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COMPUTATION OF ELECTROMAGNETIC 
FIELDS IN ASSEMBLAGES OF 

BIOLOGICAL CELLS USING A MODIFIED 
FINITE DIFFERENCE TIME DOMAIN 

SCHEME 

  
Abstract— When modeling objects that are small compared 

with the wavelength, for example biological cells at radio 
frequencies, the standard Finite-Difference Time-domain (FDTD) 
method requires extremely small time-step sizes, which may lead 
to excessive computation times. The problem can be overcome by 
implementing a quasi-static approximate version of FDTD, based 
on transferring the working frequency to a higher frequency and 
scaling back to the frequency of interest after the field has been 
computed. An approach to modeling and analysis of biological 
cells, incorporating the Hodgkin and Huxley membrane model, is 
presented here. Since the external medium of the biological cell is 
lossy material, a modified Berenger absorbing boundary 
condition is used to truncate the computation grid. Linear 
assemblages of cells are investigated and then Floquet periodic 
boundary conditions are imposed to imitate the effect of periodic 
replication of the assemblages. Thus, the analysis of a large 
structure of cells is made more computationally efficient than the 
modeling of the entire structure. The total fields of the simulated 
structures are shown to give reasonable and stable results at 
900MHz, 1800MHz and 2450MHz. This method will facilitate 
deeper investigation of the phenomena in the interaction between 
EM fields and biological systems.  

  
Index Terms— Finite-Difference Time Domain (FDTD), 
quasi-static method, Floquet Periodic Boundary Conditions. 
 

I. INTRODUCTION 
 Research into possible mechanisms of interaction of 

electromagnetic (EM) fields with biological tissues and cells in 
culture has motivated a growing need for accurate models 
describing the EM behavior of cells exposed to these fields. 
Therefore, several numerical models have been created in order 
to study the interaction between EM fields and biological 
entities, at tissue level, cell level and ionic level. In this area, the 
most frequently used technique for computing the EM field is 
the finite-difference time-domain (FDTD) method [1,2], due to 
its independence from the material parameters.  
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The original Finite-Difference Time-Domain (FDTD) 
method requires extremely small time-step sizes when 
modeling electrically-small regions (much smaller than a 
wavelength): this is especially the case when modeling 
biological cells, since they have maximum dimensions of a few 
tens of micrometers. Thus, it can become impractical due to the 
unaffordable computation times required. This problem can be 
solved by implementing a quasi-static approximate version of 
FDTD. This approach is based on transferring the working 
frequency to a higher frequency, to reduce the number of time 
steps required. Then, the generated internal field at the higher 
frequency can be scaled back to the frequency of interest [3-6].  

Cells are surrounded by thin membranes, typically a few 
nanometres thick [7]. They are the major barrier in the cell, 
separating the inside of the cell from the exterior medium. It is 
this structure which allows cells to selectively interact with 
their environment. Therefore, the cell membrane has been 
identified as the primary target for the study of possible actions 
of EM fields on biological structures. Since the thickness of the 
membrane is about 1000 times smaller than the width of a 
typical biological cell, if the standard FDTD procedure were to 
be blindly applied to model detail in the membrane within a 
complete cell model, this would cause some millions of 
iterations to be required to complete one cycle of simulation. 
This again would cause excessive computation time. To 
overcome this drawback in standard FDTD, the lumped 
element finite different time domain method [8-11] was 
implemented to model the behavior of the membrane, based on 
the Hodgkin-Huxley model [12-16] on the surface of the 
biological cell. 

This paper presents the new approach to modeling and 
analysis of the Hodgkin and Huxley membrane model, which is 
represented as an electrical circuit on the surface of the 
biological equivalent cells. For the sake of simplicity, the 
analyzed structure has been represented with spherical or 
cubical cells and Floquet periodic boundary conditions [17-20] 
have been applied to the border of the analyzed structure in 
order to mimic the presence of the surrounding cells. Although 
cellular tissues are not perfectly periodic and living cells are not 
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precisely spheres or cubes, these approximations allow a 
reasonable approach to the modeling of biological tissue using 
only a small part of the structure, while alleviating the problem 
of the huge requirement of computer resources for the 
simulation of a complete body of tissue. Since the external 
medium of the biological tissue is lossy fluid, the modified 
Berenger perfectly matched layer (PML) absorbing boundary 
condition [21-24] is used to truncate the computation grid, in 
order to reduce the reflections on the interface layers: this is 
more accurate than the Mur boundary condition [25,26], used 
in other recent work [4].  

A further difficulty is the limited extent of studies on the 
dielectric properties of cell tissues [27]; thus, the complex 
permittivity of each cell tissue is not clearly established for 
radio frequencies. However, in this study, an analytical method 
for estimating the electrical properties of cell tissues in the RF 
band [28] will be adopted throughout the analysis. Earlier work 
only considered two media (water and membrane) [4], but the 
procedure adopted here enables the tissue model to consist of 
three media (lossy medium, membrane and cytoplasm). In 
addition, a mass of connected biological tissue is simulated by 
creating an equivalent stack of compacted cells (both spherical, 
with interstices, and fully-compacted cubical). The total 
electric fields along the central axes of rows of these spherical 
and cubical cellular structures will be investigated.  

II. SUMMARY OF METHOD 

A.  Quasi-Static FDTD Scheme 
The interaction between animals and humans exposed to 

extremely low frequency electric fields was investigated by 
Kaune and Gillis [29] and Guy et al. [30] in 1981 and 1982 
respectively. Their research outcomes furnish valuable 
analytical and experimental verification of the concept of 
quasi-static coupling at power-line frequencies. Later authors 
[5,6,31] implemented the same principles using finite 
difference time domain to study the numerical dosimetry of 
anatomically-based models. Recently, the same idea was 
further extended to modeling the interaction between 
electromagnetic fields and biological tissue at mobile 
communication frequencies, i.e. GSM900 and GSM1800 [4].  

In order to implement the quasi-static approximation to 
analyze scattering problems, the maximum dimension of the 
structure under investigation must be less than about one-tenth 
of the wavelength in the surrounding medium [29,30]. 
According to the scaling relationship between the fields at 
frequencies f and f’ that was derived in [5,30], a higher working 
frequency (f') that still falls within the quasi-static regime can 
be chosen to excite the model, to reduce the computation time. 

B. Modified Berenger PML 
The Perfectly Matched Layer (PML), introduced by 

Berenger [21] in 1994, allowed boundary reflections below 
-80dB to be realised. PML is based on surrounding the FDTD 
problem space with a highly lossy and matched non-physical 
absorber. It has been found to be the most accurate technique of 

the absorbing boundary conditions available and has become 
standard in most current FDTD implementations [32]. For the 
case of PML layers with conductivities increasing 
geometrically, the geometric grading factor (g) can be modified 
in order to reduce the reflection on the interface layer when the 
problem space is entirely within a lossy-medium environment. 
An empirical expression from which g can be found, and which 
has been found to give good results [23,24] is:  
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where ∆x is the spatial increment of the FDTD mesh, R(0) is 
the normal reflection coefficient, N is the number of the cells in 
the PML thickness, and c is the velocity of EM waves in the 
environment concerned.  

C. Floquet Periodic Boundary Condition 
Many structures of electromagnetic interest are electrically 

very large and hence pose great difficulties for computational 
simulation. One approach that can be used to reduce the size of 
the computational task is to exploit any periodicity in the 
structure, in one or more dimensions: this concept will be 
exploited here, assuming that a sample of tissue is formed from 
a periodic grid of biological cells. In order to perform EM 
analysis on these types of structure with reasonable 
computational time, the structures are assumed to be an infinite 
grid and the problem can then be reduced to a unit-cell analysis 
via use of the Floquet boundary condition to simulate the effect 
of the periodic replication.  

 
Fig. 1: Field distribution in and around a single isolated cell. 

 
The FDTD technique was applied to the basic structure due to 

its simplicity and flexibility. FDTD has already been 
successfully extended to incorporate the Floquet theorem for 
the case of normal [17,33] and oblique incidence [34,35] for 
two- and three-dimensional problems. The techniques used to 
combine FDTD with the Floquet periodic boundary condition 
can be classified into two categories, direct field methods and 
field transformation methods [2]. 
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D.  Hodgkin and Huxley Membrane Model 
Cells are surrounded by a thin membrane, which is the major 

barrier separating the cell from its environment (normally a 
liquid). Since the cell needs to get nutrients in and waste out, 
the membrane must be able to accommodate this. Therefore, 
the membrane has to act as a selective barrier, allowing 
nutrients to pass in but keeping out many substances harmful to 
the cell, and acting as a dynamic barrier medium, constantly 
adapting to changing environmental conditions (e.g. different 
concentrations of ions). 

The dimensions of a biological cell are around a few tens of 
micrometers and the thicknesses of the membranes are in the 
scale of a few nanometers, strongly depending on the type of 
the tissue. Depending on the type of the cell, voltages in the 
range of 20-200mV can arise across the membrane. When the 
cell is in a resting state, the current across the membrane 
averages zero, but more generally it depends on the variation of 
the membrane voltage [12].  

Hodgkin and Huxley gave a general description of the time 
course of the current which flows through the membrane of the 
squid giant axon when the potential difference across the 
membrane was suddenly changed from its steady state. The 
results in [12] suggest that the behaviour of membrane may be 
represented by an electric circuit [4,12]. Current can be carried 
through the membrane either by charging the membrane 
capacitance or by movement of ions through the nonlinear 
conductance in parallel with the membrane capacitance. A set 
of equations governing the model is given in [4,12]. 

 

III. IMPLEMENTATION AND VALIDATION 

A. Hodgkin-Huxley model implementation 
To verify the correctness of the implementation of the 

Hodgkin-Huxley model within the FDTD framework, the 
results of the analytically computed solution have been used for 
comparison. The Hodgkin-Huxley model was implemented on 
a spherical structure with diameter 50 µm and discretised with 1 
µm steps, in order to check for the expected polarization 
voltage of 60.27 mV on the membrane [4]. The 
Hodgkin-Huxley model was included on the surface of the cell, 
while the regions internal and external to the sphere were 
considered as cytoplasm and lossy medium respectively. It 
should be noted that the lumped-element FDTD method has 
been successfully modified in order to allow arbitrary 
positioning of lumped elements inside FDTD elements 
representing the membrane, not necessarily aligned with the 
FDTD grid [4], so that they represent the structure more exactly 
than simple FDTD. Fig. 1 depicts the expected polarization 
voltage of 60.27mV, appearing on the membrane of the 
spherical structure without any external excitation.  

B. Quasi-static FDTD validation 
In this section, a simple example will be given to illustrate 

this method: the results will be compared with the Mie series 
analytical solution [36,37]. A two-layer sphere simulating a 

biological cell inside a lossy medium was considered, for which 
the assumed properties were as follows [38]: cytoplasm 
(internal) εr = 48.699, σ = 1.412 S/m; membrane εr = 11.3, σ = 
0.0 S/m; external lossy medium εr = 70.87, σ = 2.781 S/m. The 
radius of the internal region was 25 µm and the membrane 
thickness was set to 2 µm. The operating frequency was 2.45 
GHz, whereas the interim transformed frequency used in this 
example was 30 GHz. From equation (1), the optimum grading 
factor g is 6.07 for an FDTD cell size of 1 µm. It should be 
noted that this model in the FDTD computation domain is 
excited by a standard plane wave of amplitude 1 V/m, 
propagating in the z-direction and polarized in the x-direction. 
The field distributions along the two central axes of the layered 
cell are depicted in Figs. 2 and 3. As can be seen, the numerical 
results are in good agreement with the analytical ones. It should 
be noted that the method was executed for a total time equal to 
four cycles. 

 
Fig. 2: Electric Field (Ex) distribution along principal axes of a double-layer 

sphere in lossy medium, excited by a plane wave of 1 V/m at 2450 GHz. 
 
 

 
Fig. 3: Electric Field (Ez) distribution along the x-axis for double-layer sphere 
in lossy medium, excited by plane wave of 1 V/m at 2450 GHz. 
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C. Implementation of Floquet Boundary Condition  
This section demonstrates the implementation of Floquet 

boundary conditions, quasi-static FDTD and the present 
modified PML for a lossy medium excited by a 100 V/m plane 
wave at an operating frequency of 900 MHz. The lossy medium 
properties were εr = 1.0, σ = 25 S/m. The problem space and 
cell sizes were 21×21×121 and 10µm respectively. The Floquet 
boundary conditions were imposed on four sides of the lossy 
medium. The remaining two sides were each terminated by a 
PML of 6 cells. The analyses were performed at 10, 15 and 
20GHz and then transferred back to the desired operating 
frequency of 900MHz. As can be observed in Fig. 4, the 
analytical and computed results are in good agreement. 

 

 
Fig. 4: Electric Field along the centre of the lossy medium. 

IV. SIMULATION AND RESULTS 

A.  Connected Tissue Model Using Spherical Cells 
A stack of ten spherical cells was investigated, as shown in 

Figs. 5 and 6. The radius of the each cell was 10 µm. The model 
contained three media, cytoplasm, membrane and extracellular 
medium, and the dielectric properties of these were obtained 
from [28], as tabulated in Table I. A plane wave of 100 V/m, 
propagating in the z-direction and polarized in the x-direction 
was used as the excitation. Note that the incident plane wave 
excitation was applied on a plane lying between the PML 
region and the outer limit of the FDTD grid. In addition, in 
order to reduce high-frequency transients [39,40] and DC 
offsets [41,42] sometimes associated with unramped sine wave 
excitations, the ramped sinusoidal source in equation (2) was 
adopted, multiplying the excitation source of 100 V/m with the 
f(t) functions given [41]. 
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Where Tr is the duration of the ramped cosine regime, which 
is about 3 source cycles.  
 

TABLE I. 
ELECTRICAL PROPERTIES OF THE SIMULATED MEDIA AT 

RELEVANT FREQUENCIES 
 900 MHz 1800MHz 2000MHz 2450MHz 10GHz 

εi 72.2003 71.956 71.88 71.6806 63.5023 
σi 0.4168 0.7656 0.8742 1.1590 12.8384 
εm 1.6526 1.5680 1.5621 1.5536 1.5371 
σm 0.0217 0.0232 0.0233 0.0234 0.0237 
εe 72.2003 71.956 71.88 71.6806 63.5023 
σe 1.3168 1.6656 1.7742 2.0590 13.7384 

 

 
Fig. 5: Two-dimensional view of the simulated periodic structure in the FDTD 

computational domain, extended by the Floquet boundary condition. 
 

 
Fig. 6: Three-dimensional view of the basic simulated spherical structures in the 

FDTD computational domain. 
 

The PML, shown in Fig. 6, was 6 FDTD elements wide, the 
grading factor g was 10.1383 and the grid structure was 
effectively extended to infinity in the x- and y-directions, by 
imposing the Floquet boundary condition along the x and y 
axes. The Floquet periodic boundary condition plays an 
important role to mimic the presence of an extended 
3-dimensional structure of biological cells, simulating 
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connected tissue. This can be easily imagined in two 
dimensions, as shown in Fig. 5. The FDTD problem space was 
220×20×20 FDTD elements of size 1µm while a discretization 
time step δt of 1.3 femtoseconds was chosen to drive the FDTD 
computation, to meet the requirements of the Courant stability 
criterion.  

Before implementing the Hodgkin-Huxley model into the 
simulated structure, the effect of moving the Floquet 
boundaries gradually away from the simulated structure was 
studied. Figs. 7 and 8 depict the field distribution through the 
centre of the simulated structure at 10GHz with varying 
locations of the Floquet boundaries, where Ncell is the number 
of FDTD elements between the Floquet boundaries and the 
boundaries of the biological cells, in the x and y directions. Fig. 
9 shows the field distribution on the xz-plane of the simulated 
structure for the case of Ncell = 10. When the Floquet 
boundaries are exactly adjacent to the simulated structure 
(Ncell = 0), the strongest coupling effect between cells can be 
obtained: the highest induced field on the membrane and lowest 
induced field in the cytoplasm of the cell can be observed. 
Conversely, when the Floquet boundaries are far away from the 
simulated structure (Ncell = 10), the lowest induced field on the 
membrane and highest induced field in the cytoplasm of the cell 
are observed. It should be noted that all the following analysis 
will be based on Ncell = 0, which is assumed to be the most 
appropriate model for the real living biological tissues or cells 
in this micro-dosimetry study.  

The simulations were performed at the transformed 
intermediate frequency of 10GHz and the overall model was 
then transformed to the intended lower frequencies. Table II 
reports the transformation factors at 900MHz, 1800MHz, 
2000MHz and 2450MHz that were used in the analysis [43].  

 
Fig. 7: Electric field distribution along z-axis, through the centre of the 
simulated structure, showing effect of different spacings to the Floquet 

boundary condition (Ncell is the number of FDTD elements from the biological 
cell wall to the boundary). 

 

 
Fig. 8: Electric field distribution (Enlargement of Fig.7) 

 

 
Fig. 9: Modulus of the electric field on the xz-plane at intermediate frequency 
10GHz, with Floquet boundary spaced 20 FDTD elements from the biological 

cell walls. 
 

TABLE II.  
FREQUENCY SCALING TRANSFORMATION FACTOR FROM 10GHZ 

TO THE MOBILE COMMUNICATION FREQUENCIES GIVEN 
Parameter 900MHz 1800MHz 2000MHz 2450MHz 
Cytoplasm 
Membrane 

Extracellular 
medium 

0.9296 
0.9 

0.8867 

0.9337 
0.97 

0.9226 

0.9344 
0.9756 
0.9254 

0.9360 
0.9838 
0.9301 

 
Fig. 10 illustrates the 10GHz field distribution on the 

xz-plane of the simulated structure. The distributions of the 
electric field through the centre of the simulated structure, 
along the incident wave propagation direction, at 900MHz, 
1800MHz, 2000MHz and 2450MHz are given in Figs. 11 and 
12, where Fig. 12 is an enlarged version of Fig. 11. From 
inspection of Fig.12, the field inside the cells is not constant 
and the induced field intensity is directly proportional to the 
frequency. In the other words, the higher the operating 
frequency that is used to excite the model, the higher the 
electric field intensity that will be induced within the analyzed 
structures. 

Fig.10: Modulus of the electric field on xz-plane at intermediate frequency 
10GHz, with Floquet boundary adjacent to the biological cell walls. 
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Fig. 11: Electric field distribution along z axis, through the centre of the 

simulated structure in Fig. 10. 

 
Fig. 12: Electric field distribution along z axis through the centre of the 

simulated structure in Fig. 11 (Enlargement). 
 

To complete the simulation, the Hodgkin-Huxley models 
were embedded in the surface of the spherical cells, in a 
direction normal to the surface, to represent the membrane 
effect of the tissue model. Versions including this were studied 
at frequencies of 900MHz and 2450MHz. As can be seen in 
Figs. 13 and 14, there is a difference of approximately 15% in 
the field strength due to the contribution of the membrane effect 
from the Hodgkin-Huxley model: these variations were in good 
agreement with expectations [4,12,28]. 

 
Fig.13: Electric field distribution along z-axis, through the centre of the 

simulated spherical structure in Fig.10, incorporating Hodgkin-Huxley model 
and driven at 900MHz. 

 

 
 

Fig. 14: As Fig. 13, driven at 2450MHz. 
 

B. Connected Tissue Model Using Cubical Cells 
Since living cells, when compacted into connected tissue, are 

not perfect spheres, a cluster of cubical cells was chosen for 
study on the foundation of the previous spherical-cells analysis. 
Fig. 15 depicts the proposed cluster of cubical cells in a three 
dimensional view of the FDTD computational domain. In order 
to compare the results obtained from the previous model with 
this analysis, an FDTD simulation was executed, keeping the 
same parameter values as in the previous configuration. The 2D 
view of the electric field inside the cubical-cell tissue is shown 
in Fig. 16. The field distributions along the propagation 
direction of the incident wave, through the centre of the 
simulated structure at various frequencies, are illustrated in 
Figs. 17 and 18. The contribution of the Hodgkin-Huxley 
model to the cubical tissue model has also been investigated, as 
shown in Figs. 19 and 20. The effect of adding the 
Hodgkin-Huxley model is about 15% difference in field, as can 
be seen from the figures. 
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Fig. 15: Three-dimensional view of the simulated cubical structures in the 

FDTD computational domain. 
 

 
Fig.16: Modulus of the electric field on xz-plane at intermediate frequency 

10GHz with Floquet boundary adjacent to the biological cell walls. 

 
 

Fig.17: Electric field distribution along z-axis, through the centre of the 
simulated cubical structure 

 
The peak field on the membrane of the cubical structure is 

observed to be about three times higher than in the cytoplasm, 
which agrees well with the results from the structure based on 
spherical cells. However, the absolute field strength is 
approximately doubled in the spherical-cell case, presumably 
because of the curvature at the points studied: it is to be 
expected that much higher fields would be observed at the 
corners of the cubical cells, but it might be argued that, as a 
localised matter, these points do not correspond well with 
biological reality.  

 
Fig.18: Electric field distribution along z-axis, through the centre of the 

simulated cubical structure (Enlargement of Fig. 17) 
 

 
Fig.19: Electric field distribution along z-axis, through the centre of the 

simulated cubical-cell structure in Fig. 16, incorporating Hodgkin-Huxley 
model and driven at 900MHz. 

V. CONCLUSION 
An approach to microdosimetric modeling of 

bioelectromagnetic interactions at the cellular level has been 
presented. This uses the FDTD method, combined with an 
arbitrarily-oriented implementation of the Hodgkin-Huxley 
cell-membrane model and the Floquet periodic boundary 
condition. By implementing a frequency-scaling approach, the 
number of FDTD time steps for such an electrically-small 
structure can be reduced from several millions to a few tens of 
thousands. The reflection on the interface layers inside the 
FDTD computation domain has also been successfully reduced, 
even though it is within lossy penetrable media, by using a 
modified version of Berenger’s absorbing boundary condition. 
The accuracy of the FDTD scaling approach was verified with 
idealized models of spherical cells in lossy media. The 
feasibility of the inclusion of the HH model inside the FDTD 
computation domain was demonstrated. This leads to the 
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conclusion that the application of the HH model allows cells of 
arbitrary geometries to be handled and demonstrates the 
viability of embedding other types of lumped-element model 
for membrane behavior. It can be argued that the HH model is 
imperfect for microwave frequencies, but it is reasonable to use 
it as a working hypothesis (as have others [4]) to develop 
modeling techniques while operational versions of improved 
models are still in development. 

 

 
Fig.20: As Fig. 19, driven at 2450MHz. 

 
Use of the Floquet boundary condition enables a non-trivial 

region of connected biological tissue to be simulated. Such a 
tool will facilitate deeper investigation of the phenomena in the 
interaction between EM fields and biological systems at 
various levels of spatial definition. The combination of 
quasi-static FDTD with an arbitrarily-oriented lumped element 
membrane model, the modified Berenger absorbing boundary 
condition and the Floquet periodic boundary condition 
represents a significant advance in verisimilitude of biological 
cell modeling. 
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