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Abstract: The feasibility study of a novel configuration for a super-wide impedance planar antenna 16 
is presented based on a 2×2 microstrip patch antenna (MPA) using CST Microwave Studio. The 17 
antenna comprises a symmetrical arrangement of four-square patches that are interconnected to 18 
each other with cross-shaped high impedance microstrip lines. The antenna array is exciting 19 
through a single feedline connected to one of the patches. The proposed antenna array configuration 20 
overcomes the main drawback of conventional MPA of narrow bandwidth that is typically < 5%. 21 
The antenna exhibits a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11<-15dB, 22 
which corresponds to a fractional bandwidth of 142.85%. The antenna’s performance of bandwidth, 23 
impedance match, and radiation gain were enhanced by etching slots on the patches. With the 24 
inclusion of the slot the maximum radiation gain and efficiency of the MPA have increased to 15.11 25 
dBi and 85.79% at 80 GHz, which show an improvement of 2.58 dBi and 12.54%, respectively. The 26 
dimension of each patch antenna is 4.3×5.3 mm2. The results show that the proposed MPA is useful 27 
for various communications existing and emerging systems such as ultra-wideband (UWB) 28 
communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar 29 
systems. 30 
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 34 

1. Introduction 35 

Demand for antennas that possess desirable characteristics such as light weight, low profile and 36 
high gain have burgeoned significantly with the rapid development of modern wireless 37 
communication systems [1, 2]. Antennas implemented on microstrip medium exhibit some of these 38 
desirable properties which makes them very popular in RF/microwave transceiver systems as they 39 
are compatible with integrated circuit technology and are relatively cheap and easy to fabricate [3-40 
10].  In addition, microstrip patch antennas (MPAs) can be made to be conformal to planar and non-41 
planar surfaces. The radiation mechanism arises from discontinuities at each truncated edge of the 42 
microstrip transmission line. The radiation at the edges causes the antenna to act slightly larger 43 
electrically than its physical dimensions, so in order for the antenna to be resonant, a length of 44 
microstrip transmission line slightly shorter than one-half a wavelength at the frequency is used. 45 
Various techniques have been developed previously to enhance the antenna’s impedance bandwidth 46 
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and reduce its physical footprint, and hence the MPA has become extensively used in various 47 
wireless communication applications. Nevertheless, conventional microstrip patch antennas still 48 
suffer from narrow impedance bandwidth which is typically less than 5% and low radiation 49 
efficiency [1-4]. In addition, the operation of MPA is restricted to the microwave band. 50 

In this paper, we have proposed a simple method to overcome the main drawback of the 51 
conventional microstrip patch antenna, and thereby realised a super-wide impedance bandwidth 52 
antenna. The design of the antenna is based on implementing four interconnected square patches in 53 
close proximity and arranged in an array configuration. Each patch constituting the antenna is loaded 54 
with the rectangular slot to improve its performances without increasing the size of the patches. This 55 
is implemented by simply etching a slot inside each radiating patch. The slot essentially like series 56 
left-handed capacitance and the resulting patch exhibits simplified composite right/left-handed 57 
(SCRLH) metamaterial properties [11-13]. The proposed microstrip patch antenna design is 58 
applicable for various communications existing and emerging systems such as ultra-wideband 59 
(UWB) communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and 60 
radar systems. 61 

2. Proposed Microstrip Antenna Sructure 62 

The proposed antenna structure is composed of four-square patches in a 2×2 arrangement, as 63 
shown in Fig. 1. The antennas are interconnected with a cross-shaped high-impedance line. The 64 
design of the square patches is based on conventional theory. The width and length of the patch were 65 
calculated using the following standard design equations [14].  66 
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The microstrip patch was designed at 20 GHz on standard theory on a high frequency ceramic-filled 71 
PTFE composite dielectric substrate by Rogers RO3003 with dielectric constant of 3.0, loss-tangent of 72 
0.001 and thickness of 0.13 mm. The physical dimensions of the proposed antenna configuration are 73 
given in Table I. The resulting antenna is low profile and simple to design and fabricate. Unlike 74 
conventional microstrip antenna arrays the proposed antenna array is excited through a single 75 
feedline connected to one of the antennas. 76 

    77 

Figure 1. The proposed microstrip antenna array. 78 
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The reflection-coefficient response in Fig. 2 of the proposed MPA array structure shows its 79 
impedance bandwidth extends from 20 GHz to 120 GHz for S11 < -10 dB with four narrow band-80 
notches at 62.5, 77.5, 97.5, and 120 GHz. 81 

 To improve the array’s performances and extend its effective aperture area the four patches are 82 
loaded with a rectangular slot, as shown in Fig. 3. With the slots the reflection-coefficient is 83 
significantly improved. Now, the impedance bandwidth from 20 GHz to 120 GHz is achieved for S11 84 
< -17.5 dB with no narrow band-notches. In the patch structure the slot essentially like series left-85 
handed capacitance and the resulting patch exhibits simplified composite right/left-handed (SCRLH) 86 
metamaterial properties [11-13]. It is evident from Fig. 2 that there is a distinct improvement in the 87 
reflection-coefficient from 20-120 GHz. The improvement in the antenna’s performance is attributed 88 
to a combination of metamaterial effects and the complex interaction resulting from the surface 89 
currents over the antenna and electromagnetic fields. With the proposed technique the dimensions 90 
of the antenna structure remain unaffected. It was however necessary to optimize the dimensions of 91 
the slots to enhance the reflection-coefficient response of the antenna array, and the optimised 92 
dimensions are given in Table 1. 93 

The radiation gain and efficiency of the antenna array with no slot and with slot are shown in 94 
Figs. 4 and 5, respectively. These figures show with no slot the antenna gain and efficiency reach a 95 
peak of around 12.53 dBi and 73.25% at 80 GHz, respectively, however with application of slot the 96 
optimum gain and efficiency improve to 15.11 dBi and 85.79% at 80 GHz, respectively. Therefore, an 97 
average improvement of 2.58 dBi and 12.54% on the maximum radiation gain and efficiency have 98 
achieved, respectively. The details of the radiation properties have tabulated in Table 2. 99 

 100 

Figure 2. Reflection-coefficient (S11<-10dB) response of the microstrip antenna array “without” slot 101 
and “with” slot using two different commercially available 3D full wave electromagnetics 102 

simulation tools (CST Microwave Studio® and HFSS™). 103 
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 104 

Figure 3. Configuration of the proposed microstrip antenna array with a ground-plane. 105 

Table 1. Antenna Structural Parameters 106 

L1 14.7 mm  W1 17.5 mm 

L2 4.3 mm  W2 5.3 mm 

L3 4.5 mm (λ0/4)  W3 0.3 mm (50Ω) 

L4 4.3 mm (0.52×L2)  W4 0.52 mm (0.1×W2) 

L5 2.4 mm (λ0/4)  W5 0.3 mm (50Ω) 

L6 2.4 mm (λ0/4)  W6 0.32 mm (0.6×W2) 

 107 

 108 

Figure 4. Gain response for both cases “with no” slot and “with” slot using two different 109 
commercially available 3D full wave electromagnetics simulation tools (CST Microwave Studio® 110 

and HFSS™). 111 

 112 

 113 
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 114 

Figure 5. Radiation efficiency response for both cases “before apply” the slot and “after apply” the 115 
slot using two different commercially available 3D full wave electromagnetics simulation tools (CST 116 

Microwave Studio® and HFSS™). 117 

Co- and cross (X) polarization radiation patterns of the proposed microstrip antenna array 118 
in the E- and H-planes are shown in Fig. 6 at spot frequencies of 30, 60, 90, and 120 GHz in 119 
its operating range. This show the antenna is directional in the E-plane with sidebands 120 
about 15 dB down from the main beam. It is observed that at 60 GHz the beamwidth 121 
doubles and the gain drops down by an average of 3 dB. In the H-plane the beamwidth 122 
extends from around -50 to +80 degrees and the radiation gain various with frequency. In 123 
both planes the cross polarization is significantly below the main beam. 124 

      125 

Figure 6. Co- and Cross-radiation patterns of the proposed microstrip antenna arrays “with” slots in 126 
the E- and H-planes at spot frequencies over its operating band. 127 

The surface current distributions before and after applying the slots at an arbitrary 128 
frequency of 80 GHz in the antenna’s operating range is shown in Fig. 7. This figure shows 129 
that with no slot the current is mainly concentrated around the excitation patch however 130 
when slots are introduced the current is more evenly distributed between the four patched. 131 
This reveals greater interaction is realized between the four patches that results in 132 
significantly improved reflection-coefficient over a super-wide frequency range. 133 

 134 
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Table 2. Radiation Performance Parameters. 136 

Radiation gain (with no slot) 

Minimum Maximum Average 

5.75 dBi 12.53 dBi 8 dBi 

Radiation gain (with slot) 

7.88 dBi 15.11 dBi 12 dBi 

Improvement 

2.13 dBi 2.58 dBi 4 dBi 
 137 

Radiation efficiency (with no slot) 

Minimum Maximum Average 

60.82% 73.25% 66% 

Radiation efficiency (with slot) 

67.41% 85.79% 78% 

Improvement 

6.95% 12.54% 12% 

 138 

        139 

                             (a) “without” slots                                                                 (b) “with” slots 140 

Fig.7. Surface current distributions at spot frequency of 80 GHz, (a) “without” slots, and (b) “with” slots. 141 

    It is worth to comment that, to validate the results we have modelled and simulated the proposed structure 142 
with two different 3D full-wave electromagnetic simulation tools (CST Microwave Studio® and HFSS™). There 143 
is excellent correlation between CST Microwave Studio® and HFSS™ results. CST Microwave Studio® uses 144 
Method of Moments (MoM) to arrive at the solution whereas HFSS™ uses Finite Element Method (FEM).  145 

3. Comparison with Other Recent Designs 146 

     The proposed antenna is compared planar wideband antennas reported to date design technique, 147 
size, dielectric constant and operating frequency. The comparison is summarized in Table 3. 148 
Compared to other antennas the proposed antenna has much smaller footprint and operates over 149 
significantly wider impedance bandwidth. In addition, it is simple to design and implement. 150 

 151 

 152 
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Table 3. Comparison with Recently Reported Antennas 154 

Refs. Technique Antenna size (mm3) Dielectric 

constant 

Operating 

frequency (GHz) 

[16] Inverted L-resonator 30.5 × 24 × 1.5 3.38 3.1–10.6 

[17] Annular slot 26 × 24 × 1.6 4.6 3–10.6 

[18] Rectangular slots 16 × 14 × 1 4.4 3.2–10 

[19] Circular slots 30 × 26 × 1.6 4.4 2.5–11 

[20] Inverted U-strip 50 × 45 × 1.27 6.0 3.1–10.6 

[21] Split ring resonators 30 × 26 × 1.6 3.5 2.4–10.1 

[22] lamp shaped antenna 28×15× 

1.6 

4.4 2.7–14 

[23] Cap. Integrated antenna 30.5 × 24 × 1.5 3.3 3.1–10.6 

[24] L-shaped stub 46 × 42 × 1 4.4 3.1–10.6 

[25] Loading quarter wavelength 

resonating strip 

38 × 30 × 1.6 4.4 3.1–10.6 

and 

2.4–2.5 

 

 

[26] Loading TL-MTM within 

UWB antenna 

38.5 × 46.4 × 1.6 4.4 3.1–10.6 

and 

2.43–2.49 

[27] No integration 52 × 32 × 1.6 4.4 3.1–10.6 

[28] Loading quarter wavelength 

resonating strip at the center 

of the patch 

50 × 24 × 1.6 4.4 3.1–11.4 

and 

2.18–2.59 

[29] Loading parasitic strip 46 × 20 × 1.0 2.4 3.1–10.6 

and 

2.40–2.48 

[30] Loading quarter wavelength 

resonating strip at the center 

of the patch 

42 × 24 × 1.6 4.4 3.1–12.0 

and 

2.30–2.50 

[31] Loading strip-line to the 

patch 

45 × 32 × 1.0 4.4 3.1–10.6 

and 

2.40–2.50 

[32] Capacitors loaded 

miniaturized resonator in 

the ground plane 

30 × 31 × 1.5 3.38 3.1–10.6 

and 

2.4–2.48 

[33] Band-pass filter integration 35 × 24.4 × 2 3.38 2.8–6 

[34] Dielectric loading 61 × 61 × 8 ~4.0 1.6–12 

This paper SCRLH metamaterial 4.3 × 5.3 × 0.13 3.0 20–120 

4. Conclusion 155 

The feasibility of a novel configuration for a 2×2 microstrip patch antenna based on metamaterial 156 
concept using CST Microwave Studio is shown to exhibit super-wide impedance bandwidth 157 
extending from 20 GHz to 120 GHz for S11 <-15 dB, which corresponds to a fractional bandwidth of 158 
142.85%. The average gain and radiation efficiency of the antenna are 12 dBi and 78%, respectively, 159 
which show 4.0 dBi and 12% improvement after applying the slots. The proposed antenna structure 160 
overcomes the narrow bandwidth of conventional microstrip patch designs. The antenna can be used 161 
at microwaves and millimetre-wave applications including UWB, RFID systems, massive MIMO for 162 
5G, and radar systems.  163 
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