
Interference Graphs to Monitor and Control Schedules

in Low-Power WPAN

Tim van der Leea, Antonio Liottab, Georgios Exarchakosa

aEindhoven University of Technology, the Netherlands
bUniversity of Derby, United Kingdom

Abstract

With billions of connected devices in the near future, the major challenge
is to develop networks to build an Industrial Internet of Things which is
scalable, energy-efficient, reliable and affordable. To this end, low-power
wireless personal area networks (LP-WPAN) provide a solution at minimum
costs. However, to ensure continuous performance verification, LP-WPAN
requires a centrally monitored and controlled service. This work proposes
such an edge service, i.e. network monitoring and optimal reconfiguration
of scheduled LP-WPANs. The approach is based on a transformation of the
schedule into a new model, interference graphs. The interference graphs allow
to design evaluation and rescheduling recommender methods to monitor and
reconfigure the schedule. An experimental setup was developed to test and
validate the approach. The results show that the model and methods provide
an accurate representation of the behavior of the network, and that the
new rescheduling recommender greatly improves the network’s performance,
compared to random rescheduling.

Keywords:
Internet of Things, Wireless sensor network, Interference graph,
disconnection probability, Network management, Network scheduling

Email addresses: t.lee@tue.nl (Tim van der Lee), a.liotta@derby.ac.uk
(Antonio Liotta), g.exarchakos@tue.nl (Georgios Exarchakos)

Preprint submitted to Future Generation Computer Systems April 4, 2018

1. Introduction

Industry 4.0 is tightening the dependability requirements of low-power
wireless personal area networks (LP-WPANs) to support reliable control
loops. In parallel, Internet of Things (IoT) is promising very large net-
works of interconnected devices smaller, smarter and more energy efficient
than ever. LP-WPANs offer unique solutions to the high installation and
maintenance costs of copper or optical networks in industrial settings. With
the target of optimizing and distributing production lines, big data coming
from IoT could help on taking more informed decisions on controlling pro-
duction. The more temporospatially fine-grained the collected information
is, the more wireless communication is required resulting in more contended
wireless medium, thus, increasing the unpredictability of control loops. For
maximum predictability as well as continuous performance verification, smart
factories need LP-WPAN status to be centrally monitored and controlled.
This requirement could be fulfilled by a network-as-a-service (NaaS), a net-
work resource allocation and optimization service for LP-WPANs.

While active research is on-going to define efficient scheduling algorithms
for LP-WPANs in TSCH mode, very little attention is drawn on a priori eval-
uating the performance of these schedules and on the rescheduling problem.
To the best of our knowledge, this work is the first to propose a rescheduling
method to adapt to external constraints and possible topology changes. This
work proposes an edge service to assess the performance of the LP-WPAN
and trigger a targeted maximum-profit minimum-cost re-configuration. LP-
WPANs, specified by IEEE802.15.4 [1], in Time Synchronized Channel Hop-
ping (TSCH) mode allow for more deterministic resource allocation. Namely,
transmitters, receivers, channels and timeslots used may be determined by a
network control algorithm e.g. built for a LP-WPAN NaaS.

To reduce uncertainty introduced by the latency between end nodes and
the LP-WPAN controller, the latter is assumed at the edge. As part of
that controller, scheduling algorithms should avoid internal and external in-
terference. Given the context of this work, network topology volatility, no
scheduler in literature considers the complete topology and deploys mini-
mum rescheduling of maximum performance gains, rescheduling problem. A
performance manager and rescheduling driver, is required. This work pro-
poses an edge-service to analyze and optimize scheduled networks, divided
into three main contributions.

• A transformation of the scheduled network into interference graphs,

2

• A rating method to evaluate the performance of the scheduled network
based on interference graph analysis,

• A recommender to indicate which connection is the most problematic
also based on interference graph analysis.

While this work applies to the IEEE802.15.4-TSCH communication proto-
col, it can be easily extended to any scheduled network, mutatis mutandis.
In order to evaluate the accuracy of both the assessment and rescheduling
methods, experiments are made in a real-world LP-WPAN deployment.

In section 2, background and work related to the TSCH communication
protocol is explained. The architecture of the different components pre-
sented in this work is detailed in the following section. Then, definitions
are provided to describe a scheduled network and introduce the concept of
interference graph. In section 5, our proposed approach presents an analysis
of interference graphs to evaluate and pinpoint problematic connection in a
scheduled network. A traffic aware scheduler is also presented. In section
6, experiments are run to confirm the validity of the rating method, and
the rescheduling method is tested on the previously described traffic aware
schedule. The paper concludes with a proposal for future work on this topic.

2. Background and related work

One of the main challenges in upscaled IoT is to provide reliable com-
munication at the lowest possible energy cost. To this end, a wireless sensor
networks (WSN) is preferred as it provides more flexibility and security than
using the internet [2]. WSNs are already used in various application domain
such as factory automation [3], distributed and process control [4, 5], smart
grid [6] or in the healthcare domain [7, 8, 9, 10]. In the past few years,
different technologies have attempted to address the reliability, energy effi-
ciency, scalability and flexibility of WSNs. This includes new communication
standard such as bluetooth [11], ZigBee [12], and the IEEE802.15.4 standard
presented in the next paragraph. At the same time, new protocols are intro-
duced by the Internet Engineering Task Force (IETF) such as 6LoWPAN[13],
providing IPv6 for low-power wireless personal area networks.

2.1. The IEEE802.15.4-TSCH protocol

The IEEE802.15.4-2016 standard is designed for low-power, low-cost and
low-rate network deployments. First published in 2006 [1], the standard

3

introduces the CSMA-CA algorithm, a communication protocol vulnerable to
interference and multi-path fading [14, 15]. The unlimited delay possibilities
of CSMA-CA makes it too unreliable for industrial deployment. The 2012
amendment introduces a new mode, Time Slotted Channel Hopping (TSCH),
that has been proven to avoid interferences and more energy-efficient [16, 17].

TSCH enables time-slotted access to the communication layers of the
device, and also allows to communicate with up to 16 different channels
available at 2.4MHz. For each connection in the network, the time of the
transmission has to be specified (timeslot), as well as the channel offset. The
different devices of the scheduled network are kept synchronized through the
emission of small packets, called enhanced beacons (EBs). The multichannel
communication paradigm mitigates interference and congestion in the WSN
[18]. The TSCH standard also introduces a channel hopping mechanism.
When transmitting, the frequency f to be used for this connection is chosen
as follows.

f = (ASN + channeloffset) mod C

where ASN is the absolute slot number, that is the number of timeslots
elapsed since the start of the network, and C is the total number of channels
available. If communication occurs every x timeslots, x being prime with C,
it is ensured that all available channels are used. Thanks to channel hopping,
the scheduled network is less impacted by external perturbations [19, 20].

2.2. The scheduling problem

The schedule can be computed centrally, or in a distributed way [21].
TSCH minimal is the minimal TSCH schedule provided by the IETF [22].
It consists of a single shared cell used to both send and receive any type
of packet. TASA, the Traffic Aware Scheduling Algorithm is a centralized
scheduler based on edge coloring technique [23], reputated to be interference
free, but limited when it comes to scalability. A decentralized version of
TASA, DeTAS provides more scalability than TASA [24]. Orchestra is a
decentralized algorithm implemented in contiki [25] providing high reliability
in various test environments.

For all connections in a scheduled network, timeslot and channel offsets
have to be specified. To avoid redundancy of information, they are specified
for a certain amount of timeslots, composing a slotframe, sometimes referred
to as superframe, which is repeated over time. During a timeslot, typically
10ms-15ms, a device can either transmit or listen over a certain channel offset,

4

Figure 1: Example of slotframe containing a case of interference.

or remain idle. When transmitting an unicast packet, an acknowledgement
is expected to be received. If absence of an acknowledgement, the device
will attempt to retransmit at the next available possible timeslot. After the
maximum number of retransmission is reached, the packet is dropped and
considered as lost. In the following, a communication occurring at a certain
timeslot and channel offset will be referred as connection.

The slotframe is potentially different for every devices. As an example,
if at timeslot i and channel offset j device d1 communicates with d2, the cell
(i, j) of the slotframe of d1 will have to be a transmitting cell, and the cell (i, j)
of device d2 will have to be a listening cell. In this work, we assume an edge
service to have full knowledge of the network. Therefore, we will consider
only the slotframe of the scheduled network - cell (i, j) of the slotframe
of the network will be d1 → d2. The slotframe of the scheduled network is
regarded as a matrix of T timeslots and C channel offsets. Filling this matrix
with appropriate connections is called scheduling the TSCH network. The
scheduling process is explained in [26]. Scheduling a TSCH network without
interference is an NP-hard problem [27]. An example of a network slotframe
is given by figure 1. In this example, a case of interference is present on
cell (i, k). Two communications are occurring at the same time and channel,
and assuming all devices are in interference range, they will interfere. There
is also a case of interference at timeslot i, since dc can not transmit to two
different devices at the same time.

Using a different scheduler will affect the network in terms of latency, scal-

5

Figure 2: Schematic overview of the architecture of the proposed edge service.

ability, energy consumption and reliability. While most of these scheduling
algorithms address these issues independently, there is not yet a scheduling
algorithm able to handle all of them together, for any network. Most of the
time, rescheduling is required to fine-tune the performance of the network
according to the requirements of the use-case.

3. Architecture overview

Figure 2 summarizes the different components of the edge service pro-
posed in this study, and how they interact. The scheduled LP-WPAN is
first transformed into interference graphs (1), which rely on a key parameter
p, the disconnection probability. p can be computed in different ways, e.g.
machine learning. In this study, p will be evaluated through the analysis of
experimental network-data. The second step is to analyze the interference
graph (2), which leads to two outputs:

(3a): An evaluation of the scheduled network,

(3b): a recommender that indicates which connection to reschedule.

Evaluating a scheduled network can be used to predict and prevent failure
in the scheduled network. It can also be used to compare two different
schedules for the same network, and determining which one is best suited for
the topology. The rescheduling recommender informs the scheduler of which

6

connection is the most problematic in the network. This information is used
to directly change the schedule of the network and increases its reliability at
runtime.

Deploying such an edge service in a real world deployment can be done in
different ways. In our experimental setup, p is predicted based on the traffic
pattern of the network, and does not require any interaction with the cloud,
or the network. We perform step (1), (2) and the scheduling/re-scheduling
process in the cloud. Schedules computed outside the LW-PAN network can
be exchanged with the nodes with CoAP services such as plexi [28]. In our
deployment, step (1) has to be performed outside the network because the
devices used (JN5168) do not have enough RAM memory to analyze the
entire network. However, depending on the capacity of the devices used, the
different blocks presented in figure 2 can be ported to the device.

Using only standard graph analysis techniques, interference graph analy-
sis is not computationally expensive. However, having one node per connec-
tion in the interference graph, step (1) and (2) may be expensive in terms of
memory usage, if a lot of connections are scheduled. Therefore, we recom-
mend to perform these tasks on non-constrained devices to address scalability
issues.

4. Network model

This section provides the definitions and models needed to solve the
rescheduling challenge of TSCH networks. First, a model of the TSCH sched-
uled network is given, followed by the definition of the interference graph,
a representation of the TSCH scheduled network used in the presented ap-
proach. A table presenting the different acronyms and symbols used in this
publication is given table 1.

4.1. TSCH scheduled network

A TSCH scheduled network is defined as a network of wireless devices
using the TSCH communication protocol. We assume that the devices of
this scheduled network are scheduled on 1 slotframe. If several sloframes are
defined, it is always possible to find one slotframe, based on a combination of
slotframes that will lead to the same behavior. Since slotframes are repeated
over time, analyzing the behavior of the network during the entire duration
of the slotframe is the same as analyzing the network at any time, assuming
the environment does not change.

7

Table 1: Symbols and acronyms used

S, SF Slotframe
C Available channels for S
T Available timeslots for S

ci,j, cell Cell of a slotframe
G Connectivity graph model
F Interference graph model
d Device model in G

e = (d1, d2) Connection between 2 devices in G
l = (e1, e2) Link between 2 connections in F

p(l) Disconnection probability (weight of l)
ρ(X) Weighted density of a graph X
deg(x) Node degree of a node x
PRR Packet Reception Ratio

A TSCH scheduled network is composed of two main information ele-
ments, topological and temporal, and knowing both gives a full under-
standing of the scheduled network. The spatial information concerns the
connectivity of the network, and informs us about all connections between
the devices and the channel on which they occur. It also includes inter-
fering devices, since the interference range may be greater than the direct
connectivity range. Connections occur during a timeslot, hence the spatial
information may change over time. The temporal information is there to
keep track of these network changes in time.

Let us consider a TSCH scheduled network consisting of n devices com-
municating according to a slotframe S, with T timeslots and C channels. To
represent the network we will use an approach similar to [23]. In this doc-
ument, the TSCH network is represented as an directed graph G = (V,E)
where V = {d0, d1, ...dn−1} are the devices and E ⊂ V × V the connections
of the network. As an example, a unicast connection from device da to db
will be noted as e = (da, db). Similarly, a broadcast connection initiated by
device da will be a set of connections noted {(da, dk), ∀k ∈ DN(da)} where
DN(d) represents the set of devices that are in direct range of d. It is not
always the case that direct range and interference range coincide.

This connectivity graph does not take into account the temporal informa-
tion given by the slotframe. Therefore we introduce the slotted connectivity

8

Figure 3: Construction method of the slotted connectivity graph.

graph Gi of a timeslot i. In the slotframe S of our scheduled network, each
cell ci,j at timeslot i and channel offset j will indicate connections occurring
at this timeslot. If no connections are occuring, c will be the empty set ∅.
Thus, we can define the slotted connectivity graph of a scheduled net-
work G = (V,E) with a slotframe S = {ci,j, ∀(i, j) ∈ T × C} at a timeslot i
as

Gi = (V,Ei) with Ei = {e ∈ ci,j, ∀j ∈ C} (1)

Figure 3 represents the construction method of the slotted connectivity
graph. For a given slotframe S, all connections occuring at timeslot i are
taken into account to build Gi. Following the definition of the slotted con-
nectivity graph, the complete connectivity graph is defined as follows.

G∗ = (V,E) with E = {e ∈ Ei, ∀i ∈ T} (2)

Similarly as G, G∗ is a directed graph that does not take into account
the temporal information given by the slotframe. However, G∗ can be a
multigraph, since the same connection may be present on multiple timeslots
of the slotframe. Considering a set of devices d ∈ V scheduled with the
slotframe S, the information about the direct range of the devices is enough
to construct Gi for all i and thus G∗. However, in order to study the impact of
internal interference in a scheduled network and assess accurate deployments,
we need to take into account devices in interference range. The following
section describes a model based on G that takes into account interfering
devices information.

9

4.2. Interference Graph

The interference graph is a representation of the scheduled network taking
into consideration the possible interference and causes for packet loss, which
can occur internally. First introduced in [29], its definition is refined in
this work. Within a slotframe S, two connections will be considered as
conflicting iff, on the same timeslot, a device has two different connections
scheduled. The TSCH communication protocol will prioritize one of the
connections, leading to a potential packet loss for the other one. Interference
occurs when two different pairs of devices communicate on the same timeslot
and channel. In this case, packets may be lost due to interference on the
receiving side, assuming there is no clear channel assessment mechanism in
place. In the remainder of this article, both conflicts and interference will be
referred to as interference.

In the same way as the slotted and complete connectivity graphs were
defined, we define a slotted, and a complete interference graph. Nodes of
these graphs are connections occurring in the TSCH scheduled network, and
these nodes are linked if the corresponding connections interfere. The slotted
interference graph at timeslot i corresponding to a slotted connectivity graph
Gi can be first defined as follows:

Fi = (Ei, Li) with Li = {(e1, e2) ∈ E2
i and (e1, e2) ∈ L}

Fi is a directed graph that illustrates the behavior of the network at timeslot
i in terms of internal interference. However, not all interfering connections
have the same impact on the performance of the network. As an exam-
ple, if two unicast connections are interfering but have no traffic assigned,
the impact on the performance of the scheduled network would be zero.
Therefore, links of the interference graph are weighted with a weight factor
p : L −→ [0, 1] determining the impact of this interference on the global per-
formance of the network, called disconnection probability. For simplicity, we
do not consider interfering connections that have no impact on the behavior
of the network. If p(l) = 0, the link l is removed from the interference graph.
Note that for (e1, e2) and (e2, e1) in L we may have p((e1, e2)) �= p((e2, e1)).
The complete definition of the slotted interference graph at timeslot i
has to include p.

Fi = (Ei, Li, p) (3)

10

Figure 4: Construction method of the interference graph assuming all channels are differ-
ent.

Figure 4 represents an example of transformation from the slotted connec-
tivity graph Gi to the slotted interference graph Fi. Assuming all channels
are different, the slotted connectivity graph Gi presents a conflict since de-
vice d3 cannot handle two transmitting operations at the same time. Thus,
connection d3, d2 and d3, d4 are linked with different disconnection proba-
bilities p. Similarly, device d2 can not listen to two connections at the same
time, therefore linking the nodes (d1, d2) and (d3, d2).

The complete interference graph is defined in the same way as the
complete connectivity graph. All connections are represented with a node in
the graph, and all interfering connections are linked with a directed link of
weight p.

F ∗ = (E,L, p) (4)

where L =
⋃

i∈T Li. As for the complete connectivity graph, the complete
interference graph may be a multigraph, since the same interference can occur
several times in the slotframe.

5. Proposed approach

In this section, we first present a method to analyze the previously defined
interference graph. This provides a rating method allowing us to evaluate
the performance of a scheduled network. Then, this rating method is used
to define a rescheduling technique applied on a traffic aware schedule.

11

5.1. Rating method

Our rating method aims to evaluate schedules in given topologies based
on internal interference. Fortunately, the weighted links of the interference
graphs precisely represent interference we want to detect. The weight p of
these links also indicates the impact of the interference on the performance
of the scheduled network. Consequently, we will rate schedules according to
the weighted density of the interference graph. The density of a graph is the
result of the number of links divided by the number of possible links. For a
weighted graph such as F ∗ = (E,L, p), we will take the density according to
its definition in [30].

We define the density ρ of the complete interference graph or the slotted
interference graph at timeslot i as follows:

∀i ∈ T , ρ(Fi) =

∑
l∈Li

p(l)

|Ei|(|Ei| − 1)
(5)

ρ(F ∗) =

∑
l∈L p(l)

|E|(|E| − 1)
(6)

ρ will be considered as our rating metric for schedules. An interference-
free schedule will present no links in its interference graphs, and thus will
obtain a density equal to 0. Since F ∗ may be a multigraph, its density
is unbounded. The density, and thus the rating method, depends on the
parameter p that can be described as the probability that the interference
impacts the proper behavior of the scheduled network. Defining the function
p as accurately as possible is required to rate different schedulers between
each other and in different topologies. Furthermore, performing an analysis
of the interference graph knowing beforehand the value of p, will allow to
predict the performance of the schedule in a given topology. In this work, we
focus on the evaluation of one scheduler in one topology. Our first approach
to define p is explained in Section 6.1. A more precise definition of p will be
provided in a subsequent paper.

5.2. Traffic-aware scheduler

In this section, we introduce a centralized scheduling algorithm. This
generates a traffic-aware slotframe for the network, which is not interference
free. A rescheduling method to make it interference free is presented in the
next section. While the rescheduling method applies on any scheduler, we
will test it on this particular traffic-aware schedule.

12

Let’s define the number of frames to be sent as the traffic. The first step
is to determine how many cells should be assigned to a connection to comply
with the traffic load of the network. To establish a traffic-aware schedule,
the amount of traffic generated by each node and the routing topology must
be known. We note qa,b the traffic generated per slotframe by da for db and
route(da, db) the route from da to db.

Algorithm 1: Function for traffic aware cell attribution

Function get cells(da,db)
cells← qa,b
for di,dj in all devices do

if (di, dj) in route(da, db) then
cells← cells+ qi,j

end

end
return cells

The function get cells presented in Algorithm 1 computes the minimum
number of cells required for the connection (da, db). One cell is theoretically
enough to transport one frame per slotframe, and keep the queues empty.
However, in a real deployment with external perturbations and interference,
the number of cells must be increased. This function determines how many
cells are required to reach a traffic-aware schedule, but the scheduler allocates
these cells randomly. Therefore, the resulting slotframe is potentially subject
to internal interference. This scheduler accepts request from external services
to reschedule certain connections to empty cells.

5.3. On-the-fly rescheduling method

In this section, we present a rescheduling method that selects a problem-
atic connection. The rescheduling method is based on the analysis of the
slotted interference graph. In a scheduled network with internal interference,
we will note Fi for i ∈ T the slotted interference graphs, and the density of
all slotted interference graphs ρ(Fi) is calculated by equation 5. maxi(ρ(Fi))
defines the most problematic timeslot in terms of internal interference, and
must receive priority.

In the following, we note Fm = (Em, Lm, p) the slotted interference graph
with the highest density. In this interference graph, the conflicting connec-
tions are linked with a weight p. In order to find the most problematic
connection, we compute the weighted outdegree of each node in the graph

13

deg+(e), i.e. the number of edges going out of this node with their respective
weight p. The connection with the highest degree is chosen to be resched-
uled first, and is rescheduled to an unused cell for this device. If there are
several candidates, the connection is chosen randomly. To summarize, the
rescheduling process is split in three main parts:

• Find the most problematic m with maxi(ρ(Fi)),

• Find the most problematic connection with deg+(Em),

• Indicate to the scheduler that this connection needs to be rescheduled.

The algorithm will converge to an interference-free schedule for the topology,
if it exists. Because cells are re-allocated randomly, this process can become
computational-intensive. For example, if a connection can only be scheduled
on 1 specific cell, the probability to pick this cell is 1

T×C where T is the
number of timeslots and C the number of channels in the slotframe. Here we
focus on rescheduling the most problematic connections first. Preliminary
results for a more refined method, based on choosing timeslots, show that for
a distributed scheduler, choosing the timeslot is more efficient with messaging
the neighboring devices [31].

The proposed method uses the interference graphs Fi, hence depends on
p. In some cases where p is constant and the network topology is fixed,
the rescheduling process is almost immediate. However, if the topology is
changing or if p takes a long time to compute, i.e. p based on packet reception
ratio or p estimated with machine learning, the rescheduling process can
become computational intensive.

6. Real-world experiments

To evaluate the rating method and the rescheduling method applied to
the traffic-aware schedule, several experiments have been designed using
a real environment. In a following section, the experimental setup is de-
scribed. Then the rating method is analyzed and finally the performance of
the rescheduling method compared with the random rescheduling method.

6.1. Experimental setup

In order to run the experiment, p has to be defined first. The goal
is to evaluate and reschedule a slotframe in a given topology to reach an

14

Figure 5: Topology of the devices with traffic load.

interference- and conflict-free slotframe. Taking p = 1 assumes that all in-
terfering connections are equally affecting the good behavior of the network.
However, depending on the traffic of these connections, the impact may be
completely different. Therefore, we will take p based on the amount of pack-
ets in queue for both interfering connections. If we consider two interfering
connections ea, eb in L, and the number of packets to be sent for a connection
e as q(e), p is defined as follows:

p((ea, eb)) =
q(ea) + q(eb)

max(e1,e2)∈L(q(e1) + q(e2))
(7)

Then, it satisfies the requirement 0 < p ≤ 1. In this configuration, we also
have p((ea, eb)) = p((eb, ea)). The experimental testbed is composed of 21
Jennic JN5168 devices in a tree topology. Devices use the latest version
of Contiki with TSCH enabled. Figure 5 represents the topology on which
the devices are tested. In today’s IoT deployments, most low-power personal
area networks (LW PAN) applications rely on a PAN coordinator to interface
with devices outside the network. In our configuration, device 224.246 is the
PAN coordinator, and all devices are transmitting packets towards it. All
devices generate q packet per slotframes and forward all incoming traffic to
their parent 224.246. Also, all devices are deployed in the same room and
thus, are in interference range of each other.

The function presented in Algorithm 1 returns the theoretical minimum
number of cells to be attributed per link. As we are in a real deployment,
we allocate three times more cells than the number indicated. To simplify,

15

we divide the slotframe size by 3. Thus, q = 0.3 packets per slotframe.
With timeslots of 15ms, the final slotframe size is 200 timeslots, and each
node generates a packet every 9sec. In this way, the traffic load of each
connection (see figure 5) corresponds to the number of cells to be attributed.
All connections related to data are made on dedicated cells. The TSCH
network is synchronized through EBs, additional messages that may occupy
the queues and create interference. In order to focus the study on the data
traffic only, EBs have a separate slotframe and channel. This way, results do
not include data generated by EBs. The slotframe reserved for data is using
the 15 other channels provided by the 802.15.4 communication protocol.

In the following sections, experiments are run to confirm the validity
of both rating and rescheduling methods. In these experiments, the same
topology and the same connections will be used but with different schedules.
The gathered data does not vary after 1.5 hours, therefore experiments last
between 1.7 to 2 hours. In all experiments, the number of retransmissions is
set to 0, meaning that each packet has only one chance to be transmitted.
If the transmission fails due to interference or external perturbations, the
packet is dropped. This allows us to directly see the impact of perturbations
in the network.

6.2. Rating method verification

Analyzing the density of the complete interference graph provides feed-
back on the amount of interference present in the network. For this feedback
to be visualized, we generated four slotframes with different numbers of in-
terfering connections.

The first slotframe, SF1, contains no interference: it is an interference-
free slotframe. For this topology, a random generated slotframe has a 16%
chance of being interference-free. Experiments are run to analyze the behav-
ior of the network. Metrics such as the packet reception ratio per link and
the number of packet lost are displayed on figure 6. Since our experimental
setup does not allow retransmissions, the packet reception ratio (PRR) per
connection is not equal to 1, but tends to stabilize between 90% and 99%
for all connections except one. It appears from figure 6c and 6b that device
198.249 exits and re-joins the network frequently. The network is subject
to external interference, or perturbations in the hardware itself that causes
transmission to fail. This explains why the perfect slotframe does not ob-
tain a 100% PRR. However, the SF1 is very effective as its end-to-end PRR

16

(a) Packets lost for SF1 as a per-
centage of the total number of
packet emitted by the network.

(b) Packet reception ratio per
connection for SF1.

(c) Packets lost per connection
for SF1 as a percentage of the
number of packet sent through
this connection.

Figure 6: Results of the performance analysis of SF1.

reaches 93.7%. Since the slotframe is interference-free, the densities of its
interference graphs are 0.

The next tested slotframes are SF2, SF3 and SF4. SF2 presents one
conflict for the device 8.224. SF3 and SF4 present both 2 problems: SF3
shows a conflict and a case of interference, and SF4 presents two conflicts.
The probability of this occurring is approximatively 27%. When generating
random schedule, this is the second most common situation. Generating
a slotframe with 1 interference occurs with a probability of approx. 31%.
For SF2 we obtain ρ(F ∗) = 0.00097 and PRR = 0.87. We have for SF3
ρ(F ∗) = 0.00184 and for SF4 ρ(F ∗) = 0.00203. The difference between the
impact of the interference detected by ρ is correctly observed when looking at
the end-to-end PRR. For SF3, PRR = 92.5% and for SF4, PRR = 89.8%.
However, both SF3 and SF4 obtain a higher PRR than SF1 while having a
higher density. This imprecision is due to the fact that p does not take into
account if the conflicting connections are two receiving cells, two transmitting
cells or a mix of both. Due to the implementation of TSCH, the case of two
conflicting receiving cells present in SF2 is often subject to more packet loss
than the other cases.

The measure of ρ seems to be correlated with the end-to-end PRR, three
more slotframes were tested to confirm this hypothesis. SF5, SF6 and SF7
are unrealistic slotframes generated for the purpose of the experiment, as
they contain 136, 190 and 861 cases of interference respectively. For SF5,
we obtain ρ(F ∗) = 0.0789 and an end-to-end PRR of 32.5%. For SF6,

17

(a) End-to-end packet reception
ratio for all tested slotframes.

(b) Total number of packets lost
for all tested slotframes.

(c) Relation between ρ and PRR
for all tested slotframes.

Figure 7: Performance of all slotframes in relation with ρ, taken to 10−5 precision.

ρ(F ∗) = 0.1180 and PRR = 29.8%, and for SF7, ρ(F ∗) = 0.5528 and
PRR = 1.02%.

Figure 7 indicates for all experiments, the end-to-end PRR, total packets
lost and the relation between ρ and the PRR. Between all experiments, a
correlation between ρ(F ∗) and the amount of packets lost seems to appear.
Similarly, a high value of ρ corresponds to a low end to end PRR and thus,
a poor global network performance. This relation is visible in figure 7c.

6.3. Rescheduling method verification

In order to visualize the performance of rescheduling, we will consider
a scheduler, initializing the TSCH network with a traffic-aware schedule as
presented in Section 5.2. The traffic-aware schedule positions cells in the
worst possible way, with connections scheduled on timelot 0 and channel 0.
However, this scheduler accepts recommendations from an external service
to reschedule specific connections. As all connections interfere, all connec-
tions need to be rescheduled. We run two sets of experiments. In the first
set, the connection to reschedule is chosen randomly among all interfering
connections. In the second set, the connection to reschedule is chosen with
interference graph analysis, as explained in Section 5.3. In the following,
we refer to the first set as random rescheduling or rescheduling without in-
terference graph analysis. The second set is referred to rescheduling with
interference graph analysis. In both sets, the connection is rescheduled ran-
domly to an available cell.

Figure 8 represents the performance of random rescheduling in the net-
work, each figure representing 40 iterations. The colors are distributed ac-

18

(a) End-to-end packet reception ratio of each
iteration.

(b) Number of packets lost for all iterations in
percentage of the total number of packet sent.

Figure 8: Results of the first 40 iterations of the random rescheduling method.

cording to the matplotlib jet colormap [32]. Initial iterations are represented
in dark blue, and latest iterations are in dark red. In the first iterations of
random rescheduling, the packet reception ratio is close to 0, and more than
half of all packets are lost. Most connections are indeed interfering since all
connections are initially scheduled on timeslot 0 and channel 0. After 40 iter-
ations, the number of packets lost drops to 17%. However, even if almost all
connections are rescheduled, the packet reception ratio does not exceed 60%.
Connections that are not rescheduled are critical connections in the network
(8.224 − 224.249 and 247.249 − 224.249), and therefore are responsible for
important packet loss. While most of the experiments produce a stable end-
to-end PRR and packet loss, some measures appear to be irregular. This is
due to the fact that real-life experimentation are subject to unpredictable
hardware failure or external perturbations.

Results of rescheduling using the interference graph analysis are repre-
sented by figure 9. Colors are also distributed similarly as the previous set of
experiment. The first experiment is represented in blue, and presents signif-
icant interference: more than 50% of all packets are lost, and the end-to-end
PRR does not exceed 10-15%. However, after several iterations, the PRR
and amount of packets lost are significantly increased. The rescheduling
method focuses on first rescheduling the most critical connections accord-
ing to the interference graph. In this set, the most problematic timeslot is

19

(a) End-to-end packet reception ratio of the net-
work for each iteration.

(b) Percentage of packets lost of the global net-
work for each iteration.

Figure 9: Results of the first 40 iterations of the rescheduling method based on interference
graph analysis.

always timeslot 0 since all connections are scheduled on this timeslot ini-
tially. The interference graph analysis determines which connection has to
be rescheduled based on the weighted out degree evaluation. With p based
on the queues, connections close to PAN coordinator are chosen first, leading
to a significant PRR and packet loss improvement after most of them are
rescheduled.

Both methods are compared and represented in figure 10. Figure 10a
represents the difference of improvement of the two methods for every iter-
ation. We can see that rescheduling using the interference graph analysis
improves the evaluation of the global network (density of the complete inter-
ference graph) faster than random rescheduling. Figure 10b represents the
evolution of the PRR with the evaluation ρ(F ∗) of the schedule. Initially,
both methods present a similar improvement. However, after 30 iterations,
or when ρ(F ∗) < 10−2, the rescheduling method with interference graph anal-
ysis presents a better performance than the random rescheduling method.

6.4. Discussion

The first set of experiments compares random-generated slotframes. The
density ρ applied on the complete interference graph F ∗ provides different
values for these slotframes, as they present a different amount of internal

20

(a) Improvement of the rating metric ρ over 40
iterations.

(b) Packet reception ratio as function of the
measure ρ for both experiment sets.

Figure 10: Side-by-side comparison the random rescheduling method (black) and the
rescheduling method with interference graph analysis (red).

conflicts and interference. From the experiments, the packet reception ratio
and the amount of packets lost appears related to the density calculated.
In the second set of experiment, a slotframe fully conflicting is rescheduled.
The density and the slotted interference graphs are used in order to deter-
mine which connections have to be rescheduled first. Compared with ran-
dom rescheduling, the use of interference graphs improves significantly the
rescheduling process.

In both sets of experiments, the performance of the network is measured
with the PRR. In this regard, the density of the interference graph model
provides a good prediction of the performance of the global network. How-
ever, in both sets of experiments, unpredicted failures occurred, resulting in
an oscillating PRR that can be seen in some iterations of figure 8a or 9a.
This creates small differences between the predicted performance and the
actual performance of the global network. This difference is due to the fact
that the chosen disconnection probability p is calculated based on the esti-
mated traffic of each connection. It does not predict hardware failures, nor
external perturbations, which can greatly impact the network since there are
no retransmissions allowed in our setup.

21

7. Conclusion and future work

With an industrial IoT landscape growing exponentially, network volatil-
ity in scheduled networks and reliability in terms of interference need to be
addressed. This work proposes an innovative edge service to address this
challenge based on interference graph analyses, a method to pinpoint which
connection requires to be rescheduled. Evaluating the weighted density of
the complete interference graph allows to rate the scheduled network in terms
of internal interference. The approach is validated with experimental results,
showing that the density of the interference graph is accurately representing
the amount of internal interference in the scheduled network. The accuracy
of the rating method can be further improved with the disconnection proba-
bility, p. The rescheduling recommender experiments demonstrate that the
new rescheduling method is superior to random rescheduling. It is also an
improvement for the global performance of the network.

Potential for further improvement can be proposed. In the experiments,
p is based on the queue size of both interfering connections and does not take
into account which type of interference is occurring, or if cells are shared or
dedicated. A better definition of p will therefore improve both evaluation
and rescheduling methods. Since this service runs on the edge of the net-
work, there are no resource constraints for the computation of p. Knowing
preemptively p for a specific environment, and thus ρ, would allow to predict
the performance of a schedule in this environment.

Different environments will have different impact on the performance of
the scheduled network. In this work, experiments were run in the same
room, with the same devices and with the same network topology. More
experiments have to be conducted to refine the definition of p, and validate
the evaluation method in any topology.

The edge service proposed in this study improves the performance and
reduces the energy footprint of the scheduled network. Interference is re-
sponsible for retransmissions, an avoidable energy cost.

Acknowledgment

This research has been funded by the European Unions Horizon 2020
project INTER-IOT (grant number 687283), and was carried out at the Eind-
hoven University of Technology in the Netherlands.

22

[1] IEEE Standard for Low-Rate Wireless Networks, IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (2016) 1–
709doi:10.1109/IEEESTD.2016.7460875.

[2] C. Alcaraz, P. Najera, J. Lopez, R. Roman, Wireless sensor networks
and the internet of things: Do we need a complete integration?, in:
1st International Workshop on the Security of the Internet of Things
(SecIoT10), 2010.

[3] A. Willig, Recent and emerging topics in wireless industrial communi-
cations: A selection, IEEE Transactions on industrial informatics 4 (2)
(2008) 102–124.

[4] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, S. S. Sastry, Distributed
control applications within sensor networks, Proceedings of the IEEE
91 (8) (2003) 1235–1246.

[5] V. C. Gungor, G. P. Hancke, Industrial wireless sensor networks: Chal-
lenges, design principles, and technical approaches, IEEE Transactions
on industrial electronics 56 (10) (2009) 4258–4265.

[6] V. C. Gungor, B. Lu, G. P. Hancke, Opportunities and challenges of
wireless sensor networks in smart grid, IEEE transactions on industrial
electronics 57 (10) (2010) 3557–3564.

[7] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannan-
tonio, M. Sgroi, R. Jafari, G. Fortino, From modeling to implementation
of virtual sensors in body sensor networks, IEEE Sensors Journal 12 (3)
(2012) 583–593.

[8] A. Milenkovi, C. Otto, E. Jovanov, Wireless Sensor Networks for Per-
sonal Health Monitoring: Issues and an Implementation, Comput. Com-
mun. 29 (13-14) (2006) 2521–2533. doi:10.1016/j.comcom.2006.02.011.
URL http://dx.doi.org/10.1016/j.comcom.2006.02.011

[9] G. Fortino, M. Pathan, G. Di Fatta, Bodycloud: Integration of cloud
computing and body sensor networks, in: Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Conference on,
IEEE, 2012, pp. 851–856.

23

[10] R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor fu-
sion in body sensor networks: State-of-the-art and research challenges,
Information Fusion 35 (2017) 68–80.

[11] S. Bluetooth, Bluetooth core specification version 4.0, Specification of
the Bluetooth System.

[12] Z. Alliance, Ieee 802.15. 4, zigbee standard (2009).

[13] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, R. Alexander, Rpl: Ipv6 routing
protocol for low-power and lossy networks, RFC 6550, RFC Editor,
http://www.rfc-editor.org/rfc/rfc6550.txt (March 2012).
URL http://www.rfc-editor.org/rfc/rfc6550.txt

[14] J. T. Adams, An introduction to IEEE STD 802.15.4,
in: 2006 IEEE Aerospace Conference, 2006, pp. 8 pp.–.
doi:10.1109/AERO.2006.1655947.

[15] D. D. Guglielmo, G. Anastasi, A. Seghetti, From IEEE 802.15.4 to
IEEE 802.15.4e: A Step Towards the Internet of Things, in: S. Gaglio,
G. L. Re (Eds.), Advances onto the Internet of Things, no. 260 in
Advances in Intelligent Systems and Computing, Springer International
Publishing, 2014, pp. 135–152, dOI: 10.1007/978-3-319-03992-3\ 10.
URL http://link.springer.com/chapter/10.1007/978-3-319-03992-3 10

[16] T. Watteyne, J. Weiss, L. Doherty, J. Simon, Industrial IEEE802.15.4e
networks: Performance and trade-offs, in: 2015 IEEE Interna-
tional Conference on Communications (ICC), 2015, pp. 604–609.
doi:10.1109/ICC.2015.7248388.

[17] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, K. S. J.
Pister, A Realistic Energy Consumption Model for TSCH Networks,
ResearchGate 14 (2) (2014) 482–489. doi:10.1109/JSEN.2013.2285411.

[18] R. Soua, P. Minet, Multichannel Assignment Protocols in Wireless
Sensor Networks, Pervasive Mob. Comput. 16 (PA) (2015) 2–21.
doi:10.1016/j.pmcj.2014.04.004.
URL http://dx.doi.org/10.1016/j.pmcj.2014.04.004

24

[19] T. Watteyne, S. Lanzisera, A. Mehta, K. S. J. Pister, Mitigating Mul-
tipath Fading through Channel Hopping in Wireless Sensor Networks,
in: 2010 IEEE International Conference on Communications, 2010, pp.
1–5. doi:10.1109/ICC.2010.5502548.

[20] T. Watteyne, A. Mehta, K. Pister, Reliability Through Frequency Di-
versity: Why Channel Hopping Makes Sense, in: Proceedings of the 6th
ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sen-
sor, and Ubiquitous Networks, PE-WASUN ’09, ACM, New York, NY,
USA, 2009, pp. 116–123. doi:10.1145/1641876.1641898.
URL http://doi.acm.org/10.1145/1641876.1641898

[21] G. Smart, N. Deligiannis, R. Surace, V. Loscri, G. Fortino, Y. An-
dreopoulos, Decentralized time-synchronized channel swapping for ad
hoc wireless networks, IEEE Transactions on Vehicular Technology
65 (10) (2016) 8538–8553.

[22] X. Vilajosana, K. Pister, T. Watteyne, Minimal 6TiSCH Configuration,
Internet-Draft draft-ietf-6tisch-minimal-19, Internet Engineering Task
Force, work in Progress (Jan. 2017).
URL https://tools.ietf.org/html/draft-ietf-6tisch-minimal-19

[23] M. Palattella, N. Accettura, L. Grieco, G. Boggia, M. Dohler, T. En-
gel, On Optimal Scheduling in Duty-Cycled Industrial IoT Applications
Using IEEE802.15.4e TSCH, IEEE Sensors Journal 13 (10) (2013) 3655–
3666. doi:10.1109/JSEN.2013.2266417.

[24] N. Accettura, E. Vogli, M. Palattella, L. Grieco, G. Boggia, M. Dohler,
Decentralized Traffic Aware Scheduling in 6tisch networks: design and
experimental evaluation, IEEE Internet of Things Journal PP (99)
(2015) 1–1. doi:10.1109/JIOT.2015.2476915.

[25] S. Duquennoy, B. Al Nahas, O. Landsiedel, T. Watteyne, Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH, in:
Proceedings of the 13th ACM Conference on Embedded Networked Sen-
sor Systems, SenSys ’15, ACM, New York, NY, USA, 2015, pp. 337–350.
doi:10.1145/2809695.2809714.
URL http://doi.acm.org/10.1145/2809695.2809714

[26] Q. W. a. X. Vilajosana, 6top Protocol (6p) (Oct. 2016).
URL https://tools.ietf.org/html/draft-ietf-6tisch-6top-protocol-03

25

[27] R.-H. Hwang, C.-C. Wang, W.-B. Wang, A Distributed Scheduling
Algorithm for IEEE 802.15.4e Wireless Sensor Networks, Computer
Standards & Interfaces 52 (2017) 63–70. doi:10.1016/j.csi.2017.01.003.
URL http://www.sciencedirect.com/science/article/pii/S0920548917300193

[28] G. Exarchakos, I. Oztelcan, D. Sarakiotis, A. Liotta, plexi: Adaptive
re-scheduling web service of time synchronized low-power wireless net-
works, Journal of Network and Computer Applications.

[29] T. v. d. Lee, A. Liotta, G. Exarchakos, TSCH schedules assessment, in:
2017 IEEE 14th International Conference on Networking, Sensing and
Control (ICNSC), 2017, pp. 696–701. doi:10.1109/ICNSC.2017.8000175.

[30] G. Liu, L. Wong, H. N. Chua, Complex discovery from weighted ppi
networks, Bioinformatics 25 (15) (2009) 1891–1897.

[31] T. v. d. Lee, G. Exarchakos, A. Liotta, Distributed TSCH schedul-
ing: A comparative analysis, in: 2017 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 2017, pp. 3517–3522.
doi:10.1109/SMC.2017.8123176.

[32] Matplotlib colormap description, https://matplotlib.org/users/colormaps.html,
accessed: 2017-12-25.

26

Interference Graphs to Monitor and Control Schedules

in Low-Power WPAN

Tim van der Leea, Antonio Liottab, Georgios Exarchakosa

aEindhoven University of Technology, the Netherlands
bUniversity of Derby, United Kingdom

Abstract

With billions of connected devices in the near future, the major challenge
is to develop networks to build an Industrial Internet of Things which is
scalable, energy-efficient, reliable and affordable. To this end, low-power
wireless personal area networks (LP-WPAN) provide a solution at minimum
costs. However, to ensure continuous performance verification, LP-WPAN
requires a centrally monitored and controlled service. This work proposes
such an edge service, i.e. network monitoring and optimal reconfiguration
of scheduled LP-WPANs. The approach is based on a transformation of the
schedule into a new model, interference graphs. The interference graphs allow
to design evaluation and rescheduling recommender methods to monitor and
reconfigure the schedule. An experimental setup was developed to test and
validate the approach. The results show that the model and methods provide
an accurate representation of the behavior of the network, and that the
new rescheduling recommender greatly improves the network’s performance,
compared to random rescheduling.

Keywords:
Internet of Things, Wireless sensor network, Interference graph,
disconnection probability, Network management, Network scheduling

Email addresses: t.lee@tue.nl (Tim van der Lee), a.liotta@derby.ac.uk
(Antonio Liotta), g.exarchakos@tue.nl (Georgios Exarchakos)

Preprint submitted to Future Generation Computer Systems April 4, 2018

1. Introduction

Industry 4.0 is tightening the dependability requirements of low-power
wireless personal area networks (LP-WPANs) to support reliable control
loops. In parallel, Internet of Things (IoT) is promising very large net-
works of interconnected devices smaller, smarter and more energy efficient
than ever. LP-WPANs offer unique solutions to the high installation and
maintenance costs of copper or optical networks in industrial settings. With
the target of optimizing and distributing production lines, big data coming
from IoT could help on taking more informed decisions on controlling pro-
duction. The more temporospatially fine-grained the collected information
is, the more wireless communication is required resulting in more contended
wireless medium, thus, increasing the unpredictability of control loops. For
maximum predictability as well as continuous performance verification, smart
factories need LP-WPAN status to be centrally monitored and controlled.
This requirement could be fulfilled by a network-as-a-service (NaaS), a net-
work resource allocation and optimization service for LP-WPANs.

While active research is on-going to define efficient scheduling algorithms
for LP-WPANs in TSCH mode, very little attention is drawn on a priori eval-
uating the performance of these schedules and on the rescheduling problem.
To the best of our knowledge, this work is the first to propose a rescheduling
method to adapt to external constraints and possible topology changes. This
work proposes an edge service to assess the performance of the LP-WPAN
and trigger a targeted maximum-profit minimum-cost re-configuration. LP-
WPANs, specified by IEEE802.15.4 [1], in Time Synchronized Channel Hop-
ping (TSCH) mode allow for more deterministic resource allocation. Namely,
transmitters, receivers, channels and timeslots used may be determined by a
network control algorithm e.g. built for a LP-WPAN NaaS.

To reduce uncertainty introduced by the latency between end nodes and
the LP-WPAN controller, the latter is assumed at the edge. As part of
that controller, scheduling algorithms should avoid internal and external in-
terference. Given the context of this work, network topology volatility, no
scheduler in literature considers the complete topology and deploys mini-
mum rescheduling of maximum performance gains, rescheduling problem. A
performance manager and rescheduling driver, is required. This work pro-
poses an edge-service to analyze and optimize scheduled networks, divided
into three main contributions.

• A transformation of the scheduled network into interference graphs,

2

• A rating method to evaluate the performance of the scheduled network
based on interference graph analysis,

• A recommender to indicate which connection is the most problematic
also based on interference graph analysis.

While this work applies to the IEEE802.15.4-TSCH communication proto-
col, it can be easily extended to any scheduled network, mutatis mutandis.
In order to evaluate the accuracy of both the assessment and rescheduling
methods, experiments are made in a real-world LP-WPAN deployment.

In section 2, background and work related to the TSCH communication
protocol is explained. The architecture of the different components pre-
sented in this work is detailed in the following section. Then, definitions
are provided to describe a scheduled network and introduce the concept of
interference graph. In section 5, our proposed approach presents an analysis
of interference graphs to evaluate and pinpoint problematic connection in a
scheduled network. A traffic aware scheduler is also presented. In section
6, experiments are run to confirm the validity of the rating method, and
the rescheduling method is tested on the previously described traffic aware
schedule. The paper concludes with a proposal for future work on this topic.

2. Background and related work

One of the main challenges in upscaled IoT is to provide reliable com-
munication at the lowest possible energy cost. To this end, a wireless sensor
networks (WSN) is preferred as it provides more flexibility and security than
using the internet [2]. WSNs are already used in various application domain
such as factory automation [3], distributed and process control [4, 5], smart
grid [6] or in the healthcare domain [7, 8, 9, 10]. In the past few years,
different technologies have attempted to address the reliability, energy effi-
ciency, scalability and flexibility of WSNs. This includes new communication
standard such as bluetooth [11], ZigBee [12], and the IEEE802.15.4 standard
presented in the next paragraph. At the same time, new protocols are intro-
duced by the Internet Engineering Task Force (IETF) such as 6LoWPAN[13],
providing IPv6 for low-power wireless personal area networks.

2.1. The IEEE802.15.4-TSCH protocol

The IEEE802.15.4-2016 standard is designed for low-power, low-cost and
low-rate network deployments. First published in 2006 [1], the standard

3

introduces the CSMA-CA algorithm, a communication protocol vulnerable to
interference and multi-path fading [14, 15]. The unlimited delay possibilities
of CSMA-CA makes it too unreliable for industrial deployment. The 2012
amendment introduces a new mode, Time Slotted Channel Hopping (TSCH),
that has been proven to avoid interferences and more energy-efficient [16, 17].

TSCH enables time-slotted access to the communication layers of the
device, and also allows to communicate with up to 16 different channels
available at 2.4MHz. For each connection in the network, the time of the
transmission has to be specified (timeslot), as well as the channel offset. The
different devices of the scheduled network are kept synchronized through the
emission of small packets, called enhanced beacons (EBs). The multichannel
communication paradigm mitigates interference and congestion in the WSN
[18]. The TSCH standard also introduces a channel hopping mechanism.
When transmitting, the frequency f to be used for this connection is chosen
as follows.

f = (ASN + channeloffset) mod C

where ASN is the absolute slot number, that is the number of timeslots
elapsed since the start of the network, and C is the total number of channels
available. If communication occurs every x timeslots, x being prime with C,
it is ensured that all available channels are used. Thanks to channel hopping,
the scheduled network is less impacted by external perturbations [19, 20].

2.2. The scheduling problem

The schedule can be computed centrally, or in a distributed way [21].
TSCH minimal is the minimal TSCH schedule provided by the IETF [22].
It consists of a single shared cell used to both send and receive any type
of packet. TASA, the Traffic Aware Scheduling Algorithm is a centralized
scheduler based on edge coloring technique [23], reputated to be interference
free, but limited when it comes to scalability. A decentralized version of
TASA, DeTAS provides more scalability than TASA [24]. Orchestra is a
decentralized algorithm implemented in contiki [25] providing high reliability
in various test environments.

For all connections in a scheduled network, timeslot and channel offsets
have to be specified. To avoid redundancy of information, they are specified
for a certain amount of timeslots, composing a slotframe, sometimes referred
to as superframe, which is repeated over time. During a timeslot, typically
10ms-15ms, a device can either transmit or listen over a certain channel offset,

4

Figure 1: Example of slotframe containing a case of interference.

or remain idle. When transmitting an unicast packet, an acknowledgement
is expected to be received. If absence of an acknowledgement, the device
will attempt to retransmit at the next available possible timeslot. After the
maximum number of retransmission is reached, the packet is dropped and
considered as lost. In the following, a communication occurring at a certain
timeslot and channel offset will be referred as connection.

The slotframe is potentially different for every devices. As an example,
if at timeslot i and channel offset j device d1 communicates with d2, the cell
(i, j) of the slotframe of d1 will have to be a transmitting cell, and the cell (i, j)
of device d2 will have to be a listening cell. In this work, we assume an edge
service to have full knowledge of the network. Therefore, we will consider
only the slotframe of the scheduled network - cell (i, j) of the slotframe
of the network will be d1 → d2. The slotframe of the scheduled network is
regarded as a matrix of T timeslots and C channel offsets. Filling this matrix
with appropriate connections is called scheduling the TSCH network. The
scheduling process is explained in [26]. Scheduling a TSCH network without
interference is an NP-hard problem [27]. An example of a network slotframe
is given by figure 1. In this example, a case of interference is present on
cell (i, k). Two communications are occurring at the same time and channel,
and assuming all devices are in interference range, they will interfere. There
is also a case of interference at timeslot i, since dc can not transmit to two
different devices at the same time.

Using a different scheduler will affect the network in terms of latency, scal-

5

Figure 2: Schematic overview of the architecture of the proposed edge service.

ability, energy consumption and reliability. While most of these scheduling
algorithms address these issues independently, there is not yet a scheduling
algorithm able to handle all of them together, for any network. Most of the
time, rescheduling is required to fine-tune the performance of the network
according to the requirements of the use-case.

3. Architecture overview

Figure 2 summarizes the different components of the edge service pro-
posed in this study, and how they interact. The scheduled LP-WPAN is
first transformed into interference graphs (1), which rely on a key parameter
p, the disconnection probability. p can be computed in different ways, e.g.
machine learning. In this study, p will be evaluated through the analysis of
experimental network-data. The second step is to analyze the interference
graph (2), which leads to two outputs:

(3a): An evaluation of the scheduled network,

(3b): a recommender that indicates which connection to reschedule.

Evaluating a scheduled network can be used to predict and prevent failure
in the scheduled network. It can also be used to compare two different
schedules for the same network, and determining which one is best suited for
the topology. The rescheduling recommender informs the scheduler of which

6

connection is the most problematic in the network. This information is used
to directly change the schedule of the network and increases its reliability at
runtime.

Deploying such an edge service in a real world deployment can be done in
different ways. In our experimental setup, p is predicted based on the traffic
pattern of the network, and does not require any interaction with the cloud,
or the network. We perform step (1), (2) and the scheduling/re-scheduling
process in the cloud. Schedules computed outside the LW-PAN network can
be exchanged with the nodes with CoAP services such as plexi [28]. In our
deployment, step (1) has to be performed outside the network because the
devices used (JN5168) do not have enough RAM memory to analyze the
entire network. However, depending on the capacity of the devices used, the
different blocks presented in figure 2 can be ported to the device.

Using only standard graph analysis techniques, interference graph analy-
sis is not computationally expensive. However, having one node per connec-
tion in the interference graph, step (1) and (2) may be expensive in terms of
memory usage, if a lot of connections are scheduled. Therefore, we recom-
mend to perform these tasks on non-constrained devices to address scalability
issues.

4. Network model

This section provides the definitions and models needed to solve the
rescheduling challenge of TSCH networks. First, a model of the TSCH sched-
uled network is given, followed by the definition of the interference graph,
a representation of the TSCH scheduled network used in the presented ap-
proach. A table presenting the different acronyms and symbols used in this
publication is given table 1.

4.1. TSCH scheduled network

A TSCH scheduled network is defined as a network of wireless devices
using the TSCH communication protocol. We assume that the devices of
this scheduled network are scheduled on 1 slotframe. If several sloframes are
defined, it is always possible to find one slotframe, based on a combination of
slotframes that will lead to the same behavior. Since slotframes are repeated
over time, analyzing the behavior of the network during the entire duration
of the slotframe is the same as analyzing the network at any time, assuming
the environment does not change.

7

Table 1: Symbols and acronyms used

S, SF Slotframe
C Available channels for S
T Available timeslots for S

ci,j, cell Cell of a slotframe
G Connectivity graph model
F Interference graph model
d Device model in G

e = (d1, d2) Connection between 2 devices in G
l = (e1, e2) Link between 2 connections in F

p(l) Disconnection probability (weight of l)
ρ(X) Weighted density of a graph X
deg(x) Node degree of a node x
PRR Packet Reception Ratio

A TSCH scheduled network is composed of two main information ele-
ments, topological and temporal, and knowing both gives a full under-
standing of the scheduled network. The spatial information concerns the
connectivity of the network, and informs us about all connections between
the devices and the channel on which they occur. It also includes inter-
fering devices, since the interference range may be greater than the direct
connectivity range. Connections occur during a timeslot, hence the spatial
information may change over time. The temporal information is there to
keep track of these network changes in time.

Let us consider a TSCH scheduled network consisting of n devices com-
municating according to a slotframe S, with T timeslots and C channels. To
represent the network we will use an approach similar to [23]. In this doc-
ument, the TSCH network is represented as an directed graph G = (V,E)
where V = {d0, d1, ...dn−1} are the devices and E ⊂ V × V the connections
of the network. As an example, a unicast connection from device da to db
will be noted as e = (da, db). Similarly, a broadcast connection initiated by
device da will be a set of connections noted {(da, dk), ∀k ∈ DN(da)} where
DN(d) represents the set of devices that are in direct range of d. It is not
always the case that direct range and interference range coincide.

This connectivity graph does not take into account the temporal informa-
tion given by the slotframe. Therefore we introduce the slotted connectivity

8

Figure 3: Construction method of the slotted connectivity graph.

graph Gi of a timeslot i. In the slotframe S of our scheduled network, each
cell ci,j at timeslot i and channel offset j will indicate connections occurring
at this timeslot. If no connections are occuring, c will be the empty set ∅.
Thus, we can define the slotted connectivity graph of a scheduled net-
work G = (V,E) with a slotframe S = {ci,j, ∀(i, j) ∈ T × C} at a timeslot i
as

Gi = (V,Ei) with Ei = {e ∈ ci,j, ∀j ∈ C} (1)

Figure 3 represents the construction method of the slotted connectivity
graph. For a given slotframe S, all connections occuring at timeslot i are
taken into account to build Gi. Following the definition of the slotted con-
nectivity graph, the complete connectivity graph is defined as follows.

G∗ = (V,E) with E = {e ∈ Ei, ∀i ∈ T} (2)

Similarly as G, G∗ is a directed graph that does not take into account
the temporal information given by the slotframe. However, G∗ can be a
multigraph, since the same connection may be present on multiple timeslots
of the slotframe. Considering a set of devices d ∈ V scheduled with the
slotframe S, the information about the direct range of the devices is enough
to construct Gi for all i and thus G∗. However, in order to study the impact of
internal interference in a scheduled network and assess accurate deployments,
we need to take into account devices in interference range. The following
section describes a model based on G that takes into account interfering
devices information.

9

4.2. Interference Graph

The interference graph is a representation of the scheduled network taking
into consideration the possible interference and causes for packet loss, which
can occur internally. First introduced in [29], its definition is refined in
this work. Within a slotframe S, two connections will be considered as
conflicting iff, on the same timeslot, a device has two different connections
scheduled. The TSCH communication protocol will prioritize one of the
connections, leading to a potential packet loss for the other one. Interference
occurs when two different pairs of devices communicate on the same timeslot
and channel. In this case, packets may be lost due to interference on the
receiving side, assuming there is no clear channel assessment mechanism in
place. In the remainder of this article, both conflicts and interference will be
referred to as interference.

In the same way as the slotted and complete connectivity graphs were
defined, we define a slotted, and a complete interference graph. Nodes of
these graphs are connections occurring in the TSCH scheduled network, and
these nodes are linked if the corresponding connections interfere. The slotted
interference graph at timeslot i corresponding to a slotted connectivity graph
Gi can be first defined as follows:

Fi = (Ei, Li) with Li = {(e1, e2) ∈ E2
i and (e1, e2) ∈ L}

Fi is a directed graph that illustrates the behavior of the network at timeslot
i in terms of internal interference. However, not all interfering connections
have the same impact on the performance of the network. As an exam-
ple, if two unicast connections are interfering but have no traffic assigned,
the impact on the performance of the scheduled network would be zero.
Therefore, links of the interference graph are weighted with a weight factor
p : L −→ [0, 1] determining the impact of this interference on the global per-
formance of the network, called disconnection probability. For simplicity, we
do not consider interfering connections that have no impact on the behavior
of the network. If p(l) = 0, the link l is removed from the interference graph.
Note that for (e1, e2) and (e2, e1) in L we may have p((e1, e2)) �= p((e2, e1)).
The complete definition of the slotted interference graph at timeslot i
has to include p.

Fi = (Ei, Li, p) (3)

10

Figure 4: Construction method of the interference graph assuming all channels are differ-
ent.

Figure 4 represents an example of transformation from the slotted connec-
tivity graph Gi to the slotted interference graph Fi. Assuming all channels
are different, the slotted connectivity graph Gi presents a conflict since de-
vice d3 cannot handle two transmitting operations at the same time. Thus,
connection d3, d2 and d3, d4 are linked with different disconnection proba-
bilities p. Similarly, device d2 can not listen to two connections at the same
time, therefore linking the nodes (d1, d2) and (d3, d2).

The complete interference graph is defined in the same way as the
complete connectivity graph. All connections are represented with a node in
the graph, and all interfering connections are linked with a directed link of
weight p.

F ∗ = (E,L, p) (4)

where L =
⋃

i∈T Li. As for the complete connectivity graph, the complete
interference graph may be a multigraph, since the same interference can occur
several times in the slotframe.

5. Proposed approach

In this section, we first present a method to analyze the previously defined
interference graph. This provides a rating method allowing us to evaluate
the performance of a scheduled network. Then, this rating method is used
to define a rescheduling technique applied on a traffic aware schedule.

11

5.1. Rating method

Our rating method aims to evaluate schedules in given topologies based
on internal interference. Fortunately, the weighted links of the interference
graphs precisely represent interference we want to detect. The weight p of
these links also indicates the impact of the interference on the performance
of the scheduled network. Consequently, we will rate schedules according to
the weighted density of the interference graph. The density of a graph is the
result of the number of links divided by the number of possible links. For a
weighted graph such as F ∗ = (E,L, p), we will take the density according to
its definition in [30].

We define the density ρ of the complete interference graph or the slotted
interference graph at timeslot i as follows:

∀i ∈ T , ρ(Fi) =

∑
l∈Li

p(l)

|Ei|(|Ei| − 1)
(5)

ρ(F ∗) =

∑
l∈L p(l)

|E|(|E| − 1)
(6)

ρ will be considered as our rating metric for schedules. An interference-
free schedule will present no links in its interference graphs, and thus will
obtain a density equal to 0. Since F ∗ may be a multigraph, its density
is unbounded. The density, and thus the rating method, depends on the
parameter p that can be described as the probability that the interference
impacts the proper behavior of the scheduled network. Defining the function
p as accurately as possible is required to rate different schedulers between
each other and in different topologies. Furthermore, performing an analysis
of the interference graph knowing beforehand the value of p, will allow to
predict the performance of the schedule in a given topology. In this work, we
focus on the evaluation of one scheduler in one topology. Our first approach
to define p is explained in Section 6.1. A more precise definition of p will be
provided in a subsequent paper.

5.2. Traffic-aware scheduler

In this section, we introduce a centralized scheduling algorithm. This
generates a traffic-aware slotframe for the network, which is not interference
free. A rescheduling method to make it interference free is presented in the
next section. While the rescheduling method applies on any scheduler, we
will test it on this particular traffic-aware schedule.

12

Let’s define the number of frames to be sent as the traffic. The first step
is to determine how many cells should be assigned to a connection to comply
with the traffic load of the network. To establish a traffic-aware schedule,
the amount of traffic generated by each node and the routing topology must
be known. We note qa,b the traffic generated per slotframe by da for db and
route(da, db) the route from da to db.

Algorithm 1: Function for traffic aware cell attribution

Function get cells(da,db)
cells← qa,b
for di,dj in all devices do

if (di, dj) in route(da, db) then
cells← cells+ qi,j

end

end
return cells

The function get cells presented in Algorithm 1 computes the minimum
number of cells required for the connection (da, db). One cell is theoretically
enough to transport one frame per slotframe, and keep the queues empty.
However, in a real deployment with external perturbations and interference,
the number of cells must be increased. This function determines how many
cells are required to reach a traffic-aware schedule, but the scheduler allocates
these cells randomly. Therefore, the resulting slotframe is potentially subject
to internal interference. This scheduler accepts request from external services
to reschedule certain connections to empty cells.

5.3. On-the-fly rescheduling method

In this section, we present a rescheduling method that selects a problem-
atic connection. The rescheduling method is based on the analysis of the
slotted interference graph. In a scheduled network with internal interference,
we will note Fi for i ∈ T the slotted interference graphs, and the density of
all slotted interference graphs ρ(Fi) is calculated by equation 5. maxi(ρ(Fi))
defines the most problematic timeslot in terms of internal interference, and
must receive priority.

In the following, we note Fm = (Em, Lm, p) the slotted interference graph
with the highest density. In this interference graph, the conflicting connec-
tions are linked with a weight p. In order to find the most problematic
connection, we compute the weighted outdegree of each node in the graph

13

deg+(e), i.e. the number of edges going out of this node with their respective
weight p. The connection with the highest degree is chosen to be resched-
uled first, and is rescheduled to an unused cell for this device. If there are
several candidates, the connection is chosen randomly. To summarize, the
rescheduling process is split in three main parts:

• Find the most problematic m with maxi(ρ(Fi)),

• Find the most problematic connection with deg+(Em),

• Indicate to the scheduler that this connection needs to be rescheduled.

The algorithm will converge to an interference-free schedule for the topology,
if it exists. Because cells are re-allocated randomly, this process can become
computational-intensive. For example, if a connection can only be scheduled
on 1 specific cell, the probability to pick this cell is 1

T×C where T is the
number of timeslots and C the number of channels in the slotframe. Here we
focus on rescheduling the most problematic connections first. Preliminary
results for a more refined method, based on choosing timeslots, show that for
a distributed scheduler, choosing the timeslot is more efficient with messaging
the neighboring devices [31].

The proposed method uses the interference graphs Fi, hence depends on
p. In some cases where p is constant and the network topology is fixed,
the rescheduling process is almost immediate. However, if the topology is
changing or if p takes a long time to compute, i.e. p based on packet reception
ratio or p estimated with machine learning, the rescheduling process can
become computational intensive.

6. Real-world experiments

To evaluate the rating method and the rescheduling method applied to
the traffic-aware schedule, several experiments have been designed using
a real environment. In a following section, the experimental setup is de-
scribed. Then the rating method is analyzed and finally the performance of
the rescheduling method compared with the random rescheduling method.

6.1. Experimental setup

In order to run the experiment, p has to be defined first. The goal
is to evaluate and reschedule a slotframe in a given topology to reach an

14

Figure 5: Topology of the devices with traffic load.

interference- and conflict-free slotframe. Taking p = 1 assumes that all in-
terfering connections are equally affecting the good behavior of the network.
However, depending on the traffic of these connections, the impact may be
completely different. Therefore, we will take p based on the amount of pack-
ets in queue for both interfering connections. If we consider two interfering
connections ea, eb in L, and the number of packets to be sent for a connection
e as q(e), p is defined as follows:

p((ea, eb)) =
q(ea) + q(eb)

max(e1,e2)∈L(q(e1) + q(e2))
(7)

Then, it satisfies the requirement 0 < p ≤ 1. In this configuration, we also
have p((ea, eb)) = p((eb, ea)). The experimental testbed is composed of 21
Jennic JN5168 devices in a tree topology. Devices use the latest version
of Contiki with TSCH enabled. Figure 5 represents the topology on which
the devices are tested. In today’s IoT deployments, most low-power personal
area networks (LW PAN) applications rely on a PAN coordinator to interface
with devices outside the network. In our configuration, device 224.246 is the
PAN coordinator, and all devices are transmitting packets towards it. All
devices generate q packet per slotframes and forward all incoming traffic to
their parent 224.246. Also, all devices are deployed in the same room and
thus, are in interference range of each other.

The function presented in Algorithm 1 returns the theoretical minimum
number of cells to be attributed per link. As we are in a real deployment,
we allocate three times more cells than the number indicated. To simplify,

15

we divide the slotframe size by 3. Thus, q = 0.3 packets per slotframe.
With timeslots of 15ms, the final slotframe size is 200 timeslots, and each
node generates a packet every 9sec. In this way, the traffic load of each
connection (see figure 5) corresponds to the number of cells to be attributed.
All connections related to data are made on dedicated cells. The TSCH
network is synchronized through EBs, additional messages that may occupy
the queues and create interference. In order to focus the study on the data
traffic only, EBs have a separate slotframe and channel. This way, results do
not include data generated by EBs. The slotframe reserved for data is using
the 15 other channels provided by the 802.15.4 communication protocol.

In the following sections, experiments are run to confirm the validity
of both rating and rescheduling methods. In these experiments, the same
topology and the same connections will be used but with different schedules.
The gathered data does not vary after 1.5 hours, therefore experiments last
between 1.7 to 2 hours. In all experiments, the number of retransmissions is
set to 0, meaning that each packet has only one chance to be transmitted.
If the transmission fails due to interference or external perturbations, the
packet is dropped. This allows us to directly see the impact of perturbations
in the network.

6.2. Rating method verification

Analyzing the density of the complete interference graph provides feed-
back on the amount of interference present in the network. For this feedback
to be visualized, we generated four slotframes with different numbers of in-
terfering connections.

The first slotframe, SF1, contains no interference: it is an interference-
free slotframe. For this topology, a random generated slotframe has a 16%
chance of being interference-free. Experiments are run to analyze the behav-
ior of the network. Metrics such as the packet reception ratio per link and
the number of packet lost are displayed on figure 6. Since our experimental
setup does not allow retransmissions, the packet reception ratio (PRR) per
connection is not equal to 1, but tends to stabilize between 90% and 99%
for all connections except one. It appears from figure 6c and 6b that device
198.249 exits and re-joins the network frequently. The network is subject
to external interference, or perturbations in the hardware itself that causes
transmission to fail. This explains why the perfect slotframe does not ob-
tain a 100% PRR. However, the SF1 is very effective as its end-to-end PRR

16

(a) Packets lost for SF1 as a per-
centage of the total number of
packet emitted by the network.

(b) Packet reception ratio per
connection for SF1.

(c) Packets lost per connection
for SF1 as a percentage of the
number of packet sent through
this connection.

Figure 6: Results of the performance analysis of SF1.

reaches 93.7%. Since the slotframe is interference-free, the densities of its
interference graphs are 0.

The next tested slotframes are SF2, SF3 and SF4. SF2 presents one
conflict for the device 8.224. SF3 and SF4 present both 2 problems: SF3
shows a conflict and a case of interference, and SF4 presents two conflicts.
The probability of this occurring is approximatively 27%. When generating
random schedule, this is the second most common situation. Generating
a slotframe with 1 interference occurs with a probability of approx. 31%.
For SF2 we obtain ρ(F ∗) = 0.00097 and PRR = 0.87. We have for SF3
ρ(F ∗) = 0.00184 and for SF4 ρ(F ∗) = 0.00203. The difference between the
impact of the interference detected by ρ is correctly observed when looking at
the end-to-end PRR. For SF3, PRR = 92.5% and for SF4, PRR = 89.8%.
However, both SF3 and SF4 obtain a higher PRR than SF1 while having a
higher density. This imprecision is due to the fact that p does not take into
account if the conflicting connections are two receiving cells, two transmitting
cells or a mix of both. Due to the implementation of TSCH, the case of two
conflicting receiving cells present in SF2 is often subject to more packet loss
than the other cases.

The measure of ρ seems to be correlated with the end-to-end PRR, three
more slotframes were tested to confirm this hypothesis. SF5, SF6 and SF7
are unrealistic slotframes generated for the purpose of the experiment, as
they contain 136, 190 and 861 cases of interference respectively. For SF5,
we obtain ρ(F ∗) = 0.0789 and an end-to-end PRR of 32.5%. For SF6,

17

(a) End-to-end packet reception
ratio for all tested slotframes.

(b) Total number of packets lost
for all tested slotframes.

(c) Relation between ρ and PRR
for all tested slotframes.

Figure 7: Performance of all slotframes in relation with ρ, taken to 10−5 precision.

ρ(F ∗) = 0.1180 and PRR = 29.8%, and for SF7, ρ(F ∗) = 0.5528 and
PRR = 1.02%.

Figure 7 indicates for all experiments, the end-to-end PRR, total packets
lost and the relation between ρ and the PRR. Between all experiments, a
correlation between ρ(F ∗) and the amount of packets lost seems to appear.
Similarly, a high value of ρ corresponds to a low end to end PRR and thus,
a poor global network performance. This relation is visible in figure 7c.

6.3. Rescheduling method verification

In order to visualize the performance of rescheduling, we will consider
a scheduler, initializing the TSCH network with a traffic-aware schedule as
presented in Section 5.2. The traffic-aware schedule positions cells in the
worst possible way, with connections scheduled on timelot 0 and channel 0.
However, this scheduler accepts recommendations from an external service
to reschedule specific connections. As all connections interfere, all connec-
tions need to be rescheduled. We run two sets of experiments. In the first
set, the connection to reschedule is chosen randomly among all interfering
connections. In the second set, the connection to reschedule is chosen with
interference graph analysis, as explained in Section 5.3. In the following,
we refer to the first set as random rescheduling or rescheduling without in-
terference graph analysis. The second set is referred to rescheduling with
interference graph analysis. In both sets, the connection is rescheduled ran-
domly to an available cell.

Figure 8 represents the performance of random rescheduling in the net-
work, each figure representing 40 iterations. The colors are distributed ac-

18

(a) End-to-end packet reception ratio of each
iteration.

(b) Number of packets lost for all iterations in
percentage of the total number of packet sent.

Figure 8: Results of the first 40 iterations of the random rescheduling method.

cording to the matplotlib jet colormap [32]. Initial iterations are represented
in dark blue, and latest iterations are in dark red. In the first iterations of
random rescheduling, the packet reception ratio is close to 0, and more than
half of all packets are lost. Most connections are indeed interfering since all
connections are initially scheduled on timeslot 0 and channel 0. After 40 iter-
ations, the number of packets lost drops to 17%. However, even if almost all
connections are rescheduled, the packet reception ratio does not exceed 60%.
Connections that are not rescheduled are critical connections in the network
(8.224 − 224.249 and 247.249 − 224.249), and therefore are responsible for
important packet loss. While most of the experiments produce a stable end-
to-end PRR and packet loss, some measures appear to be irregular. This is
due to the fact that real-life experimentation are subject to unpredictable
hardware failure or external perturbations.

Results of rescheduling using the interference graph analysis are repre-
sented by figure 9. Colors are also distributed similarly as the previous set of
experiment. The first experiment is represented in blue, and presents signif-
icant interference: more than 50% of all packets are lost, and the end-to-end
PRR does not exceed 10-15%. However, after several iterations, the PRR
and amount of packets lost are significantly increased. The rescheduling
method focuses on first rescheduling the most critical connections accord-
ing to the interference graph. In this set, the most problematic timeslot is

19

(a) End-to-end packet reception ratio of the net-
work for each iteration.

(b) Percentage of packets lost of the global net-
work for each iteration.

Figure 9: Results of the first 40 iterations of the rescheduling method based on interference
graph analysis.

always timeslot 0 since all connections are scheduled on this timeslot ini-
tially. The interference graph analysis determines which connection has to
be rescheduled based on the weighted out degree evaluation. With p based
on the queues, connections close to PAN coordinator are chosen first, leading
to a significant PRR and packet loss improvement after most of them are
rescheduled.

Both methods are compared and represented in figure 10. Figure 10a
represents the difference of improvement of the two methods for every iter-
ation. We can see that rescheduling using the interference graph analysis
improves the evaluation of the global network (density of the complete inter-
ference graph) faster than random rescheduling. Figure 10b represents the
evolution of the PRR with the evaluation ρ(F ∗) of the schedule. Initially,
both methods present a similar improvement. However, after 30 iterations,
or when ρ(F ∗) < 10−2, the rescheduling method with interference graph anal-
ysis presents a better performance than the random rescheduling method.

6.4. Discussion

The first set of experiments compares random-generated slotframes. The
density ρ applied on the complete interference graph F ∗ provides different
values for these slotframes, as they present a different amount of internal

20

(a) Improvement of the rating metric ρ over 40
iterations.

(b) Packet reception ratio as function of the
measure ρ for both experiment sets.

Figure 10: Side-by-side comparison the random rescheduling method (black) and the
rescheduling method with interference graph analysis (red).

conflicts and interference. From the experiments, the packet reception ratio
and the amount of packets lost appears related to the density calculated.
In the second set of experiment, a slotframe fully conflicting is rescheduled.
The density and the slotted interference graphs are used in order to deter-
mine which connections have to be rescheduled first. Compared with ran-
dom rescheduling, the use of interference graphs improves significantly the
rescheduling process.

In both sets of experiments, the performance of the network is measured
with the PRR. In this regard, the density of the interference graph model
provides a good prediction of the performance of the global network. How-
ever, in both sets of experiments, unpredicted failures occurred, resulting in
an oscillating PRR that can be seen in some iterations of figure 8a or 9a.
This creates small differences between the predicted performance and the
actual performance of the global network. This difference is due to the fact
that the chosen disconnection probability p is calculated based on the esti-
mated traffic of each connection. It does not predict hardware failures, nor
external perturbations, which can greatly impact the network since there are
no retransmissions allowed in our setup.

21

7. Conclusion and future work

With an industrial IoT landscape growing exponentially, network volatil-
ity in scheduled networks and reliability in terms of interference need to be
addressed. This work proposes an innovative edge service to address this
challenge based on interference graph analyses, a method to pinpoint which
connection requires to be rescheduled. Evaluating the weighted density of
the complete interference graph allows to rate the scheduled network in terms
of internal interference. The approach is validated with experimental results,
showing that the density of the interference graph is accurately representing
the amount of internal interference in the scheduled network. The accuracy
of the rating method can be further improved with the disconnection proba-
bility, p. The rescheduling recommender experiments demonstrate that the
new rescheduling method is superior to random rescheduling. It is also an
improvement for the global performance of the network.

Potential for further improvement can be proposed. In the experiments,
p is based on the queue size of both interfering connections and does not take
into account which type of interference is occurring, or if cells are shared or
dedicated. A better definition of p will therefore improve both evaluation
and rescheduling methods. Since this service runs on the edge of the net-
work, there are no resource constraints for the computation of p. Knowing
preemptively p for a specific environment, and thus ρ, would allow to predict
the performance of a schedule in this environment.

Different environments will have different impact on the performance of
the scheduled network. In this work, experiments were run in the same
room, with the same devices and with the same network topology. More
experiments have to be conducted to refine the definition of p, and validate
the evaluation method in any topology.

The edge service proposed in this study improves the performance and
reduces the energy footprint of the scheduled network. Interference is re-
sponsible for retransmissions, an avoidable energy cost.

Acknowledgment

This research has been funded by the European Unions Horizon 2020
project INTER-IOT (grant number 687283), and was carried out at the Eind-
hoven University of Technology in the Netherlands.

22

[1] IEEE Standard for Low-Rate Wireless Networks, IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (2016) 1–
709doi:10.1109/IEEESTD.2016.7460875.

[2] C. Alcaraz, P. Najera, J. Lopez, R. Roman, Wireless sensor networks
and the internet of things: Do we need a complete integration?, in:
1st International Workshop on the Security of the Internet of Things
(SecIoT10), 2010.

[3] A. Willig, Recent and emerging topics in wireless industrial communi-
cations: A selection, IEEE Transactions on industrial informatics 4 (2)
(2008) 102–124.

[4] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, S. S. Sastry, Distributed
control applications within sensor networks, Proceedings of the IEEE
91 (8) (2003) 1235–1246.

[5] V. C. Gungor, G. P. Hancke, Industrial wireless sensor networks: Chal-
lenges, design principles, and technical approaches, IEEE Transactions
on industrial electronics 56 (10) (2009) 4258–4265.

[6] V. C. Gungor, B. Lu, G. P. Hancke, Opportunities and challenges of
wireless sensor networks in smart grid, IEEE transactions on industrial
electronics 57 (10) (2010) 3557–3564.

[7] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannan-
tonio, M. Sgroi, R. Jafari, G. Fortino, From modeling to implementation
of virtual sensors in body sensor networks, IEEE Sensors Journal 12 (3)
(2012) 583–593.

[8] A. Milenkovi, C. Otto, E. Jovanov, Wireless Sensor Networks for Per-
sonal Health Monitoring: Issues and an Implementation, Comput. Com-
mun. 29 (13-14) (2006) 2521–2533. doi:10.1016/j.comcom.2006.02.011.
URL http://dx.doi.org/10.1016/j.comcom.2006.02.011

[9] G. Fortino, M. Pathan, G. Di Fatta, Bodycloud: Integration of cloud
computing and body sensor networks, in: Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Conference on,
IEEE, 2012, pp. 851–856.

23

[10] R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor fu-
sion in body sensor networks: State-of-the-art and research challenges,
Information Fusion 35 (2017) 68–80.

[11] S. Bluetooth, Bluetooth core specification version 4.0, Specification of
the Bluetooth System.

[12] Z. Alliance, Ieee 802.15. 4, zigbee standard (2009).

[13] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, R. Alexander, Rpl: Ipv6 routing
protocol for low-power and lossy networks, RFC 6550, RFC Editor,
http://www.rfc-editor.org/rfc/rfc6550.txt (March 2012).
URL http://www.rfc-editor.org/rfc/rfc6550.txt

[14] J. T. Adams, An introduction to IEEE STD 802.15.4,
in: 2006 IEEE Aerospace Conference, 2006, pp. 8 pp.–.
doi:10.1109/AERO.2006.1655947.

[15] D. D. Guglielmo, G. Anastasi, A. Seghetti, From IEEE 802.15.4 to
IEEE 802.15.4e: A Step Towards the Internet of Things, in: S. Gaglio,
G. L. Re (Eds.), Advances onto the Internet of Things, no. 260 in
Advances in Intelligent Systems and Computing, Springer International
Publishing, 2014, pp. 135–152, dOI: 10.1007/978-3-319-03992-3\ 10.
URL http://link.springer.com/chapter/10.1007/978-3-319-03992-3 10

[16] T. Watteyne, J. Weiss, L. Doherty, J. Simon, Industrial IEEE802.15.4e
networks: Performance and trade-offs, in: 2015 IEEE Interna-
tional Conference on Communications (ICC), 2015, pp. 604–609.
doi:10.1109/ICC.2015.7248388.

[17] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, K. S. J.
Pister, A Realistic Energy Consumption Model for TSCH Networks,
ResearchGate 14 (2) (2014) 482–489. doi:10.1109/JSEN.2013.2285411.

[18] R. Soua, P. Minet, Multichannel Assignment Protocols in Wireless
Sensor Networks, Pervasive Mob. Comput. 16 (PA) (2015) 2–21.
doi:10.1016/j.pmcj.2014.04.004.
URL http://dx.doi.org/10.1016/j.pmcj.2014.04.004

24

[19] T. Watteyne, S. Lanzisera, A. Mehta, K. S. J. Pister, Mitigating Mul-
tipath Fading through Channel Hopping in Wireless Sensor Networks,
in: 2010 IEEE International Conference on Communications, 2010, pp.
1–5. doi:10.1109/ICC.2010.5502548.

[20] T. Watteyne, A. Mehta, K. Pister, Reliability Through Frequency Di-
versity: Why Channel Hopping Makes Sense, in: Proceedings of the 6th
ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sen-
sor, and Ubiquitous Networks, PE-WASUN ’09, ACM, New York, NY,
USA, 2009, pp. 116–123. doi:10.1145/1641876.1641898.
URL http://doi.acm.org/10.1145/1641876.1641898

[21] G. Smart, N. Deligiannis, R. Surace, V. Loscri, G. Fortino, Y. An-
dreopoulos, Decentralized time-synchronized channel swapping for ad
hoc wireless networks, IEEE Transactions on Vehicular Technology
65 (10) (2016) 8538–8553.

[22] X. Vilajosana, K. Pister, T. Watteyne, Minimal 6TiSCH Configuration,
Internet-Draft draft-ietf-6tisch-minimal-19, Internet Engineering Task
Force, work in Progress (Jan. 2017).
URL https://tools.ietf.org/html/draft-ietf-6tisch-minimal-19

[23] M. Palattella, N. Accettura, L. Grieco, G. Boggia, M. Dohler, T. En-
gel, On Optimal Scheduling in Duty-Cycled Industrial IoT Applications
Using IEEE802.15.4e TSCH, IEEE Sensors Journal 13 (10) (2013) 3655–
3666. doi:10.1109/JSEN.2013.2266417.

[24] N. Accettura, E. Vogli, M. Palattella, L. Grieco, G. Boggia, M. Dohler,
Decentralized Traffic Aware Scheduling in 6tisch networks: design and
experimental evaluation, IEEE Internet of Things Journal PP (99)
(2015) 1–1. doi:10.1109/JIOT.2015.2476915.

[25] S. Duquennoy, B. Al Nahas, O. Landsiedel, T. Watteyne, Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH, in:
Proceedings of the 13th ACM Conference on Embedded Networked Sen-
sor Systems, SenSys ’15, ACM, New York, NY, USA, 2015, pp. 337–350.
doi:10.1145/2809695.2809714.
URL http://doi.acm.org/10.1145/2809695.2809714

[26] Q. W. a. X. Vilajosana, 6top Protocol (6p) (Oct. 2016).
URL https://tools.ietf.org/html/draft-ietf-6tisch-6top-protocol-03

25

[27] R.-H. Hwang, C.-C. Wang, W.-B. Wang, A Distributed Scheduling
Algorithm for IEEE 802.15.4e Wireless Sensor Networks, Computer
Standards & Interfaces 52 (2017) 63–70. doi:10.1016/j.csi.2017.01.003.
URL http://www.sciencedirect.com/science/article/pii/S0920548917300193

[28] G. Exarchakos, I. Oztelcan, D. Sarakiotis, A. Liotta, plexi: Adaptive
re-scheduling web service of time synchronized low-power wireless net-
works, Journal of Network and Computer Applications.

[29] T. v. d. Lee, A. Liotta, G. Exarchakos, TSCH schedules assessment, in:
2017 IEEE 14th International Conference on Networking, Sensing and
Control (ICNSC), 2017, pp. 696–701. doi:10.1109/ICNSC.2017.8000175.

[30] G. Liu, L. Wong, H. N. Chua, Complex discovery from weighted ppi
networks, Bioinformatics 25 (15) (2009) 1891–1897.

[31] T. v. d. Lee, G. Exarchakos, A. Liotta, Distributed TSCH schedul-
ing: A comparative analysis, in: 2017 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 2017, pp. 3517–3522.
doi:10.1109/SMC.2017.8123176.

[32] Matplotlib colormap description, https://matplotlib.org/users/colormaps.html,
accessed: 2017-12-25.

26

