
THIS MANUSCRIPT IS A PRE-PRINT VERSION! 1

On-line Building Energy Optimization using
Deep Reinforcement Learning

Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio Liotta, Michael E. Webber,
Madeleine Gibescu, J.G. Slootweg

Abstract—Unprecedented high volumes of data are becoming
available with the growth of the advanced metering infrastruc-
ture. These are expected to benefit planning and operation of
the future power system, and to help the customers transition
from a passive to an active role. In this paper, we explore
for the first time in the smart grid context the benefits of
using Deep Reinforcement Learning, a hybrid type of methods
that combines Reinforcement Learning with Deep Learning, to
perform on-line optimization of schedules for building energy
management systems. The learning procedure was explored using
two methods, Deep Q-learning and Deep Policy Gradient, both of
them being extended to perform multiple actions simultaneously.
The proposed approach was validated on the large-scale Pecan
Street Inc. database. This highly-dimensional database includes
information about photovoltaic power generation, electric ve-
hicles as well as buildings appliances. Moreover, these on-line
energy scheduling strategies could be used to provide real-
time feedback to consumers to encourage more efficient use of
electricity.

Index Terms—Deep Reinforcement Learning, Demand Re-
sponse, Deep Neural Networks, Smart Grid, Strategic Optimiza-
tion

I. INTRODUCTION

THERE is an energy transition underway since the start
of the millennium, comprised primarily of a push to-

wards replacing large, fossil-fuel plants with renewable and
distributed generation. It results in increased uncertainty and
complexity in both the business transactions and in the
physical flows of electricity in the smart grid. Because the
built environment is the largest user of electricity, a deeper
look at building energy consumption holds a promise for
improving energy efficiency and sustainability. Understanding
such individual consumption behavior based on the knowledge
transfer from the fusion of extensive data collected from the
Advanced Metering Infrastructure (AMI) is an essential step
to optimize building energy consumption and consequently the
effects of its use.

This work is motivated by the hypothesis that an optimal
resource allocation of end-user patterns based on daily smart
electrical device profiles could be used to smoothly reconcile
differences in future energy consumption patterns and the

E. Mocanu, D.C.Mocanu, P.H.Nguyen, A.Liotta, M.Gibescu and J.G.
Slootweg are with the Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven, 5600 MB, The Nedherlands.(e-
mail:{e.mocanu; d.c.mocanu; p.nguyen.hong; a.liotta; m.gibescu;
j.g.slootweg}@tue.nl)

Michael E. Webber is with the Department of Mechanical Engineering,
The University of Texas at Austin, Austin, TX 78712-1591, USA. (e-mail:
webber@mail.utexas.edu)

supply of variable sources such as wind and solar [1]–[3]. It
is expected that a cost minimization problem could be solved
to activate real-time price responsive behavior [4]. A wide-
range of methods have been proposed to solve the build-
ing energy and cost optimization problems, including linear
and dynamic programing, heuristic methods such as Particle
Swarm Optimization (PSO), game theory, fuzzy methods and
so on [1]–[7]. Therein, both centralized and decentralized
solutions exist, but they fail to consider on-line solutions for
large-scale, real databases [6]. More concretely, any time when
an optimization is needed, these methods have to compute
completely or partially all the possible solutions and to choose
the best one. This procedure is time consuming. In the big
data era, more and more machine learning methods appear
to be suitable to overcome this limitation by automatically
extracting, controlling and optimizing the electrical patterns.
This can be done by performing successive transformation of
the historical data to learn powerful machine learning models
to cope with the high uncertainty of the electrical patterns.
Then, these models will be capable of generalization and they
could be exploited in an on-line manner (i.e. few milliseconds)
to minimize the cost or the energy consumption in newly
encountered situations. Among all these machine learning
models, the ones belonging to the Reinforcement Learning
(RL) area are the most suitable for the cost minimization
problem, as they are capable to learn an optimal behavior,
while the global optimum is not known.

Thus, in the remaining of this paper we focus on RL
methods, such as Q-learning [8], and their latest develop-
ments. The building environment is modeled using a Markov
Decision Process [9] and it can be used to find the best
long-term strategies. Prior studies showed that RL methods
are able to solve stochastic optimal control problems [10]
in the power system area as well as an energy consumption
scheduling problem [11] with dynamic pricing [12]. A batch
reinforcement learning method was introduced in [13] to
schedule a cluster of domestic electric water heaters, and
further on applied for smart home energy management [14].
Owing to the curse of dimensionality, these methods fail for
large-scale problems. More recently, there has been a revival
of interest in combining deep learning with reinforcement
learning. Lately, in 2015, an application of Q-learning to deep
learning has been successful at playing Atari2600 games at
expert human levels [15]. In 2016, another one has defeated
for the first time in history the world champion at the game of
Go. Complementary with our work, Francois-Lavet et al. has
proposed the use of Deep Q-learning for storage scheduling

ar
X

iv
:1

70
7.

05
87

8v
1

 [
cs

.L
G

]
 1

8
Ju

l 2
01

7

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 2

in microgrids [16]. The above methods represent the starting
point of a new research area, known as Deep Reinforcement
Learning (DRL), which has evolved through the intersection of
reinforcement learning and neural networks. At the same time,
in our previous work, we showed that Reinforcement Learning
using Deep Belief Networks for continuous states estimation
can successfully perform unsupervised energy prediction [17].

Our contribution: In this paper, inspired by the above
research developments, we propose for the first time the
use of the Deep Policy Gradient method, as part of Deep
Reinforcement Learning algorithms, in the large-scale physical
context of smart grid - smart building, as follows.

• We propose a new way to adapt DRL algorithms to the
smart grid context, with the aim of conceiving a fast
algorithm to learn the electrical patterns and to optimize
on-line either the building energy consumption or the
cost.

• We investigate two DRL algorithms, namely Deep Q-
learning (DQN) [15] and Deep Policy Gradient (DPG).

• DPG in its current form is capable to take just one action
at a specific time. As in the building context multiple
actions have to be taken at the same moment, we propose
a novel method to enhance DQN with the capability of
handling multiple actions simultaneously.

We evaluate our proposed methods on the PecanStreet
database at both the building and aggregated level. In the end,
we prove that our proposed methods are able to efficiently
cope with the inherent uncertainty and variability in the
generation of renewable energy, as well as in the peoples’
behavior related with their use of electricity (i.e. charging
of electric vehicles). Specifically, we show that the enhanced
DPG is more appropriate to solve peak reductions and cost
minimization problems than DQN.

The remaining of this paper is organized as follows. Section
II describes the problem formulation and Section III we
introduce the background and preliminary concepts. Section
IV describes our proposed method followed by implementation
details in Section V. Results and discussions are provided in
Section VI. Finally, we conclude with some directions for
future research.

II. PROBLEM FORMULATION

In this context, we aim to reduce load peaks as well as
to minimize the cost of energy. Let B denote the set of
buildings, such that Bi ∈ B,∀i ∈ N representing the index of
the building analyzed. The total building energy consumption
Ei is a sum over all power generation P+ and consumption
in a specific interval of time ∆t. Therein, based on the
shifting capabilities of appliances present in a building we
differentiate between flexible power P−d , e.g. electric devices
d ∈ {1, ..,mi}, and fixed consumption P−.

a) Cost minimization problem: In this paper, we assume
two price components over the space of B, such that λ−t
is the price value set by the utility company for the time-
slot t and λ+t represents the price value at which the utility
company buys energy from end-users at time-slot t. Therefore,

the optimal cost associated with customer i at time t for an
optimization time horizon T can be calculated as

min
T∑
t=1

(λ+t

n∑
i=1

P+
i,t − λ

−
t

n∑
i=1

(P−i,t +

mi∑
d=1

ai,d,tP
−
i,d,t)) (1)

s.t.
T∑
t=1

P−i ∆t = Ei, ∀i ∈ N,∀t ∈ N, (2)

T∑
t=1

P−d ∆t = Ed, ∀d ∈ N,∀t ∈ N, (3)

ai,d,t = {1, 0},∀a ∈ A,∀i ∈ N,∀d ∈ N,∀t ∈ N, (4)

P+
i,t, P

−
i,t, P

−
i,d,t ≥ 0,∀t = [1 : T] ∈ N, (5)

λ+t , λ
−
t ≥ 0,∀t = [1 : T] ∈ N. (6)

where ai,d,t = 1 if the electrical device is on at that specific
moment in time, and 0 otherwise. Please note that, in our
proposed method, computing ai,d,t is equivalent with the
estimation of the actions (see Fig.1).

b) Peak reduction problem: In the special case of con-
stant price, for electricity generation and consumption, with
λ+t = λ−t , the cost minimization problem becomes a peak
reduction problem, defined as

min
T∑
t=1

(n∑
i=1

P+
i,t −

n∑
i=1

(P−i,t +

mi∑
d=1

ai,d,tP
−
i,d,t)

)
(7)

Consequently, the constraints following Eq. 1 will remain valid
for both problems. However, based on the differences between
different types of electrical devices the full range of constraints
is larger as explained in the next sections.

c) Electrical device constrains: We are assuming three
types of consumption profiles. Firstly, we consider the
time-scaling load. In respect to this we confine our analysis
to the air conditioning load (dAC), as a representative part of
a larger set of electrical devices in every building which could
be switched on-off for a limited number of times during an
optimization horizon, e.g. lights, television, refrigerator. Prior
studies show that short-term air conditioning curtailments have
a negligible effect on end-user comfort [18]. Secondly, we
include the time-shifting load, also called deferrable load, that
must consume a minimum amount of power over a given
time interval. Therein, we model the dishwasher (dDW) as an
uninterruptible load, which requires a number of consecutive
time steps. Finally the electric vehicle(dEV) was considered
as both a time scaling and shifting load. A more rigorous
formulation of the building electrical components and their
associated constrains could be found in [19]. In our case, a
complementary probabilistic perspective over the time depen-
dent devices constrains ad,t give us the following assumptions:

A 1: For all d, with P−d time-scaling loads, there ∃δd ∈ R+

constants over the optimization horizon such that{∑
t P
−
d ≤ δd if p(P−d = 0|t) ∈ (0, 1]∑

t P
−
d = δd if p(P−d = 0|t) = 0

(8)

where p(P−d = 0|t) is the probability of the electrical device
d to be active at any moment in time t, for all t = [1 : T] ∈ N.

A 2: For all d, with P−d time-shifting loads, there ∃δd
constants such that

∑
t Pd = δd, for all t = [1 : T] ∈ N.

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 3

Observation 1: In this paper, P+ (e.g. PV generation) is
considered a non-curtailable resource.

Observation 2: All electrical vehicles, dEV , and their as-
sociated consumption P−d , were considered as time scaling
and shifting loads working under the conditions imposed by
Assumption 1 and 2.

III. BACKGROUND AND PRELIMINARIES

In this section, we provide a brief overview of reinforce-
ment learning, Markov decision formalism, and deep neural
networks.

A. Reinforcement Learning

In a Reinforcement Learning (RL) [9] context, an agent
learns to act using a (Partial Observable) Markov Decision
Process (MDP) formalism. MDPs are defined by a 4-tuple
〈S,A, T·(·, ·), R·(·, ·)〉, where:
• S is the state space, ∀s ∈ S,
• A is the action space, ∀a ∈ A,
• T : S × A × S → [0, 1] is the transition function given

by the probability that by choosing action a in state s at
time t, the system will arrive at state s′ at time t + 1,
such that pa(s, s′) = p(st+1 = s′|st = s, at = a), and

• R : S×A×S → R is the reward function, wereRa(s, s′)
is the immediate reward received by the agent after it
performs the transition to state s′ from state s.

The agent aims to optimize a stochastic policy π : S × A ×
R → R+. Under structure assumption of the environment
(i.e. finite states and actions) the Markov decision problem
is typically solved using dynamic programing. However, in
our built environment, the model has a large (continuous)
states space. Therein, the state space is given by the building
energy consumption and price at every moment in time, while
the action space is highly dependent on the electric device
constrains. The success of every action a is measured by a
reward r. Learning to act in an environment will make the
agent to choose actions to maximize future rewards. The value
function Qπ(s, a) is an expected total reward in state s using
action a under a policy π. Currently, one of the most popular
reinforcement learning algorithm is Q-learning [8].

B. Deep Neural Networks

The topology of a Deep Neural Network (DNN) architecture
is based on multiple layers of neurons. In general, a neuron is
a non-linear transformation of the linear sum of its inputs. The
first layer models directly the data. A hidden layer in the neural
network architecture is build as an array of neurons taking the
inputs from the previous layer. The activation function of a
neuron on top of k stacked layers in the architecture is using
composite functions, such as x⊗ h1 ⊗ h2 ⊗ · · · ⊗ hk.

In 2011, it was shown that supervised training of a very
deep neural network with hard non-linearities is faster if
the hidden layers are composed of Rectified Linear Units
(ReLU) [20]. Recently, the logistic sigmoid and the hyperbolic
tangent activation are outperformed by ReLU [15], [21], [22].
Formally, ReLU is defined as a function f(xi) = max(0, xi),

.

. . .

. . .

.

. . .
. . .

. . .

co

. . . Input
layer

.

Output layer

.

. . .

s(t)

a(t)

a(t+1)

r(t)

Hidden
layer 1

Hidden
layer 2

Hidden
layer k

P
ri

ce

… Po
w

er

…

Time
 {hour, day}

P
o

w
er

…

Optimal schedule

Strategic
Optimization

…

Device 1 (flexible)
Device m (flexible)

P+

Price (P+)
P-(Inflexible)
Price (P-)

Fig. 1. The closed loop general architecture of Deep Reinforcement Learning,
built as a combination of Reinforcement Learning and Deep Neural Network.

where xi is its input. However, to avoid a non-zero gradient
when the hidden units are not active, we used a slightly relaxed
form proposed in [23], given by

f(xi) =

{
xi if xi > 0,∀i ∈ N
ηxi if xi ≤ 0,∀i ∈ N

(9)

where η is a coefficient controlling the slope of the negative
part. If η = 0 then Eq. 9 becames ReLU. One special case of
using a DNN is in deep reinforcement learning where the input
is given by the states of an MDP and the output represents the
actions of the MDP.

IV. PROPOSED METHOD

In this section, we propose the use of Deep Reinforcement
Learning (DRL) as an on-line method to perform optimal
building resource allocation at different levels of aggregation.
The general architecture of our proposed method is depicted
in Fig. 1. DRL (RL combined with DNNs of k hidden layers)
can learn to act better than the standard RL by automatically
extracting patterns, such as those of electricity consumption.
Overall, we can represent the DNN method, from a very
general perspective, as a black box model with good general-
ization capabilities over a given input distribution as follows:

Input−−−−→
data

DNN(k)
Output−−−−−−−−−−−→

Data estimation
(10)

In the remaining of this section we will introduce two DRL
methods, namely Deep Q-learning (DQN) and Deep Policy
Gradient (DPG).

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 4

DRL =

Input−−−−→
states

DNN(k)
Output−−−−−→
Q(s,a)

Deep Q-learning

Input−−−−→
states

DNN(k)
Output−−−−−→
p(a|s)

Deep Policy Gradient

In contrast to value-based methods (e.g. DQN), policy-based
model free methods (e.g. DPG) directly parameterize the
policy π(a|s; θ) and update the parameters θ by performing,
typically approximate, gradient ascent on the expected
long-term reward [24].

A. Deep Q-learning (DQN)

Learning in DRL is done as follows. The DNN is trained
with a variant of the Q-learning algorithm, using stochastic
gradient descent to update its parameters [15]. Firstly, the
value-function from the standard RL algorithm is replaced by
a deep Q-network with parameters θ, given by the weights
and biases of DNN, such that Q(s, a, θ) ≈ Qπ(s, a). This
approximation is used further to define the objective function
by mean-squared error in Q-values

L(θ) = E
[(
r+γmax

at+1

Q(st+1, at+1, θ)−Q(st, at, θ)
)2]

(11)

Leading to the following Q-learning gradient

∂L(θ)

∂θ
= E

[(
r + γmax

at+1

Q(st+1, at+1, θ) (12)

−Q(st, at, θ)
)∂Q(st, at, θ)

∂θ

]
Usually, this standard Q-learning algorithm used in synergy
with neural networks oscillates or diverges, mainly because
data are sequential. To overcome this limitation of correlated
data and non-stationary distributions, we use an experience
replay mechanism which randomly samples previous mini-
batch of transitions (st, at, rt, st+1) from the dataset D,
and therefore smooths the training distribution over many
historical data. It is straightforward to integrate the above
Deep RL approach into Eq.1. The binary action vector at ∈
A is augmented to maxat+1 Q(st+1, at+1, θ) and therefore∑m
d=1 atP

−
d,t is optimally controlled. Specifically, rather than

enforcing the constraints on the time window required by a
specific device d and the comfort of end-users considered
in A1, Eq.8, our idea is to encapsulate them in the reward
function, rt(λ+t , λ

−
t , P

−
i,d), which is further detailed in Section

IV.A.

B. Deep Policy Gradient (DPG)

Recently, it has been shown that policy gradient methods are
able to decrease the time needed for convergence in contin-
uous games [24], [25]. From an architectural perspective, the
neurons from the output layer of the DNN (with parameters θ)
corresponding to DPG, instead of estimating the Q(st, a, θ),
∀a ∈ A as in DQN, they estimate the probability to take action
a in a specific state st, such as p(a|st, θ), ∀a ∈ A. This offers
a clear advantage to DPG over DQN when there is a need to
perform multiple actions simultaneously, as all actions can be
sampled and executed simultaneously in the game using their
own probability.

In the policy gradient context, the approximate optimization
problem defined in Eq. 1 or Eq. 7 is an equivalent of max-
imizing the total expected reward of a parameterized model
under a policy π, as follows

maximize Ex∼p(x|θ)[R|π] (13)

In the DPG context, the parameterized model is the DNN.
Thus, the DNN becomes a probability density function over
its inputs (the game states), i.e. f(x), leading Eq. 13 to the
following optimization problem

maximize Ex∼p(x|θ)[f(x)] (14)

As shown in [26], [27], the unbiased gradient estimation uses
f(x) as a score function yielding

5θEx[f(x)] = 5θ
∫

dx p(x|θ)f(x) =

∫
dx5θ p(x|θ)f(x)

=

∫
dx p(x|θ)5θp(x|θ)

p(x|θ)
f(x)

=

∫
dx p(x|θ)5θ log p(x|θ)f(x)

= Ex[f(x)5θ log p(x|θ)] (15)

where ∂
∂θ = 5θ denote the first-order partial derivative over

the output data. Intuitively, to solve the gradient of Eq. 15,
first we have to take samples of xi ∼ p(x|θ) and to compute
the estimated gradient, such that ĝθi = f(xi)5θ log p(xi|θ).
Moving in the ĝi direction increases the log-probability of that
particular sample xi proportional with the reward associated
with it, f(xi). In other words, this practically shows how good
is that sample. As in policy gradient the reward is available at
the end of a game, these samples are collected in a trajectory,
i.e. τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1). To compute the
gradient of a trajectory, we need to calculate and differentiate
the density p(τ |θ) with respect to θ as follows:

p(τ |θ) = p(s0)

T−1∏
t=0

[π(at|st, θ)p(st+1|st, at)] (16)

By taking the log-probability of Eq. (16), we obtain

log p(τ |θ) = log p(s0) +

T−1∑
t=0

[
log π(at|st, θ) (17)

+ log p(st+1|st, at)
]

Taking the derivative of Eq. (17) with respect to θ leads to

∂

∂θ
log p(τ |θ) =

∂

∂θ

T−1∑
t=0

log π(at|st, θ) (18)

Finally, we can write the gradient update ĝθτ for parameters θ
after considering a trajectory τ as

ĝθτ ∝ Rτ
∂

∂θ

T−1∑
t=0

log π(at|st, θ) (19)

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 5

V. IMPLEMENTATION DETAILS

A. Network Architecture

Aiming to have a fair comparison between DQN and DPG,
the architecture of the deep neural networks used is similar
for both models and it has the following characteristics. Each
reinforcement learning state (encoded in the input layer), is
given by a time-window of two consecutive time steps. Thus,
in the case of the peak reduction problem the input layer has 11
neurons, i.e. time step t, and base load, PV, AC state, EV and
dishwasher at t− 1 and t. Please note that with the exception
of base load and generation which are fixed, the other state
components are given by the dynamically adapted values (the
ones obtained during the learning process) and not the initial
ones measured by the smart meters. For the cost reduction
problem, the input layer has an extra neuron which is used to
encode the ToU tariff. Furthermore, the networks have three
layers of hidden neurons, each layer having 100 neurons with
Rectifier Linear Units (ReLU) as activation function.

The output layer differs for DQN and DPG. For DQN
the output layer has 8 neurons, each neuron representing
the Q-value of a combined action. Each combined action is
a possible combination of the actions of the three flexible
devices1, i.e. stop air conditioner (a1), electric vehicle on/off
(a2), dishwasher on/off (a3). By contrast, the DPG output
layer has just three neurons, each neuron representing a device
action. More precisely, it gives the probability to perform the
action associated with the flexible device for the specific input
state. This is a clear advantage of DPG over DQN as it scales
linearly with the number of flexible devices.

Hyper-parameters settings: In all experiments performed,
the learning rate is set to α = 10−2, the discount factor to γ =
0.99, and η = 0.01. We train the models for 5000 episodes,
where an episode is composed by 20 randomly chosen days.
The weights update is performed after every two episodes. The
final policy is kept as the output of the learning process.

B. The reward vectors for DRL

Regarding the multi-objective optimization problems solved
in this paper, an accurate reward function is computed at the
end of the day, instead of at each time step of the day. Thus, we
derived a simple multiple-task joint reward with three reward
components:
Component 1: For all τ = (st, at, rt) the reward vectors will
be able to control the actions of the three types of flexible
consumption, and therefore the total shiftable and scalable load
in a household

∑m
d=1 atP

−
d,t, using differentiated rewards

ra1 =

−na+1 if na+1 > 10

ζ1 if na+1 ∈ [1, 10];

ζ2 if na+1 < 1

ra3 =

−na+3 if na+3 > 2

ζ1 if na+3 ∈ [1, 2]

ζ2 if na+3 < 1

ra2 =

{
−4|nat2 − na+2 | if na+2 6= nat2 , ∀nat2 ∈ N
na+2

if na+2 = nat2 , ∀nat2 ∈ N
(20)

1The number of neurons in the output layer of DQN is exponentially
correlated with respect to the number of flexible devices.

where na+1 , na+2 , and na+3 represent how many times the action
corresponding with the flexible device is performed, and nat2
is the targeted number of loads per day for the electric car. The
choice of ζ1 and ζ2 coefficients was based on a trial and error
procedure. The obtained values are ζ1 = 40 and ζ2 = −50.
Component 2: Controlling the total energy consumption
defined in Eq. 7 is done as follows

r =

{
−3ζ2 + 4[max(P−)−max(P̃−)] if max(P̃−) < max(P−)

−3ζ1 − 1 otherwise
(21)

Further on, shifting the consumption through the time when
there is more generation Eq. 6.

r =

{
ζ1
2 − |min(P̃−)| if P̃− < 0

− ζ22 otherwise
(22)

The control of AC under the A2, Eq. 8 is given by

r =

{
ζ1
8 + 2[max(P̃−AC)−max(P−AC)] if P̃− < 0

− ζ2
10 otherwise

(23)

Component 3: Controlling the total cost C, defined in Eq. 1.

r =

{
5|C̃ − C| if C̃ < C
−3ζ1 − 1 otherwise

(24)

The agent must learn multiple tasks consecutively with the
goal of optimizing performance across all previously learned
tasks. So, we used for solving Eq. 7 the Component 1 and 2
of the reward, while for Eq. 1 the Component 1 and 3.

The joint reward components could be easily generalized
to perform an arbitrary number of tasks. However, the range
intervals for na+1 and na+3

considered in Eq. 20 as well as
the positive and negative coefficients (i.e. ζ1 and ζ2) used in
Eq. 20-24 are dependent on the application. Also in Eq. 20
the range of na+1 and na+3 may be enlarged if comfort limits
are relaxed. Algorithm 1 exemplifies on DPG, how DRL can
be implemented. We have implemented both methods, DQN
and DPG, in Python.

Algorithm 1 Deep Policy Gradient (DPG) - estimating Eq.13
1: initialize model: hyper-parameters (α, γ, ζ)
2: initialize model: DNN with random weights θ
3: initialize game: first state s from a random day
4: for iteration = 1 to arbitrary number do
5: sample actions p(a1, a2, a3|θ, s) with DNN
6: collect probabilities p(a1, a2, a3|θ, s) in A
7: collect hidden neurons values in H from DNN
8: collect s in S
9: execute actions a1, a2, a3 and move to next state s′

10: collect reward r in R from game
11: if episode is finished then
12: compute discounted rewards Rd from R
13: estimate gradients from A ∗Rd, θ, S, and H (Eq. 19)
14: update θ with the estimated gradient
15: empty A, R, S, and H
16: end if
17: if current day ends then
18: reset game: first state s′ from a random day
19: end if
20: set s = s′

21: end for

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 6

TABLE I
DAILY PEAK VALUE AT THE BUILDING LEVEL (B) AVERAGED OVER ONE
YEAR WITH 15 MINUTES RESOLUTION VERSUS OPTIMIZED PEAK VALUE

USING DQN AND DPG METHODS

BI BII BIII

Method Mean St.dev. Mean St.dev. Mean St.dev.
(µ) (Σ) (µ) (Σ) (µ) (Σ)

Peak [kW] - 3.81 1.72 3.77 2.32 4.55 1.52
Optimized DQN 2.72 1.45 2.72 1.21 3.59 1.41
peak [kW] DPG 2.55 1.36 2.49 1.13 3.12 1.31

VI. RESULTS AND DISCUSSION

In this section, we validate our proposed methods and
we analyze their performance on a large real-world database
recorded by Pecan Street.Inc. First, the database is described.
Then, numerical results are given for both problems, i.e.
peak reduction and cost minimization for various number of
buildings.

A. Data set characteristics

1) Buildings pattern: To validate our proposed method we
used the Pecan Street dataset. The disaggregated customer
energy data contains up to 90 million unique electricity
consumption records per day, which are used in order to build
specific device patterns. Figure 2(a), 2(b), and 2(c) show three
different building patterns averaged over the year 2015 with
15 minutes resolution. In these patterns the solar generation
uncertainty as well as the people behavior characteristics are
notable, e.g. even if all three buildings have an electric vehicle,
just in the case of the third building, Fig. 2(c), it is used
frequently. In our experiments, we have used the data between
27th October 2012 and 3rd September 2016.

2) Price data: We use the time-of-use (ToU) tariff provided
by the local grid operator Austin Energy for customers who
live inside the City of Austin, Texas2. The λ− summer rates are
composed by on-peak, mid-peak and off-peak hours and the
winter tariff has the mid-peak and off-peak hours components.
There is also a difference between weekend and working-days
tariff. Additionally, the self-generating customers are receiving
an amount that is being paid by the utility for solar generation,
called the value of solar tariff (VOST).

B. Numerical results - Peak reduction problem

The numerical results in terms of peak reduction at the
single building level are showed in Table I and Figure 2 for
three different buildings (BI , BII and BIII), over one year
with 15 minutes resolution.

C. Numerical results - Cost minimization problem

The results for the cost minimization problem are summa-
rized in Table II. The difference between the cost minimization
solutions obtained for every building correlated with their aver-
age electrical patterns (see Figure 2) give as a first indication
about the individual capabilities of the end-users to adopt a
more conservative behavior.

2http://austinenergy.com/wps/portal/ae/residential/rates/residential-electric-
rates-and-line-items (Last visit: 30 October 2016)

TABLE II
DAILY COST MINIMIZATION RESULTS AT THE BUILDING LEVEL AVERAGE
OVER ONE YEAR WITH 15 MINUTES RESOLUTION USING DQN AND DPG

METHODS

BI BII BIII

Method Mean St.dev. Mean St.dev. Mean St.dev.
(µ) (Σ) (µ) (Σ) (µ) (Σ)

Peak [kW] - 3.81 1.72 3.77 2.32 4.55 1.52
Peak [kW] DQN 3.12 1.51 3.48 2.13 3.62 1.34
reduction DPG 2.97 1.46 2.69 1.14 3.17 1.29

Cost [$/day] - 2.31 3.09 1.93 2.23 3.13 3.85
Minimized DQN 2.19 3.01 1.91 2.18 2.85 3.62
cost [$/day] DPG 2.08 2.78 1.79 2.06 2.73 3.38

TABLE III
PEAK REDUCTION − DAILY OPTIMIZATION RESULTS AT DIFFERENT

LEVELS OF AGGREGATION AVERAGE OVER ONE YEAR WITH 15 MINUTES
RESOLUTION USING DQN AND DPG METHODS

Number of buildings
10 20 48

Method Mean St.dev. Mean St.dev. Mean St.dev.
(µ) (Σ) (µ) (Σ) (µ) (Σ)

Peak [kW] - 59.79 6.12 124.72 10.28 281.88 14.32
Optimized DQN 49.67 5.62 106.84 7.49 238.12 12.98
peak [kW] DPG 41.74 5.08 93.83 7.29 213.01 12.02

As it can be observed in Table II and in Figure 2, a
secondary advantage of solving the cost minimization problem
is its impact on solving of the peak reduction problem also.
Therein, the best results in terms of both, peak reduction and
cost reduction, are obtained for building BIII using DPG.

D. Scalability and learning capabilities of DRL

To test whether good estimations occur in practice and at
scale, we investigate the performance of our proposed meth-
ods, in three cases with different numbers of customers using
data from the Pecan Street smart grid test-bed. Specifically,
we are investigating and analyzing the corresponding results
using DQN and DPG methods for 10, 20 and 48 buildings, re-
spectively. Tables III and IV show that our proposed approach
is scalable for both, peak reduction and cost minimization,
respectively. More than that, they show that at the aggregated
level, when more customers are taking the cost minimization
problem into consideration, this solves implicitly also the peak
reduction problem. Same as at the building level, DPG is more
stable than DQN, and achieves a better performance. Overall,
in the case of the cost reduction problem for 48 buildings,
DPG reduces the peak with 26.3% and minimizes the cost
with 27.4%, while DQN reduces the peak with just 9.6%
and minimizes the cost with just 14.1%. To visualize how
DPG performs, in Figure 3 we depict the unoptimized and the
optimized annualized energy costs for each of the 48 buildings.

To visualize how DPG performs, in Figure 3 we depict the
unoptimized and the optimized annualized energy costs for
each of the 48 buildings. We can observe that the buildings
behave very differently and in some cases DPG is capable to
halve the yearly cost, while in other cases it succeeds to reduce
the cost with just a few percentage points.

Convergence capabilities of DPG: The convergence is as-
sessed through many iterations over episodes. For example, the

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 7

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(a) Electrical patterns – Building I

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(b) Electrical patterns – Building II

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(c) Electrical patterns – Building III

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(d) Peak reduction using DPG – Building I

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(e) Peak reduction using DPG – Building II

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(f) Peak reduction using DPG – Building III

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(g) Cost minimization using DPG – Building I

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(h) Cost minimization using DPG – Building II

0 20 40 60 80
Time steps [x15 min]

1

0

1

2

3

4

5

Bu
ild

in
g

en
er

gy
 [k

W
h]

Energy consumption
Energy generation
Base load
Air conditioned
Electric vehicle
Dishwasher

(i) Cost minimization using DPG – Building III

Fig. 2. (a), (b) and (c) represent different building electrical patterns averaged over one year (solid line) with 15 minute resolution, followed by their standard
deviation (shadow area). Their yearly average optimization results using Deep Policy Gradient method for the peak reduction problem are depicted in Fig.2
(d), (e) and (f) whether the cost minimization results are showed in Fig.2. (g), (h) and (i).

TABLE IV
COST REDUCTION − DAILY OPTIMIZATION RESULTS AT DIFFERENT

LEVELS OF AGGREGATION AVERAGE OVER ONE YEAR WITH 15 MINUTES
RESOLUTION USING DQN AND DPG METHODS

Number of buildings
10 20 48

Method Mean St.dev. Mean St.dev. Mean St.dev.
(µ) (Σ) (µ) (Σ) (µ) (Σ)

Peak [kW] - 59.79 6.12 124.72 10.28 281.88 14.32
Peak [kW] DQN 54.85 5.93 116.72 9.24 254.67 13.21
reduction DPG 44.91 4.80 92.41 7.74 207.73 11.48

Cost [$/day] - 57.79 20.90 118.03 30.01 231.27 38.76
Minimized DQN 47.71 17.83 93.68 24.18 198.51 32.67
cost [$/day] DPG 44.35 16.01 82.71 21.48 167.70 28.62

learning capabilities of DPG method in terms of peak reduc-
tion and their corresponding reward function for a building are
showed in Figure 4. Each episode represents an average value
over 20 randomly chosen days. Initially, we may observe that
the reward increases fast, while after about 1000 episodes the
reward, as expected, increases much slower. Therefore, after
approximatively 1000 episodes the average peak value and the
optimized average peak value using the Deep Policy Gradient
method converge. Still, the long-term reward expectation, as

0 10 20 30 40
Buildings [#]

0

1000

2000

3000

4000

5000

An
nu

al
iz

ed
 e

ne
rg

y
co

st
 [$

/y
ea

r]

Unoptimized cost
Optimized cost

Fig. 3. Yearly savings per buildings when cost optimization is performed
at the aggregated level on 48 buildings using Deep Policy Gradient (DPG)
method.

was expressed in Eq. (13), is increasing until approximatively
2500 episodes.

Computational time requirements: Both DRL variants have
the advantage of handling naturally much larger continuous
state spaces, leading to better performance. In comparison with
heuristic methods (e.g. PSO), after DRL learns how to act, it
can make decisions (e.g. choosing the optimal control action)

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 8

0 1000 2000 3000 4000 5000
Episodes [#]

2

3

4

5

6

7

8

9

10

11
Bu

ild
in

g
en

er
gy

 [k
W

h]

Average peak value
Average peak value with DPG

2000

1000

0

1000

2000

3000

R
ew

ar
d

[#
]

Fig. 4. Learning capabilities of Deep Policy Gradient method in terms of
peak reduction and their corresponding reward function for a building (i.e.
Fig.2 Building I). Every epoch represent an average value over 20 random
days.

in a few milliseconds, while PSO needs to re-run the costly
optimization process for every decision.

VII. CONCLUSIONS

In this paper, we proposed the use of Deep Reinforcement
Learning, as a hybrid method which combines Reinforcement
Learning with Deep Learning, with the aim of conceiving an
on-line optimization for the scheduling of electricity consum-
ing devices in residential buildings and aggregations of build-
ings. We have shown that a single agent, empowered with a
suitable learning algorithm, can solve many challenging tasks.
We proposed two optimization methods, Deep Q-learning and
Deep Policy Gradient, to solve the same sequential decision
problems at both the building level and the aggregated level.
At both levels, we showed that Deep Policy Gradient is more
suited to perform on-line scheduling of energy resources than
Deep Q-learning. We explored and validated our proposed
methods using the large Pecan Street database. Both methods
are able to successfully perform either the minimization of the
energy cost or the flattening of the net energy profile. For the
minimization of the energy cost, a variable electricity price
signal is investigated to incentivize customers to shift their
consumption to low-price, off-peak periods.

ACKNOWLEDGMENT

This research has been partly funded by the NL Enterprise
Agency under the TKI SG-BEMS project of Dutch Top Sector
and by the European Union’s Horizon 2020 project INTER-
IoT (grant number 687283).

REFERENCES

[1] M. R. Alam, M. St-Hilaire, and T. Kunz, “Computational methods for
residential energy cost optimization in smart grids: A survey,” ACM
Comput. Surv., vol. 49, no. 1, pp. 2:1–2:34, Apr. 2016.

[2] A. Barbato and A. Capone, “Optimization models and methods for
demand-side management of residential users: A survey,” Energies,
vol. 7, no. 9, pp. 5787 – 5824, 2014.

[3] E. Loukarakis, C. J. Dent, and J. W. Bialek, “Decentralized multi-period
economic dispatch for real-time flexible demand management,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 672–684, 2016.

[4] A. H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load
control with price prediction in real-time electricity pricing environ-
ments,” IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 120–133,
2010.

[5] N. G. Paterakis, O. Erdinc, I. N. Pappi, A. G. Bakirtzis, and J. P. S.
Catalão, “Coordinated operation of a neighborhood of smart households
comprising electric vehicles, energy storage and distributed generation,”
IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2736–2747, Nov
2016.

[6] J. Vardakas, N.Zorba, and C. Verikoukis, “A survey on deman response
programs in smart grids: Pricing methods and optimization algorithms,”
IEEE Comunication Surveys Tutorials, vol. 17, no. 1, pp. 152–178, 2015.

[7] L. A. Hurtado, E. Mocanu, P. H. Nguyen, M. Gibescu, and W. L. Kling,
“Comfort-constrained demand flexibility management for building ag-
gregations using a decentralized approach,” in International Conference
on Smart Cities and Green ICT Systems (SMARTGREENS), May 2015,
pp. 1–10.

[8] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-learning,” Journal
of Machine Learning Research, vol. 8, no. 3-4, pp. 279–292, May 1992.

[9] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[10] D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforcement
learning versus model predictive control: A comparison on a power
system problem,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 39, no. 2, pp. 517–529, April 2009.

[11] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential
demand response using reinforcement learning,” in First IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm),
2010, pp. 409–414.

[12] B. G. Kim, Y. Zhang, M. van der Schaar, and J. W. Lee, “Dynamic
pricing and energy consumption scheduling with reinforcement learn-
ing,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2187–2198,
2016.

[13] F. Ruelens, B. J. Claessens, S. Vandael, S. Iacovella, P. Vingerhoets, and
R. Belmans, “Demand response of a heterogeneous cluster of electric
water heaters using batch reinforcement learning,” in Power Systems
Computation Conference (PSCC), 2014, pp. 1–7.

[14] H. Berlink and A. H. R. Costa, “Batch reinforcement learning for smart
home energy management,” in Proceedings of the 24th International
Conference on Artificial Intelligence, ser. IJCAI’15, 2015.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[16] V. François-Lavet, D. Taralla, D. Ernst, and R. Fonteneau, “Deep
reinforcement learning solutions for energy microgrids management,”
in European Workshop on Reinforcement Learning (EWRL 2016), 2016.

[17] E. Mocanu, P. H. Nguyen, W. L. Kling, and M. Gibescu, “Unsupervised
energy prediction in a smart grid context using reinforcement cross-
building transfer learning,” Energy and Buildings, vol. 116, pp. 646 –
655, 2016.

[18] J. L. Bode, M. J. Sullivan, and J. H. Eto, “Measuring short-term air
conditioner demand reductions for operations and settlement.” Berkeley:
LBNL, 2012.

[19] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy
management via proximal message passing,” Foundations and Trends in
Optimization, vol. 1, no. 2, pp. 73–126, 2014.

[20] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-11), vol. 15, 2011, pp.
315–323.

[21] A. Maas, A. Hannun, and A. Ng., “Rectifier nonlinearities improve
neural network acoustic models.” 2013.

[22] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton,
“On rectified linear units for speech processing,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2013, pp.
3517–3521.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
2015 IEEE International Conference on Computer Vision (ICCV), 2015,
pp. 1026–1034.

[24] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016.

[25] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
CoRR, vol. abs/1506.02438, 2015.

THIS MANUSCRIPT IS A PRE-PRINT VERSION! 9

[26] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682 – 697, 2008.

[27] H. Bou-Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor, “Online multi-
task learning for policy gradient methods,” in Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, 2014, pp. 1206–1214.

	I Introduction
	II Problem formulation
	III Background and Preliminaries
	III-A Reinforcement Learning
	III-B Deep Neural Networks

	IV Proposed Method
	IV-A Deep Q-learning (DQN)
	IV-B Deep Policy Gradient (DPG)

	V Implementation details
	V-A Network Architecture
	V-B The reward vectors for DRL

	VI Results and Discussion
	VI-A Data set characteristics
	VI-A1 Buildings pattern
	VI-A2 Price data

	VI-B Numerical results - Peak reduction problem
	VI-C Numerical results - Cost minimization problem
	VI-D Scalability and learning capabilities of DRL

	VII Conclusions
	References

