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Abstract—Video content providers put stringent requirements
on the quality assessment methods realized on their services.
They need to be accurate, real-time, adaptable to new content,
and scalable as the video set grows. In this letter, we introduce a
novel automated and computationally efficient video assessment
method. It enables accurate real-time (online) analysis of deliv-
ered quality in an adaptable and scalable manner. Offline deep
unsupervised learning processes are employed at the server side
and inexpensive no-reference measurements at the client side.
This provides both real-time assessment, as well as performance
comparable to the full reference counter-part, while maintaining
its no-reference characteristics. We tested our approach on the
LIMP Video Quality Database (an extensive packet loss impaired
video-set) obtaining a correlation between 78% and 91% to
the FR benchmark (the Video Quality Metric, VQM). Due
to its unsupervised learning essence, our method is flexible,
dynamically adaptable to new content and scalable with the
number of videos.

Index Terms—Deep learning, unsupervised learning, video
quality assessment, multimedia video services.

I. INTRODUCTION

ASSESSING video quality has been traditionally per-
formed by means of subjective or complex objective

Quality of Experience (QoE) metrics [1], due to their demon-
strated correlation to human visual perception [2], [3]. How-
ever, these come with stringent computational complexity and
time requirements. They are therefore inapplicable in situa-
tions where real-time analysis is needed. Examples of such
situations include adaptive streaming systems and real-time
quality of experience management [4], [5], [6]. Furthermore,
as new video streaming systems, compression standards, and
content types appear, the scalability of the assessment methods
becomes crucial.

Reduced-Reference (RR) and No-Reference (NR) metrics
are best suited for real-time evaluation. They assess quality
purely by means of specific features extracted from the re-
ceived video signals in combination with the network con-
ditions [7]. This is a very difficult task. Consequently, most
of these metrics focus on the specific behavior of particular
distortions, such as the level of blur or noise within the frames,
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to make their assessment. Examples of these are the frame
freezing approaches of Huynh et al. [8] and Mok et al. [9]
or the generalized local binary pattern approach for image
quality assessment of Min Zhang et al. [10]. However, this
type of metrics fails to provide an accurate assessment when
more than one artifact is present. For this reason, nowadays
there is a trend of metrics that try to combine the effect of
more than one artifact to provide more accurate measurements.
Image or video statistics modeling has been considered for
developing quality metrics [11]. Zeng et al. proposed the use of
temporal motion smoothness of a video sequence to examine
the temporal variations of the local phase structures in the
complex wavelet transform domain [12]. Other approaches
have focused on trying to model the distortion based on the
encoding of the video sequences. Examples are the MPEG-2
spatial and temporal features extraction of Wolf et al. [13] or
the DCT measurement of Yan et al. [14]. These approaches,
while providing good results on compression derived distor-
tion, are unfit for real-time network impaired videos, due to
their high computational and time complexity.

By means of prediction, which can be trained offline at the
server-side, the accuracy of the assessment can be improved
without increasing its complexity on the client side. Promising
examples of cognitive approaches are adaboost for assessing
artifact levels in videos [15], the bitstream based artificial
neural network [16], the artificial neural network for jerkiness
evaluation [17], and the regression framework for estimating
the objective quality index [18].

A key limitation of current studies is that they have focused
on compressed or synthetically-distorted videos. Furthermore,
the majority of learning-based approaches have used super-
vised learning techniques, which train a prediction model on
labeled samples, based on the ground truth quality, subjective
or full reference index. This process obviously slows down
the assessment procedure. Moreover, it scales poorly as the
introduction of new video types in the system and distortion
conditions in the network requires manual full subjective
reference sample labeling. The aim of our work is to introduce
a method that can work in general cases, particularly in real-
time streaming, under realistic network distortions and in a
scalable manner. This is fundamental in real-time transmission
systems [19] and allows the solution to deal with the broad
amount of video types and streaming conditions, which are
typically unknown at design time. To achieve this, we have
taken the unsupervised deep learning (UDL) path.

Among all the available UDL techniques, the Restricted
Boltzmann Machines (RBM) [20] have been successfully
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applied to still images in previous work [21], due to their
outstanding performance as density estimators. In this work,
we combine this type of learning with light-weight NR metrics
to obtain a video quality assessment comparable in accuracy
to the FR state-of-the-art. We tested our method on the LIMP
Video Quality Database [22], [23], an extensive packet-loss
impaired video-set, benchmarking our results against the Video
Quality Metric (VQM) [24], due to its demonstrated corre-
lation to the human visual system [3]. Correlations between
78 and 91% were obtained, depending on the video and
network conditions. Furthermore, our method requires only
the original videos to accurately assess all the compressed and
network impaired subsets. In this way, our work presents an
accurate, real-time, and adaptable video quality method suited
for sizable video sets.

In the remainder of this letter, we provide a short intro-
duction to unsupervised learning and Restricted Boltzmann
Machines (Section II). Further on, Section III presents the
video quality method that is then evaluated in Section IV.
We conclude our paper and give directions for future work in
Section V.

II. UNSUPERVISED LEARNING, DEEP LEARNING AND
RESTRICTED BOLTZMANN MACHINES

Adaptability, scalability and accuracy are crucial character-
istics for a video service provider to select a quality assessment
method. First, fast adaptability of the model when new videos
enter the system is fundamental. If the model belongs to
the supervised learning type (e.g., artificial neural networks,
regression models), a newly released video sample needs to be
manually labeled (its ground truth obtained) before inclusion.
This action slows down the process and the adaptability
requirement will not be achieved. For this reason, we turned
to unsupervised learning (UL) methods. Second, to master the
sheer scale of the problem, we selected deep learning (DL)
techniques. Within the broad variety of DL techniques, the
Restricted Bolztmann Machines (RBM) have demonstrated
their usefulness as density estimators [21], [25]. We used
RBMs for the design of our cognitive video quality assessment
method.

UL is the machine learning task of inferring a function
to describe the hidden structure of unlabeled data [26]. In
recent years, several approaches have been used to enhance
the prediction characteristics of this type of model. Among
all, Deep Learning (DL) [27] is being actively used in prob-
lems where scalability is of prime importance. Deep learning
attempts to model high-level abstractions in data by using
a deep graph with multiple processing layers, composed of
multiple linear and non-linear transformations. Among these
models combining unsupervised and deep learning (Unsu-
pervised Deep Learning, UDL), Restricted Boltzmann Ma-
chines [20] have shown outstanding performance as density
estimators [21] [25] [28].

RBMs are two-layer generative stochastic artificial neural
networks that can learn a probability distribution over its set
of inputs by means of only inter-layer connections. During
training, the inputs (visible layer) are translated into a higher
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Fig. 1: Real-Time UDL-based Video Quality Assessment
Method. Note that Server and Client processes are de-coupled;
the server process (RBM training) runs in the background; and
the model Ω is transferred to the client offline.

feature space (hidden layer) by means of inter-layer connec-
tions. This translation has the objective of minimizing the
error between the inputs and the reconstructed inputs. After
training, when the model encounters inputs not belonging
to the learned distribution, the error between the inputs and
their reconstructed versions increases [28]. In this work, we
have built on this notion to estimate video quality degradation
by means of the error distance between the inputs and their
reconstructed versions. For it, the characteristics of the original
video content act as visible neurons. Both, visible and the
hidden neurons have an associated bias, which together with
the inter-layer weights characterize the RBM model, Ω.

III. REAL-TIME COGNITIVE VIDEO QUALITY
ASSESSMENT METHOD

In this section, we present our UDL-based method. Figure 1
shows the processes taking place both on the server (offline)
and client (in real-time).

Like any other prediction-based method, ours requires a
training phase which takes place at the server side in an offline
manner. In it, the RBM model (Ω) is trained with the original
video sequences available in the content delivery service. Each
training sample is composed of eight NR features extracted
from the corresponding original video sequence. These se-
quences are usually of a duration between 2 and 10 seconds,
depending on the video provider. In this way, long available
video content can be splitted in these smaller video sequences
of a pre-established length, to be used for training the RBM.
When the client session starts, the RBM model is transmitted
to the client device, ready to be used when the streaming
session takes place. If new video sequences are added to the
content provider catalog, their features are extracted, the RBM
model (Ω) is retrained (adding the new samples) and an update
is sent to the client. An RBM model consists of the visible
and hidden biased, as well as the interlayer weights. An update
requires the transmission of 8 + M + 8 × M real numbers,
where M is the number of hidden neurons. The training of the
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model proceeds independently from the real time assessment
in the client; hence, our method falls within the NR category.
In principle, our model could also be implemented as an RR
metric, whereby the model parameters are passed to the client
online. Yet, in this letter we have chosen the offline scenario
due to its easier applicability in a real-life scenario.

On the other end of the transmission chain, while a stream-
ing session is taking place, the client performs real-time
extraction of the eight NR features on the stream. When the
current video sequence is finished, the client averages the
results. These eight values (Vimp = [BIimp, ..., NRimp]) serve
as input to the RBM server model (Ω). The model outputs the
estimated values corresponding to the trained model, i.e. the
estimated values for the impaired version of the video (Ṽimp =
[B̃Iimp, ..., ÑRimp]). Finally the relative degradation (∆Q) is
calculated as the Root Mean Squared Error (RMSE) [29] of the
impaired measured values (Vimp) and the RBM reconstructed
values (Ṽimp). Through this process, our method measures the
relative degradation between the original video and the one
received after the transmission chain, without requiring the
original video. Given the fact that the RMSE takes values in [0,
1), our method measurements range between 0 and 1, where
zero indicates full quality and one means full degradation.

In order to formalize the RBM, it is crucial to choose
appropriate learning rules to be used for fitting the input values
into the model [30], [31], [32]. The most used approach is the
Contrastive Divergence (CD) method proposed by Hinton [33],
which performs an approximation of the maximum likelihood
learning. The update number, learning rate, momentum, and
weights decay together determine the learning rules [34]. Our
solution makes use of this well-known learning method.

The NR features were selected relying on our previous study
of the accuracy of simple NR methods in the presence of
network impairments [23], focusing on the ones with demon-
strated correlation to quality degradation. Including features
that do not correlate with video quality degradation could
negatively influence the UDL estimation process and therefore
reduce accuracy. Based on those results, we selected six NR
low complexity metrics, both in the pixel and the bitstream
layers. Two additional video characteristics linked to quality
degradation (namely the video bitrate and the number of
frames) were also added to the features. This resulted in a
total of eight NR features, as referenced above.

A video stream can be characterized by several parameters.
First, the bitstream bitrate influences the quality in a direct
and substantial manner. Higher bitrates result in higher quality
indices [35]. Second, the received number of frames gives an
idea of the duration of the video. Finally, parameters regarding
the video scene composition have been demonstrated to affect
quality to a large extent [36]. From these parameters, the scene
complexity and the video motion have proven to give a high
correlation with video quality [23]. Both these features can
be empirically obtained from the encoding [36]. These four
features can be obtained from the stream as it finishes and are
directly computed.

On the pixel level, we demonstrated [23] that in video
streaming, degradations in terms of the level of blocki-
ness [37], [38], the noise ratio and the average blur [39] are

well correlated with the overall quality index. In addition to
this set, we added a feature concerning the temporal charac-
teristics of the video on the pixel level, the motion intensity,
which measures the movement of video objects between
frames by means of the compared level of intensity [40].
The reasoning behind selecting these features and not others
comes from the need to pursue low computation and ability to
be performed in real-time even on light-weight devices such
as smartphones and tablets, as we demonstrated in previous
work [41], [23].

IV. EXPERIMENTAL EVALUATION

The LIMP Video Quality Database [22], [23] was used to
evaluate our proposed model. For it, the RBM model in the
server is trained with the original videos sequences of this
set (9 different video sequences) provided by Seshdrinathan
et al. [42] and encoded using MPEG-4 part 10/H.264. Sub-
sequently, we tested the client with each of the network and
compression impaired videos of the set.

The LIMP dataset [22] consists of 9 high quality videos
(i.e., bs1, mc1, pa1, pr1, rb1, rh1, sf1, sh1, tr1) from the Live
Quality Video Database [42]. Each video has a frame rate of
25fps, a duration of 10 seconds and a resolution of 768x432.
This resolution was selected in the original database due to
the fact that it ensures that the aspect ratio of the original raw
videos (taken with high definition cameras) was maintained,
thus minimizing visual distortion while adapting videos to res-
olution constrained environments, such as smartphone screens.
These original nine videos were encoded using MPEG-4 part
10/H.264 at 8 bit rate levels (i.e., 64, 640, 768, 1024, 2048,
3042, 4096, and 5120 kpbs) obtaining 72 unimpaired videos.
Each of these (9 videos at 8 bitrates each) was then streamed
in a controlled network environment (using the PacketStorm
Hurricane II network emulator [43]) and subjected the videos
to 12 levels of randomized packet loss (i.e., 0%, 0.5%, 1%,
1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, and 10%). This
makes a total of 864 different videos on which to assess the
accuracy of our UDL-based quality method. This video set
allows for an extensive analysis of the effects that packet loss
has on different video types. We focused on packet loss effects,
due to its being the most impairing network condition [4], [19].
Our approach calculates the average quality over the entire
video fragment. As such, it takes into account the loss of every
type of frame, and statistically averages loss probability over
time.

The RBM is structured with 8 visible neurons (one per
feature) and 50 hidden neurons. These settings make a total of
458 real numbers, the RBM free parameters (8 visible and 50
hidden biases plus 400 interlayer weights). This amounts to
roughly 1.5KBytes to send between server and client when an
update is required. Based on insights from previous work [33],
the learning rate was set to 0.01, the number of CD steps to
1, the weight decay to 0.0002, the momentum to 0.9, and
we trained the models for 100 epochs. The RBM was then
trained on the 9 original high quality videos, while the other
855 variations were used for testing.

We evaluated the performance of our method as a relative
degradation metric by means of three correlation measure-
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TABLE I: Results of the two experiments where values
indicate PCC, P-value an RMSE averaged for each video
type across all compression levels. Columns 2 to 4 belong
to the Compression experiment (Section IV-A). Columns 5 to
7 refer to the Network loss experiment (Section IV-B). Cell
colors give qualitative correlation levels: green (best), yellow
(medium), and red (worst)

Compression Network Loss
V.T. PCC P-VAL RMSE PCC P-VAL RMSE
bs1 0.99 ≤0.001 0.08 0.69 0.07 0.1
mc1 0.98 ≤0.001 0.13 0.79 0.02 0.20
pa1 0.84 0.009 0.17 0.82 0.002 0.20
pr1 0.93 ≤0.001 0.23 0.68 0.07 0.25
rb1 0.93 ≤0.001 0.20 0.77 0.2 0.20
rh1 0.64 0.08 0.17 0.85 0.001 0.20
sf1 0.92 ≤0.001 0.14 0.85 ≤0.001 0.12
sh1 0.99 ≤0.001 0.22 0.78 0.05 0.25
tr1 0.99 ≤0.001 0.19 0.78 0.02 0.22
All 0.91 ≈0.01 0.17 0.78 ≈0.03 0.19

±0.11 ±0.03 ±0.05 ±0.06 ±0.03 ±0.05

ments, using as benchmark the well-known FR degradation
assessment model VQM [24], due to its demonstrated corre-
lation to human perception [3]. The difference between our
metric and the benchmark is measured by the Root Mean
Square Error (RMSE). Linear correlations are assessed by
the Pearson Correlation Coefficient (PCC). Finally, the P-
value shows if statistically our UDL-approach comes from the
same distribution as the benchmark FR quality. These three
measurements are presented by means of per-video-averages
(Table I) and per bitrate and video type colormaps (Figure 2).

A. Compression Experiment

In this first experiment we evaluated our UDL-based method
on video that had been distorted only through compression.
This test focused on the 72 impaired videos of the data set
streamed at 0% packet loss.

Columns 2 to 4 of Table I depicts the correlation values
for all the video types (rows 1 to 9), including the results
aggregated over all videos (last row). Overall, the UDL-based
method achieves an averaged (last row) PCC correlation (2nd
column) higher than 90% and a very low P-value (denoting
that our method statistically belongs to the same distribution
of VQM), while maintaining and RMSE (4th column) lower
than 17%. If we now have a look at the colormaps (Figure 2a),
overall, these are dominated by dark colors, demonstrating the
high level of accuracy of our method.

B. Network Loss Experiment

In the second experiment, we extend the analysis to the
whole data set (videos are impaired both by compression and
network packet loss). We use the same RBM model, trained
on the 9 original unimpaired videos, to evaluate the whole data
set of compression and network-impaired videos.

The last three columns (5 to 7) of Table I show the corre-
lation results (PCC, P-value and RMSE) per video type and
the average across the whole data set. The average PCC (fifth
column) is maintained above 75% with a very low deviation.
The P-value is below 6%, while the RMSE is kept under 20%.
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(a) Compression Experiment: Per video type and bitrate (PLR 0%)
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(b) Network Loss Experiment: Per video type, bitrate and packet loss
(PLR 0%-10%)

Fig. 2: Accuracy of our method by means of PCC (first
column), P-value (second column) and RMSE (third column)
to the benchmark quality (VQM). Darker colors denote higher
levels of correlation to the benchmark. White represents anti-
correlation to the benchmark

Now, if we look at the colormaps (Figure 2b), our method
provides very high levels of accuracy for nearly all the video
types and bitrate levels. The performance drops slightly for the
lowest bit rate variant (64kbps). This was to be expected, since
very low bit rate videos (which are nevertheless hardly used
nowadays) can suffer from unpredictable behavior deriving
from a combination of high compression and packet loss.

V. CONCLUSION

Accuracy, real-timeliness, adaptability and scalability are
all fundamental requisites for a satisfactory video quality
assessment of video streaming services. In this letter, we have
presented an unsupervised deep learning based-method for
online video quality assessment. To our knowledge this is
the first to fulfill all these characteristics. Accuracy has been
shown using the representative LIMP Video Quality Database
(a network impaired video-set consisting of 864 videos) [22],
achieving on average between 78% and 91% correlation with
VQM. Adaptability is fulfilled by the unsupervised nature of
our approach that, unlike supervised learning solutions, does
not require labeled training data. Therefore, it much faster and
more easily adapts its model as new videos are added. Finally,
the scalability of our approach has also been demonstrated in
our experimental analysis, where only the 9 original video type
samples are sufficient to accurately assess the remaining 864
videos of the dataset. Our approach has significant applica-
bility potential, particularly in the context of adaptive content
delivery and quality of experience management in networks.
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B. Lövström, “Predicting full-reference video quality measures using
HEVC bitstream-based no-reference features,” in Seventh International
Workshop on Quality of Multimedia Experience, QoMEX 2015, Pilos,
Messinia, Greece, May 26-29, 2015, 2015, pp. 1–2.

[17] Y. Xue, B. Erkin, and Y. Wang, “A novel no-reference video quality
metric for evaluating temporal jerkiness due to frame freezing,” CoRR,
vol. abs/1411.1705, 2014.

[18] T. Shanableh, “A regression-based framework for estimating the objec-
tive quality of HEVC coding units and video frames,” Signal Processing:
Image Communication, vol. 34, pp. 22–31, 2015.
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