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ABSTRACT
This work focuses on the optimization of some high-pressure and temperature food
treatments. In some cases, when dealing with real–life multi-objective optimization
problems, such as the one considered here, the computational cost of evaluating
the considered objective functions is usually quite high. Therefore, only a reduced
number of iterations is affordable for the optimization algorithm. However, using
fewer iterations can lead to inaccurate solutions far from the real Pareto optimal
front. In this article, different mechanisms are analyzed and compared to improve
the convergence of a preference-based multi-objective optimization algorithm called
Weighting Achievement Scalarizing Function Genetic Algorithm. The combination
of these techniques has been applied to optimize a particular food treatment process.
In particular, one of the proposed methods, based on the introduction of an advanced
population, achieves important improvements in the considered quality indicator
measures.

KEYWORDS
preference-based multi-objective optimization algorithm; low-cost optimization;
food treatment

1. Introduction

Recently, High-Pressure and Temperature (HPT) processes have emerged as a refer-
ence technology in the food industry, mainly due to the fact that they enhance the
preservation of some good properties (e.g., organoleptic) and reduce the proliferation
of damaging micro-organisms without using additives. To produce a processed food
within predetermined quality levels, the food engineer must carefully determine the
control temperatures and pressures to be applied during the HPT treatment. Nowa-
days, this challenging task is accomplished by several trial and error tests. However,
since the target quality levels depend on the country in which they operate, these tests
can lead to a considerable waste of time, money and product. In (Ferrández et al.
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2019), a decision tool was proposed based on solving a multi-objective optimization
problem to assist the food engineers in the design of HPT treatments. More precisely,
the optimization problem consists in finding the initial and refrigeration temperatures
and the pressure temporal profile to be provided to the HPT equipment such that the
final enzymatic activity in the food and the maximum temperature reached during
the whole process are minimal and the final vitamin activity is maximal. In general,
this kind of optimization problems arising in real–life situations usually involve some
mathematical models for describing the physical phenomena. Although these mod-
els are simplifications of the reality, they frequently imply computationally expensive
calculations managing many variables and objectives (see, e.g., Gomez, Ivorra, and
Ramos (2011a); Ivorra et al. (2013)). In this context, the meta–heuristic algorithms
are quite suitable for dealing with their optimization. Some particular examples il-
lustrating the wide range of applicability of this kind of algorithms in engineering
problems are available in literature (see, for instance, Ahmadi et al. (2014); Ahmadi,
Ahmadi, and Sadatsakkak (2015); Crespo et al. (2017); Ivorra et al. (2013)).

Considering a classical multi-objective optimization problem of the form

min {f1(x), . . . , fm(x)},
s.t. x ∈ S ⊆ Rn, (1)

the goal is to find a set of decision vectors x = (x1, . . . , xn), with n ∈ N, belonging
to a set S ⊆ Rn called feasible region, such that the values obtained when evaluating
the objective functions f1, . . . , fm : Rn −→ R at these decision vectors are minimal.
However, minimizing all the objectives simultaneously is not always a trivial and
feasible task because they frequently confront each other. So, the decision vectors of the
solution set, known as Pareto optimal set, must be those having the best compromise
among the considered objectives.

In this framework, a decision vector x∗ ∈ S is said to be efficient if and only
if there does not exist another feasible vector x in S dominating x∗, that is, there
does not exist another feasible vector x ∈ S satisfying that fi(x) ≤ fi(x

∗), for all
i = 1, . . . ,m, and fi(x) < fi(x

∗) for at least one index i (i. e., none of the objective
values can be improved without worsening at least one of the others). The image of
these non-dominated efficient vectors in the feasible objective region F (S) ⊆ Rn is
known as Pareto optimal front. Additionally, a decision vector x∗ in S is said to be
weakly efficient if and only if there does not exist another feasible vector x ∈ S such
that fi(x) < fi(x

∗), for all i = 1, . . . ,m.
As said before, the meta–heuristic algorithms are especially prescribed for solving

complex problems due to the fact that they do not require any a-priori information
about the objective functions (such as their gradient or Hessian matrix). More pre-
cisely, they provide a finite set of points composing a Pareto front approximation as a
solution of (1). Among those algorithms, one of the most popular subfamily of methods
are the so-called evolutionary multi-objective algorithms (EMOA), which are based
on iterative procedures that continuously improve the set of approximated solutions
bringing them closer to the Pareto front. When dealing with real–life applications,
only a reduced number of iterations may be computationally affordable for the op-
timization algorithm, due to the high cost of evaluating the objective function (see,
e.g., Carrasco, Ivorra, and Ramos (2015); Crespo et al. (2017); Gomez, Ivorra, and
Ramos (2011b); Ivorra et al. (2006, 2013)). In particular, for the industrial problem
of optimizing a HPT treatment considered here, a single evaluation lasts 46.5 seconds
on average. However, using fewer iterations can lead to inaccurate solutions far from
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the real Pareto optimal front.
A literature review provides some interesting ideas and methods aimed at enhancing

the convergence and, consequently, achieving better results (i.e., solutions closer to the
Pareto front) in fewer iterations. For instance, in (Ivorra, Mohammadi, and Ramos
2015), the authors apply a secant technique for improving the initialization of a generic
mono-objective optimization algorithm. Other widely-used mechanisms are the local
search methods. In particular, the single agent stochastic search (SASS) algorithm
(Solis and Wets 1981) was adapted by Lancinskas, Ortigosa, and Žilinskas (2013) to
work with multi-objective problems. This extended version called MOSASS showed
successful results in (Filatovas et al. 2016; Redondo, Fernández, and Ortigosa 2017),
where it is added as part of an evolutionary algorithm.

As done in the previous works (Ferrández et al. 2018, 2019), it is assumed that prac-
titioners are only interested in calculating a specific region of the Pareto front deter-
mined by the food engineer and known as the region of interest. Therefore, the EMOA
called Weighting Achievement Scalarizing Function Genetic Algorithm (WASF-GA)
is used. According to Ruiz, Saborido, and Luque (2015), it seems to provide higher-
quality results than other preference-based algorithms when the optimization problem
has three or more objectives, as it is the case here.

Now, in this work, some variants of WASF-GA are proposed applying different
mechanisms in order to achieve a set of solutions that closely approximate the Pareto
front in the region of interest using a low number of iterations. The results obtained
with those different WASF-GA variants when solving the considered food processing
problem have been compared in terms of effectiveness using several quality indicator
measure methods.

The article is organized as follows. First, in Section 2, the design of the HPT treat-
ment is formulated as a multi-objective optimization problem. In Section 3, the original
WASF-GA is described. Next, in Section 4, different mechanisms to improve WASF-
GA are proposed. In Section 5, the computational experiments carried out to compare
the original WASF-GA and its considered variants are detailed. Finally, in Section 6,
the optimization results are discussed in terms of some state-of-the-art quality mea-
sures.

2. Food processing problem

In this work, the optimization problem consists in determining a set of temperature and
pressure configurations for the HPT treatment that minimize the enzymatic activity
(denoted as function f1) and the maximum temperature reached during the food
processing (denoted as function f3) and maximize the vitamin activity (denoted as
function f2), at the same time (Ferrández et al. 2019) inside the food domain denoted
as ΩF. It is formulated as follows:

min f1(T0, Tr,∆P1, . . . ,∆Pn),
max f2(T0, Tr,∆P1, . . . ,∆Pn),
min f3(T0, Tr,∆P1, . . . ,∆Pn),
s.t. T0, Tr ∈ [10, 50](◦C),

∆P1, . . . ,∆Pn ∈ [−250, 250](MPa),

(2)

where the decision vectors (T0, Tr,∆P1, . . . ,∆Pn) are composed by the initial T0 and
refrigeration Tr temperatures (◦C), and the set {∆P1, . . . ,∆Pn} corresponding to the
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Figure 1. Computational domain Ω = ΩF ∪ ΩC ∪ ΩP ∪ ΩS.

pressure variations (MPa) applied to the High-Pressure equipment during the treat-
ment.

More precisely, the objective functions f1 and f2 are the average of the activities in
ΩF (assumed to be in 2D, see below) at the final time of the HPT process, denoted as
tf . They are computed as follows:

fi(T0, Tr,∆P1, . . . ,∆Pn) =
1

|ΩF|

∫∫
ΩF

Ai(r, z, tf)drdz, i = 1, 2,

where A1 refers to the enzyme activity and A2 to the vitamin activity. Additionally,
the maximum temperature registered in the food sample ΩF during the processing
time interval [0, tf ] is given by:

f3(T0, Tr,∆P1, . . . ,∆Pn) = max
(r,z)∈ΩF, t∈[0,tf ]

T (r, z, t).

Functions A1, A2 and T depend on spatial coordinates (here, (r, z) ∈ ΩF) and time
t ≥ 0 (measured since the beginning of the HPT process). As proposed in (Infante et al.
2009), an axisymmetrical 2D configuration of the cylindrical HPT device is assumed.
Indeed, the rectangular spatial domain corresponding to the simulation domain is
denoted by Ω = [0, L] × [0, H]. Ω contains four subdomains: an inscribed rectangle
ΩF = [L1, L2]× [0, H1] occupied by the food sample, the cap of this food sample ΩC,
the pressurizing fluid chamber surrounding them ΩP, and the external steel vessel ΩS

(see Figure 1). Considering this geometry, three kind of boundaries are distinguished
in Ω: the left edge of the rectangle is Γleft = {0} × [0, H]; the refrigeration frontier
is Γr = [Lr1, Lr2] × {H}; and the remaining boundaries are Γ\(Γr ∪ Γleft) composed
by the walls and the symmetry axis, which are thermally isolated. A representation
of the computational domain Ω and its measures considered in this work are given in
Figure 1.

In this work, the activity Ai registered at a point (r, z) ∈ ΩF at time t > 0 is given
by:

Ai(r, z, t) = Ai(r, z, 0) exp

(
−
∫ t

0
κi(P (σ), T (r, z, σ))dσ

)
, (3)

where κi is the inactivation rate of the enzyme (i = 1) or the vitamin (i = 2) given
by the following combination of the Arrhenius and Eyring equations (see, e.g., Denys
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et al. (2000)):

κi(P, T ) = κref,i exp

(
−Bi

(
1

T
− 1

Tref,i

))
exp (−Ci(P − Pref,i)) ; (4)

Tref,i (K) and Pref,i (MPa) are reference values for the temperature and the pressure,
respectively; κref,i (min−1) is the inactivation rate at these reference conditions; Bi (K)
and Ci (MPa−1) are temperature and pressure dependence parameters. Furthermore,
the initial activity Ai(r, z, 0) is set to one, which implies that the resulting activity
Ai(r, z, t) is within [0, 1] and represents the percentage value of the initial activity that
is retained. Thus, the values of the objective functions f1 and f2 are in the interval
[0, 1].

Therefore, evaluating those objective functions requires the numerical simulation
of the HPT treatment by using a heat transfer model for describing the evolution
of the pressure and the temperature inside the HPT device. To do so, the following
two-dimensional heat transfer equations are considered:

ρCp
∂T

∂t
− 1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂z

(
k
∂T

∂z

)
= α

dP

dt
T in Ω× (0, tf),

k
∂T

∂n
= 0 on Γ\(Γr ∪ Γleft)× (0, tf),

k
∂T

∂n
= h(Tamb − T ) on Γleft × (0, tf),

T = Tr on Γr × (0, tf),

T (0) = T0 in Ω,

(5)

where ρ = ρ(T, P ) (Kg m−3) is the density; Cp = Cp(T, P ) (J Kg−1K) is the heat
capacity; k = k(T, P ) (W m−1K−1) is the thermal conductivity; α = α(T, P ) (K−1) is
the thermal expansion coefficient; Tamb (K) is the ambient temperature; h (W m−2K−1)
is the heat transfer coefficient; Tr (K) is the refrigeration temperature; T0 (K) is the
initial temperature in the whole domain; and n is the outward unit normal vector.

For a detailed explanation about System 5 and the computational domain, see
(Ferrández et al. 2019).

3. The original optimization algorithm

The Weighting Achievement Scalarizing Function Genetic Algorithm (Ruiz, Saborido,
and Luque 2015), shortly called WASF-GA, is a multi-objective evolutionary opti-
mization algorithm based on a population of points, named as individuals, to which
some genetic operators inspired by the Darwin theory of evolution are applied. In this
way, it consists of an iterative procedure where, at each step, a new offspring popu-
lation is generated from the previous-step population using these genetic operators.
Then, among the individuals belonging to both populations, a selection mechanism is
applied to decide which individuals will survive composing the next-step population.
Since WASF-GA is a preference-based algorithm, this survival selection is performed
according to the closeness of their objective values to certain predetermined values ex-
pressing the preferences of the person solving the problem. Consequently, the resulting
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set of solutions is an approximation to a specific region of the Pareto optimal front
referred to as the region of interest.

In addition to the multi-objective function f = (f1, . . . , fm), the input parameters
required by WASF-GA are the following ones: (i) the size N of the population of
individuals, (ii) the total number hmax of iterations to be considered in the evolutionary
procedure, (iii) the values pm, dm, pc, dc for the probabilities and the distributions of
the genetic operators (mutation and crossover), (iv) a reference point q = (q1, . . . , qm)
giving the preferred values for the m objective functions, and (iv) a sample of Nµ

weight vectors W = {µ1, . . . , µNµ}.
In WASF-GA, as usually done when considering meta–heuristic algorithms, the

initial population of N individuals is randomly generated in the search space. Then,
at each iteration, three main stages are performed:

(1) Reproduction: The individuals of the previous-step population (called parent pop-
ulation) are matched between them for applying the crossover operator by pairs
generating new individuals, which are later modified by the mutation providing
the offspring population. Then, the joint population is built by the union of both
parent and offspring populations.

(2) Classification: Next, the classification is performed separating the individuals
from this joint population into several groups, called fronts. To do that, in WASF-
GA, the following Wierzbicki’s Achievement Scalarizing Function (ASF) (Ruiz,
Saborido, and Luque 2015) is considered for the given reference point q and the
set of weight vectors W = {µ1, . . . , µNµ}:

sj(x) = s(q, f(x), µj) = max
i=1,...,m

{µji (fi(x)− qi)}+ η

m∑
i=1

µji (fi(x)− qi).

Notice that the first term of this expression is based on the L∞ distance and the
other term is used to guarantee the efficiency of the solutions using an augmen-
tation coefficient (here, η = 0.001). Then, each front is filled as follows. First,
among the unclassified individuals, the one providing the lowest value of the
ASF with the first weight vector is chosen to be the first individual of the front.
After that, if there are still any unclassified individuals, among them, the one
with the lowest value of the ASF considering the second weight vector is now
selected and copied into the front. This process is repeated until all the indi-
viduals are classified or until the front contains exactly as many individuals as
weight vectors in the sample (i.e., Nµ). When the latter occurs and there are
still individuals without classifying, a new front is created and filled by applying
the same procedure.

(3) Selection: The selection consists of building the parent population for the next
iteration or for the outcome (if the number of iterations is equal to hmax). This
new or final population is formed by the individuals of the first fronts until reach-
ing the total size of N individuals. If there is any front that cannot be included
completely, then its individuals having the lowest ASF values are chosen. In this
work, the population and the weight vector sample are assumed to have the same
size: N = Nµ. Therefore, the new population built at the end of each iteration
is composed exactly by the individuals from the first front.

Consequently, the WASF-GA population can be thought of as a set of points, each
one solving the minimization of a mono-objective function which is the ASF with a
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determined weight vector. Indeed, at each iteration h < hmax, for each weight vector
µj = (µj1, . . . , µ

j
m) ∈W , with j = 1, . . . , Nµ, the algorithm tries to obtain a point closer

to the root of the ASF weighted using µj and denoted as sj(x). Then, the individual
j in the population is the one that minimizes sj(x).

4. The proposed improvements

This section is aimed to explain some ideas and techniques that have been added to
the WASF-GA implementation in order to improve its performance when considering
a low number of iterations.

Two categories have been distinguished depending on if the mechanisms affect the
reproduction phase or the classification stage. Notice that the selection procedure
of WASF-GA remains unchanged (i.e., as explained in Section 3). For the sake of
completeness and usability of the notation, the original reproduction and classification
methods have also been included in the enumerations at the first position.

In addition to the novelties applied at the reproduction and classification stages,
an external list has been introduced with the aim of increasing the number of non-
dominated points in the final population obtained with a short number of iterations.
This external list is created at the beginning of the iterative process containing only
the non-dominated points of the initial population. Then, each time a new population
is generated, the external list is updated to include those new individuals which are
non-dominated and remove those old individuals which are dominated by the new
ones.

4.1. Reproduction stage

At this stage, four alternatives have been considered: the WASF-GA original reproduc-
tion method and three variations involving different techniques. The main difference
among these alternative methodologies is the composition of the population named
joint population. Notice that this population is created at the end of the reproduction
phase and that the individuals included in it will be the ones that the algorithm will
consider for the next classification and selection procedures.

• Reproduction1: The joint population is the union of the parent population and
the offspring population created by applying crossover and mutation.
• Reproduction2: In addition to the parent and offspring populations, the joint

population also contains two more populations:
◦ The population of individuals obtained by improving the dominated solu-

tions.
For this strategy, in addition to the external list, another list is built

including those points which have not been included in the external list
or which have been deleted from it because they are dominated. Then, for
each one of those dominated points:
(1) Look for the non-dominated point in the external list that is closest to

it in the objective space using the Euclidean distance.
(2) Compute a new point randomly chosen in the segment that unites them

in the search space.
◦ The secant population.

This mechanism is inspired by a similar technique that was successfully
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applied in a multilayer algorithm in (Ivorra, Mohammadi, and Ramos 2015)
for accelerating the convergence of genetic algorithms.

The main idea is to generate at each iteration a new set of individuals,
called secant population, by considering the populations obtained at the two
previous iterations. As explained in Section 3, the WASF-GA population
can be seen as a set of points, each one solving the minimization of a mono-
objective function sj(x), j = 1, . . . , Nµ. Since the secant method aims to
approximate the zeros of a function without using any information about
its gradient, it is applied here at each iteration 2 < h < hmax to obtain a
set of new individuals {xh,j}j=1,...,Nµ

as follows:

xh,j = projS

(
xh−1,j − sj(xh−1,j)

xh−1,j − xh−2,j

sj(xh−1,j)− sj(xh−2,j)

)
, j = 1, . . . , Nµ,

h = 3, . . . , hmax,

where xh−1,j and xh−2,j belong to the previous-steps populations P h−1

and P h−2, respectively. Those individuals were selected because they
minimize the function sj(x) at the steps h − 1 and h − 2, respec-
tively. Notice that projS is a projection operator of the point into
the search space S for guaranteeing that the new point remains in S,
i.e., projS(x) = (min(max(x1, lb1), ub1), . . . ,min(max(xn, lbn), ubn)), where
(lb1, . . . , lbn) and (ub1, . . . , ubn) are the lower and upper bounds of the de-
cision variables.

• Reproduction3: As stated in literature, local search procedures aim to improve
the convergence to the optimum. In this case, the multi-objective version of the
SASS method, which is called MOSASS, has been used. MOSASS was proposed
in (Redondo, Fernández, and Ortigosa 2017). Among its advantages, it must be
highlighted that during the search process many interesting points are usually
generated close to the individual to which the method is applied. These points
will be introduced in the external list of non-dominated points or in a new list
containing the dominated individuals. Nevertheless, as a counterpart, this implies
an increase in the number of evaluations. Then, in the proposed implementation,
MOSASS has been applied only to the individual of the current population that
is the closest one to the reference point in the objective space, considering the
Euclidean distance.

MOSASS is based on an iterative procedure aimed at obtaining an improved
point starting from an initial one. In addition to this initial point, it receives
as input the normalized maximum radius σub ∈ R allowed for modifying the
variables to avoid the generation of new points outside the region of interest. In
this proposal, the value of σub is the normalized distance between the initial point
and the point of the parent population being the furthest from it in the search
space. There are other parameters that are fixed to pre-determined values such
as: the maximum number of iterations icmax and of consecutive failures Maxfcnt
used by MOSASS as stopping rule; the threshold number of consecutive failure
trials Fcnt and of consecutive successful trials Scnt, and the contraction ct and
expansion ex coefficients. More precisely, ct ∈(0, 1) and ex > 1 are constants
that regulate the intensification of the local search multiplying the search radius
to reduce it or to extend it, respectively.

In MOSASS, at each iteration, the starting individual x is perturbed by adding
a multivariate Gaussian random vector ξ = N(b, σI) ∈ Rn, where b ∈ Rn is a
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normalized bias vector directing the search and σ ∈ R is the radius of the most
preferred search region. At the beginning of the iterative procedure, b = 0 and
σ = σub. Then, the new point x+ ξ is evaluated and, if it dominates the original
individual x, it replaces x for the next iteration. On the contrary, x + ξ is tried
to be included in the external list but it will be accepted in this list only if it
is not dominated by any individual on the list, otherwise, it will be transferred
into the dominated list. This dominated list also receives the individuals that
may be removed from the external list because they are dominated by the new
individual x + ξ. If x + ξ cannot be stored in the external list because it is
dominated, then the same procedure is repeated but now with x − ξ. First, it
is tested if it dominates x and, if not, it is tried to be included on the external
list. At each iteration, a new Gaussian random vector is generated but updating
the deviation σ that specifies the size of the sphere that most likely contains the
perturbation vector, and the bias term b indicating the center of this sphere.
They are updated according to the number of successful trials achieved at the
previous iterations. A trial point is considered successful if it dominates the
previous point or if it is finally included in the non-dominated external list. If
more than Scnt consecutive successes have been reached, the perturbation radius
is increased σ = ex · σ. On the contrary, if more than Fcnt consecutive failures
have occurred, it is decreased σ = ct · σ. Furthermore, if the perturbation is too
small or too big, it will be reset to σub. In the first case, the bias vector is also
reset to zero. For more details about MOSASS, see (Lancinskas, Ortigosa, and
Žilinskas 2013) and (Redondo, Fernández, and Ortigosa 2017).

Finally, in Reproduction3, the joint population is formed by the offspring
population, the individuals belonging to the external list, and the dominated
individuals.
• Reproduction4: Here, an alternative method for generating the offspring popu-

lation is proposed consisting of building an advanced population. This advanced
population is generated using the parent population, i.e., the population of the
previous step, and the external list (see Algorithm 1). For each weight vector

µj , two points are selected: (i) the point xjel of the external list which minimizes
the ASF weighted using µj and, (ii) analogously, the point xj of the parent pop-

ulation minimizing the same ASF with µj . Then, a new point xjad is randomly

generated in the neighborhood between both points xjel and xj as follows:

xjad = xjel + λ(xjel − xj), (6)

where λ = (λ1, . . . , λn) is a vector of random numbers. Next, this new point xjad
is included in the advanced population. The idea is to achieve new points closer
to those non-dominated points in order for them to have more probabilities to
be non-dominated also. In some cases, modifying all the n decision variables,
as in (6), can lead to an objective value far from the neighborhood. Then, for
generating the new point, it may be more efficient to maintain some values
of the individual of the external list (i.e, xjad,i = xjel,i, for some i = 1, . . . , n).

Thus, a fixed probability value pad ∈ (0, 1] has been considered, which is used
to make the decision of when to apply the modification to a certain variable
(Lancinskas, Ortigosa, and Žilinskas 2013). More precisely, for each variable xad,i,
i ∈ {1, . . . , n}, a random number rnd is generated and, if rnd ≤ pad, then the
expression (6) is applied, otherwise, xad,i = xel,i (see Algorithm 2).
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Algorithm 1 calculateAdvancedPop

1: calculateAdvancedPop in: population, externalList out: advancedPop
2: Create advancedPop as an empty list of individuals;
3: for j = 0 to problem.getNumberOfWeightV ectors() do
4: double ASFmin = ASF.evaluate(externalList.get(0), µj);
5: int indexASFmin = 0;
6: for l = 0 to externalList.size() do
7: aux = ASF.evaluate(externalList.get(l), µj);
8: if aux < ASFmin then
9: indexASFmin = l;

10: end if
11: end for
12: popIndiv = population.get(j);

{Notice that the individual j in the population is the one that minimizes the
ASF using the weight vector µj}

13: externalListIndiv = externalList.get(indexASFmin);
14: advancedIndividual = calculateAdvancedIndividual(popIndiv, externalListIndiv)

;
15: advancedPop.add(advancedIndividual);
16: end for
17: evaluatePopulation(advancedPop);
18: return advancedPop

Algorithm 2 calculateAdvancedIndividual

1: calculateAdvancedIndividual in: popIndividual, externalListIndividual
out: advancedIndividual

2: Create advancedIndividual as an individual with
problem.getNumberOfV ariables() variables;

3: double probab = 1/problem.getNumberOfV ariables();
4: double x0, x1, x2, lambda;
5: boolean isthesame = true;
6: while isthesame == true do
7: for i = 0 to problem.getNumberOfV ariables() do
8: if rnd.nextDouble() <= probab then
9: x0 = popIndividual.getV ariableV alue(i);

10: x1 = externalListIndividual.getV ariableV alue(i);
11: lambda = rnd.nextDouble();
12: x2 = x1 + lambda ∗ (x1− x0);
13: x2 = Double.max(x2, getLowerBound(i));
14: x2 = Double.min(x2, getUpperBound(i));
15: advancedIndividual.setV ariableV alue(i, x2);
16: isthesame = false;
17: end if
18: end for
19: end while
20: return advancedIndividual

In order to maintain a good compromise between exploitation of the already
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known non-dominated points and exploration of the search space, the advanced
individuals’ generation and the generation of the offspring population by means
of the crossover and mutation operators, have been alternated. More precisely,
the former has been used at the even iterations and the latter at the odd itera-
tions. Notice that, as the advanced population has as many individuals as weight
vectors Nµ and it has been set Nµ = N , the number of evaluations does not in-
crement, i.e., the resulting reproduction method called Reproduction4 maintains
the same number of evaluations per iteration than WASF-GA. This is very im-
portant for problems such as the one considered here, in which the evaluation of
the objective function is computationally expensive.

Remark 1. The number of individuals per iteration in the joint population is not the
same for all the variants. In particular, for Reproduction2 and Reproduction3, it is
not a constant number. Therefore, to perform a fair comparison, the stopping criterion
is formulated in terms of the number of evaluations (see Section 5.1). Furthermore,
since this work is focused on problems whose objective functions evaluations are com-
putationally expensive, the reproduction, classification and selection procedures have
a negligible cost in comparison to a single function evaluation.

4.2. Classification stage

The main core of the WASF-GA classification procedure detailed in Section 3 remains
for all the studied versions. The only distinctive feature that has been modified is the
choice of the population to which the classification will be applied.

• ClassificationA: As in the original WASF-GA, those individuals belonging to
the joint population will be considered for their classification into fronts. Since
the selection procedure explained in Section 3 is based on preferences without any
dominance criterion, this kind of classification can lead to select some dominated
individuals for the final population.

• ClassificationB: At the first iterations where the size of the external list is
lower than the number of required individuals in the final population (i.e., N),
the joint population is considered, as in ClassificationA. Otherwise, when the
external list has enough individuals (i.e., more than N), only these individuals
belonging to the external list are considered for the classification and selection
procedures. As a consequence, the final population is guaranteed to be formed
only by non-dominated individuals.

5. Computational experiments

According to Section 4, the different variants of WASF-GA that have been imple-
mented and tested are denoted as WASF-GArc, where the sub-index r = 1, 2, 3, 4 refers
to the considered reproduction method and c = A,B indicates one of the proposed
classification options. Hence, the original WASF-GA corresponds to WASF-GA1A. To
compare their solutions, the execution of each variant WASF-GArc has been performed
20 times considering the food processing problem (2). Then, the quality of the obtained
Pareto front approximations has been analyzed by using the average and the standard
deviation values of some state-of-the-art effectiveness measures.

The experiments were performed on a cluster node which has 8 Intel Xeon E7
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8860v3 3.2 GHz processors with 16 cores each and 2.3 TB of RAM. The shared-
memory parallel version of WASF-GA proposed in (Ferrández et al. 2018) has been
used adapting it to hold all these WASF-GArc variants. Our implementations have
been built in the framework of the optimization package jMetal (Durillo and Nebro
2011), taking as reference the existing implementation of WASF-GA available there 1.

The target multi-objective problem is given by (2) where ten decision variables
have been considered: the initial and refrigeration temperatures T0, Tr ∈ [10,50] ◦C,
and eight pressure variations ∆P1, . . . ,∆P8 ∈ [-250, 250] MPa to be applied at eight
times ti, i = 1, . . . , 8, uniformly distributed in the processing interval [t0, tf ]=[0, 900]
seconds.

For this industrial problem, evaluating the objective functions implies the numerical
simulation of the HPT treatment with the temperature and pressure provided by
those decision variables. This numerical simulation consists in solving the heat transfer
system (5) coupled with the activity equation (3) formulated in Section 2. To do so,
the Finite Element Method (FEM), which is a common technique to approximate
the solution of partial differential equations models, has been used. It is based on
describing the unknown fields as polynomials of a determined degree at each point of
a spatial mesh that covers the whole computational domain (Ramos 2012). Despite
considering the simplifications detailed in Section 2, the computational cost of the
numerical model is quite high. Looking for a compromise between computational cost
and accuracy of the solution, a spatial mesh with 2881 elements has been considered for
the discretized domain. The computational time of a single evaluation is 46.5 seconds
on average using this mesh in the cluster node described before with a single core per
evaluation. Considering a mesh with a lower number of points may lead to a poor
description of the HPT treatment not being able to capture the effects of the pressure
and temperature over the micro-organism activities.

In these experiments, the considered HPT treatment involves the following mate-
rials: tylose, which is a solid gel similar to meat, in the food sample ΩF; water, as
pressurizing fluid in ΩP; rubber, for the cup of the food sample holder ΩC, and steel
for the external vessel ΩS. The thermo-physical properties of tylose and water have
been computed depending on temperature and pressure using a shifting approach
(Otero et al. 2006); those of rubber and steel are assumed to be constants (Infante
et al. 2009): ρ = 1110 Kg m−3, Cp = 1884 J Kg−1K, k = 0.173 W m−1K−1 in ΩC, and
ρ = 7833 Kg m−3, Cp = 465 J Kg−1K, k = 55 W m−1K−1 in ΩS. For the parameter
α, the approach and values proposed in (Otero, Molina-Garćıa, and Sanz 2002) have
been considered. The convection parameters on boundary Γleft have been set to h = 28
W m−2K−1 and Tamb = 19.3 K.

The accomplished experiments focus on reducing the activity of the enzyme called
BSAA (Denys et al. 2000) and on retaining the activity of the vitamin C (Verbeyst
et al. 2013). Concerning the inactivation rates, for BSAA the parameters have been
set to B1 = 10097 K and C1 = −8, 7e-4 MPa−1 with Tref,1 = 313 K, Pref,1 = 500 MPa,
and κref,1 = 3.9e-2 min−1; while for the vitamin C they have been set to B2 = 9071.4 K
and C2 = −5.55e-3 MPa−1 with Tref,1 = 373 K, Pref,1 = 700 MPa, and κref,1 = 7.92e-2
min−1.

Considering the model explained in Section 2 and the set of parameters given above,
the third objective function f3 takes values within [10, 80]◦C during the experiments.

According to the decision maker preferences, who in this case is the food engineer,
the following unachievable reference point (0.0, 1.0, 30.0) has been considered. Re-

1https://github.com/jMetal/jMetal
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call that the activities take values in [0.0, 1.0]. Then, the first component indicates
the ideal scenario where the undesired enzyme is completely inactivated. The second
component reflects the objective of retaining all the vitamin activity. Finally, the last
value corresponds to the temperature preferences and it is fixed to 30◦C close to the
ambient temperature since high temperatures may damage the organoleptic properties
of the food (e.g., its flavor).

5.1. Optimization settings

According to previous works based on a similar industrial problem (Ferrández et al.
2018, 2019), a population size of at least N = 200 individuals is needed for the op-
timization algorithm. Considering fewer individuals in the population, the obtained
set of optimal points conforming the Pareto front approximation may not sufficiently
cover the region of interest. As a consequence, it cannot be guaranteed that some
required quality scenarios for the vitamin conservation and the enzyme reduction will
be attended.

Concerning the maximum number of iterations, the higher its value, the higher the
quality of the Pareto front approximation in both senses, the better distributed the
points and the closer they are from the real Pareto optimal front. However, in view of
the required amount of individuals and the high computational cost of their evaluation,
to solve the industrial problem in an affordable time, a maximum number of iterations
of hmax = 50 has been considered.

The stopping criterion of the original algorithm WASF-GA1A is based on the num-
ber of iterations. More precisely, its evolutionary process is running until the value
hmax is reached. Since WASF-GA1A consumes as many evaluations per iteration as
individuals in the population, when it finishes, the total number of evaluations done is
N ·hmax. Nevertheless, for some of the proposed variants of WASF-GA1A, the number
of evaluations at each iteration is not a constant number. In particular, it occurs for
WASF-GA2c, whose reproduction method involves the improvement of the individu-
als that are dominated, and for WASF-GA3c, which is based on the use of the local
search technique MOSASS, no matter the classification method c = A or c = B used.
Thus, for the sake of the fairness of their comparison, the following stopping rule is
considered: at each iteration h, the algorithm stops if cont evalh−1 + N ≥ N · hmax,
where cont evalh−1 is the cumulative number of evaluations consumed until the h− 1
iteration.

Next, the used settings concerning the remaining parameters are included. For them,
a fine-tuned analysis falls out of the scope of this article, nevertheless, the most
extended values used in literature have been selected (Solis and Wets 1981; Ruiz,
Saborido, and Luque 2015). Regarding the genetic operators, the Simulated Binary
Crossover (SBX) and the polynomial mutation have been employed with probabilities
pc = 0.9 and pm = 0.1, respectively, and a distribution of 20 for both. In particular, for
those parameters, a more exhaustive study was performed in (Ferrández et al. 2019)
and those values proved to be the ones leading to the higher quality Pareto front
approximations.

The MOSASS parameters used in the implementation of WASF-GA3c (with c =
A,B) are the ones recommended by Solis and Wets (1981) and successfully validated
by Lancinskas, Ortigosa, and Žilinskas (2013) and Redondo, Fernández, and Ortigosa
(2017). The coefficient values used for updating the bias term b are 0.4, 0.2 and 0.5,
and the values for the threshold number of successes and failures involved at the

13

Page 13 of 26

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

σ computation are Scnt = 5 and Fcnt = 3, respectively. For the contraction and
expansion coefficients, also the recommended values ct = 0.5 and ex = 2, respectively,
have been considered. In order to avoid an excessive increment of the number of
evaluations derived from the application of the MOSASS mechanism, the maximum
number of consecutive failures for its stopping rule has been fixed to Maxfcnt = 5
for each WASF-GA3c iteration. In both methods (i.e., MOSASS in WASF-GA3c and
the generation of the advanced individuals in WASF-GA4c), a probability pad = 1/n,
where n is the number of variables, has been considered for deciding when the decision
variables are modified or not (Lancinskas, Ortigosa, and Žilinskas 2013).

5.2. Quality indicators

To measure the effectiveness of the algorithms, the most extended methodology in
literature has been used, which is the quality indicator procedure. It consists of quan-
tifying the quality of each Pareto front approximation and, then, analyzing the result-
ing numbers for their comparison. More precisely, let Ω be the set of all Pareto front
approximations, a unary quality indicator is a function I : Ω → R which assigns to
each Pareto front approximation PFA ∈ Ω a real value I(PFA).

As the studied algorithms are heuristics, every particular instance has been run 20
times. Thus, for each algorithm rc, with r ∈ {1, . . . , 4} and c ∈ {A,B}, 20 different
Pareto set approximations PS1

rc, . . . , PS
20
rc have been obtained. All these resulting sets

for all the algorithms compose the set of all the Pareto-set approximations denoted
as SPS. Since the real Pareto front is required for the computation of some quality
indicators, in problems where it is unknown, an approximated reference set RS is
used. In this work, RS has been generated by merging all the individuals of the SPS
Pareto-set approximations and obtaining their images in the objective space. Then,
the solutions which are non-dominated have been selected. Furthermore, for a fairness
contribution of all the objectives, RS and all the Pareto front approximations have
been normalized before computing the quality indicator values (Ferrández et al. 2019).
The following standard normalization has been used:

fi(x)′ =
fi(x)− f (min)

i

f
(max)
i − f (min)

i

, i = 1, . . . ,m,

where f
(min)
i (resp. f

(max)
i ) denotes the minimum (resp. maximum) value of fi when

considering all the solutions in SPS.
In general, there exist three kinds of quality indicators depending on what feature is

measured: proximity, diversity and global indicators. The former focuses on computing
the distance between the real Pareto front (or, in this case, RS) and the approxima-
tion obtained with the optimization algorithm. Therefore, since the main goal here
is comparing the algorithms in terms of their convergence, some proximity indicators
have been used. In particular, two of those measures have been employed, namely,
the additive epsilon (Zitzler et al. 2003) and the inverted generational distance plus
indicator (IGD+) (Ishibuchi et al. 2015). Additionally, to evaluate the global quality,
the well-known hypervolume indicator has been used. It is based on computing the hy-
pervolume of the piece of the decision space which is weakly dominated by the Pareto
front approximation (While, Bradstreet, and Barone 2012; Zitzler and Thiele 1998).
Since the considered algorithms are devoted to approximate the part of the Pareto
front preferred by the user, it has been calculated the hypervolume in the region of
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interest as proposed in (Ruiz, Saborido, and Luque 2015). To bound the space for
that hypervolume computation, the point that is dominated by all the points in the
region of interest must be provided. In this work, this point znad has been obtained
by considering all the approximations of the Pareto front f(SPS) as follows:

znad =

(
max

x∈SPS
f1(x), . . . , max

x∈SPS
fm(x)

)
.

On the one hand, given a Pareto set approximation PS, the additive epsilon indica-
tor is calculated as the minimum distance by which f(PS) needs to be moved in each
dimension of the objective space such that the reference set RS is weakly dominated.
Mathematically, it can be expressed as follows:

Iε+(f(PS)) = min
ε∈R

{
∀b ∈ RS, ∃a ∈ PS :

fi(a)− f (min)
i

f
(max)
i − f (min)

i

− ε ≤
fi(b)− f (min)

i

f
(max)
i − f (min)

i

, ∀i ∈ {1, . . . ,m}

}
.

(7)

On the other hand, the inverted generational distance metric plus (IGD+), which
was recently proposed by Ishibuchi et al. (2015), uses the following formula:

IGD+(f(PS)) =
1

|RS|

|RS|∑
l=1

(d+
l )p

1/p

where a new modified distance d+ is employed instead of the Euclidean distance for
calculating the distance d+

l from bl ∈ RS to its nearest objective vector in f(PS). For
a minimization problem, this modified distance is defined as:

d+(a,b) =
√

(max{a1 − b1, 0})2 + · · ·+ (max{am − bm, 0})2,

for two objective vectors a ∈ PS and b ∈ RS. In this work, it has been used p = 1 as
it was originally proposed in (Ishibuchi et al. 2015).

Notice that all those three indicators that have been employed are Pareto compliant.
It means that whenever a Pareto-set approximation A is preferable to a Pareto-set
approximation B with respect to weak Pareto dominance, the indicator value for
f(A) should be at least as good as the indicator value for f(B). To compute them,
the implementations available at the optimization package jMetal (Durillo and Nebro
2011) have been used.

6. Results and discussion

As a preliminary step, not detailed here, the most promising WASF-GA variants
were selected to focus the analysis on those most competitive methods. For instance,
Reproduction2 and Reproduction3 combined with ClassificationB lead to a stag-
nation of the population, since those reproduction techniques are mainly based on
managing dominated points meanwhile the cited classification only considers non-
dominated individuals for building the population. Therefore, in order to present a
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Table 1. Results of the Wilcoxon test considering the values of the following indicators: additive

epsilon (Epsilon), inverted generational distance plus (IGD+), hypervolume (HV) and number of non-

dominated solutions (NumND). “–” indicates that the hypothesis of a significant difference between
the algorithms cannot be accepted; “N” represents that they are significantly different and that the

average of the algorithm corresponding to the row is better than the algorithm of the column, and “O”

means that the algorithm indicated on the column is significantly better, on average, than the one of
the row for the considered indicator.

Epsilon, IGD+, HV, NumND

1A 2A 3A 4A 4B

1A – – – – O O – – – N N O O O O O
2A – – – – – – – – – – N O – – O O
3A N N – – – – – – N N N O – – – O
4A – O O N – – O N O O O N O O O O
4B N N N N – – N N – – – N N N N N

concise comparison, the variants involving those combinations have not been included
ahead in the discussion.

Next, an statistical analysis has been performed to determine if the proposed vari-
ants are significantly different among them or, contrarily, they come from the same
probability distribution showing variations because of the stochasticity of the algo-
rithms. To do that, the Wilcoxon test (Wilcoxon 1945) has been applied, since it is
widely used in literature for the pairwise comparison of evolutionary algorithms and it
does not need any assumption about the normality of the distributions (Derrac et al.
2011; Ruiz, Saborido, and Luque 2015). In this analysis, a confidence level of 95%
has been considered. It means that the distributions of the results for two compared
algorithms are accepted to be different if the p-value obtained by the Wilcoxon test
is lower than 0.05. In Table 1, the results of the Wilcoxon test are summarized for all
the considered quality indicators. For the sake of completeness, the distributions of
the quality measures values for the different variants are shown in Fig. 2.

More precisely, Fig. 2(a) and Fig. 2(b) corresponds to the epsilon and the IGD+
indicators, respectively. Notice that for these metrics the lower the value, the better
the quality of the Pareto front approximation. Therefore, the versions WASF-GA3A

and WASF-GA4B based on the introduction of the MOSASS technique and the ad-
vanced population with classification applied to the external list, respectively, clearly
outperform the original algorithm WASF-GA1A. It means that using those mecha-
nisms to solve the considered industrial problem, an enhancement in the convergence
is achieved. Moreover, according to the Wilcoxon test, both WASF-GA3A and WASF-
GA4B are significantly different from WASF-GA1A regarding the epsilon and the IGD+
measures (see Table 1), so they provide a meaningful improvement.

For the hypervolume global indicator, the higher the value, the better the solution.
Thus, as can be seen in Fig. 2(c), the algorithm WASF-GA4B using the advanced pop-
ulation for the reproduction phase and the external list for the classification procedure,
also overcomes the basic version WASF-GA1A in terms of global quality. Furthermore,
the Wilcoxon test confirms that this improvement is not due to the randomness of the
algorithms, as WASF-GA4B presents a distribution of hypervolume values significantly
different from WASF-GA1A (see Table 1).

According to those results for the considered industrial problem, it seems that the
goal of improving WASF-GA has been achieved in terms of convergence and prox-
imity to the reference Pareto front and also in global performance. Now, in previous
studies (Ferrández et al. 2019), the authors realized that the population obtained with
WASF-GA does not reach the total number of individuals being non-dominated, in
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(a) Additive epsilon indicator (b) Inverted generational distance plus indicator

(c) Hypervolume indicator (d) Number of non-dominated points in the Pareto

front approximation

Figure 2. Distribution of the quality measures values for the different variants: 1A corresponds to the original

WASF-GA, 2A to its version based on improving the dominated individuals and building a secant population,
3A to the one using the MOSASS mechanism, 4A to the one considering the advanced population, and 4B

the algorithm also using the advanced population but only considering the points of the external list for the

classification procedure. For (a) Epsilon and (b) IGD+, the lower the value, the better the quality of the Pareto
front approximation. Contrarily, for (c) Hypervolume and (d) NumND, the higher the value, the better the

quality. In these boxplot graphics, the lower and upper bounds of the box represent the first and third quartile,
respectively; the line inside the box is the median; the lower and upper limits of the whiskers are the minimum

and maximum values, respectively, without considering the outliers points represented by the “+” symbol.
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Table 2. Average and standard deviation values of the considered quality indicators for

hmax = 50 iterations. 1A corresponds to the original WASF-GA, 2A to its version based

on improving the dominated individuals and building a secant population, 3A to the one using
the MOSASS mechanism, 4A to the one considering the advanced population, and 4B the

algorithm also using the advanced population but only considering the points of the external

list for the classification procedure. The best average values for each of the indicators have
been highlighted in bold.

rc Epsilon IGD+ HV Number of ND

1A 1.60E-01±4.0E-02 3.89E-02±1.5E-02 5.33E-01±1.4E-02 1.68E+02±9.2E+00

2A 1.34E-01±6.5E-02 3.69E-02±1.9E-02 5.32E-01±1.9E-02 1.65E+02±8.2E+00

3A 8.40E-02±8.6E-03 2.45E-02±5.4E-03 5.43E-01±6.3E-03 1.67E+02±7.4E+00

4A 1.72E-01±3.9E-02 5.39E-02±1.5E-02 5.13E-01±1.7E-02 1.89E+02±6.1E+00

4B 9.02E-02±3.0E-02 2.39E-02±6.0E-03 5.50E-01±8.2E-03 2.00E+02±0.0E+00

this case N = 200. For that reason, here, it has been introduced the variant denoted
as ClassificationB which only considers the individuals belonging to the external list
for the classification into fronts. As a consequence, all the individuals obtained as out-
come of WASF-GA4B are non-dominated. As can be seen in Fig. 2(d), in comparison
to the other considered versions, this approach produces a great improvement. In this
problem, it implies that the solution set provides the food engineer a larger amount
of temperature and pressure configurations for the HPT equipment allowing to attend
more quality demands maybe from different countries.

In Table 2, the average and standard deviation values of the quality indicators are
shown, highlighting in bold the best average values for each of the indicators. It is
important to mention that, according to these values, the algorithms WASF-GA3A

and WASF-GA4B are not only better on average than the others for the epsilon,
IGD+ and hypervolume indicators but they also seem to exhibit a low variability of
the results since their standard deviation values are lower.

To sum up, in general, the proposed algorithm WASF-GA4B obtains significantly
better results for the food processing problem than the other considered versions for all
the analyzed measures. Moreover, it guarantees that all the individuals in the outcome
population are non-dominated solutions.

For the sake of fairness, it is worthy to mention that the hypervolume measure de-
pends on the number of non-dominated solutions (While, Bradstreet, and Barone 2012;
Zitzler and Thiele 1998). Therefore, in order to complete the comparison among the
proposed variants, the performance index known as set coverage or C-metric (Zhang
and Li 2007) has been computed. For two Pareto front approximations P1 and P2, it
is calculated as the number of individuals in P2 which are dominated by at least one
point in P1 divided by the number of individuals in P2. Thus, it provides the percent-
age of dominated-by-P1 solutions in P2. In Table 3, the averages of the C-metric values
of all the pairwise combinations of the proposed variants are reported. According to
those results, it can be concluded that the variant WASF-GA4B is the best proposal
among all the studied algorithms for the considered problem since it has the highest
percentages (on average) of points dominated by its solutions in the other algorithms’
outcomes.

Remark 2. It should be recalled that those results have been obtained considering the
reference point (0.0, 1.0, 30.0). This unachievable point expresses the food engineers
preferences in a general and unconstrained context, allowing them to deal with a wide
variety of food quality scenarios using a single Pareto front approximation (Ferrández
et al. 2019). Despite it is the reference point recommended for this industrial problem,
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Table 3. Averages of the set coverage metric

C(P1, P2) between the Pareto front approximations

P1 and P2 for all the pairwise combinations of the
considered algorithms. The best values have been

highlighted in bold.

P1

P2 1A 2A 3A 4A 4B

1A - 26.83 24.71 30.19 14.47
2A 4.62 - 14.98 13.59 8.08
3A 4.46 16.21 - 15.78 8.57
4A 7.01 13.97 10.68 - 6.18
4B 16.65 30.59 33.01 27.91 -

analogous comparisons have been performed for another achievable reference point, as
it is (0.4, 0.97, 50.0), obtaining similar conclusions.

7. Conclusions

In this work, some mechanisms improving the convergence of evolutionary multi-
objective optimization algorithms have been analyzed and tested to solve a complex
and computationally expensive industrial problem. Some of them are inspired by suc-
cessful techniques found in literature as the secant method or the MOSASS local
search. Another, such as the one based on the construction of an advanced popula-
tion, has been completely designed by the authors.

More precisely, they have been applied to enhance the performance of the preference-
based algorithm known as WASF-GA when a low number of iterations is considered.
The different WASF-GA versions have been tested to solve a particular industrial
problem based on the optimization of the High-Pressure and Temperature food pro-
cessing treatment. Then, an exhaustive analysis of their results using some measures
of the Pareto front quality has been carried out. From these quality results, it can be
concluded that:

• Implementing the creation of an advanced population, the obtained Pareto front
approximations show significantly better values than the ones of the original
WASF-GA for all the considered proximity and global quality indicators. This
advanced population method allows generating new points closer to the non-
dominated individuals of the external list, such that they have more probabilities
of also being non-dominated.
• Introducing an external list for storing the non-dominated individuals found

during the iterative process and using this list for the classification stage, all the
points in the final population are achieved to be non-dominated.

As future work, it will be attempted to also improve some quality measures based
on the distribution of the points in the Pareto front. Furthermore, the use of surrogate
models will be explored. These kinds of models, which are becoming more popular
over the last few years, are also prescribed for problems whose evaluation is expensive
and involves complex simulations.
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Computational domain $\Omega=\Omega_{\rm F} \cup \Omega_{\rm C} \cup \Omega_{\rm P} \cup 
\Omega_{\rm S}$. 
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Additive epsilon indicator. 
Distribution of the quality measures values for the different variants: $1A$ corresponds to the original 

WASF-GA, $2A$ to its version based on improving the dominated individuals and building a secant 
population, $3A$ to the one using the MOSASS mechanism, $4A$ to the one considering the advanced 

population, and $4B$ the algorithm also using the advanced population but only considering the points of 
the external list for the classification procedure. For (a) Epsilon and (b) IGD+, the lower the value, the 

better the quality of the Pareto front approximation. Contrarily, for (c) Hypervolume and (d) NumND, the 
higher the value, the better the quality. In these boxplot graphics, the lower and upper bounds of the box 

represent the first and third quartile, respectively; the line inside the box is the median; the lower and upper 
limits of the whiskers are the minimum and maximum values, respectively, without considering the outliers 

points represented by the ``+" symbol. 
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Inverted generational distance plus indicator. 
Distribution of the quality measures values for the different variants: $1A$ corresponds to the original 

WASF-GA, $2A$ to its version based on improving the dominated individuals and building a secant 
population, $3A$ to the one using the MOSASS mechanism, $4A$ to the one considering the advanced 

population, and $4B$ the algorithm also using the advanced population but only considering the points of 
the external list for the classification procedure. For (a) Epsilon and (b) IGD+, the lower the value, the 

better the quality of the Pareto front approximation. Contrarily, for (c) Hypervolume and (d) NumND, the 
higher the value, the better the quality. In these boxplot graphics, the lower and upper bounds of the box 

represent the first and third quartile, respectively; the line inside the box is the median; the lower and upper 
limits of the whiskers are the minimum and maximum values, respectively, without considering the outliers 

points represented by the ``+" symbol. 
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Hypervolume indicator. 
Distribution of the quality measures values for the different variants: $1A$ corresponds to the original 

WASF-GA, $2A$ to its version based on improving the dominated individuals and building a secant 
population, $3A$ to the one using the MOSASS mechanism, $4A$ to the one considering the advanced 

population, and $4B$ the algorithm also using the advanced population but only considering the points of 
the external list for the classification procedure. For (a) Epsilon and (b) IGD+, the lower the value, the 

better the quality of the Pareto front approximation. Contrarily, for (c) Hypervolume and (d) NumND, the 
higher the value, the better the quality. In these boxplot graphics, the lower and upper bounds of the box 

represent the first and third quartile, respectively; the line inside the box is the median; the lower and upper 
limits of the whiskers are the minimum and maximum values, respectively, without considering the outliers 

points represented by the ``+" symbol. 

216x180mm (72 x 72 DPI) 

Page 25 of 26

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Number of non-dominated points in the Pareto front approximation. 
Distribution of the quality measures values for the different variants: $1A$ corresponds to the original 

WASF-GA, $2A$ to its version based on improving the dominated individuals and building a secant 
population, $3A$ to the one using the MOSASS mechanism, $4A$ to the one considering the advanced 

population, and $4B$ the algorithm also using the advanced population but only considering the points of 
the external list for the classification procedure. For (a) Epsilon and (b) IGD+, the lower the value, the 

better the quality of the Pareto front approximation. Contrarily, for (c) Hypervolume and (d) NumND, the 
higher the value, the better the quality. In these boxplot graphics, the lower and upper bounds of the box 

represent the first and third quartile, respectively; the line inside the box is the median; the lower and upper 
limits of the whiskers are the minimum and maximum values, respectively, without considering the outliers 

points represented by the ``+" symbol. 
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