor is deemed slightly 
703 unreliable. The same effect was noted in the intermediate SPF modelling stages (before selecting the 
704 final model), as discussed above. Thus, some influence of regional variability was revealed in the 
705 Italian case, from both the TF calibration and LF estimation. However, it should be noted that 
706 Northern Italian sites included in the sample are mostly high traffic volume sites (see Tables 1 and 
707 5), differently from Central-Southern sites (mostly low-volume). SPF modelling should account for 
708 other variables (i.e. in this case traffic), while assessing the influence of a given variable (i.e. in this 
709 case region). However, it cannot be excluded that the significant difference in traffic volumes between 
710 the Northern and Central-Southern sites may hide the influence of other variables (not considered 
711 here) associated e.g. to the road importance, and which may have explained part of the variance, 
712 instead of a simple “region” variable. Hence, the regional variability issue for Italian accident 
713 predictions should be deepened in further studies with greater and homogeneous samples.

714 4.3 Geographic variability of accident predictors: Italy versus Scotland

715 The third research question concerned the possible discrepancies in the application of the considered 
716 predictive methods if different geographic contexts are considered. In this study, the two approaches 
717 (TF calibration and LF modelling) were repeated for both Italy and Scotland. Some macro differences 
718 between explanatory variables were highlighted indeed.

719 A remarkable difference between the two case studies is the role of traffic volume in explaining 
720 accidents. Traffic volume is often the most influential variable in predicting accident frequency. This 
721 is confirmed in the Italian study, but not in the Scottish one. The exclusion of the traffic variable from 
722 the Scottish SPF may seem surprising. However, the mean AADT for the Scottish sites is 2,048 
723 vehi./day (st. dev.: 1,620 vehi./day); while the mean AADT for the Italian sites is 6,506 vehi./day (st. 
724 dev.: 4,269 vehi./day), thus having a wider spectrum of traffic volumes. The difference in the road 
725 networks of the two territories has contributed to the high discrepancy in traffic volumes. Secondary 
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726 Italian roads have mean traffic volumes greater than secondary Scottish roads, considering also that 
727 Scottish two-lane “A” class rural roads (likely with more traffic than secondary roads) were excluded 
728 from the database, because they belong to the primary network. However, it could be interesting to 
729 compare the accidents-traffic relationship for the same traffic volume interval (≤ 7,011, maximum 
730 Scottish volume). The cumulative frequencies of both accidents and traffic volumes are reported in 
731 Figure 7, considering both database, and the Italian database with comparable volumes (≤ 7,011). 

732 As can be noted in Fig. 7, both Scotland and Italy (for the same low-volume traffic range: ≤ 7,011 
733 vehi./day) exhibit a relevant frequency of zero-count sites (30-40 %), and a similar distribution of the 
734 cumulative frequency of accidents/km (Fig. 7). However, when it comes to traffic volumes, there is 
735 a notable difference between Italy and Scotland. Scottish volumes are heavily skewed on a very-low 
736 volume (i.e. approx.. 40 % of sites have AADT ≤ 1,500, and 75 % of sites have AADT ≤ 3,000), 
737 while Italian sites are not. This may have affected the search for a satisfactorily fitting accidents-
738 traffic curve. To note, an attempt Italian model fitted by considering only sites having AADT ≤ 7,011 
739 still revealed traffic volume as a significant variable, even if with βAADT close to 1, instead of > 1.
740

741
742 Figure 7 – Cumulative fatal+injury accident frequencies and traffic volumes for Italy and Scotland
743
744 The above reported findings lead to the following remarks, which are of practical interest for 
745 researchers and, to some extent, for road safety practitioners:
746  In case of a sample of secondary two-lane road sites having low traffic volumes and also 
747 skewed to very-low volumes, the accident frequency may not significantly be dependent on 
748 the amount of traffic volumes (as found for Scotland). This could be explained by the very 
749 low number of interactions between vehicles in the traffic flow, and most of the accidents may 
750 be single-vehicle accidents (e.g. run-off-road). This should be confirmed by future studies 
751 conducted on sites with AADT similar to the Scottish sites. Moreover, in this case, as 
752 explained above, different calibration factors obtained for different traffic ranges (as in this 
753 case, using 2,000 as a threshold) may be unreliable even if statistically valid (Table 4).
754  In case of a sample of two-lane road sites having a wide spectrum of traffic volumes as the 
755 Italian ones, the relationship between accident and traffic was found to be more than linear 
756 (βAADT ~ 1.4). However, when separating only sites with AADT ≤ 7,011 (comparable to the 
757 Scottish ones), the inferred accidents-traffic relationship becomes approximately linear. 
758 Hence, a linear relationship as the one in the HSM (AASHTO, 2010) may only be valid for 
759 low traffic volumes (approximately < 10,000, see Sacchi et al., 2012). Hence, in case of sites 
760 with widely varying traffic volumes, different traffic ranges should be considered if only 
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761 calibration is conducted. In this way, the nature of the non-linear accidents-traffic relationship 
762 may be captured also in a calibration procedure (see Table 4, Cx,≥10,000 >> Cx,<10,000). 
763
764 The effect of curvature is strongly related to accident frequencies, as found in previous studies (e.g. 
765 Abdel-Aty and Radwan, 2000; Elvik, 2013b). This is valid for both Italy and Scotland. The effect of 
766 curvature is more evident on Italian than on Scottish sites, by comparing the βMC coefficients. This 
767 may be explained by the nature of road sites considered. Italian sites have mean CR: 0.14 (st. dev.: 
768 0.15), mean radius of curvature: 295 m (st. dev.: 195 m), while Scottish sites have mean CR: 0.55 (st. 
769 dev.: 0.26), mean radius of curvature: 349 m (st. dev.: 275 m). Hence, mean radii of curvature of 
770 curved segments are similar, while the percentages of curved sites on the segment (CR) are not. 
771 Scottish segments are notably more winding than the Italian ones. The small segment curvature may 
772 lead Scottish drivers to select lower speeds and this, in turn, may result in lower accident risks (Aarts 
773 and Van Schagen, 2006; Elvik, 2013a). The reduced accident risk may also be due to the smaller 
774 skidding risk at low speeds (Colonna et al., 2016b). On the other hand, Italian drivers may select 
775 higher speeds on the sample of road sites due to the low percentage of curves. Because of the higher 
776 Scottish segment curve ratio, the mean speed differential between consecutive segments and curves 
777 (especially if sharp) for Scottish drivers may likely be lower than the corresponding Italian drivers’ 
778 speed differential. The inclusion of variables which attempt at capturing operating speeds and speed 
779 differences (see e.g. Cafiso et al., 2010) may have helped in revealing those differences related to 
780 samples of roads with different importance. Since it was not possible to derive those variables from 
781 the dataset inquired, further research on the regional variability of accident predictions should 
782 consider also speed variables. Local operating speed models (see e.g. Discetti et al., 2011) may help 
783 for this aim, even if relying on a predicted operating speed as a base variable for SPFs may lead to an 
784 increase in both the uncertainty and the unreliability of results.

785 The effect of different shoulder types (paved, unpaved, mixed/composite) is related as well to 
786 accident frequencies, as expected from previous studies (see Zeeger and Deacon, 1987). However, 
787 the effect is different in the two case studies considered. In the Italian case, paved shoulders are the 
788 safest condition with respect to accident frequencies, while turf and composite/mixed/gravel 
789 shoulders are the less safe. This is in line with expectations from HSM (AASHTO, 2010). On the 
790 contrary, in the Scottish case, turf shoulders result as safer than mixed/composite and paved shoulders 
791 (to note, there is only one segment having paved shoulders). This difference may be explained again 
792 by the diverse importance of the road segment classes (low-volume Scottish and medium-volume 
793 Italian secondary roads). Roads with turf shoulders (the majority of Scottish sites: 62 %, largely 
794 different than Italian sites: only 22 %) may be an indirect indicator of the minor road importance, 
795 which can be travelled at relatively lower speeds. On the other hand, the presence of turf shoulders 
796 itself (as the case of narrow shoulders or reduced clearance, see e.g. Martens et al., 1997) may lead 
797 drivers to decrease their speeds, and then to better performances in terms of accident frequencies. 
798 However, the other category is mostly composed of unpaved shoulders as well, thus being the 
799 comparison with paved shoulders unfeasible in this case. 
800
801 5. CONCLUSIONS

802 The issue of geographic variability of SPFs and associated predictors, both at the trans-national and 
803 the inner scales poses important questions to both researchers and road safety practitioners. Two 
804 European case studies (one for the Italian, the other for Scottish road sites) were analysed to provide 
805 new insights in this field, by using two different approaches: calibration of a transferred function (TF) 
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806 or estimation of a local function (LF). The following conclusions are drawn, based on the results 
807 obtained from the two case studies, and their comparison:

808  A trans-national variability of accident predictions was noted between Italy and Scotland. This 
809 was largely associated to the different nature of the two two-lane road networks. The 
810 representative Scottish road sites present lower traffic volumes and design features (i.e. more 
811 curves, unpaved shoulders, etc.) than the Italian sample of sites. This affected the modelling 
812 stage, revealing a not significant influence of traffic on Scottish accidents. The highlighted 
813 result and the possible existence of traffic volume thresholds below which the influence of 
814 traffic decreases should be verified in future studies for very-low volume roads.
815  An inner variability of accident predictions was not found in the Scottish case, while it was 
816 individuated in the Italian case study (in both calibration and the intermediate stages of SPF 
817 development and selection). However, as explained in the text, a weak regional variability 
818 may rather hide the influence of other variables. Anyway, the finally selected Italian model 
819 did not include region as a significant predictor. This may lead to conclude that time and costs 
820 necessary for considering geographic variability of crash predictions among administrative 
821 boundaries may be saved, by prioritizing other variables. The homogeneity of road design 
822 standards among countries may be prevalent on local differences (e.g. drivers’ behaviour). 
823 This was evident in Scotland, while further studies could be needed in the Italian case.
824  Calibration procedures (especially those accounting only for some variables) may be 
825 inexpensive and easier than LF estimation. However, even statistically significant calibration 
826 factors may be “false positives” when checked against results of a comprehensive SPF, such 
827 as the differences between traffic ranges and regions in this study. On the other hand, LF 
828 estimations based on the same sample size required for TF calibrations may only slightly 
829 improve the predictive capabilities of a simple TF calibration, as revealed in this study. Hence, 
830 when sufficiently large and statistically representative sample size, and the related detailed 
831 datasets of road/traffic features are not available, the efforts for estimating a new LF could be 
832 saved and the TF calibration could be a good compromise (e.g. for practitioners, when LFs 
833 are not available).
834  The segment curvature and the shoulder types were revealed as significant crash predictors in 
835 both the Italian and Scottish models, even with some local differences, attributed to the 
836 different importance of roads and their possible influence on speeds (which were not modelled 
837 in this study). Road width, elevation, roadside hazard, driveway density and longitudinal 
838 slopes resulted not statistically significant accident predictors in both models.

839 Clearly, those conclusions are based on the two analysed case studies and the associated database. As 
840 explained in the text, due to the wide variability of all the factors involved in the accident predictions, 
841 these results may be neither generalized to a wider scale, nor applicable in other different 
842 jurisdictions. This is also the main limitation of this study, which is intrinsic of SPF development and 
843 calibration procedures. To note, greater samples of sites may have potentially improved the model fit 
844 or the significance of calibration coefficients, allowing more combinations of variables. However, 
845 due to several layers of analyses conducted in a single study, the database considered were deemed 
846 satisfactorily representative. Moreover, the two presented models for Italy and Scotland, represent an 
847 immediate applicable tool for road safety practitioners, especially for the Scottish secondary road 
848 network, for which no previous similar studies were found. However, in the Scottish case, further 
849 research is needed to provide new insights about traffic volume-accidents relationships on very low-
850 volume roads.
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851 Given the importance of the topic for road planning and design purposes and the need for guidance 
852 to select the best predictive approach in each local area, future research should be focused in 
853 improving and enlarging the knowledge in this field. This means that assessments similar to those 
854 performed in this article should be ideally conducted for each country/state. At the local level, future 
855 research should confirm the weak importance of regional and terrain characteristics in the considered 
856 contexts, especially in the Scottish case.
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