
Information Fusion 33 (2017) 41–56 

Contents lists available at ScienceDirect 

Information Fusion 

journal homepage: www.elsevier.com/locate/inffus 

Spatial anomaly detection in sensor networks using neighborhood 

information 

Hedde HWJ Bosman 

a , b , ∗, Giovanni Iacca 

a , Arturo Tejada 

c , Heinrich J. Wörtche 

a , 
Antonio Liotta 

b 

a INCAS 3 , Dr. Nassaulaan 9, 9401HJ, Assen, The Netherlands 
b Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands 
c TNO, Integrated Vehicle Safety Department, 5700 AT Helmond, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 29 February 2016 

Revised 24 April 2016 

Accepted 25 April 2016 

Available online 26 April 2016 

Keywords: 

Anomaly detection 

Sensor fusion 

Sensor networks 

Collaborative WSN 

a b s t r a c t 

The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capabil- 

ity, has now matured after a decade-long research effort and technological advances in electronics and 

networked systems. An important remaining challenge now is to extract meaningful information from 

the ever-increasing amount of sensor data collected by WSNs. In particular, there is strong interest in 

algorithms capable of automatic detection of patterns, events or other out-of-the order, anomalous sys- 

tem behavior. Data anomalies may indicate states of the system that require further analysis or prompt 

actions. Traditionally, anomaly detection techniques are executed in a central processing facility, which 

requires the collection of all measurement data at a central location, an obvious limitation for WSNs 

due to the high data communication costs involved. In this paper we explore the extent by which one 

may depart from this classical centralized paradigm, looking at decentralized anomaly detection based 

on unsupervised machine learning. Our aim is to detect anomalies at the sensor nodes, as opposed to 

centrally, to reduce energy and spectrum consumption. We study the information gain coming from ag- 

gregate neighborhood data, in comparison to performing simple, in-node anomaly detection. We eval- 

uate the effects of neighborhood size and spatio-temporal correlation on the performance of our new 

neighborhood-based approach using a range of real-world network deployments and datasets. We find 

the conditions that make neighborhood data fusion advantageous, identifying also the cases in which this 

approach does not lead to detectable improvements. Improvements are linked to the diffusive properties 

of data (spatio-temporal correlations) but also to the type of sensors, anomalies and network topological 

features. Overall, when a dataset stems from a similar mixture of diffusive processes precision tends to 

benefit, particularly in terms of recall. Our work paves the way towards understanding how distributed 

data fusion methods may help managing the complexity of wireless sensor networks, for instance in 

massive Internet of Things scenarios. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

In the last decade, the vision of an internet of things (IoT) has

apidly become reality. Recent advances in technology, together

ith ever-decaying prices of electronic components, have made

etworked embedded systems ubiquitous in our life. These devices

re in most cases endowed with sensing, actuating and networking

apabilities and are often connected to the Internet. Noteworthy
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pplications of these systems can be found, for instance, in home

utomation, automated transportation, or large scale environmen-

al data collection [1] . 

While at present white goods, smart cities and buildings are be-

ng equipped with IoT technology [2] , one of the earliest IoT related

ystems were (and are) wireless sensor networks (WSNs), with

ypical applications in environmental monitoring [3] and tracking

f mobile agents [4] . Such applications usually require numerous

ensor nodes to be deployed in remote locations. To make such

ystems affordable, costs are saved by reducing the quality of the

ensors and the hardware resources available on each node (such
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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as battery and computing elements), while the overall measure-

ment quality of the networked system is often ensured by a high

level of redundancy in measurements. For this reason, the past

decade of WSN research focused mostly on optimizing resource us-

age [5–7] . 

With this body of research maturing, and the sensor technology

advancing, the attention of the field is now shifting towards appli-

cations [8–11] . However, these harbor some hard theoretical prob-

lems related to the envisioned scale of the network deployments,

such as the analysis of large amounts of data, stemming from, e.g.,

sensor networks deployed in large outdoor areas or from the many

networked appliances in a smart home. The collected data is often

analyzed in order to find specific information at a given point in

time that is meaningful for the application to act upon. For exam-

ple, seismic data could be analyzed for patterns that denote seis-

mic activity [12] , body sensor data can be analyzed to provide early

health warnings [13] , or vibration data could be mined for events

that potentially point to a failing machine [14] . Often, such pat-

terns or events are out of the ordinary or anomalous. 

Anomaly detection can be defined as the detection of events,

behaviors or patterns that are unexpected relative to a concept of

what is normal [15] . A typical example is the detection of fraud

in, e.g., credit card transactions or the detection of identity falsi-

fication [16] . One can also think of climate events, such as heat

waves and droughts. What defines climate events as anomalous

depends on multiple variables, such as location, and the proper

context (drought in the Sahara desert, for instance, is not anoma-

lous) [17] . Anomaly detection approaches are also used to detect

intrusions in information systems, ever more relevant in present-

day cloud computing [18] . 

Anomaly detection approaches is popular in applications with

large central storage and processing facilities, such as those em-

ployed to process big data [19] . However, their application to

lightweight systems, such as WSNs, is still limited due to the se-

vere resource limitations posed by these systems. Limited memory

and the high communication costs, for example, preclude the sce-

nario where all WSN nodes send all information to a central fa-

cility for storage and processing [20] . To address these problems,

one must either adapt to the aforementioned limitations the ap-

proaches available in the literature (which however are devised,

in general, for general-purpose computers), or develop new solu-

tions. Moreover, due to the lack of contextual information that is

often not present at design time, such methods need self-adaptive

mechanisms or dynamic model fitting approaches, such as machine

learning techniques, to allow them to operate on data of different,

unpredictable environmental conditions. Such learned models can

be bootstrapped with the little information available during design

time, or be learned completely unsupervised during deployment. 

The decentralized nature of WSN results in measurements

taken in different points in space, over time. Due to the decreasing

cost of the hardware, more nodes can be deployed which results

in higher quality data through redundancy. However, the measure-

ments can contain anomalies that occur with respect to local sen-

sors, to neighborhood information or to global information. Using

anomaly detection techniques a node can, for instance, generate

an initial estimate of the reliability of measurements through ag-

gregation of local spatial neighborhood information, thus reducing

the amount of data sent to a central processing facility and allow-

ing the generation of a local and timely response to anomalies.

The central processing facility could then use all the aggregated

data to provide a second detection or estimation stage to improve

anomaly detection accuracy, using its abundant storage and com-

puting power resources. 

In this paper, we address the following question: Can the local

detection of anomalies be improved (in terms of precision or re-

call) by combining data from groups of spatially co-located sensor
odes? To answer this question, we devise a novel anomaly detec-

ion system based on a decentralized unsupervised online learning

cheme, which incorporates local neighborhood information. We

xtensively evaluate this approach over a broad range of real-world

etwork deployments and datasets from different domains. Then,

n order to show the effect of the neighborhood information on

he anomaly detection, we compare the performance of the frame-

ork with and without the use of neighborhood information. 

The remainder of this paper is structured as follows: The next

ection provides a short summary of the literature related to our

ork. Section 3 presents our new anomaly detection approach and

escribes our experimental setup, while Section 4 shows and dis-

usses our experimental results. Finally, Section 5 provides our

onclusions. 

. Related work 

Anomaly detection is often used in applications such as fraud

etection [16] , network intrusion detection [21] , data centers [22] ,

r airline safety [23] . Historical (or, a priori ) data is used to con-

truct a model of the normal behavior of the process (or system)

nder consideration, and newly arriving data is tested for fitting

ith the model. Patterns or behaviors that do not fit are then clas-

ified as anomalous, as fraudulent, as faulty, or simply as events

hat require further human analysis. 

Within the research related to networked embedded devices

such as WSNs), one can often see a similar approach: Data is col-

ected at a central point, where it is analyzed to find the anomalies.

his allows, for instance, the use of multiple classifiers in an en-

emble, each of which can excel in different aspects of the complex

ynamics of the system under monitoring [24] . Furthermore, it al-

ows complex transforms of multivariate time-series [25] or hu-

an reinforcement as additional detection method in, e.g., a large

ceanic dataset [26] . 

However, central techniques have several drawbacks. The no-

able ones in the context of WSN systems have mainly to do with

heir resource usage. The wireless communication scheme also has

nherent drawbacks, such as packet loss, while many detection

echniques often assume reliable periodic data and, thus, have to

eal with delayed packets due to retransmissions [27] . Further-

ore, models learned from previously acquired data may not be

uitable at any given time, and thus may require frequent model

pdates. Depending on the detection method used, these updates

ay be intrinsic and lightweight, or may require the reprocessing

f all the acquired data [28] . 

To overcome some of these drawbacks, hybrid approaches cre-

te and update models offline that are suitable for online use in

imited-resource environments. Such approaches offload the learn-

ng to a more powerful node and, thus, allow more complicated

odels to be learned. For example, time series are often modeled

sing an autoregressive moving average (ARMA) model [29] . Al-

hough, the model parameters could be estimated online, offline

arameter estimation ensures that the model represents normal

ata, and leaves valuable computing cycles to run additional de-

ection and classification techniques on the nodes. More complex

odels can only be trained offline due to resource limitations. For

nstance, echo state networks, a form of recurrent neural networks,

an model complex time series with historical data offline. The

esulting neural network can be used in WSN nodes to classify

nomalies [30] . One can also think of another type of hybrid ap-

roach, where resource-limited nodes only provide basic anomaly

etection methods to provide early warnings, while more complex

etection methods are executed at a base station. This approach is

pplied, for example, in electronic health care, where WSN nodes

rovide early warnings based on sliding window features (such as

hresholds of the mean), while a base station performs complex
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rocessing of multiple sensor nodes, such as pattern recognition

31] . While such hybrid cases allow for a more timely response to

nomalies, the need for frequent model updates, their distribution

ver the network and, thus, the drawback of communicating data

till exists. 

The wireless spectrum of a WSN is often used to collect data

rom the monitored process at a central location. In order to re-

uce communication overheads, many investigations suggest merg-

ng (fusing) data on route from a leaf node to the central node

e.g., [32–34] ). For instance, in the context of anomaly detection

he authors of [35] propose the use of a distributed, cluster-based

nomaly detection algorithm, which locally clusters data at leaf

odes using fixed-width (fixed radius) clusters. The clusters are

hen merged when they are communicated towards the sink node,

hich has then sufficient/enough information to determine which

ata clusters are anomalous. This method, however, requires the

ata to be normalized, and will detect anomalies only globally, at

he sink. 

To eliminate the need for central processing/controlling entirely,

 model of what is “normal” should be generated within the WSN

tself. How “normal” data should look like varies depending on

he context of the data under analysis and on the experience and

ubjectivity of the person analyzing it. Generally, normal data is a

omain specific concept that requires expert consensus to be de-

ned. It can be defined at least at two levels: normal data in the

lobal context and normal data in the local (neighborhood con-

ext). The following subsections review both levels of anomaly de-

ection techniques tailored to WSN, where the first section reviews

lobal consensus approaches, and the second subsection reviews

ethods for a local consensus. We then conclude this review with

 brief survey of online learning and detection methods recently

roposed in the context of WSNs, which is particularly relevant to

ur proposed method. 

.1. Consensus problems 

Consensus problems are “situations in which all members of

ome network are required to achieve some common output value

sing only local interactions and without access to a global coor-

inator” [36] . In terms of detecting anomalies, this entails a global

onsensus of what is “normal”, such that all measurements out-

ide of this definition are regarded as “anomalous” ones. A simple

xample is the task to determine the global mean and standard

eviation across the WSN, with which nodes can then locally de-

ermine the anomalousness of a measurement with respect to this

lobal consensus. However, to converge to a single global consen-

us, one has to account for the unreliability and limited bandwidth

f wireless communications [37] . 

Consensus techniques can be used in combination with Kalman

lters to improve the estimates of global measures [36] . Although

he formal models of sensors are assumed to be known glob-

lly, and multiple communication iterations are needed to achieve

 consensus usable in the Kalman filter, even if not all network

embers provide true readings (either due to sensor faults or in-

entional anomalous behavior) a consensus can still be reached,

iven that less than 50% of the nodes are malicious [38] . The au-

hors prove that, if in any iteration of the consensus update neigh-

oring node values are weighted and the extreme values are ex-

luded from consideration, the network can still reach consensus.

owever, such techniques are not readily applicable to WSNs, due

o their excessive communication and computational requirements,

n addition to constrains on the possible network topologies. 

Extra communication can be used to iteratively build a shared

istory of measurement data taken by all the nodes, from which a

lobal density function (in the data space) can be estimated. With

his, density-based anomaly detection can be performed [39] . By
sing only the messages from a local neighborhood, this approach

an be adapted to perform semi-global anomaly detection. Instead

f a shared history, WSN nodes can also share support vectors

o train a global consensus for a support vector machine (SVM)

hich can then be used to categorize data in normal and anoma-

ous classes [40] . 

In general, energy requirements to reach consensus are large

ue to their iterative approach. However, the energy usage can

e somewhat optimized by choosing the appropriate transmission

ower for a specific network topology [41] . 

.2. Local context 

Methods for anomaly detection in a local context are the con-

eptual opposite to the afore-described centralized methods, which

ely on globally shared models. In data mining, the notion of local-

ty is often given as distance between data values (given a specific

istance metric such as Euclidean distance). A data point is com-

ared to the value of its nearest neighbors in terms of data dis-

ance [42] . However, the notion of locality can also be given in a

eographical distance between the sources of the data. Many sim-

lar values (i.e., data with small distance among each other) result

n a higher density, called clusters, while values that are less sim-

lar result in a lower density. Anomalies can fall outside of any

luster but, when frequently occurring, can form a cluster too. De-

ermining if a datum is normal or anomalous compared to local

eighborhood data is a challenge. 

A prime example of such techniques is that of the local outlier

actor (LOF) [43] . This approach compares the density around a lo-

al data point with the density around its k nearest neighbors. For

ach data point, a minimal radius around its values is determined

uch that at least k nearest neighbors are included. The ratio be-

ween the local radius and the average neighborhood radii then

etermines the outlier factor of a data point. 

The notion of locality can, of course, also be that of geographi-

al space. The spatial local outlier measure (SLOM) [44] , is concep-

ually similar to LOF, but in this case the nearest neighbors are de-

ermined in geographical space. The local data is then contrasted

o the trimmed mean of the neighboring data, and corrected for

he ‘stability’ of the neighborhood, a parameter similar to variance.

hese and other statistical properties of local neighborhoods are

escribed in [45] , where a generalized statistical approach to ob-

ain local statistics for further analysis (such as outlier detection)

s presented. 

Schubert et al. survey the above and other related and derived

ethods [42] . The authors unified the different approaches in a

eneralized framework, where the notion of locality can be inter-

hanged between data space and geographical space. They note,

owever, that “making spatial outlier detection truly local remains

s a possible improvement for a broad range of existing meth-

ds.” Moreover, most methods target geographic information sys-

em (GIS) databases with stationary data, not time-series with

volving WSN data. 

Applying these techniques to WSN is not trivial, due to the rel-

tively high computation and the high communication cost, as sur-

eyed in [46] . Indeed, only few of these spatial anomaly detec-

ion techniques have been applied to WSN. For instance, there are

OF-based approaches that, together with a hierarchical network

tructure, have been used to detect anomalous data [47,48] . An-

ther, simplified variation of LOF is presented in [49] , where the

uthors use the median of the data, rather than an average value,

rguing that, if one wants to determine the center of a sample,

he median operator is more robust to extreme (outlying) values

han the mean operator. In this approach, the detected outliers are

sed to localize an event boundary. One common drawback of all

hese LOF-based methods is, however, that in order to acquire the
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k -nearest neighbors one needs multiple processing iterations over

the data of the network, or a more efficient hash-based aggrega-

tion technique. In both cases, these algorithms might risk exhaust-

ing the limited resources of the network very quickly. 

Other approaches that target WSN use individual statistical

models per neighboring node, to evaluate if the difference between

the local and neighboring node is within normal range. A statistical

model (e.g., mean and variance) can be learned online and applied

using statistical tests [50] . 

2.3. Online learning and detection 

As the above sections show, anomaly detection is receiving

increasing attention in WSNs. Most approaches, however, are

density-based, requiring all, or at least a sample, of historical data

to be kept in memory. But, there are few anomaly detection ap-

proaches that actually learn models online, unsupervised, embed-

ded in WSNs. One of those is the earlier referenced work [50] , for

example, where spatial correlation models are learned using mean

and standard deviation statistics of differences between neighbor

measurements online. 

Most online learning is applied in the organization of the net-

work, in particular in routing protocols. This includes techniques

such as reinforcement learning [51] , Q-learning and swarm-based

methods [52] . To the best of our knowledge, few (complex) online

learning methods exist that target the classification of sensed data.

An example of that is an ellipsoidal SVM approach, that fits an el-

lipsoid to data normalized using the median of a sliding window

[53] . 

Other examples can be found in our earlier studies, where we

introduced a number of embedded algorithms for online learning

of linear and non-linear models, individually [54,55] , or in an en-

semble [56,57] . In this paper we build upon our previous work,

demonstrating, to the best of our knowledge, for the first time

how neighborhood context information can be used in an auto-

matic anomaly detection system to improve its detection capabili-

ties in terms of precision and recall. 

3. Methodology 

To evaluate how neighborhood information fusion could im-

prove the detection performance of our online anomaly detection

approach, we first have to provide a context in which this ap-

proach can be applied. As mentioned earlier, our work specifically

targets anomaly detection on networked embedded devices such

as those used in WSNs. In such applications, the network is com-

monly made of a reasonably large number of nodes (tens to hun-

dreds) with limited resources in terms of computation, memory

and energy, but with several transducers to sense their environ-

ment. Within this context, in the following we assume that: 

• Nodes are deployed within communication range, i.e., each

node can wirelessly communicate with at least 1 neighbor. 
• Nodes communications can be overheard by neighboring nodes.

This can be achieved, for instance, by using Collection Tree Pro-

tocol (CTP), gossip, or other network protocols. 
• Every node measures the same modalities. Although sensors

do not have to be of the same make and model, their output

should have the same units (such as temperature in Celsius, hu-

midity in RH, or light in Lux). 

◦ Communication is reliable, that is, if a node is within com-

munication range, it can always communicate. 

◦ The node positions are static. 

Furthermore, we make few assumptions on the process or en-

vironment that the WSN will monitor: 
• The nodes are monitoring a similar mixture of dynamic pro-

cesses [58] . This mixture of processes is diffusive, i.e., overall

the process behavior is correlated over space/time [59] . For ex-

ample, thermodynamic processes are diffusive over space/time. 
• Diffusion takes place within a measurement period. 
• The process (and its diffusive properties) may change over time.
• Anomalies may occur in the process and/or in the sensor sys-

tem and show a disturbance of the correlation in time or space.

◦ The measurement period is smaller than the shortest time-

constant of the dynamic process, such that the measure-

ment is relevant (i.e. correlated) in this period. 

◦ The occurrence of anomalies is asynchronous (unrelated in

time/space). 

The above assumptions, the most straightforward ones indi-

ated with the open bullets, may also be relaxed. The reliable com-

unication, for instance, may be relaxed if the measured process

ynamics are much slower than the measurement period, or when

here are enough nodes in the neighborhood for aggregation. The

atter also is required when nodes are mobile, to ensure a stable

ggregate value. Furthermore, if the measurement period is larger

han the dynamic process speed, the measurements may still con-

ribute if the correlation is high. However, both assume that the

iffusion process takes place relatively fast. If not, an additional

online) analysis can be adapted to determine the delay between

ositions, which can then be accounted for by buffering historic

easurements [60] . Also, anomalies could occur synchronously

nd may be detected, if the number of anomalous nodes is the mi-

ority. However, to focus the investigation on the effect of neigh-

orhood information, we do not relax these assumptions. 

These assumptions allow us to propose that prediction-based

nomaly detection methods can be improved with the use of

ynamically aggregated neighboring information. This informa-

ion stems from periodic updates that are sent out by neighbor-

ng nodes. The updates can be stored in neighboring nodes and,

hrough the use of an aggregation operator, can provide extra in-

ut features that are robust to the dynamic nature of the network.

n the following sections we outline our approach, and how we

valuate this proposition using a WSN simulator with topologies

nd sensor data traces from real-world applications. 

.1. Neighborhood aggregation 

In common monitoring applications, where all measurements

re forwarded to a sink node, every node periodically communi-

ates their latest measurement. To aggregate neighborhood infor-

ation, therefore, a node in the neighborhood can overhear these

essages and store them locally. This push-based approach is fur-

her motivated by the claim that push messages seem more effi-

ient (that is, have lower overhead) than pull messages [61] . How-

ver, in order to reduce data communications, an application de-

igner can choose to broadcast messages only in the neighborhood,

r with a longer period as long as the period for a modality is

maller than the shortest period in the dynamic process for a given

odality. The aggregated data is then summarized through the use

f an aggregation operator such as the average (or mean), the stan-

ard deviation, the median, the minimum or the maximum. While

he number of neighbors may vary due to, for example, network

onditions or anomalies in the data, an aggregation operator re-

uces these effects to a single, more stable measurement. 

The measurement and anomaly detection protocol is as follows:

1. Each node measures d sensors/modalities, each with their own

period p d . 

2. Each measurement is appended with a score of anomalousness

based on previous local and neighborhood information. 



H.H. Bosman et al. / Information Fusion 33 (2017) 41–56 45 

 

 

 

 

 

 

 

a  

f  

n  

n  

f  

n  

a  

c  

(  

t  

c  

t  

m  

a  

w  

d  

s  

a  

p  

n

3

 

t  

s  

c  

t  

s  

t  

q  

i  

p  

d  

n  

s  

W  

i  

a  

a

 

h  

c  

t  

m  

fi  

a  

n  

c  

g  

d

 

l  

r

1  

l  

0  

c

r

S  

m  

l  

a  

d  

o  

c  

a  

t

 

n  

a  

o  

i  

a  

a  

j  

m  

s  

i  

s  

e  

(  

h  

n  

i  

t  

c  

w  

i  

t  

t  

o  

d  

i

 

t  

b  

o  

s  

T  

c  

c  

s  

i  

s  

s  

s  

s  

b

 

s  

c  

n  

w  

i  

n  

a  
3. Each modality can be sent separately (different packets for dif-

ferent sensors/modalities, because measurement periods may

differ). 

4. Each node buffers recent neighbor measurement messages per

modality, with the above assumption that recent measurements

are still relevant. 

5. One or more aggregation operators are applied to the buffer

(known anomalous measurements are excluded). 

6. The aggregates are included as prediction inputs for anomaly

detection. 

Since, by assumption, communication is reliable and the nodes

re static, then every node has at least one recent measurement

rom any of its neighbors, and the number of neighbors of a given

ode does not vary. This allows us to focus on the contribution that

eighborhood information may have on the anomaly detection per-

ormance. In our experiments, the term recent is defined as being

ot older than one measurement period p d . Due to aforementioned

ssumptions on the time constant of the monitored dynamic pro-

ess, measurements within this recent period are assumed relevant

i.e., correlated). This is also guaranteed by the assumption that

he diffusion process should be relatively fast, resulting in spatially

orrelated data. However, if the diffusion is slower, one may have

o account for delays. For example, future work could investigate

ethods to automatically determine this delay in correlation, or

dopt a weighted aggregation approach over a larger time period,

ith a weight that expresses relevance to account for correlation

elays, established correlation differences or the age of the mea-

urement. On the other hand, if the process and diffusion dynamics

llow it, the definition of ‘recent’ can be relaxed to include multi-

le measurement periods to, for example, account for less reliable

etworks. 

.2. Neighborhood characterization 

In order to evaluate the influence of the neighborhood informa-

ion aggregate on the anomaly detection performance, two aspects

hould be considered. The first is the amount of information that

an be extracted from a neighborhood. This can be estimated by

he (cross) correlation between the neighborhood, the local sen-

ors, and the aggregated neighborhood information. An alternative

o correlation is a measure of spatial entropy, explained in the se-

uel. Establishing the amount of correlation also allows us to val-

date the aforementioned assumptions on the process. For exam-

le, measurements at different locations from a similar mixture of

iffusive processes should be correlated because the physical phe-

omena of one location diffuse to another. The second aspect is the

ize of the neighborhood, which correlates to the network density.

hile one can argue that more neighboring information can result

n more reliable statistics, it is reasonable to assume that neighbors

t the edge of that neighborhood may measure a different (part of

) physical process that does not correlate. 

Both aspects affect the correlation of the aggregated neighbor-

ood information. That is, how well the aggregated information

orrelates may depend on the size of the neighborhood, and on

he aggregation operator chosen. Furthermore, the latter may prove

ore or less robust to variations in neighborhood size. Thus, we

rst investigate the correlation of the neighborhood and of the

ggregation operators applied to that neighborhood for varying

eighborhood sizes. Then an aggregation operator is chosen that

orrelates best across those sizes. Finally, using the chosen aggre-

ation operator, the influence of neighborhood size on the anomaly

etection performance is investigated. 

We use the Pearson correlation coefficient as a measure of the

inear correlation between two variables a and b [62] . Its value

anges from –1 to 1, where 1 is a perfect positive correlation, –
 is a perfect negative correlation, and 0 means no correlation. A

ow correlation would be | r | < 0.25, a high correlation means | r | >

.75. For a given sample of size n for both a and b , the correlation

oefficient r can be expressed as: 

 = corr (a , b ) = 

∑ n 
i =1 (a i − ā )(b i − b̄ ) √ ∑ s 

i =1 (a i − ā ) 2 
√ ∑ s 

i =1 (b i − b̄ ) 2 

ince negative correlation is also correlation that contributes to the

odel, we take the absolute correlation | r |. In the sequel, corre-

ations between local sensors and neighborhood information are

veraged over each node in a deployment scenario to account for

ifferences in node neighborhoods, which depends on the topol-

gy in the scenario. In order to account for bias in averaging of

orrelations, Fisher’s Z-transform, z = Z(r) = arctanh (r) , should be

pplied before averaging, and the inverse transform, r = Z −1 (z) =
anh (z) , on the result [63] . 

The correlation coefficients are averaged over all nodes in a sce-

ario and stored in a matrix, which can be graphically depicted as

 heat map (i.e., a correlation map). In the following, the creating

f this matrix is explained. We refer to the neighborhood of node

 as N ( i ). Sensor modalities are referred to with subscript indexes s

nd m . Then, measurement time-series data of node i for sensor m

re referred to as x i m 

. For the buffered neighborhood data of node

 ∈ N ( i ) the data are referred to as x 
i, j 
m 

. The set of neighborhood

easurement time-series for sensor s is { x i, j 
s : j ∈ N(i ) } , for brevity

ometimes referred to as X i s , and we can aggregate those per time-

nstance using an operator OP, such as the mean, resulting in a

ingle time-series. The correlation coefficients r are calculated for

ach pair a and b of measurement time-series from local sensors

in a given node i , e.g., corr (x i 
0 
, x i 

1 
) ), local sensors and neighbor-

ood aggregates (e.g. corr (x i 
0 
, OP ({ x i, j 

m 

: j ∈ N(i ) } )) where i is the

ode under investigation), local sensors and sensors of neighbor-

ng nodes (e.g. corr (x i 
0 
, x 

i, j 
0 

) where i is the node under investiga-

ion and j ∈ N ( i ) a neighbor), pairs of neighborhood nodes (e.g.,

orr (x 
i, j 
0 

, x i,k 
0 

) where j, k ∈ N ( i ) are two neighbors of i ). Similarly,

e compare neighborhood aggregate time-series to the neighbor-

ng node measurements and neighborhood aggregate time-series

o other neighborhood aggregate time-series of different operator

ypes (e.g., mean and median) in order to explore how well the

perator correlates with (summarizes) the neighborhood and if it

iffers from other operators. These are then averaged for all nodes

n a given scenario using Fisher’s Z-transform. 

This process is summarized in Algorithm 1 , where the keys of

he map M are strings and, as such, they are indicated with dou-

le quotes (“ ”) to distinguish them from numerical values. More-

ver, because the correlation coefficient between a and b is the

ame as the correlation between b and a , the matrix is symmetric.

he diagonal of this matrix should be one, as the correlation coeffi-

ient of a signal with itself is one. However, in our matrix, we also

ompare the correlation among the neighbors of a node, which re-

ults in a less than one correlation because we are not compar-

ng a neighboring signal with itself, but with another neighbor’s

ignal of the same sensor. Using the correlation map, we can see

tronger correlations having a darker color, which allows us to vi-

ually examine the relevance of neighborhood aggregates to local

ensor values, and compare them to the raw correlation per neigh-

or. 

The correlation coefficients between local sensors of a node

hows how well they correlate and, thus, how much information

an be obtained locally. This can be compared to how well the

eighboring sensors correlate, which gives an indication of how

ell aggregated neighborhood information should correlate. Most

mportant, the average correlation between pairs of neighboring

odes can be compared to the correlation between a local sensor

nd the neighborhood aggregate, to form an indication of the ag-
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Algorithm 1 Correlation map creation 

1: correlation map M ← 0 

2: for each node i in scenario do 

3: for each local sensor pair m, s of node i do 

4: M[“x m 

” , “x s ”] += Z(| corr (x i m 

, x i s ) | ) 
5: l ← number of neighbors in N(i ) 

6: for each sensor pair m, s do 

7: for each aggregate operator OP a do 

8: X i m 

← { x i, j 
m 

: j ∈ N(i ) } 
9: X i s ← { x i, j 

s : j ∈ N(i ) } 
10: M[“x m 

” , “OP a (X s ) ”] += Z(| corr (x i m 

, OP a (X i m 

)) | ) 
11: for each aggregate operator OP b : OP b � = OP a do 

12: M[“OP a (X m 

) ” , “OP b (X s ) ”] 

13: += Z(| corr ( OP a (X i m 

) , OP b (X i s )) | ) 
14: for each neighbor j ∈ N(i ) do 

15: M[“OP a (X m 

) ”, “x s ”] 

16: += Z(| corr ( OP a (X i m 

) , x i, j 
s ) | ) /l 

17: for each neighbor j ∈ N(i ) do 

18: M[“x m 

” , “X s ”]+= Z(| corr (x i m 

, x 
i, j 
s ) | ) /l 

19: p ← number of neighbor pairs in N(i ) 

20: for each pair of neighbors j, k in N(i ) do 

21: for each sensor m of node j do 

22: for each sensor s of node k do 

23: M[“X m 

” , “X s ”] += Z(| corr (x 
i, j 
m 

, x i,k s ) | ) /p 

24: M = Z −1 (M/ ( number of nodes in scenario )) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure of a multi-dimensional time-series classifier. The difference be- 

tween a prediction, based on inputs x 1 , . . . , x d , and the current measurement in 

time-series x 0 is classified. 

T  

t  

fl  

d  

r  

o  

i  

w  

c  

n  

o  

s

3

 

c  

n  

s  

i  

c  

k  

p  

t  

a  

s

 

m  

E  

(  

a  

c  

p  

v  

o  

g  

n  

d

 

c  

a  

t  

l  

(  

t  

i  

S  

t  

l

gregation operator’s capability to represent the neighborhood in-

formation. In a later experiment, then, we test the intuition that

more correlated information contributes more to the anomaly de-

tection performance. 

As an alternative to correlation, we use the spatial entropy [64] ,

a measure of complexity of spatial systems defined as: 

H = −
∑ 

i 

p(e i )�e i log (p(e i )�e i ) . 

This value gives an entropy figure based on the probability p ( e i ) of

an event in an area �e i . The probability in this case is the chance

of an anomaly occurring at a specific node i , and is estimated us-

ing labeled events from our data sets. The exact area that a node

senses, however, is unknown. But, we do know the node positions.

With those, a Delaunay triangulation and a Dirichlet tessellation

(or, Voronoi diagram) can be constructed to create an estimated

area (around the node positions) that a node can sense [65] . To

calculate �e i , then, we can then take either 1/3 of the total area of

the three Delaunay triangles emanating from a node position e i , or

the cell size from the Dirichlet tessellation, as seen in Fig. 3 c. The

resulting values represent the information that can be gained from

neighborhood information, where lower spatial entropy values im-

ply more gain. Both the spatial entropy and the cross correlation

measures can give us an indication of the validity of the assump-

tion that the process or environment consists of a diffusive mixture

of dynamic processes, resulting in correlated behavior over space

and time. 

The influence of the size of the neighborhood depends on either

the radio communication range, or the density of the deployment.

In order to simulate a change on these, either the radio range or

the positions of nodes can be changed. Since the latter are known

for the real-world datasets used in this study, but the exact radio

parameters are not, we opt to change the communication range

by changing the parameters of the radio model in the simulator.

The radio propagation model is a Log-distance path loss model,

which predicts the path loss over distance to have a logarithmic

decay, with optional Gaussian noise to simulate interference [66] .
he static parameters of the model are the unit distance D 0 = 1 . 0 ,

he path loss at this reference distance P L D 0 = 55 . 4 , and the noise

oor is –106.0 dB. Since we assume reliable communications, we

o not add a noise component to the radio model. The main pa-

ameter is the path-loss exponent (PLE), which dictates the decay

f signal strength over distance. That is, higher values of PLE result

n higher path loss and thus a smaller radio communication range,

hereas low values result in less path loss and a larger communi-

ation range. Therefore, we vary the PLE, effectively changing the

umber of neighbors in the neighborhood, and measure the result

n the change in anomaly detection performance, compared to the

ame classifiers without neighboring information. 

.3. Embedded online anomaly detection 

In a limited resource and limited precision environment, we

an use incremental learning techniques to learn (or fit) linear and

onlinear relationships between measurements from different sen-

ors or historical measurements. Incremental (or sequential) learn-

ng techniques allow a model to be updated when new data be-

omes available, and do not require a large historic dataset to be

ept in memory. Thus, the main resource usage results from com-

utations and the models. The predictions of these models are

hen compared to the measured value, and the difference is an-

lyzed to detect anomalies. A graphical flow of this approach is

hown in Fig. 1 . 

In particular, we use recursive least squares (RLS) to learn linear

odels, and the online sequential extreme learning machine (OS-

LM) approach to train a single-layer feed-forward neural network

SLFN) [54–56] . The latter approach randomly sets input weights

nd biases, requiring only the output weights to be learned, which

an be done with RLS. This extreme learning machine (ELM) ap-

roach was demonstrated by Huang et al. [67] , similar to random

ector functional-link neural networks [68] , to perform on par with

ther machine learning methods, such as support vector machines,

iven enough hidden neurons. Furthermore, we also include poly-

omial function approximation (FA) and sliding window mean pre-

iction methods as single time-series predictors [57] . 

The single time-series predictors make use of windows of re-

ent historical measurements. From this window we extract the

verage (mean), but also fit a polynomial function, that models the

rend of the data. Using the fitted function, then, we can extrapo-

ate the trend to predict future measurements. Due to the limited

16 bit fixed-point) precision available we opt for a linear func-

ion fit. The function approximation is done incrementally, allow-

ng for an embedded implementation, using a method called Swift-

eg, that has a complexity and memory footprint in the order of

he buffer length and polynomial degree [69] . The aforementioned

ocal predictions are not influenced by neighborhood information. 
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Fig. 2. Structure of an ensemble of classifiers. The final decision on class is based 

upon the outputs of the different classifiers. 
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Fig. 3. SensorScope Grand St. Bernard network topology. (a) A dense network sim- 

ulation with PLE = 4.0, (b) A sparse, disconnected, network simulation with PLE = 

6.2, (c) The Dirichlet tessellation, Delaunay triangulation, and node area based upon 

the triangulation. Note that even though the network in (b) is disconnected, each 

node can communicate with a neighbor. 
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2 Note that, since we run the anomaly detection methods on WSN motes with 

limited resources, including memory, the algorithms were constrained to handle at 

most three sensors at a time. Therefore, we split the sensors from the GSB data into 

two sets: Those sensors that are temperature related (ambient and surface temper- 
Next to the memory limitations (resulting in small models),

hese methods have to be adapted to a limited precision environ-

ent (resulting in buffer under- and overflows and stability is-

ues). In general, such issues can be identified by analyzing the

ath operations in the algorithm. In particular, for the algorithms

bove, we have identified the following major issues to be ad-

ressed. First, the inputs have to be scaled such that the expected

inimum and maximum values do not (often) run into the bound-

ries of the limited precision and, if they do, should saturate in-

tead of rolling over. Next, the RLS and OS-ELM methods may suf-

er from instability issues due to the limited precision. In earlier

ork, we showed that the methods may be stabilized, among oth-

rs by not rounding math operations, and correcting the inverse

uto-correlation matrix [54,55] . Finally, the FA methods uses vari-

bles that accumulate values and, thus, may run into precision

oundaries. In such case, the model is re-initialized with the previ-

usly buffered values. Note that higher degree polynomials require

 higher number of accumulating variables and run a higher risk

f fixed-precision overflow. Hence, here we will limit our analysis

o first degree polynomials. With these adaptations, the methods

un stable in limited precision environments. 

The RLS and OS-ELM learned models are used to make predic-

ions based on input features. In the methods presented in our pre-

ious work, hereafter called the stand-alone or SA methods, these

eatures were either from only local sensor data, or the fusion of

ocal sensor data with local predictions from other models. The lat-

er (referred to as RLS fusion or OS-ELM fusion) included for each

odality the raw sensor data, the previous measurement, the func-

ion approximation prediction, and the window mean. In previous

ork, this fusion of raw data with other local predictions showed

 clear improvement in the precision of anomaly detection [57] . 

In this work, we replace two of the input features of the stand-

lone methods by neighborhood aggregated measurements. Specif-

cally, by replacing the local input features of previous measure-

ent and of window mean by two neighborhood aggregates in

he classifiers, the change in detection performance can be eval-

ated with the metrics described below. Due to the assumption of

 similar mixture of diffusive processes, we expect that including

hese aggregates the anomaly detection performance will increase

he RLS and OS-ELM fusion classifier performance. Moreover, the

nsembles (that combine multiple classifiers as shown in Fig. 2 )

re also expected to be positively affected. 

.4. Deployment scenarios 

In order to evaluate the benefit of neighborhood information in

he embedded online anomaly detection methods, described above,

everal real-world WSN monitoring scenarios are defined. These

nclude the traces of sensor data and the related network topology.

o make use of the known topologies, we use the radio parame-

ers defined in the last paragraph of Section 3.2 , with varying PLE

o emulate different network densities, the effect of which can be

een in Fig. 3 . The scenarios are then used in the TinyOS TOSSIM

imulator [70] , which emulates a WSN on radio layer and up. 

The topology and datasets are derived from three existing appli-

ations. The first is the SensorScope Grand St. Bernard scenario 1 ,
1 http://lcav.epfl.ch/page- 86035- en.html 

a

a

n the following referred to as GSB, which contains meteorologi-

al data (ambient and surface temperature, humidity, soil moisture,

olar radiation, and watermark) collected for one and a half month

n 2007 at the Grand St. Bernard pass located between Switzer-

and and Italy 2 . The second dataset originates from the Intel Berke-

ey Research Lab 3 , henceforth called Intel Lab, where 54 sensors

easured temperature, humidity, and light in an indoor office set-

ing. Similarly, the third dataset originates from our own testbed

ocated indoor, referred to as Indoor WSN, spanning several offices.

ll 3 datasets have been labeled by a semi-automated method, as

escribed in [57] , where rule-based labeling was checked manu-

lly. During the labeling, we distinguished four types of anomalies,
ture, and relative humidity), and humidity related (relative humidity, soil moisture 

nd watermark). 
3 http://db.csail.mit.edu/labdata/labdata.html 

http://lcav.epfl.ch/page-86035-en.html
http://db.csail.mit.edu/labdata/labdata.html
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Table 1 

The used datasets and their properties. The dimension (dim.) are 

in meters, the percentage of anomalies (%anom) is based on the 

total number of samples (#smp). 

Dataset/topology Dim. #node #smp %anom 

GSB 56 x 28 23 0 .58 M 5 .1% 

Intel Lab 30 x 40 54 2 .3 M 19 .9% 

Indoor WSN 17 x 17 19 0 .8 M 2 .7% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The average cross-correlation and spatial entropy of the 

datasets. The spatial entropy [64] is based on the chance of 

anomalous measurements per area, where the area is based 

on the Delaunay triangulation or Dirichlet tessellation over 

known node positions. 

Dataset Cross-corr. Spatial entropy 

Delaunay Dirichlet 

GSB Humidity 0 .131 0 .159 0 .211 

GSB Temperature 0 .191 0 .255 0 .269 

Intel Lab 0 .615 0 .141 0 .143 

Indoor WSN 0 .261 0 .296 0 .268 
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also indicated in literature (e.g., [71] ): spike (short high intensity

spikes), noise (increased variance over a period of time), constant

(a constant value over time) and drift (an offset over time) anoma-

lies. Table 1 lists these real-world scenarios with dataset and topol-

ogy properties. 

3.5. Evaluation metrics 

In order to evaluate the effect of including neighborhood infor-

mation in the anomaly detection methods, we compare the perfor-

mance of our methods with and without the neighborhood infor-

mation using several metrics. The anomaly detection performance

is measured using a confusion matrix, and measures based there-

upon [72] . The confusion matrix lists a count of True Positives (TP),

False Positives (FP), False Negatives (FN) and True Negatives (TN).

A TP occurs when an anomaly is present in the data and the node

detects this, a FP occurs when there is no anomaly in the data,

but the node concludes there is one. Similarly, a TN indicates that

there was no anomaly in the data and the node indeed concludes

there is no anomaly, while a FN shows the number of times a node

did not detect an anomaly when one was present. 

From these confusion matrix counts, we can further derive the

following metrics: 

• Precision, expressed as TP / ( TP + FP ) , shows the ratio of true

detections over all detections. 
• Recall, expressed as TP / ( TP + FN ) , shows the ratio of existing

anomalies in the data that are detected. 
• F-measure, expressed as (2 × precision × recall ) / ( precision +

recall ) gives a single average measure of performance. 

Depending on the goal of the application, one can opt to focus

on only a subset of these metrics. For instance, when an opera-

tor should not be overloaded with false positive detections (false

alarms), a higher precision is required, such that a detection is

more likely to be a true anomaly. When, for example, an offline

system with abundant resources complements the detection meth-

ods by improving on precision, a higher recall is beneficial, such

that more anomalies are found while false positive detections can

be filtered by the offline system. 

4. Results 

To evaluate the influence of neighborhood information on

anomaly detection performance, we first characterize the neighbor-

hood by analyzing the possible relevance of neighboring informa-

tion using correlation coefficients, by examining which aggregation

operators may be best to reduce the neighborhood to a single rep-

resentative value for local processing and by analyzing the influ-

ence of the neighborhood size. That is, we try to answer the ques-

tion: Will including more neighbors make the anomaly detection

perform better? Finally, we analyze the detection performance for

an optimal neighborhood size, and for a less than optimal size. 

4.1. Neighborhood characterization 

In order to minimize the effect that neighborhood size may

have on our choice of aggregation operator, we analyzed correla-
ion maps from the same dataset with different radio model pa-

ameters. For example, Fig. 4 shows the correlation maps of in-

reasing neighborhood size for the Grand St. Bernard humidity sce-

ario. The effect of the neighborhood size can be seen immedi-

tely, by the overall darker colors of the correlation map of the

enser network, showing a higher correlation. 

The correlation coefficients in the bottom left of these maps in

ig. 4 show that local sensor 2 and 3 are more correlated than sen-

or 1 and 2 or sensor 1 and 3. This pattern repeats in the top right

f the map, showing that the values of sensors 2 and 3 between

eighbors are more correlated than the other sensors in the neigh-

orhood, albeit less than the correlation between the local sensors.

oreover, we can see that the neighborhood aggregates correlate

etter between aggregates of the same sensor than others. Espe-

ially the mean and median are highly correlated, while the stan-

ard deviation has low correlation throughout. The mean and me-

ian also correlate to the minimum and maximum values in the

eighborhood, but to a lesser extent than the correlation between

ean and median. Overall, as neighborhood size increases, the ag-

regate operator correlations increase and the mean and median

eem a reliable choice. 

In Fig. 5 two different scenarios are depicted, namely the In-

el Lab and the Indoor WSN testbed datasets. Both have similar

nvironments (indoor offices), and have the same set of sensors

temperature, humidity and light), but the Intel Lab dataset shows

uch higher correlation throughout. Interestingly, the dataset sim-

larities also show in the correlation patterns. That is, sensors 1

nd 2 (temperature and humidity) have higher correlation between

ach other than the light measurements have with any of them.

owever, there are large differences due to the environment. The

ain finding is that here, too, mean and median of a neighbor-

ood, for a specific sensor type, are highly correlated to the local

ensors. The minimum and maximum show a slightly lower corre-

ation and more variation. This indicates that both mean and me-

ian operators should be a good choice to aggregate neighboring

nformation. 

Lastly, to characterize the datasets, we analyze their aver-

ge cross-correlation and spatial entropy. In Table 2 , the cross-

orrelation value is the average cross-correlation over the whole

ataset. The table shows that the Intel Lab dataset has the highest

ross-correlation and the lowest spatial entropy (with both area

easures). Therefore, we expect the information gain of neigh-

orhood information to be high. While the second highest cross-

orrelation value is from the Indoor WSN, the higher spatial en-

ropy values might indicate that the information gain of spatial

eighborhoods might be less. Both GSB datasets have relatively low

ross-correlation and higher spatial entropy. Therefore, the neigh-

orhood information gain will most likely be little. Overall, we ex-

ect that the Intel Lab dataset will gain the most from neighbor-

ood information. 
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Fig. 4. A denser connected network results in better correlation with neighborhood aggregates. Furthermore, it shows different sensor modalities have different correlations 

with their neighborhood and with other sensors (sensor 2 and 3 are more correlated than sensor 1 and 2). The correlation maps show the average correlation of the Grand 

St. Bernard humidity related sensors, with (a) a sparse network (PLE = 6.2), and (b) a denser network (PLE = 4.0). 

x1

x2

x3

median(X1 )
mean(X1 )

stddev(X1 )
min(X1 )

max(X1 )
median(X2 )

mean(X2 )
stddev(X2 )

min(X2 )
max(X2 )

median(X3 )
mean(X3 )

stddev(X3 )
min(X3 )

max(X3 )
X1

X2

X3

x 1 x 2 x 3
m

ed
ia

n(
X

1
)

m
ea

n(
X

1
)

st
dd

ev
(X

1
)

m
in

(X
1

)
m

ax
(X

1
)

m
ed

ia
n(

X
2

)
m

ea
n(

X
2

)
st

dd
ev

(X
2

)
m

in
(X

2
)

m
ax

(X
2

)
m

ed
ia

n(
X

3
)

m
ea

n(
X

3
)

st
dd

ev
(X

3
)

m
in

(X
3

)
m

ax
(X

3
)

X
1

X
2

X
3

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x1

x2

x3

median(X1 )
mean(X1 )

stddev(X1 )
min(X1 )

max(X1 )
median(X2 )

mean(X2 )
stddev(X2 )

min(X2 )
max(X2 )

median(X3 )
mean(X3 )

stddev(X3 )
min(X3 )

max(X3 )
X1

X2

X3

x 1 x 2 x 3
m

ed
ia

n(
X

1
)

m
ea

n(
X

1
)

st
dd

ev
(X

1
)

m
in

(X
1

)
m

ax
(X

1
)

m
ed

ia
n(

X
2

)
m

ea
n(

X
2

)
st

dd
ev

(X
2

)
m

in
(X

2
)

m
ax

(X
2

)
m

ed
ia

n(
X

3
)

m
ea

n(
X

3
)

st
dd

ev
(X

3
)

m
in

(X
3

)
m

ax
(X

3
)

X
1

X
2

X
3

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 5. With the same set of sensors but different environments the correlation between sensors and their neighborhood aggregates shows similar patterns. However, due 

to environmental differences, the average correlations are lower in the Indoor WSN dataset (b). The correlation maps stem from (a) The Intel dataset (PLE = 4.0) and (b) the 

Indoor WSN dataset (PLE = 4.6). 
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.2. Neighborhood size 

Having established that the mean and median are suitable

hoices for aggregation operators, and that the Intel Lab dataset

ulfills the assumption of a similar mixture of diffusive processes

ore than the other datasets, the influence of neighborhood size

an be analyzed. By changing the PLE the global average number

f neighbors changes in the network, as seen for each dataset in

ig. 6 . Due to the limited memory size available in the WSN nodes,

he number of neighborhood messages stored is 20, which shows

s the maximum number of neighbors in the figure. Thus, the size

an be analyzed on the global network, but also per number of

eighbors that individual nodes have. For the sake of brevity, in

he remainder of this section we show only the results of the RLS-
 t
usion classifier. The results of other affected classifiers result in

qual findings. 

.2.1. Network average number of neighbors 

We first look at the average number of neighbors given a PLE

etting. Fig. 7 shows the change in F-measure for the RLS-fusion

etector, as a result of replacing some input features with neigh-

orhood aggregates, plotted against the average number of neigh-

ors. In Appendix A we show the change in F-measure for given

LE settings, from which this figure is derived. To get a better in-

ight in the trend, polynomials of first to fourth order are regressed

o this data. The highest order polynomial that has significant im-

rovements over lower-order polynomials according to the ANOVA

est with p -value = 0.05 is displayed. 
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Fig. 6. The number of neighbors decreases when the radio range decreases. The 

maximum of 16 is the result of the neighborhood buffer size. The figures show PLE 

vs average number of neighbors for the GSB topology in the case of (a) humidity 

and (b) temperature, which should be equal. For the Intel Lab topology (c) and for 

the Indoor WSN topology (d) the ratios are different. 
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Fig. 7. The optimal number of average neighbors depends on topology and sensor 

modality. The plots show average number of neighbors vs the relative change in 

F-Measure of the RLS-fusion classifier. The datasets are (a) GSB humidity, (b) GSB 

temperature, (c) Intel Lab (note the different y scale), and (d) Indoor WSN. 
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Fig. 8. Precision does not improve except with the Intel Lab dataset. The plots 

show if the precision statistically significantly improved, and thus H0 is rejected. 

The datasets are (a) GSB humidity, (b) GSB temperature, (c) Intel Lab, and (d) In- 

door WSN. 
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Fig. 9. Recall does improve depending on the number of neighbors and dataset 

used. The plots show if the recall statistically significantly improved, and thus H0 

is rejected. The datasets are (a) GSB humidity, (b) GSB temperature, (c) Intel Lab, 

and (d) Indoor WSN. 
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From these figures, we can already see that for all the datasets

the inclusion of neighborhood information does seem to improve

the F-measure performance, albeit to a varying degree. The cases

where the PLE is too large (and thus radio range too small) to

allow any communications mostly result in zero improvement.

Moreover, in most cases there is an optimum average number of

neighbors (and thus an optimum radio range). However, the opti-

mal radio range depends not only on the topology but also on the

dataset. For example, the GSB temperature and humidity datasets

in Figs. 7 a and 7 b share the same topology, but have different op-

tima. On the other hand, the Indoor WSN dataset shows a clear

peak around an average of 4 neighbors, and the optimum of the

Intel Lab dataset lies around an average number of neighbors of

five. The Intel Lab dataset also shows the highest relative improve-
ent in F-measure of over 150%, which can be contributed to the

ataset characteristic of being highly correlated. In the future, the

ramework may benefit from adaptive transmission power control,

uch that an optimal number of neighbors can be chosen for a de-

loyment. 

.2.2. Exact number of neighbors 

The above analysis was made using the average number of

eighbors a network had at a given PLE setting. To better under-

tand the exact influence of the neighborhood size, we now ana-

yze the results of the RLS fusion classifier per number of neigh-

ors, over the whole PLE range (from 1.0 to 10.0). In this case,

e study the effect of replacing certain input features with the

eighborhood aggregates on the precision and recall separately.

oth the results of the stand-alone methods and the methods

ith neighborhood information form two distributions. Using the

olmogorov–Smirnov test [73] , these distributions can be com-

ared and tested if the new recall and precision measurements sta-

istically significantly improve over the stand-alone methods. 

Figs. 8 and 9 show the results of the Kolmogorov–Smirnov test

or precision and recall respectively. Our null-hypothesis, H0, is

hat the anomaly detection performance (in terms of precision or

ecall) when using aggregated neighborhood information is not
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Table 3 

PLE settings for further evaluation, based on Figs. 6 and 7 . 

Dataset PLE opt N() avg PLE less N() avg 

GSB Humidity 4 .0 5 .3 6 .2 2 .5 

GSB Temperature 4 .0 5 .3 6 .2 2 .5 

Intel 3 .4 5 .8 6 .2 2 .7 

Indoor WSN 4 .6 4 .1 6 .2 1 .2 
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Fig. 10. Classifier Agreement, sum(and( a, b ))/sum(or( a, b )), with PLE = 4.0 for the 

(a) GSB humidity, (b) GSB temperature, (c) Intel Lab, and (d) Indoor WSN datasets. 
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etter than the performance obtained by using only local infor-

ation. Our alternative hypothesis, H1, is that the performance of

he methods that include aggregated neighborhood information is

etter than when using only local information. Note that in the

gures, we test also the case that a node has zero neighbors, be-

ause in the new method we did replace two input features, which

ight affect performance. We test the hypothesis for a significance

f α = 0 . 1 (or 10%) and α = 0 . 05 (or 5%). 

Fig. 8 shows that the precision is only significantly better with

he Intel Lab dataset, while all other datasets show no improve-

ent. Recall in Fig. 9 , on the other hand, more often shows a sig-

ificant improvement. In all cases, an improvement is visible with

ust few neighbors. Again the Intel Lab dataset shows a significant

mprovement in all cases. For the classifiers other than the RLS fu-

ion classifier that include neighborhood information, and the en-

embles, a similar pattern shows. That is, the methods show a sig-

ificant increase in recall with the Intel Lab dataset only. The per-

ormance in the Intel Lab dataset can be well explained if we go

ack to Section 4.1 , where we characterized the datasets in terms

f average cross-correlation and in terms of spatial entropy. The In-

el Lab dataset is the only dataset that has a relatively high cross-

orrelation value, and a low entropy. This leads us to conclude that

he assumption (or requirement) of a similar mixture of diffusive

rocesses is valid and, thus, that when neighborhood information

orrelates, the inclusion of aggregate neighborhood information in

he prediction significantly improves the results. 

.3. Detection performance 

With the above information, the detection performance of the

ther individual classifiers and ensembles thereof can be analyzed

n more detail. Again we choose the mean and median neighbor-

ood aggregation to replace the previous measurement and mean

s input features in the fusion classifiers. In a real world deploy-

ent, often one cannot choose a perfect number of neighbors for

ach node. Therefore, we opt to evaluate two different PLE settings

er dataset, to represent an optimal case in a dense network, and

 less-than-optimal case in a sparse network. These choices are

uided by Figs. 6, 7 and 9 and can be seen in Table 3 . 

In Table 4 we show the results of including neighborhood in-

ormation with these settings, as percentage of improvement over

he stand-alone methods. The absolute numbers can be found in

ppendix B and the resulting F-measures in C.1 . Here, too, we see

hat in general recall benefits from neighborhood information, and

recision is similar or slightly reduced. The OS-ELM based classi-

er shows more extreme results due to its random initialization

f input weights and biases, but does also benefit from neighbor-

ood information. The results of the Intel Lab dataset show signif-

cant improvement for all classifiers. That is, statistical analysis in

he line of Section 4.2.2 for these classifiers shows that, for all of

hem, there is a significant improvement in recall, but not neces-

arily in precision. Going back to the dataset characterization, and

pecifically to Table 2 , we can observe that indeed the assumption

f a similar mixture of diffusive processes is key to achieving good

esults. That is, the neighborhood correlation should be relatively

igh. 
Choosing an optimum average neighborhood size also results in

 better recall performance. The exception here is the GSB humid-

ty dataset, which in Fig. 7 a also showed a different trend (showing

 peak around PLE = 6.2) and from Table 4 we see that this mainly

oncerns the recall. While this is most likely due to a difference in

easured processes (where, for this dataset, the sensors relative

umidity, soil moisture and watermark are better correlated with

ewer near neighbors), these results are not significant. 

Noteworthy is also the slight effect that neighborhood informa-

ion has on the ensemble methods. The ensembles consist of mul-

iple classifiers, of which only two (RLS and OS-ELM fusion) in-

lude neighborhood information. The other classifiers are the win-

ow constant, detecting if a constant anomaly occurs, and the

-step-ahead function approximation classifier. From the dataset

nalysis, we know that 65 to 95% of the anomalies in the datasets

s of the ’constant’ anomaly type, and from previous investigations

54,56,57] , we established that a simple rule-based classifier can

etect these anomalies with very high accuracy. Therefore, we hy-

othesize that only few of the extra recalled anomalies are not of

he constant type, and thus the ensembles do not benefit much

ore from the improved recall. 

The agreement between classifiers is measured as the ratio of

quality between two time series of logical values, a and b , divided

y the total number of agreed detections possible between a and

 , i.e., sum ( and ( a, b ))/ sum ( or ( a, b )). The logic values denote the de-

ected or known anomalies in the time series. These ratios can be

enoted in a confusion matrix and displayed similarly to the corre-

ation maps in Section 4.1 . For the sake of brevity, further informa-

ion on classifier agreement is included in C.2 . The resulting matrix

s displayed graphically in Fig. 10 . In this figure, the fusion classi-

ers that include neighborhood aggregate data are indicated with

he postfix ‘.AG’, and those that do not include neighborhood in-

ormation (the stand-alone methods from our previous work [57] )

ith the postfix ‘.SA’. 



52 H.H. Bosman et al. / Information Fusion 33 (2017) 41–56 

Table 4 

The impact of neighborhood information on recall is beneficially large. precision, however, suffers slightly from neighborhood information. Relative change in 

precision and recall, in percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

r  

a  

p  

t  

f  

d  

n  

e  

d

 

w  

R  

fi  

fi  

n  

t

 

i  

p  

c  

a  

t  

t  

t  

c  

t  

s

 

s  

h  

s  

d  

m  

r  

p  

d  

c  

f  

t  

s  

m  

b

A

 

n  

a

Fig. 10 shows that the constant anomaly agrees well with the

original labels and with the window mean anomaly detector. Over-

all, the classifiers that include neighborhood information show

moderate agreement between themselves and moderate to low

agreement to the other classifiers, although a slight increase in

agreement can be seen between the constant classifier and the

RLS-fusion method that includes neighborhood information. The

moderate to low agreement indicates that indeed the effect of

neighborhood information on the median and the Fisher’s method

ensemble should be low, due to the nature of these ensembles.

The median ensemble, however, does show a reasonable increase

in performance in Table 4 . Yet, previous work [57] showed that

such an ensemble has high precision but very low recall, and thus

improvements in recall are large in relative terms. The Intel Lab

dataset here, too, stands out, as the fusion classifiers have lower

agreement with the other classifiers than in the other datasets.

That is, it seems the aggregate neighborhood data results in dif-

ferent anomalies being detected than those anomalies detected by

the methods that use local data, which may explain the higher re-

call, as more different anomalies are detected. This again, shows

that the assumption of a similar mixture of diffusive processes is

important. 

5. Discussion and conclusion 

We have empirically shown that incorporating neighborhood

information improves the anomaly detection, yet this is valid only

in cases where the dataset is well-correlated and shows relatively

low spatial entropy. These assumptions typically occur in the most

common application of sensor networks, that of monitoring natural

environments. In such a context, the above hypothesis is valid and

there is significant detection performance benefit by using neigh-

bor information. While this brings significant advantages in these

cases (because the neighborhood information is correlated), other

cases in which these assumptions do not hold will not benefit

from aggregating neighborhood information (contrary to intuition).

Thus, it is not always valuable to aggregate neighborhood informa-

tion locally and it is often not valuable to aggregate among more

than 5 neighbors since communication cost is high and the infor-

mation gain saturates. 

We explored this hypothesis in several steps. First, we showed

that the above assumptions hold only to varying degree through

the assessment of correlation in real-world data. Nevertheless, we

showed that the mean and median aggregate operators are valid

choices to reduce a dynamic neighborhood to a fixed measure that

can be used in fusion methods. Next, we have evaluated the effect

of neighborhood density (or communication range) on the quality

of the data, by analyzing these effects on the RLS-fusion anomaly

detector in simulation, with real-world datasets and topologies.

This analysis showed that the amount of improvement mainly de-
ends on the correlation within the dataset. This correlation is the

esult of the sensed processes, the type of sensors, the type of

nomalies and the topology. Thus, the amount of improvement de-

ends on the application. Nevertheless, the neighborhood informa-

ion significantly contributed to the anomaly detection recall per-

ormance in the well-correlated dataset of the Intel Lab. The other

atasets show a less, but significant, recall improvement with few

eighbors. The precision performance, on the other hand, stayed

qual or reduced moderately. Again, the exception is the Intel Lab

ataset, which also benefited significantly. 

Finally, the analysis of performance at a dense and a sparse net-

ork setting showed that adding neighborhood information to the

LS and OS-ELM fusion-based anomaly detectors shows a bene-

t in the recall. The ensemble methods, however, did not bene-

t greatly due to additional classifiers that did not make use of

eighborhood data, and due to the constant anomaly dominating

he anomalies, which is well detected by a simple rule. 

The overall results show that, when a dataset stems from a sim-

lar mixture of diffusive processes (and thus is well-correlated),

recision benefits, and a significant improvement in terms of re-

all can be established. However, one has to consider the target

pplication (regarding sensors, anomalies and topology) to evaluate

he need for local neighborhood information in online anomaly de-

ection. In cases where a network is too sparse, or in cases where

he environment under monitoring has no correlated diffusive pro-

esses, a local-only anomaly detection approach may be preferred

o spare the limited resources available in an embedded context

uch as a WSN. 

Future work may address the constraints on timely information

haring with a neighborhood: as the wireless communication is in-

erently unreliable, missing data may or may not affect the results

ignificantly. Next to this, also slow diffusive processes may cause

elays in correlated data. These constraints could be addressed by

ethods to automatically determine the delay in correlation in

esource-limited platforms, or adopt a weighted aggregation ap-

roach over a larger time period to account for such correlation

elays or differences. That is, the weight, a measure of relevance,

ould be determined with respect to time delays or correlation dif-

erences between nodes. Other questions that can be addressed are

he use of aggregates or models as neighborhood information, in-

tead of raw measurement data and the energy balance between

ore complex local processing and more decentralized local neigh-

orhood communications. 

cknowledgment 

This work was co-financed by the Province of Drenthe, the Mu-

icipality of Assen, the European Fund for Regional Development

nd the Ministry of Economic Affairs, Peaks in the Delta. 



H.H. Bosman et al. / Information Fusion 33 (2017) 41–56 53 

●

●
●

●●

●

●

●
●●

●

●●

●●

●

●
●
●●

●

●

●

●

●●

●

●

●

●●●●●●●●●
●●

●●

●●●

2 4 6 8 10

0
5

10
15

20
25

Path Loss Exponent (inverse of radio range)

R
el

at
iv

e 
im

pr
ov

em
en

t

● ΔF−measure
Fitted line

(a)

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●
●●

●

●

●●●
●
●

●

●●
●

●

●

●
●●

●●

●

2 4 6 8 10

0
5

10
15

20
25

Path Loss Exponent (inverse of radio range)

R
el

at
iv

e 
im

pr
ov

em
en

t

● ΔF−measure
Fitted line

(b)

●

●
●●●●●●

●●●
●

●
●●●

●●

●

●

●
●
●
●●●●

●

●

●●

●●●●●●●●●●●●●●

2 4 6 8 10

0
50

10
0

15
0

Path Loss Exponent (inverse of radio range)

R
el

at
iv

e 
im

pr
ov

em
en

t

● ΔF−measure
Fitted line

(c)

●

●

●

●

●

●

●
●●

●

●

●

●●
●●

●

●●
●

●
●
●

●

●

●

●●

●●●●●●●●●●●●●●●●●

2 4 6 8 10

0
5

10
15

20
25

Path Loss Exponent (inverse of radio range)

R
el

at
iv

e 
im

pr
ov

em
en

t
● ΔF−measure

Fitted line

(d)

Fig. A.11. The PLE vs the relative change in F-Measure of the RLS-fusion classifier. 

The datasets are (a) GSB humidity, (b) GSB temperature, (c) Intel Lab (note the dif- 

ferent y scale), and (d) Indoor WSN. 
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ppendix A. PLE vs relative improvement 

Fig. A.11 shows the F-measure improvement vs PLE setting.

ig. 7 was extracted from this figure and Fig. 6 . Here, too, we see

he optima differ per application scenario. The Intel Lab dataset

lso shows the highest relative improvement in F-measure of over

50%, which can be contributed to the dataset characteristic of be-

ng highly correlated. Moreover, from this figure we can see that

ach topology and application has its own optimal PLE setting,

howing that transmission-power control may be beneficial in de-

ection applications. 

ppendix B. Absolute precision and recall 

The absolute values of precision and recall, from which

able 4 is derived, are depicted in Table B.5 . We see that in all

ases, the offline baseline ensemble has the highest recall. Further-

ore, we can see that in the case of the GSB humidity data and

specially in the case of the Intel Lab data, the aggregate neigh-

orhood information contributes significantly to the overall perfor-

ance. For the fusion classifiers we see a clear benefit in recall for

ost datasets. 

ppendix C. Detection performance 

The following subsections were omitted from the main text,

ection 4.3 , for brevity. 

.1. Change in F-measure 

Fig. 7 shows the relative change in F-measure for the RLS-fusion

lassifier. With the above settings, we further analyze the effect of
eighborhood information on the OS-ELM-fusion based classifier,

nd the resulting effect on the ensemble classifiers. From this anal-

sis, seen in Table C.6 , we can see that not only for RLS but also

or the OS-ELM based classifier including neighborhood informa-

ion mostly has a positive benefit. However, the change for OS-ELM

s more extreme. This is partly because the F-measure resulting

rom the anomaly detection without neighborhood information is

ow, specifically in the case of the Intel Lab dataset, so any change

herein is relatively large. Another cause for the higher variability

or the OS-ELM based detection is the random initialization of in-

ut weights and biases. 

Furthermore, from Table C.6 , we can see that the effect of the

nclusion of neighborhood information on the ensembles is low.

e hypothesize this has two reasons: First, the ensembles consists

f a mix of classifiers, which include not only the RLS and OS-ELM

usion classifiers, but also the constant rule classifier and the 1-

tep-ahead function prediction classifier. The additional neighbor-

ood information only affects the RLS and OS-ELM fusion classi-

ers and, therefore, the total effect on the ensembles is less. Sec-

nd, the constant anomaly is the dominant anomaly, covering 83

o 95% of the anomalies in all datasets. Therefore, extra detections

f anomalous samples is likely to be a constant anomaly which,

hus, will not improve the ensemble score. This is further investi-

ated in Section 4.3 , where the classifier agreement is evaluated. 

.2. Classifier agreement 

Finally, we evaluate the agreement between classifiers, to get

 better understanding why the neighborhood information is of

mall influence on the ensemble classifiers. The behavior of the

edian ensemble and the Fisher’s method ensemble is that when

ultiple classifiers agree on a sample being anomalous, the more

ikely it is to be anomalous. Thus, if more classifiers detect the

ame sample as anomalous, the better the performance of these

nsembles. The minimum p -value and heuristic ensemble oper-

te differently. The former is not influenced by multiple classifiers

hat judge similarly, but only returns the minimum of the p -values

ithin the ensembled classifiers. Thus, this ensemble would ben-

fit from more confident classifiers. Such an approach should im-

rove recall, but the precision may suffer. The heuristic ensemble

ombines the constant rule and the RLS-fusion classifier. When a

onstant is detected by the constant rule, the RLS-fusion classi-

cation is ignored. Therefore, when the latter detects a constant

nomaly, the performance of the heuristic ensemble is not im-

roved. 

The agreement between classifiers is measured as the ratio of

quality between two time series of logical values, a and b , divided

y the total number of agreed detections possible between a and

 , i.e., sum ( and ( a, b ))/ sum ( or ( a, b )). The logic values denote the de-

ected or known anomalies in the time series. These ratios can be

enoted in a confusion matrix and displayed similarly to the cor-

elation maps in Section 4.1 . 

The resulting matrix is displayed graphically in Fig. 10 . In this

gure, the fusion classifiers that do not include neighborhood in-

ormation are indicated by the postfix ‘.SA’, signifying the approach

rom our previous work [57] . The figure shows that the constant

nomaly agrees well with the original labels and the window mean

nomaly detector. The other classifiers do not agree much with the

onstant classifier, although a slight increase in agreement can be

een between it and the RLS-fusion method that includes neigh-

orhood information. Furthermore, the figure shows that Function

pproximation classifier agrees reasonably with the fusion classi-

ers, which is the result of the FA prediction being included in

he input of the fusion classifiers. The fusion methods agree more

mong each other. Their agreement, however, becomes lower when

eighborhood information is included. That would mean that the
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Table B.5 

Absolute precision/recall numbers. The baseline LLSE and ELM are the non-iterative variants of RLS and OS-ELM respectively. The postfix (d) denotes the inclusion of a day period. The postfix ’.SA’ indicates the results of the 

stand-alone methods described in previous work [57] , while the postfix ’.AG’ indicates the current results, including the neighborhoog aggregates. 

classifier � dataset GSB Humidity GSB Humidity GSB Temperature GSB Temperature Intel Lab Intel Lab Indoor WSN Indoor WSN 

PLE = 4.0 PLE = 6.2 PLE = 4.0 PLE = 6.2 PLE = 3.4 PLE = 6.2 PLE = 4.6 PLE = 6.2 

metric pr re pr re pr re pr re pr re pr re pr re pr re 

FA(1 step) 66.69 5.23 66.53 5.23 53.49 9.22 53.49 9.22 89.71 0.59 89.71 0.59 38.57 7.97 38.57 7.97 

OS-ELM 11.23 10.50 13.32 13.77 77.83 24.13 47.14 19.24 48.64 58.76 49.41 69.73 15.38 13.35 16.06 12.57 

RLS 16.68 16.16 16.68 16.16 80.21 20.72 80.21 20.72 45.32 28.26 45.32 28.26 13.48 10.79 13.48 10.79 

Window constant 41.35 83.56 41.35 83.56 97.81 88.72 97.81 88.72 47.05 95.30 47.05 95.30 54.14 63.48 54.14 63.48 

OS-ELM fusion.AG 92.59 15.30 86.39 11.27 85.60 18.28 55.65 5.25 98.64 5.15 98.46 3.58 46.32 5.72 46.82 3.92 

OS-ELM fusion.SA 91.72 16.23 86.87 7.77 76.48 10.09 63.88 4.15 99.14 0.31 99.02 0.28 43.36 3.06 47.06 2.75 

RLS fusion.AG 90.12 25.15 90.63 26.82 61.61 18.05 56.30 15.58 95.99 14.87 95.95 11.26 42.68 8.72 41.88 8.38 

RLS fusion.SA 90.26 22.91 90.27 22.91 60.11 13.71 60.11 13.71 98.65 4.74 98.65 4.74 44.87 6.87 44.88 6.87 

Fisher’s method.AG 41.91 85.78 41.82 85.66 93.35 91.49 92.78 91.45 49.23 95.30 49.18 95.12 52.03 65.60 52.02 65.59 

Fisher’s method.SA 41.79 85.62 41.80 85.51 93.33 91.34 93.50 91.36 49.13 94.95 49.13 94.95 52.09 65.22 52.16 65.14 

Ensemble (heuristic).AG 42.32 86.88 42.14 86.66 88.03 92.37 87.34 92.25 47.25 95.98 47.20 95.75 52.05 67.12 52.07 66.99 

Ensemble (heuristic).SA 42.11 86.61 42.11 86.61 89.76 92.15 89.76 92.15 47.12 95.49 47.12 95.49 52.80 66.60 52.80 66.60 

Ensemble (min).AG 42.64 87.56 42.34 87.29 84.41 92.80 83.50 92.76 47.30 96.17 47.24 95.90 50.12 68.24 50.42 68.39 

Ensemble (min).SA 42.37 87.24 42.43 87.16 86.22 92.61 86.66 92.66 47.15 95.62 47.15 95.62 50.89 67.49 51.00 67.49 

Ensemble (median).AG 91.09 8.12 91.06 8.08 90.23 8.10 77.98 3.53 99.75 4.34 98.40 3.17 47.58 2.91 48.78 2.42 

Ensemble (median).SA 90.05 9.12 86.58 5.10 83.10 5.21 77.62 3.41 98.24 0.11 98.71 0.23 47.12 2.40 49.78 2.23 

Baseline rule 42.12 87.19 42.12 87.19 90.86 93.31 90.86 93.31 44.62 96.49 44.62 96.49 52.46 66.69 52.46 66.69 

Baseline LLSE 66.52 9.64 66.52 9.64 45.28 16.06 45.28 16.06 80.80 8.12 80.80 8.12 32.62 11.41 32.62 11.41 

Baseline LLSE (d) 67.72 10.84 67.72 10.84 42.73 16.04 42.73 16.04 75.07 7.78 75.07 7.78 31.19 11.36 31.19 11.36 

Baseline ELM 62.86 9.55 63.40 9.39 41.45 17.86 42.75 17.93 79.89 8.12 80.35 7.98 33.84 11.74 32.61 11.31 

Baseline ELM (d) 59.80 9.58 63.66 10.02 40.13 17.23 41.50 17.13 73.66 7.37 74.64 7.23 32.77 11.74 32.03 11.60 

Baseline ensemble 44.16 89.36 44.17 89.25 74.85 94.53 75.86 94.55 44.96 97.39 44.95 97.37 47.89 70.52 47.82 70.52 
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Table C.6 

The fusion classifiers are positively affected by neighborhood information, but the end result on most ensembles in 

negligible. The table shows relative change in F-Measure, in percent. 
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S-ELM and RLS fusion detect different (types) of anomalies using

eighborhood information. 

Overall, the classifiers that include neighborhood information

how moderate agreement between themselves and moderate to

ow agreement to the other classifiers. The effect of neighbor-

ood information on the median and the Fisher’s method ensem-

le should, therefore, be low. The median ensemble, however, does

how a reasonable increase in performance in Table C.6 and 4 .

ut, previous work showed that such an ensemble has high preci-

ion but very low recall, and thus improvements in recall are large

n relative terms. The minimum p -value ensemble would benefit

nly from higher confidence in the detection of a single classifier,

hich cannot be tested by classifier agreement. The heuristic en-

emble should benefit from neighborhood information in the RLS-

usion classifier, if this classifier has little agreement with the con-

tant classifier. However, from Fig. 10 we see that the RLS-fusion

as more agreement with the constant classifier when including

eighborhood information, compared to the stand-alone method

ithout neighborhood information. Therefore, their detections may

verlap, and the ensemble may not benefit from the neighborhood

nformation. This is in agreement with the earlier evaluation of F-

easure, prediction and recall changes in previous sections. 
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