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 2 

Abstract  23 

Inflammatory Bowel Disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis, 24 

is characterised by chronic inflammation of the gastrointestinal tract. Aetiology involves a 25 

combination of genetic and environmental factors resulting in abnormal immune responses 26 

to intestinal microbiota.  Genetic studies have strongly linked genes involved in autophagy to 27 

CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered 28 

in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER) and 29 

autophagy plays a key role to relieve ER-stress and restore homeostasis. This review 30 

summarises the known interactions between autophagy and the UPR and discusses the 31 

impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-32 

term treatments for IBD, targeting of synergistic pathways may provide novel and more 33 

effective therapeutic options.  34 

Keywords:  IBD, autophagy, unfolded protein response, ER stress. 35 
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 3 

Introduction  37 

Inflammatory Bowel Disease (IBD) is a group of inflammatory diseases that includes Crohn’s 38 

disease (CD), ulcerative colitis (UC) and IBD unclassified (IBDU). The incidence rate for IBD is 39 

approximately 50-200 in 100,000 persons per year in Western countries [1] and following 40 

diagnosis the natural history of the condition is characterized by periods of relapse and 41 

remission, with symptoms commonly including abdominal pain, chronic diarrhoea, weight 42 

loss and lethargy [2]. CD is distinguished from UC due to the presence of submucosal or 43 

transmural inflammation and macroscopic changes that often occur in a non-contiguous 44 

pattern anywhere within the digestive tract [1]. UC is localised to the colon and inflammation 45 

is limited to the mucosa and epithelial lining of the gastrointestinal (GI) tract [2]. Patients can 46 

be diagnosed with IBDU when a conclusive distinction between CD and UC cannot be made, 47 

although this may well represent a distinct sub-type. At present there is no cure for IBD and 48 

medications such as corticosteroids, aminosalicylates, immunomodulators and biological 49 

agents are aimed at inducing and maintaining remission of disease by modifying inflammatory 50 

processes [3].  51 

The aetiopathology of IBD is multifactorial in nature, with genetic predisposition, 52 

environmental triggers (e.g. smoking, appendicectomy, diet, pollution, antibiotics and stress) 53 

and a dysregulated mucosal immune response contributing to disease [4]. Examination of the 54 

gut microbiome has revealed that IBD is associated with microbial dysbiosis, including an 55 

expansion of facultative anaerobic bacteria of the family Enterobacteriaceae [5]. Several 56 

potentially causative agents have been identified, most notably Escherichia coli strains with 57 

an adherent and invasive phenotype (AIEC) are associated with ileal mucosa in CD [6]. 58 

Genome wide association studies (GWAS) have identified 240 IBD susceptibility loci to date 59 
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 4 

[7], and have confirmed association with previously recognised susceptibility genes including 60 

Nucleotide-binding oligomerisation domain-containing protein 2 (NOD2). GWAS have also 61 

identified the strong association of CD with genes involved in the autophagy pathway, 62 

including autophagy-related protein (ATG)16L1, Immunity-related GTPase family M protein 63 

(IRGM) and leucine rich repeat kinase 2 (LRRK2) [8].  The strong association of IBD with 64 

endoplasmic reticulum (ER) stress/Unfolded protein response (UPR) genes including x-box-65 

binding protein 1 (XBP1) [9] and genes involved in intestinal barrier function  such as MUC2 66 

[10] and Anterior gradient 2 (AGR2) [11] have been detected by gene targeted approaches. 67 

Together, these genetic studies have led to increased research exploring links between 68 

autophagy and ER stress/UPR dysregulation and IBD pathogenesis. 69 

Autophagy 70 

 71 

Autophagy is an intracellular process that plays an important housekeeping role by degrading 72 

excessive, damaged or aged proteins and organelles to maintain cellular homeostasis [12]. 73 

Basal autophagy is tightly regulated by the coordinated activity of autophagy-related (ATG) 74 

proteins [13] and  constitutes an important survival mechanism induced in response to 75 

multiple stress conditions such as nutrient deprivation, hypoxia, DNA damage or intracellular 76 

pathogens [12]. There are three main types of autophagy in mammalian cells; 77 

macroautophagy (herein referred to as autophagy), microautophagy and chaperone-78 

mediated autophagy [12].  79 

When autophagy is initiated a double membrane vesicle is formed (the autophagosome) 80 

around the cargo to be degraded (Figure 1). The mature autophagosome then fuses with a 81 

lysosome to form an autophagolysosome, in which lysosomal enzymes degrade the inner 82 
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 5 

membrane and cargo and the resulting macromolecules are released into the cytosol for 83 

recycling (Figure 1).  84 

Selective types of autophagy also exist, including autophagy of microorganisms (xenophagy) 85 

and autophagy of the ER membrane (ER-phagy), which use specific receptors and adaptor 86 

proteins to link the cargo to the autophagy machinery [14]. For example, Sequestosome 87 

1/p62-like receptors (SLRs) target cytosolic pathogens and other cargo to initiate autophagy 88 

[15]. SLRs function by binding to the small regulatory protein ubiquitin on the surface of cargo 89 

[16–18] and subsequently associate  with the autophagy machinery via a binding motif called 90 

the LC3-interacting region (LIR) [19]. Adaptor proteins, such as autophagy-linked FYVE protein 91 

(ALFY), can also bind ubiquitinated pathogens via p62 to promote association with the 92 

autophagy machinery [20]. To date, five main types of SLR have been described; 93 

sequestosome 1/p62, optineurin [18], NBR1 (Neighbor of BRCA1 gene 1) [21], NDP52 (Nuclear 94 

Domain 10 Protein 52) [17] and the NDP52-like receptor calcoco3 (Calcium-binding and 95 

coiled-coil domain-containing protein 3) [22], and specific cargo receptors are important for 96 

distinct types of selective autophagy. For example, a recent study has shown that the non-97 

canonical cargo receptor cell-cycle progression gene 1 (CCPG1) is essential for ER-phagy [23], 98 

while another study demonstrated an integral role for optineurin in the maintenance of ER 99 

homeostasis by assisting the removal of hyper-activated UPR kinases [24].  100 

Autophagy and CD 101 

Autophagy affects many essential cellular processes and dysregulation of autophagy has been 102 

linked to a multitude of human diseases [25]. Autophagy plays an important role in both 103 

innate and adaptive immune signalling pathways and loss of immune regulation is a key event 104 
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 6 

leading to the chronic inflammation observed in CD [26]. Impaired autophagy responses have 105 

been observed in a range of cell types derived from CD patients including the specialized 106 

intestinal epithelial cells (IECs) Paneth cells and goblet cells, and leukocytes, such as 107 

macrophages and dendritic cells [27].  108 

Functional studies have linked impaired autophagy to CD-associated genetic variants in 109 

NOD2, ATG16L1, IRGM and LRRK2. The single nucleotide polymorphism (SNP) in ATG16L1 110 

causes a single amino acid change from threonine to alanine at position 300 (T300A) [28], 111 

which is associated with Paneth cell and goblet cell dysfunction, and significantly impairs 112 

autophagic clearance of pathogens [29–32]. IRGM is required for the initiation of xenophagy 113 

and the clearance of intracellular organisms such as Mycobacterium tuberculosis [33] and 114 

dysregulation of IRGM expression compromises the control of intracellular replication of CD-115 

associated adherent invasive Escherichia coli (AIEC) by autophagy [34]. LRRK2 expression is 116 

increased in colonic biopsy specimens from patients with CD [35] and functionally LRRK2 can 117 

enhance NFκB-dependent transcription, while small interfering RNA [siRNA] knockdown of 118 

LRRK2 interferes with bacterial killing [35]. 119 

NOD2 is a member of the Nod-like receptor (NLR) family of pattern recognition receptors 120 

(PRR) and recognises a component of the bacterial cell wall muramyl dipeptide (MDP) to 121 

induce innate immune responses [36]. CD-associated NOD2 SNPs (R702W, G908R and 122 

L1007fs) affect the leucine rich repeat domain disrupting interaction with MDP and 123 

abrogating immune responses initiated by this receptor [37]. The immunoregulatory 124 

properties of NOD2 have also been linked to autophagy, and CD susceptibility is heightened 125 

when ATG16L1 and NOD2 variants present in combination, causing synergistic genetic 126 

epistasis [38,39]. A direct functional interaction between these proteins has been 127 
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 7 

determined; NOD2 was shown to recruit ATG16L1 to the plasma membrane to initiate 128 

autophagy at the sites of bacterial entry [40], and in a separate study IRGM was shown to 129 

regulate the formation of a complex containing NOD2 and ATG16L1 that is necessary for the 130 

induction of xenophagy [41]. The interaction of IRGM with NOD2 also stimulates 131 

phosphorylation cascades involving AMPK, ULK1 and Beclin1 that regulate autophagy 132 

initiation complexes [41]. Cells harbouring CD-associated NOD2 variants and/or the ATG16L1 133 

T300A variant exhibit a number of disrupted functions linked to autophagy including reduced 134 

production of antimicrobial peptides, enhanced pro-inflammatory responses and aberrant 135 

activation of adaptive immune responses [40,42–44]. 136 

Significantly, abnormalities in the secretory capacity of Paneth cells are observed in mice 137 

deficient for ATG16L1 [30,45,46], NOD2 [47,48], IRGM [49] and LRRK2 [50] indicating that 138 

autophagy plays an essential and specific role in Paneth cell function. Despite the significant 139 

effects on Paneth cell function, mouse strains developed for deficiency in functional ATG16L1 140 

do not exhibit spontaneous intestinal inflammation [29–31]. In contrast, a mouse strain with 141 

targeted deletion of ATG16L1 in IECs developed a spontaneous transmural ileitis similar to 142 

ileal CD [24]. Furthermore, targeted deletion of ATG16L in haematopoietic cells can enhance 143 

susceptibility to DSS-induced acute intestinal injury in mice [51] and ATG16L1 deficiency in 144 

myeloid cells in a mouse strain led to disrupted macrophage function and bacterial clearance 145 

[52]. Murine models with non-functional NOD2 do not develop spontaneous colitis [53], 146 

however a NOD2 mutation similar to the L1007fs mutation increased susceptibility to DSS-147 

induced colitis in mice [54]. Irgm1-deficient mice also exhibit abnormalities in Paneth cells, 148 

accompanied by increased susceptibility to inflammation in the colon and ileum [49]. Finally, 149 

LRRK2 deficiency confers enhanced susceptibility to experimental colitis in mice, which was 150 
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associated with enhanced nuclear localisation of the transcription factor nuclear factor of 151 

activated T cells (NFAT1), important for regulating innate immune responses [55].  152 

ER-stress and UPR signalling  153 

ER stress results from accumulation of unfolded and misfolded protein in the ER, and the UPR 154 

is activated to resolve ER stress and restore homeostasis. The UPR inhibits protein synthesis, 155 

promotes protein re-folding, and induces degradation of unfolded and misfolded proteins 156 

through ER-associated protein degradation (ERAD) and autophagy (Figure 2). If these survival 157 

mechanisms are unsuccessful, the UPR can induce apoptosis [56]. The major regulators of the 158 

UPR are the ER-membrane resident proteins PERK (protein kinase RNA-like endoplasmic 159 

reticulum kinase), inositol-requiring transmembrane kinase endonuclease 1 (IRE1) and 160 

activated transcription factor (ATF)6. When inactive these proteins are bound to binding 161 

immunoglobulin protein (BiP), also known as glucose regulated protein 78 (GRP78) [57]. 162 

During ER stress, BiP binds to misfolded proteins in the ER and dissociates from the ER-163 

membrane resident proteins to allow their transition to an active state [57] (Figure 2).  164 

When active, PERK phosphorylates elongation initiation factor 2 (EIF2), to inhibit general 165 

protein synthesis [58] and specifically up-regulates ATF4 [59]. ATF4 in turn transcriptionally 166 

up-regulates several other UPR genes including CCAAT/enhancer-binding protein (C/EBP) 167 

homologous protein (CHOP) [60,61] (Figure 2). CHOP is also a transcription factor that 168 

regulates several other UPR genes, and under conditions of prolonged ER stress can promote 169 

apoptosis [60,61].  170 

IRE1 exists in two forms: IRE1 that is ubiquitously expressed and IRE1β that is only expressed 171 

in the GI tract and lung epithelial cells [62]. During ER stress, IRE1 is activated through 172 
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dimerization and auto-phosphorylation [63,64]. The IRE1 RNase domain is essential for 173 

creating transcriptionally activate XBP1 messenger RNA (mRNA) via splicing, which acts as a 174 

transactivator of UPR genes [65–68] (Figure 2) . IRE1 endoribonuclease activity also facilitates 175 

degradation of specific mRNA in a process known as RIDD (regulated IRE1-dependent decay) 176 

[69].  177 

ATF6 translocates to the Golgi apparatus once released from its complex with BiP [70]. This 178 

allows cleavage by site 1 and site 2 proteases (S1P and S2P), which releases the 179 

transcriptionally active cytoplasmic domain of ATF6 (ATF6-N) that induces UPR-associated 180 

genes [71–73] (Figure 2). Among the ATF6 upregulated genes are CHOP and XBP1 [74].  181 

ER-stress, UPR and intestinal inflammation  182 

Genetic studies have identified several ER-stress/UPR genes associated with IBD [75]. 183 

Moreover, ER-stress levels are increased in ileal and colonic biopsies from CD patients, with 184 

higher than normal levels of BiP, chaperone protein Gp96, and spliced XBP1 observed [9,76–185 

78] (Table 1). Several studies have focused on IRE1-XBP1 signalling in murine models. In mice 186 

with targeted deletion of XBP1 in intestinal epithelial cells (IECs) (XBP1ΔIEC mice), spontaneous 187 

inflammation of the small intestine, increased susceptibility to DSS-induced colitis and 188 

elevated levels of ER stress were observed [9] (Table 1). Furthermore, in XBP1ΔIEC mice 189 

increased levels of apoptosis were observed along with reduced goblet cell and Paneth cell 190 

numbers, leading to decreased production of host defence peptides and higher susceptibility 191 

to Listeria monocytogenes infection [9] (Table 1).  XBP1 has also been shown to suppress 192 

experimental colitis-associated cancer [79], and is essential for efficient TLR-mediated pro-193 
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 10 

inflammatory responses to infection in macrophages [80]. These studies support XBP1 as a 194 

key component of the protective function of IECs and macrophages.  195 

Although the UPR acts to maintain ER-homeostasis, hyper-activation of certain UPR 196 

components can create a pro-inflammatory state. In XBP1ΔIEC mice increased activation of 197 

IRE1, causes hyper activation of NFκB, and spontaneous inflammation [45] (Table 1). IRE1β 198 

knock-out mice have enhanced sensitivity to DSS-induced colitis [81] and exhibit goblet cell 199 

abnormalities with exaggerated MUC2 accumulation (Table 1). In contrast, IRE1 knock-out 200 

mice have normal goblet cells [82]. In murine Paneth cells, IRE1 and IRE1β have distinct roles 201 

with hyper activation of IRE1 driving CD-like ileitis, and IRE1β having a protective role [24]. 202 

Association of aberrant PERK-EIF2 and ATF6 pathways with intestinal inflammation have 203 

also been identified. A mouse model expressing non-phosphorylatable EIF2 in IECs resulted 204 

in functional abnormalities in Paneth cells and increased susceptibility to Salmonella infection 205 

and DSS-induced colitis [83] (Table 1). ATF6 deficient mice exhibit increased ER stress as 206 

indicated by elevated levels of BiP, ATF4, CHOP and spliced XBP1, which result in enhanced 207 

sensitivity to DSS-induced colitis [84] (Table 1). Additionally, hypomorphoic mutation in 208 

membrane-bound transcription factor peptidase S1P-encoding gene (Mbtps1), which encodes 209 

the S1P responsible for cleavage of ATF6, causes enhanced susceptibility to DSS-induced 210 

colitis [85]. Although there is less evidence to support a role for PERK-EIF2 and ATF6 211 

pathways in IBD pathogenesis, their importance for ER stress responses in the intestinal 212 

epithelium is clear.  213 

ER-stress and intestinal barrier function 214 
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In the intestinal epithelium, cells that naturally secrete large amounts of protein, such as 215 

Paneth cells and goblet cells, are more susceptible to ER-stress and therefore rely heavily on 216 

the UPR to maintain homeostasis. MUC2 is the major component of mucin that is produced 217 

in goblet cells and secreted into the intestinal lumen. Winnie mice are characterised by a 218 

missense mutation in MUC2, which causes abnormalities in goblet cells, leading to aberrant 219 

mucous production and spontaneous colitis, and association with MUC2 variants has been 220 

identified in IBD patients [86]. Winnie mice also exhibit severe ER stress in goblet cells [10], 221 

which causes up to four-fold increase in activated dendritic cells in the colonic lamina propria, 222 

and aberrant adaptive immune responses associated with  interleukin (IL)-23/Th17  [87]. 223 

Goblet cell abnormalities are also apparent in mice deficient in UPR transcription factor 224 

OASIS, which causes increased ER stress and susceptibility to DSS-induced colitis [88,89]. 225 

AGR2 is an ER resident protein highly expressed in goblet and Paneth cells and regulates the 226 

formation of disulphide bonds in mature proteins. AGR2-/- mice exhibit a decreased number 227 

of goblet cells and MUC2 production, Paneth cell abnormalities, elevated ER-stress and 228 

spontaneous colitis [90]. Notably, AGR2 is decreased in patients with CD and UC [11]. These 229 

studies highlight the key role of intestinal secretory cells and breakdown of intestinal barrier 230 

function in IBD pathogenesis.  231 

Functional intersection between autophagy and the UPR 232 

The UPR and autophagy are intimately linked processes. In a range of Intestinal epithelial cells, 233 

chemical ER-stress inducers activate autophagy, modulated by enhanced expression of CHOP 234 

and stimulation of the IRE1 pathway [91]. In endothelial cells, IRE1-dependent splicing of 235 

XBP1 mRNA activated autophagy via up-regulation of Beclin-1, which is a major regulator of 236 
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the autophagy pathway [92] (Figure 3). Contrary to expectation, XBP1 deletion in a familial 237 

amyotrophic lateral sclerosis mouse model increased autophagy, which enhanced clearance 238 

of accumulated toxic superoxide dismutase-1 (SOD1) aggregates [93]. It was suggested that 239 

in this scenario, autophagy is induced in a compensatory manner due to attenuated UPR. 240 

The UPR and autophagy also intersect at the PERK-EIF2-ATF4 pathway [94–99]. In an in vitro 241 

model of osteosarcoma, PERK induced autophagy via mechanistic target of rapamycin 242 

(mTORC1) inhibition to promote survival in response to ER stress-conferred chemoresistance 243 

to apoptosis [95] (Figure 3). Additionally, PERK modulates autophagy via AMPK-dependent 244 

inhibition of mTORC1 in response to extracellular matrix (ECM) detachment in mammary 245 

epithelial cells (MECs) [94]. One of the main functional outcomes of PERK signalling is reduced 246 

protein synthesis. Inhibition of mTORC1 helps to promote this effect as mTORC1 controls 247 

synthesis of ~15-20% of protein within the cell [100].  Thus, via modulation of mTORC1, PERK 248 

signalling achieves dual outcomes; inhibition of protein synthesis and induction of autophagy 249 

to degrade misfolded proteins. 250 

During amino acid deprivation, ATF4 and CHOP can bind specific C/EBP-ATF Response 251 

Elements (CAREs), also known as Amino Acid Response Elements (AAREs) and CHOP-Response 252 

Elements (CHOP-REs) to induce transcription of a wide range of autophagy genes [101] (Figure 253 

3). In other studies, hypoxia or ECM detachment induced PERK-dependent autophagy due to 254 

autophagy gene up-regulation via ATF4 and CHOP [102–104]. This up-regulation of autophagy 255 

gene transcription by the UPR was shown to replenish autophagy proteins to promote survival 256 

during cellular stress [103].  257 
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ATF6 has also been implicated mechanistically in autophagy regulation. In response to cellular 258 

stress, interferon (IFN)-γ activates the Ask1 (Apoptosis signal-regulating kinase 1)/MAPK 259 

(Mitogen-activated protein kinase) pathway, which phosphorylates ATF6 to allow its 260 

proteolytic activation [105]. ATF6 interaction with C/EBP-β is essential for IFN-γ-induced up-261 

regulation of DAPK1 (death-associated protein kinase 1), which can subsequently stimulate 262 

autophagy [106] (Figure 3). Mice lacking either ATF6 or Ask1 are highly susceptible to bacterial 263 

infection due to defective autophagy [105,106]. Furthermore, ATF6 recruitment of DAPK1 in 264 

response to ER stress enhanced xenophagy in human colonic biopsies and epithelial cells, 265 

which was attenuated in cells harbouring the ATG16L1 T300A SNP [107]. Additionally, 266 

activated ATF6 was shown to stimulate Akt (protein kinase B), which resulted in the inhibition 267 

of mTORC1 [108,109] (Figure 3). 268 

In a recent study in MCF-7 human breast cancer cells, ER stress induced by the chemo-269 

preventative agent ursolic acid (UA) was associated with autophagy activation [99]. UA 270 

induced autophagy via MAPK1/3 signalling and subsequent promotion of PERK signalling, 271 

resulting in the inhibition of apoptosis. Furthermore, a study in human ovarian cancer cells 272 

showed interdependent activation of autophagy and the PERK-EIF2 UPR pathway when 273 

treated with metformin, which causes energy starvation [98]. In these scenarios an 274 

unconventional relationship between autophagy and ER stress was uncovered, which remains 275 

to be mechanistically solved. Nonetheless, under these circumstances the interaction of the 276 

UPR and autophagy pathways has pro-survival outcomes.  277 

Convergence of autophagy, ER-stress and CD  278 
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In an attempt to relieve ER-stress the UPR can induce autophagy to degrade misfolded 279 

proteins, protein aggregates and damaged organelles [91,110–113]. Autophagy activity is 280 

increased in highly secretory Paneth cells [45] to counterbalance high levels of  ER-stress 281 

[112], thus ER-stress is a significant risk in these cells when the UPR or autophagy is not 282 

functional. Consistent with this, in Paneth cells of CD patients harbouring ATG16L1 T300A risk 283 

alleles, BiP and pEIF2α are highly expressed [46] (Table 1). Significantly, ATG16L1;XBP1ΔIEC 284 

mice develop similar phenotypic ileitis to ATG16L1ΔIEC mice, but earlier in life due to increased 285 

ER stress [24,45].  286 

ERAD can regulate the degradation of IRE1 to prevent accumulation of toxic IRE1 287 

aggregates, however persistent ER-stress will inhibit ERAD degradation of IRE1 [24]. When 288 

this occurs, autophagy plays an important role in the clearance of supramolecular clusters of 289 

IRE1 (Figure 3). In ATG16L1ΔIEC mice, development of spontaneous CD-like ileitis is associated 290 

with defective autophagy resulting in toxic accumulation of IRE1 in Paneth cells [24] (Table 291 

1). Furthermore, the selective autophagy receptor optineurin interacts with IRE1α, and 292 

optineurin deficiency amplified the accumulation of IRE1α [24]. In humans homozygous for 293 

ATG16L1 T300A, a similar accumulation of IRE1 was observed in intestinal epithelial crypts 294 

[24] (Table 1). This has led to suggestion that the ATG16L1 T300A SNP may define a specific 295 

subtype of patients with CD, characterised by Paneth cell ER-stress [46].  This synergistic and 296 

compensatory relationship between the UPR and autophagy is affirmed by the presence of 297 

CD-associated SNPs in ATG16L1 and XBP1.  298 

A recent study has demonstrated a direct link between NOD1/2 and the IRE1 pathway in the 299 

context of ER-stress-induced inflammation [114]. When active, IRE1 stimulates the c-Jun N-300 

terminal kinase (JNK) pathway and recruits TRAF2 (TNF receptor-associated factor 2) to the 301 
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ER membrane to trigger NFκB signalling [115,116] and autophagy induction [112,117,118] 302 

(Figure 3). In mouse and human cells, ER-stress induced by chemicals or infection with 303 

Brucella abortus and Chlamydia muridarum increased inflammation and IL-6 production 304 

[114]. This response was dependent on NOD1/2 and receptor-interacting serine/threonine-305 

protein kinase 2 (RIPK2), but also on IRE1 kinase activity and TRAF2-induced NFκB signalling 306 

[114]. This suggests there is a functional intersection between the IRE1 pathway and 307 

NOD1/2 signalling, which is facilitated by TRAF2 (Figure 3).  308 

Interestingly, an additional study has shown that ER-stress responses can be modulated by 309 

another innate immune sensor called stimulator of interferon genes (STING) in response to 310 

cyclic-di-AMP (c-di-AMP), a vita-PAMP (pathogen associated molecular pattern) present in 311 

live Gram-positive bacteria [119]. This process induces autophagy via inhibition of the major 312 

autophagy suppressor mTORC1 and localisation of STING to autophagosomes. 313 

Pharmacological induction of autophagy and the UPR 314 

A recent review estimated IBD treatment costs of £720 million ($940m) per year in the United 315 

Kingdom alone [120], with roughly a quarter of these costs directly attributed to drug 316 

treatments [121]. The efficacy of these drugs continues to come under scrutiny as response 317 

to treatment often diminishes over time, with a review of worldwide cohorts estimating that 318 

between 10–35% of CD patients required surgery within a year of diagnosis and up to 61% by 319 

10 years [122]. In order to improve the efficacy of IBD treatment, optimization of existing 320 

clinical therapies and the development of novel therapeutics is required. 321 

The convergence between autophagy and UPR pathways provides new opportunity for the 322 

treatment of IBD and the modulation of the UPR in combination with autophagy inducers is a 323 
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promising therapeutic strategy. There is evidence that inducing autophagy can have 324 

therapeutic benefits for the treatment of IBD [26] with several studies investigating the utility 325 

of autophagy inducers as adjuvant therapies. Rapamycin analogues, sirolimus and everolimus, 326 

inhibit mTORC1 to induce autophagy and are already approved for clinical use for post-327 

transplantation (e.g. liver and renal) management. In IL-10-deficient mice, everolimus 328 

treatment alleviated spontaneous colitis and reduced CD4+ T cells and IFN-γ [123]. In a case 329 

study sirolimus improved symptoms and intestinal healing in a patient with severe refractory 330 

CD [124]. In another case study, symptoms were controlled for 18 months with everolimus 331 

treatment in a refractory UC patient [125]. Moreover, in a study of refractory paediatric IBD, 332 

sirolimus induced clinical remission in 45% of UC patients and 100% of CD patients; albeit the 333 

sample size was small [126]. Significantly, everolimus had comparable safety and tolerability 334 

as azathioprine when used to maintain steroid-induced remission in a cohort of adult CD 335 

patients [127]. As these mTORC1 inhibitors are already approved for clinical use, they have 336 

been investigated the most extensively, however there are a plethora of novel autophagy 337 

modulators that are currently being developed, characterised and patented for therapeutic 338 

use in a range of diseases including IBD [128,129].  339 

Recent progress has also been made to identify specific chemical inducers of the UPR. A 340 

screen of 1,200 FDA-approved compounds carried out in C.elegans identified eight 341 

compounds that induced UPR responses, four of which specifically increased mitochondrial 342 

UPR [130]. The identified drugs included antirheumatic agents, antianginal calcium channel 343 

blockers; androgen receptor inhibitors used for cancer therapy and tetracycline antibiotics. 344 

A well-characterised modulator of the UPR, tauroursodeoxycholic acid (TUDCA), that 345 

promotes protein refolding to reduce ER-stress, was shown to ameliorate DSS-induced colitis 346 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 17 

in mice by decreasing ER-stress in IECs [84]. Furthermore, a selective inhibitor of eIF2α 347 

dephosphorylation protects cells from ER-stress and ameliorates murine experimental colitis 348 

[131,132]. Supplementation with glutamine has also been suggested for the improvement of 349 

IBD treatment, as this amino acid was shown to dampen experimental colitis in rats by 350 

inhibiting ER-stress in colonic epithelial cells [133].   351 

Drugs used to treat metabolic disorders have also been investigated for UPR inducing 352 

properties. The biguanides metformin and phenformin have been implicated in induction of 353 

the UPR and resolution of ER-stress via activation of AMPK, which subsequently stimulated  354 

IRE1α and PERK pathways [98,134,135]. Inhibitors of dipeptidyl peptidase IV (DPP4), including 355 

gemigliptin, also prevented ER-stress-mediated apoptosis by promoting IRE1α and PERK 356 

pathways [136]. Furthermore, agonists of the glucagon-like peptide-1 receptor, such as 357 

exenatide, relieved ER stress via up-regulation of ATF4 expression [137]. Exogenous chemical 358 

chaperones have also been explored as a method to relieve ER stress by mimicking ER 359 

chaperones to promote protein transport and re-folding capacity [138]. 360 

Although several studies have demonstrated beneficial effects of enhancing UPR function for 361 

intestinal homeostasis, future investigations should proceed with caution. For example, 362 

hyper-activation of the UPR kinase IRE1α can exacerbate intestinal inflammation, as seen in 363 

patients with ATG16L1 and NOD2 mutations, therefore, in certain circumstances 364 

pharmacological inhibition of UPR receptors would be a more effective strategy [24,45,114] 365 
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Of particular interest, the selective autophagy cargo receptor optineurin forms a critical link 366 

between ER-stress resolution and autophagy due to its role in the degradation of IRE1α 367 

aggregates [24], and another recently identified autophagy cargo receptor that is integral for 368 

resolution of ER-stress, CCPG1, mediates ER-phagy to remove damaged ER membranes [23]. 369 

Understanding the biology and functions of adaptors such as optineurin and CCPG1 may 370 

identify novel druggable targets and expedite development of the next generation of 371 

therapeutics aimed at modulation of the UPR in combination with autophagy.  372 

Discussion 373 

The complexity of IBD is evident from the large number of risk loci identified by genetic 374 

studies, and the diverse health profile of patients that are affected. Mouse models of IBD 375 

cannot emulate the human disease, however they are useful tools to explore how specific 376 

gene mutations influence inflammation. Interestingly, as highlighted in (Table 1) the majority 377 

of mouse models mimicking IBD-associated genetic risk do not develop spontaneous 378 

inflammation, but rather they are sensitised to DSS-induced colitis, which acts by damaging 379 

the epithelium and increasing intestinal permeability.  The intestinal epithelium has 380 

important immunoregulatory functions and controls the equilibrium between tolerance and 381 

immunity to non-self-antigens [139]. As such breakdown of intestinal epithelial barrier 382 

function and concomitant interaction with environmental factors in the lumen is a trigger for 383 

inflammation. The intestinal lumen comprises a multitude of potential triggers including the 384 

microbiota, dietary antigens, and luminal antigens. Additional triggers may be host-derived 385 

factors that are released into the lumen as the intestinal epithelial barrier breaks down.  These 386 

so-called Damage-Associated Molecular Patterns (DAMPS) include intracellular proteins, such 387 

as high-mobility group box 1 (HMGB1), heat-shock proteins and components derived from 388 
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the extracellular matrix. Examples of non-protein DAMPs include genomic DNA, 389 

mitochondrial DNA, RNA, uric acid and ATP [140,141]. Not surprisingly, there is considerable 390 

interest in developing novel therapeutic strategies aimed at re-establishing intestinal barrier 391 

function [142] and modulation of DAMPs for the treatment of IBD [140]. 392 

Dysbiosis of the gut microbiome is strongly implicated in the pathogenesis of CD [143], and it 393 

has been suggested that microbial dysbiosis may be an environmental trigger.  A recent study 394 

by Tschurtschenthaler and colleagues [24] addressed this question. Although microbial 395 

dysbiosis was present in the ileum of Atg16l1;Xbp1ΔIEC mice, such structural alteration of the 396 

microbiota did not trigger ileitis but, rather, aggravated DSS-induced colitis [24].  In order to 397 

understand the role of the environment in disease, determining the relative contribution of 398 

genetics and a detailed characterization of environmental triggers is required.  399 

Greater understanding of the genetic factors that underlie CD pathogenesis are leading to 400 

improvements in treatment. Development of personalised therapies may be achieved via 401 

genotyping for key SNPs in genes involved in both the autophagy and UPR pathways. IBD 402 

drugs already established in the clinic have been shown to exert their effects, at least in-part, 403 

through the modulation of autophagy [26] or the UPR, and establishing patient genotypes 404 

may help predict response. For example, recent studies have identified an association 405 

between ATG16L1 T300A SNP and an enhanced therapeutic effect of thiopurines [144] and 406 

anti-TNF-α therapy [145]. Interestingly, the immunoregulatory effects of these drugs were 407 

associated with autophagy stimulation [144,146,147] and the T300A genotype has been 408 

associated with a subset of patients that exhibit deficiencies in both the UPR and autophagy 409 

[46]. Furthermore, CD patients harbouring NOD2 mutations associate with better clinical 410 

outcomes  in response to thiopurines, whereas CD patients with wild-type NOD2 respond 411 
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better to steroids and anti-TNF therapy [148]. Due to the genetic complexity of IBD and 412 

epistasis between genes, it is imperative that multiple genes are analysed for the purpose of 413 

patient stratification. For example, a recent study identified a 32-gene transcriptomic 414 

signature in lymphoblastoid cells that was able to predict lack of response to thiopurines, with 415 

aberrant cell cycle control, DNA mismatched repair and RAC1-dependent mechanisms 416 

implicated in thiopurine resistance [149]. Furthermore, it is increasingly clear that  epigenetic, 417 

microRNA and immune cell signatures among others will have a significant role to play in 418 

predicting disease susceptibility and response to therapy [150–152].  419 

With regards to the intestinal microbiota, a recent study has characterised microbial 420 

signatures for the diagnosis of IBD that were highly sensitive and could differentiate CD 421 

patients from healthy controls and UC patients. This study highlights the potential for using 422 

the intestinal microbiota as a micro-biomarker [153]. Importantly, as many drugs need to be 423 

metabolised and de-toxified by the gut microbiota, this approach could also have application 424 

in predicting response to therapy. Given that dysregulation of autophagy and ER-stress can 425 

affect the intestinal microbial environment, analysis of microbial signatures may help to 426 

determine if a patient would benefit from drugs that modulate the autophagy or UPR 427 

pathways.  428 

To conclude, the ER-stress/UPR and autophagy pathways play a vital role in the maintenance 429 

of intestinal homeostasis and breakdown of these converging pathways has been implicated 430 

in persistent intestinal infections, chronic inflammation and dysregulated immune responses 431 

observed in IBD. Therefore, strategies aimed at modulating these pathways simultaneously 432 

may prove to be an effective therapeutic option.  433 
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Figure Legends  438 

Figure 1: Autophagy pathway and autophagosome biogenesis 439 

During the initial stages of autophagy, the isolation membrane forms a double membrane 440 

vesicle (the autophagosome) around the cargo to be degraded. ULK complex (ULK1-ULK2-441 

ATG13-FIP200-ATG101) and Beclin 1 (Vps34-Vps150-Beclin1) complex, through interaction 442 

with ATG14, recruit autophagy proteins and complexes to the autophagosome membrane. 443 

ATG12 is conjugated to ATG5 and forms a complex with ATG16L1 (ATG16L1 complex). The 444 

ATG16L1 complex is proposed to specify the site of LC3 lipidation for autophagosome 445 

formation. LC3 is conjugated to PE to form lipidated LC3-II and is associated with the 446 

autophagosome outer membrane. Upon autophagosome closure, LC3 localises to the inner 447 

membrane and other autophagy proteins and complexes dissociate for recycling. The mature 448 

autophagosome then fuses with a lysosome to form an autophagolysosome, in which cargo 449 

are degraded by lysosomal enzymes and subunits are recycled.  450 

Figure 2: The unfolded protein response 451 

BiP chaperone protein binds unfolded/misfolded proteins in the ER and dissociates from 452 

transmembrane receptors upon accumulation of the toxic proteins. The transmembrane 453 

receptors PERK, IRE1α and ATF6 become activated. PERK phosphorylates EIF2α, which 454 

downregulates global translation but specifically upregulates ATF4 and CHOP that upregulate 455 

UPR-associated genes. IRE1α splices XBP1 to its active form and ATF6 is cleaved by S1P and 456 

S2P to active ATF6-N, which both translocate to the nucleus to upregulate UPR-associated 457 

genes. The main function of these UPR-associated genes is to increase protein refolding, 458 
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inhibit synthesis of new protein and degrade unfolded/misfolded proteins through autophagy 459 

and ERAD.  460 

Figure 3: Intersection between autophagy and the unfolded protein response 461 

ER stress activates transmembrane receptors PERK, IRE1α and ATF6. PERK phosphorylates 462 

EIF2α, which specifically upregulates ATF4 and CHOP that bind AAREs and CHOP-Res to 463 

upregulate autophagy genes. PERK also induces autophagy via mTORC1 inhibition. IRE1α 464 

splices XBP1 to its active form, which up-regulates Beclin-1.  IRE1α endonuclease activity 465 

activates the JNK pathway, which induces autophagy via TRAF2, NOD2 and NFκB. Enhanced 466 

autophagy degrades accumulated IRE1α clusters. Active ATF6-N induces autophagy via 467 

mTORC1 inhibition and binds C/EBP-β to up-regulate DAPK1.  468 

Table 1: Murine models of intestinal inflammation  469 

Links between autophagy, ER-stress/UPR and experimental colitis/intestinal inflammation 470 

and IBD. 471 
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Figure 1 474 
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 475 
Figure 2  476 
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 477 
Figure 3  478 
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Table 1  480 
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Abstract  23 

Inflammatory Bowel Disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis, 24 

is characterised by chronic inflammation of the gastrointestinal tract. Aetiology involves a 25 

combination of genetic and environmental factors resulting in abnormal immune responses 26 

to intestinal microbiota.  Genetic studies have strongly linked genes involved in autophagy to 27 

CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered 28 

in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER) and 29 

autophagy plays a key role to relieve ER-stress and restore homeostasis. This review 30 

summarises the known interactions between autophagy and the UPR and discusses the 31 

impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-32 

term treatments for IBD, targeting of synergistic pathways may provide novel and more 33 

effective therapeutic options.  34 

Keywords:  IBD, autophagy, unfolded protein response, ER stress. 35 

36 
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Introduction  37 

Inflammatory Bowel Disease (IBD) is a group of inflammatory diseases that includes Crohn’s 38 

disease (CD), ulcerative colitis (UC) and IBD unclassified (IBDU). The incidence rate for IBD is 39 

approximately 50-200 in 100,000 persons per year in Western countries [1] and following 40 

diagnosis the natural history of the condition is characterized by periods of relapse and 41 

remission, with symptoms commonly including abdominal pain, chronic diarrhoea, weight 42 

loss and lethargy [2]. CD is distinguished from UC due to the presence of submucosal or 43 

transmural inflammation and macroscopic changes that often occur in a non-contiguous 44 

pattern anywhere within the digestive tract [1]. UC is localised to the colon and inflammation 45 

is limited to the mucosa and epithelial lining of the gastrointestinal (GI) tract [2]. Patients can 46 

be diagnosed with IBDU when a conclusive distinction between CD and UC cannot be made, 47 

although this may well represent a distinct sub-type. At present there is no cure for IBD and 48 

medications such as corticosteroids, aminosalicylates, immunomodulators and biological 49 

agents are aimed at inducing and maintaining remission of disease by modifying inflammatory 50 

processes [3].  51 

The aetiopathology of IBD is multifactorial in nature, with genetic predisposition, 52 

environmental triggers (e.g. smoking, appendicectomy, diet, pollution, antibiotics and stress) 53 

and a dysregulated mucosal immune response contributing to disease [4]. Examination of the 54 

gut microbiome has revealed that IBD is associated with microbial dysbiosis, including an 55 

expansion of facultative anaerobic bacteria of the family Enterobacteriaceae [5]. Several 56 

potentially causative agents have been identified, most notably Escherichia coli strains with 57 

an adherent and invasive phenotype (AIEC) are associated with ileal mucosa in CD [6]. 58 

Genome wide association studies (GWAS) have identified 240 IBD susceptibility loci to date 59 



 4 

[7], and have confirmed association with previously recognised susceptibility genes including 60 

Nucleotide-binding oligomerisation domain-containing protein 2 (NOD2). GWAS have also 61 

identified the strong association of CD with genes involved in the autophagy pathway, 62 

including autophagy-related protein (ATG)16L1, Immunity-related GTPase family M protein 63 

(IRGM) and leucine rich repeat kinase 2 (LRRK2) [8].  The strong association of IBD with 64 

endoplasmic reticulum (ER) stress/Unfolded protein response (UPR) genes including x-box-65 

binding protein 1 (XBP1) [9] and genes involved in intestinal barrier function  such as MUC2 66 

[10] and Anterior gradient 2 (AGR2) [11] have been detected by gene targeted approaches. 67 

Together, these genetic studies have led to increased research exploring links between 68 

autophagy and ER stress/UPR dysregulation and IBD pathogenesis. 69 

Autophagy 70 

 71 

Autophagy is an intracellular process that plays an important housekeeping role by degrading 72 

excessive, damaged or aged proteins and organelles to maintain cellular homeostasis [12]. 73 

Basal autophagy is tightly regulated by the coordinated activity of autophagy-related (ATG) 74 

proteins [13] and  constitutes an important survival mechanism induced in response to 75 

multiple stress conditions such as nutrient deprivation, hypoxia, DNA damage or intracellular 76 

pathogens [12]. There are three main types of autophagy in mammalian cells; 77 

macroautophagy (herein referred to as autophagy), microautophagy and chaperone-78 

mediated autophagy [12].  79 

When autophagy is initiated a double membrane vesicle is formed (the autophagosome) 80 

around the cargo to be degraded (Figure 1). The mature autophagosome then fuses with a 81 

lysosome to form an autophagolysosome, in which lysosomal enzymes degrade the inner 82 
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membrane and cargo and the resulting macromolecules are released into the cytosol for 83 

recycling (Figure 1).  84 

Selective types of autophagy also exist, including autophagy of microorganisms (xenophagy) 85 

and autophagy of the ER membrane (ER-phagy), which use specific receptors and adaptor 86 

proteins to link the cargo to the autophagy machinery [14]. For example, Sequestosome 87 

1/p62-like receptors (SLRs) target cytosolic pathogens and other cargo to initiate autophagy 88 

[15]. SLRs function by binding to the small regulatory protein ubiquitin on the surface of cargo 89 

[16–18] and subsequently associate  with the autophagy machinery via a binding motif called 90 

the LC3-interacting region (LIR) [19]. Adaptor proteins, such as autophagy-linked FYVE protein 91 

(ALFY), can also bind ubiquitinated pathogens via p62 to promote association with the 92 

autophagy machinery [20]. To date, five main types of SLR have been described; 93 

sequestosome 1/p62, optineurin [18], NBR1 (Neighbor of BRCA1 gene 1) [21], NDP52 (Nuclear 94 

Domain 10 Protein 52) [17] and the NDP52-like receptor calcoco3 (Calcium-binding and 95 

coiled-coil domain-containing protein 3) [22], and specific cargo receptors are important for 96 

distinct types of selective autophagy. For example, a recent study has shown that the non-97 

canonical cargo receptor cell-cycle progression gene 1 (CCPG1) is essential for ER-phagy [23], 98 

while another study demonstrated an integral role for optineurin in the maintenance of ER 99 

homeostasis by assisting the removal of hyper-activated UPR kinases [24].  100 

Autophagy and CD 101 

Autophagy affects many essential cellular processes and dysregulation of autophagy has been 102 

linked to a multitude of human diseases [25]. Autophagy plays an important role in both 103 

innate and adaptive immune signalling pathways and loss of immune regulation is a key event 104 
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leading to the chronic inflammation observed in CD [26]. Impaired autophagy responses have 105 

been observed in a range of cell types derived from CD patients including the specialized 106 

intestinal epithelial cells (IECs) Paneth cells and goblet cells, and leukocytes, such as 107 

macrophages and dendritic cells [27].  108 

Functional studies have linked impaired autophagy to CD-associated genetic variants in 109 

NOD2, ATG16L1, IRGM and LRRK2. The single nucleotide polymorphism (SNP) in ATG16L1 110 

causes a single amino acid change from threonine to alanine at position 300 (T300A) [28], 111 

which is associated with Paneth cell and goblet cell dysfunction, and significantly impairs 112 

autophagic clearance of pathogens [29–32]. IRGM is required for the initiation of xenophagy 113 

and the clearance of intracellular organisms such as Mycobacterium tuberculosis [33] and 114 

dysregulation of IRGM expression compromises the control of intracellular replication of CD-115 

associated adherent invasive Escherichia coli (AIEC) by autophagy [34]. LRRK2 expression is 116 

increased in colonic biopsy specimens from patients with CD [35] and functionally LRRK2 can 117 

enhance NFκB-dependent transcription, while small interfering RNA [siRNA] knockdown of 118 

LRRK2 interferes with bacterial killing [35]. 119 

NOD2 is a member of the Nod-like receptor (NLR) family of pattern recognition receptors 120 

(PRR) and recognises a component of the bacterial cell wall muramyl dipeptide (MDP) to 121 

induce innate immune responses [36]. CD-associated NOD2 SNPs (R702W, G908R and 122 

L1007fs) affect the leucine rich repeat domain disrupting interaction with MDP and 123 

abrogating immune responses initiated by this receptor [37]. The immunoregulatory 124 

properties of NOD2 have also been linked to autophagy, and CD susceptibility is heightened 125 

when ATG16L1 and NOD2 variants present in combination, causing synergistic genetic 126 

epistasis [38,39]. A direct functional interaction between these proteins has been 127 
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determined; NOD2 was shown to recruit ATG16L1 to the plasma membrane to initiate 128 

autophagy at the sites of bacterial entry [40], and in a separate study IRGM was shown to 129 

regulate the formation of a complex containing NOD2 and ATG16L1 that is necessary for the 130 

induction of xenophagy [41]. The interaction of IRGM with NOD2 also stimulates 131 

phosphorylation cascades involving AMPK, ULK1 and Beclin1 that regulate autophagy 132 

initiation complexes [41]. Cells harbouring CD-associated NOD2 variants and/or the ATG16L1 133 

T300A variant exhibit a number of disrupted functions linked to autophagy including reduced 134 

production of antimicrobial peptides, enhanced pro-inflammatory responses and aberrant 135 

activation of adaptive immune responses [40,42–44]. 136 

Significantly, abnormalities in the secretory capacity of Paneth cells are observed in mice 137 

deficient for ATG16L1 [30,45,46], NOD2 [47,48], IRGM [49] and LRRK2 [50] indicating that 138 

autophagy plays an essential and specific role in Paneth cell function. Despite the significant 139 

effects on Paneth cell function, mouse strains developed for deficiency in functional ATG16L1 140 

do not exhibit spontaneous intestinal inflammation [29–31]. In contrast, a mouse strain with 141 

targeted deletion of ATG16L1 in IECs developed a spontaneous transmural ileitis similar to 142 

ileal CD [24]. Furthermore, targeted deletion of ATG16L in haematopoietic cells can enhance 143 

susceptibility to DSS-induced acute intestinal injury in mice [51] and ATG16L1 deficiency in 144 

myeloid cells in a mouse strain led to disrupted macrophage function and bacterial clearance 145 

[52]. Murine models with non-functional NOD2 do not develop spontaneous colitis [53], 146 

however a NOD2 mutation similar to the L1007fs mutation increased susceptibility to DSS-147 

induced colitis in mice [54]. Irgm1-deficient mice also exhibit abnormalities in Paneth cells, 148 

accompanied by increased susceptibility to inflammation in the colon and ileum [49]. Finally, 149 

LRRK2 deficiency confers enhanced susceptibility to experimental colitis in mice, which was 150 
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associated with enhanced nuclear localisation of the transcription factor nuclear factor of 151 

activated T cells (NFAT1), important for regulating innate immune responses [55].  152 

ER-stress and UPR signalling  153 

ER stress results from accumulation of unfolded and misfolded protein in the ER, and the UPR 154 

is activated to resolve ER stress and restore homeostasis. The UPR inhibits protein synthesis, 155 

promotes protein re-folding, and induces degradation of unfolded and misfolded proteins 156 

through ER-associated protein degradation (ERAD) and autophagy (Figure 2). If these survival 157 

mechanisms are unsuccessful, the UPR can induce apoptosis [56]. The major regulators of the 158 

UPR are the ER-membrane resident proteins PERK (protein kinase RNA-like endoplasmic 159 

reticulum kinase), inositol-requiring transmembrane kinase endonuclease 1 (IRE1) and 160 

activated transcription factor (ATF)6. When inactive these proteins are bound to binding 161 

immunoglobulin protein (BiP), also known as glucose regulated protein 78 (GRP78) [57]. 162 

During ER stress, BiP binds to misfolded proteins in the ER and dissociates from the ER-163 

membrane resident proteins to allow their transition to an active state [57] (Figure 2).  164 

When active, PERK phosphorylates elongation initiation factor 2 (EIF2), to inhibit general 165 

protein synthesis [58] and specifically up-regulates ATF4 [59]. ATF4 in turn transcriptionally 166 

up-regulates several other UPR genes including CCAAT/enhancer-binding protein (C/EBP) 167 

homologous protein (CHOP) [60,61] (Figure 2). CHOP is also a transcription factor that 168 

regulates several other UPR genes, and under conditions of prolonged ER stress can promote 169 

apoptosis [60,61].  170 

IRE1 exists in two forms: IRE1 that is ubiquitously expressed and IRE1β that is only expressed 171 

in the GI tract and lung epithelial cells [62]. During ER stress, IRE1 is activated through 172 
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dimerization and auto-phosphorylation [63,64]. The IRE1 RNase domain is essential for 173 

creating transcriptionally activate XBP1 messenger RNA (mRNA) via splicing, which acts as a 174 

transactivator of UPR genes [65–68] (Figure 2) . IRE1 endoribonuclease activity also facilitates 175 

degradation of specific mRNA in a process known as RIDD (regulated IRE1-dependent decay) 176 

[69].  177 

ATF6 translocates to the Golgi apparatus once released from its complex with BiP [70]. This 178 

allows cleavage by site 1 and site 2 proteases (S1P and S2P), which releases the 179 

transcriptionally active cytoplasmic domain of ATF6 (ATF6-N) that induces UPR-associated 180 

genes [71–73] (Figure 2). Among the ATF6 upregulated genes are CHOP and XBP1 [74].  181 

ER-stress, UPR and intestinal inflammation  182 

Genetic studies have identified several ER-stress/UPR genes associated with IBD [75]. 183 

Moreover, ER-stress levels are increased in ileal and colonic biopsies from CD patients, with 184 

higher than normal levels of BiP, chaperone protein Gp96, and spliced XBP1 observed [9,76–185 

78] (Table 1). Several studies have focused on IRE1-XBP1 signalling in murine models. In mice 186 

with targeted deletion of XBP1 in intestinal epithelial cells (IECs) (XBP1ΔIEC mice), spontaneous 187 

inflammation of the small intestine, increased susceptibility to DSS-induced colitis and 188 

elevated levels of ER stress were observed [9] (Table 1). Furthermore, in XBP1ΔIEC mice 189 

increased levels of apoptosis were observed along with reduced goblet cell and Paneth cell 190 

numbers, leading to decreased production of host defence peptides and higher susceptibility 191 

to Listeria monocytogenes infection [9] (Table 1).  XBP1 has also been shown to suppress 192 

experimental colitis-associated cancer [79], and is essential for efficient TLR-mediated pro-193 
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inflammatory responses to infection in macrophages [80]. These studies support XBP1 as a 194 

key component of the protective function of IECs and macrophages.  195 

Although the UPR acts to maintain ER-homeostasis, hyper-activation of certain UPR 196 

components can create a pro-inflammatory state. In XBP1ΔIEC mice increased activation of 197 

IRE1, causes hyper activation of NFκB, and spontaneous inflammation [45] (Table 1). IRE1β 198 

knock-out mice have enhanced sensitivity to DSS-induced colitis [81] and exhibit goblet cell 199 

abnormalities with exaggerated MUC2 accumulation (Table 1). In contrast, IRE1 knock-out 200 

mice have normal goblet cells [82]. In murine Paneth cells, IRE1 and IRE1β have distinct roles 201 

with hyper activation of IRE1 driving CD-like ileitis, and IRE1β having a protective role [24]. 202 

Association of aberrant PERK-EIF2 and ATF6 pathways with intestinal inflammation have 203 

also been identified. A mouse model expressing non-phosphorylatable EIF2 in IECs resulted 204 

in functional abnormalities in Paneth cells and increased susceptibility to Salmonella infection 205 

and DSS-induced colitis [83] (Table 1). ATF6 deficient mice exhibit increased ER stress as 206 

indicated by elevated levels of BiP, ATF4, CHOP and spliced XBP1, which result in enhanced 207 

sensitivity to DSS-induced colitis [84] (Table 1). Additionally, hypomorphoic mutation in 208 

membrane-bound transcription factor peptidase S1P-encoding gene (Mbtps1), which encodes 209 

the S1P responsible for cleavage of ATF6, causes enhanced susceptibility to DSS-induced 210 

colitis [85]. Although there is less evidence to support a role for PERK-EIF2 and ATF6 211 

pathways in IBD pathogenesis, their importance for ER stress responses in the intestinal 212 

epithelium is clear.  213 

ER-stress and intestinal barrier function 214 
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In the intestinal epithelium, cells that naturally secrete large amounts of protein, such as 215 

Paneth cells and goblet cells, are more susceptible to ER-stress and therefore rely heavily on 216 

the UPR to maintain homeostasis. MUC2 is the major component of mucin that is produced 217 

in goblet cells and secreted into the intestinal lumen. Winnie mice are characterised by a 218 

missense mutation in MUC2, which causes abnormalities in goblet cells, leading to aberrant 219 

mucous production and spontaneous colitis, and association with MUC2 variants has been 220 

identified in IBD patients [86]. Winnie mice also exhibit severe ER stress in goblet cells [10], 221 

which causes up to four-fold increase in activated dendritic cells in the colonic lamina propria, 222 

and aberrant adaptive immune responses associated with  interleukin (IL)-23/Th17  [87]. 223 

Goblet cell abnormalities are also apparent in mice deficient in UPR transcription factor 224 

OASIS, which causes increased ER stress and susceptibility to DSS-induced colitis [88,89]. 225 

AGR2 is an ER resident protein highly expressed in goblet and Paneth cells and regulates the 226 

formation of disulphide bonds in mature proteins. AGR2-/- mice exhibit a decreased number 227 

of goblet cells and MUC2 production, Paneth cell abnormalities, elevated ER-stress and 228 

spontaneous colitis [90]. Notably, AGR2 is decreased in patients with CD and UC [11]. These 229 

studies highlight the key role of intestinal secretory cells and breakdown of intestinal barrier 230 

function in IBD pathogenesis.  231 

Functional intersection between autophagy and the UPR 232 

The UPR and autophagy are intimately linked processes. In a range of Intestinal epithelial cells, 233 

chemical ER-stress inducers activate autophagy, modulated by enhanced expression of CHOP 234 

and stimulation of the IRE1 pathway [91]. In endothelial cells, IRE1-dependent splicing of 235 

XBP1 mRNA activated autophagy via up-regulation of Beclin-1, which is a major regulator of 236 
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the autophagy pathway [92] (Figure 3). Contrary to expectation, XBP1 deletion in a familial 237 

amyotrophic lateral sclerosis mouse model increased autophagy, which enhanced clearance 238 

of accumulated toxic superoxide dismutase-1 (SOD1) aggregates [93]. It was suggested that 239 

in this scenario, autophagy is induced in a compensatory manner due to attenuated UPR. 240 

The UPR and autophagy also intersect at the PERK-EIF2-ATF4 pathway [94–99]. In an in vitro 241 

model of osteosarcoma, PERK induced autophagy via mechanistic target of rapamycin 242 

(mTORC1) inhibition to promote survival in response to ER stress-conferred chemoresistance 243 

to apoptosis [95] (Figure 3). Additionally, PERK modulates autophagy via AMPK-dependent 244 

inhibition of mTORC1 in response to extracellular matrix (ECM) detachment in mammary 245 

epithelial cells (MECs) [94]. One of the main functional outcomes of PERK signalling is reduced 246 

protein synthesis. Inhibition of mTORC1 helps to promote this effect as mTORC1 controls 247 

synthesis of ~15-20% of protein within the cell [100].  Thus, via modulation of mTORC1, PERK 248 

signalling achieves dual outcomes; inhibition of protein synthesis and induction of autophagy 249 

to degrade misfolded proteins. 250 

During amino acid deprivation, ATF4 and CHOP can bind specific C/EBP-ATF Response 251 

Elements (CAREs), also known as Amino Acid Response Elements (AAREs) and CHOP-Response 252 

Elements (CHOP-REs) to induce transcription of a wide range of autophagy genes [101] (Figure 253 

3). In other studies, hypoxia or ECM detachment induced PERK-dependent autophagy due to 254 

autophagy gene up-regulation via ATF4 and CHOP [102–104]. This up-regulation of autophagy 255 

gene transcription by the UPR was shown to replenish autophagy proteins to promote survival 256 

during cellular stress [103].  257 
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ATF6 has also been implicated mechanistically in autophagy regulation. In response to cellular 258 

stress, interferon (IFN)-γ activates the Ask1 (Apoptosis signal-regulating kinase 1)/MAPK 259 

(Mitogen-activated protein kinase) pathway, which phosphorylates ATF6 to allow its 260 

proteolytic activation [105]. ATF6 interaction with C/EBP-β is essential for IFN-γ-induced up-261 

regulation of DAPK1 (death-associated protein kinase 1), which can subsequently stimulate 262 

autophagy [106] (Figure 3). Mice lacking either ATF6 or Ask1 are highly susceptible to bacterial 263 

infection due to defective autophagy [105,106]. Furthermore, ATF6 recruitment of DAPK1 in 264 

response to ER stress enhanced xenophagy in human colonic biopsies and epithelial cells, 265 

which was attenuated in cells harbouring the ATG16L1 T300A SNP [107]. Additionally, 266 

activated ATF6 was shown to stimulate Akt (protein kinase B), which resulted in the inhibition 267 

of mTORC1 [108,109] (Figure 3). 268 

In a recent study in MCF-7 human breast cancer cells, ER stress induced by the chemo-269 

preventative agent ursolic acid (UA) was associated with autophagy activation [99]. UA 270 

induced autophagy via MAPK1/3 signalling and subsequent promotion of PERK signalling, 271 

resulting in the inhibition of apoptosis. Furthermore, a study in human ovarian cancer cells 272 

showed interdependent activation of autophagy and the PERK-EIF2 UPR pathway when 273 

treated with metformin, which causes energy starvation [98]. In these scenarios an 274 

unconventional relationship between autophagy and ER stress was uncovered, which remains 275 

to be mechanistically solved. Nonetheless, under these circumstances the interaction of the 276 

UPR and autophagy pathways has pro-survival outcomes.  277 

Convergence of autophagy, ER-stress and CD  278 
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In an attempt to relieve ER-stress the UPR can induce autophagy to degrade misfolded 279 

proteins, protein aggregates and damaged organelles [91,110–113]. Autophagy activity is 280 

increased in highly secretory Paneth cells [45] to counterbalance high levels of  ER-stress 281 

[112], thus ER-stress is a significant risk in these cells when the UPR or autophagy is not 282 

functional. Consistent with this, in Paneth cells of CD patients harbouring ATG16L1 T300A risk 283 

alleles, BiP and pEIF2α are highly expressed [46] (Table 1). Significantly, ATG16L1;XBP1ΔIEC 284 

mice develop similar phenotypic ileitis to ATG16L1ΔIEC mice, but earlier in life due to increased 285 

ER stress [24,45].  286 

ERAD can regulate the degradation of IRE1 to prevent accumulation of toxic IRE1 287 

aggregates, however persistent ER-stress will inhibit ERAD degradation of IRE1 [24]. When 288 

this occurs, autophagy plays an important role in the clearance of supramolecular clusters of 289 

IRE1 (Figure 3). In ATG16L1ΔIEC mice, development of spontaneous CD-like ileitis is associated 290 

with defective autophagy resulting in toxic accumulation of IRE1 in Paneth cells [24] (Table 291 

1). Furthermore, the selective autophagy receptor optineurin interacts with IRE1α, and 292 

optineurin deficiency amplified the accumulation of IRE1α [24]. In humans homozygous for 293 

ATG16L1 T300A, a similar accumulation of IRE1 was observed in intestinal epithelial crypts 294 

[24] (Table 1). This has led to suggestion that the ATG16L1 T300A SNP may define a specific 295 

subtype of patients with CD, characterised by Paneth cell ER-stress [46].  This synergistic and 296 

compensatory relationship between the UPR and autophagy is affirmed by the presence of 297 

CD-associated SNPs in ATG16L1 and XBP1.  298 

A recent study has demonstrated a direct link between NOD1/2 and the IRE1 pathway in the 299 

context of ER-stress-induced inflammation [114]. When active, IRE1 stimulates the c-Jun N-300 

terminal kinase (JNK) pathway and recruits TRAF2 (TNF receptor-associated factor 2) to the 301 
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ER membrane to trigger NFκB signalling [115,116] and autophagy induction [112,117,118] 302 

(Figure 3). In mouse and human cells, ER-stress induced by chemicals or infection with 303 

Brucella abortus and Chlamydia muridarum increased inflammation and IL-6 production 304 

[114]. This response was dependent on NOD1/2 and receptor-interacting serine/threonine-305 

protein kinase 2 (RIPK2), but also on IRE1 kinase activity and TRAF2-induced NFκB signalling 306 

[114]. This suggests there is a functional intersection between the IRE1 pathway and 307 

NOD1/2 signalling, which is facilitated by TRAF2 (Figure 3).  308 

Interestingly, an additional study has shown that ER-stress responses can be modulated by 309 

another innate immune sensor called stimulator of interferon genes (STING) in response to 310 

cyclic-di-AMP (c-di-AMP), a vita-PAMP (pathogen associated molecular pattern) present in 311 

live Gram-positive bacteria [119]. This process induces autophagy via inhibition of the major 312 

autophagy suppressor mTORC1 and localisation of STING to autophagosomes. 313 

Pharmacological induction of autophagy and the UPR 314 

A recent review estimated IBD treatment costs of £720 million ($940m) per year in the United 315 

Kingdom alone [120], with roughly a quarter of these costs directly attributed to drug 316 

treatments [121]. The efficacy of these drugs continues to come under scrutiny as response 317 

to treatment often diminishes over time, with a review of worldwide cohorts estimating that 318 

between 10–35% of CD patients required surgery within a year of diagnosis and up to 61% by 319 

10 years [122]. In order to improve the efficacy of IBD treatment, optimization of existing 320 

clinical therapies and the development of novel therapeutics is required. 321 

The convergence between autophagy and UPR pathways provides new opportunity for the 322 

treatment of IBD and the modulation of the UPR in combination with autophagy inducers is a 323 
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promising therapeutic strategy. There is evidence that inducing autophagy can have 324 

therapeutic benefits for the treatment of IBD [26] with several studies investigating the utility 325 

of autophagy inducers as adjuvant therapies. Rapamycin analogues, sirolimus and everolimus, 326 

inhibit mTORC1 to induce autophagy and are already approved for clinical use for post-327 

transplantation (e.g. liver and renal) management. In IL-10-deficient mice, everolimus 328 

treatment alleviated spontaneous colitis and reduced CD4+ T cells and IFN-γ [123]. In a case 329 

study sirolimus improved symptoms and intestinal healing in a patient with severe refractory 330 

CD [124]. In another case study, symptoms were controlled for 18 months with everolimus 331 

treatment in a refractory UC patient [125]. Moreover, in a study of refractory paediatric IBD, 332 

sirolimus induced clinical remission in 45% of UC patients and 100% of CD patients; albeit the 333 

sample size was small [126]. Significantly, everolimus had comparable safety and tolerability 334 

as azathioprine when used to maintain steroid-induced remission in a cohort of adult CD 335 

patients [127]. As these mTORC1 inhibitors are already approved for clinical use, they have 336 

been investigated the most extensively, however there are a plethora of novel autophagy 337 

modulators that are currently being developed, characterised and patented for therapeutic 338 

use in a range of diseases including IBD [128,129].  339 

Recent progress has also been made to identify specific chemical inducers of the UPR. A 340 

screen of 1,200 FDA-approved compounds carried out in C.elegans identified eight 341 

compounds that induced UPR responses, four of which specifically increased mitochondrial 342 

UPR [130]. The identified drugs included antirheumatic agents, antianginal calcium channel 343 

blockers; androgen receptor inhibitors used for cancer therapy and tetracycline antibiotics. 344 

A well-characterised modulator of the UPR, tauroursodeoxycholic acid (TUDCA), that 345 

promotes protein refolding to reduce ER-stress, was shown to ameliorate DSS-induced colitis 346 
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in mice by decreasing ER-stress in IECs [84]. Furthermore, a selective inhibitor of eIF2α 347 

dephosphorylation protects cells from ER-stress and ameliorates murine experimental colitis 348 

[131,132]. Supplementation with glutamine has also been suggested for the improvement of 349 

IBD treatment, as this amino acid was shown to dampen experimental colitis in rats by 350 

inhibiting ER-stress in colonic epithelial cells [133].   351 

Drugs used to treat metabolic disorders have also been investigated for UPR inducing 352 

properties. The biguanides metformin and phenformin have been implicated in induction of 353 

the UPR and resolution of ER-stress via activation of AMPK, which subsequently stimulated  354 

IRE1α and PERK pathways [98,134,135]. Inhibitors of dipeptidyl peptidase IV (DPP4), including 355 

gemigliptin, also prevented ER-stress-mediated apoptosis by promoting IRE1α and PERK 356 

pathways [136]. Furthermore, agonists of the glucagon-like peptide-1 receptor, such as 357 

exenatide, relieved ER stress via up-regulation of ATF4 expression [137]. Exogenous chemical 358 

chaperones have also been explored as a method to relieve ER stress by mimicking ER 359 

chaperones to promote protein transport and re-folding capacity [138]. 360 

Although several studies have demonstrated beneficial effects of enhancing UPR function for 361 

intestinal homeostasis, future investigations should proceed with caution. For example, 362 

hyper-activation of the UPR kinase IRE1α can exacerbate intestinal inflammation, as seen in 363 

patients with ATG16L1 and NOD2 mutations, therefore, in certain circumstances 364 

pharmacological inhibition of UPR receptors would be a more effective strategy [24,45,114] 365 
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Of particular interest, the selective autophagy cargo receptor optineurin forms a critical link 366 

between ER-stress resolution and autophagy due to its role in the degradation of IRE1α 367 

aggregates [24], and another recently identified autophagy cargo receptor that is integral for 368 

resolution of ER-stress, CCPG1, mediates ER-phagy to remove damaged ER membranes [23]. 369 

Understanding the biology and functions of adaptors such as optineurin and CCPG1 may 370 

identify novel druggable targets and expedite development of the next generation of 371 

therapeutics aimed at modulation of the UPR in combination with autophagy.  372 

Discussion 373 

The complexity of IBD is evident from the large number of risk loci identified by genetic 374 

studies, and the diverse health profile of patients that are affected. Mouse models of IBD 375 

cannot emulate the human disease, however they are useful tools to explore how specific 376 

gene mutations influence inflammation. Interestingly, as highlighted in (Table 1) the majority 377 

of mouse models mimicking IBD-associated genetic risk do not develop spontaneous 378 

inflammation, but rather they are sensitised to DSS-induced colitis, which acts by damaging 379 

the epithelium and increasing intestinal permeability.  The intestinal epithelium has 380 

important immunoregulatory functions and controls the equilibrium between tolerance and 381 

immunity to non-self-antigens [139]. As such breakdown of intestinal epithelial barrier 382 

function and concomitant interaction with environmental factors in the lumen is a trigger for 383 

inflammation. The intestinal lumen comprises a multitude of potential triggers including the 384 

microbiota, dietary antigens, and luminal antigens. Additional triggers may be host-derived 385 

factors that are released into the lumen as the intestinal epithelial barrier breaks down.  These 386 

so-called Damage-Associated Molecular Patterns (DAMPS) include intracellular proteins, such 387 

as high-mobility group box 1 (HMGB1), heat-shock proteins and components derived from 388 
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the extracellular matrix. Examples of non-protein DAMPs include genomic DNA, 389 

mitochondrial DNA, RNA, uric acid and ATP [140,141]. Not surprisingly, there is considerable 390 

interest in developing novel therapeutic strategies aimed at re-establishing intestinal barrier 391 

function [142] and modulation of DAMPs for the treatment of IBD [140]. 392 

Dysbiosis of the gut microbiome is strongly implicated in the pathogenesis of CD [143], and it 393 

has been suggested that microbial dysbiosis may be an environmental trigger.  A recent study 394 

by Tschurtschenthaler and colleagues [24] addressed this question. Although microbial 395 

dysbiosis was present in the ileum of Atg16l1;Xbp1ΔIEC mice, such structural alteration of the 396 

microbiota did not trigger ileitis but, rather, aggravated DSS-induced colitis [24].  In order to 397 

understand the role of the environment in disease, determining the relative contribution of 398 

genetics and a detailed characterization of environmental triggers is required.  399 

Greater understanding of the genetic factors that underlie CD pathogenesis are leading to 400 

improvements in treatment. Development of personalised therapies may be achieved via 401 

genotyping for key SNPs in genes involved in both the autophagy and UPR pathways. IBD 402 

drugs already established in the clinic have been shown to exert their effects, at least in-part, 403 

through the modulation of autophagy [26] or the UPR, and establishing patient genotypes 404 

may help predict response. For example, recent studies have identified an association 405 

between ATG16L1 T300A SNP and an enhanced therapeutic effect of thiopurines [144] and 406 

anti-TNF-α therapy [145]. Interestingly, the immunoregulatory effects of these drugs were 407 

associated with autophagy stimulation [144,146,147] and the T300A genotype has been 408 

associated with a subset of patients that exhibit deficiencies in both the UPR and autophagy 409 

[46]. Furthermore, CD patients harbouring NOD2 mutations associate with better clinical 410 

outcomes  in response to thiopurines, whereas CD patients with wild-type NOD2 respond 411 
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better to steroids and anti-TNF therapy [148]. Due to the genetic complexity of IBD and 412 

epistasis between genes, it is imperative that multiple genes are analysed for the purpose of 413 

patient stratification. For example, a recent study identified a 32-gene transcriptomic 414 

signature in lymphoblastoid cells that was able to predict lack of response to thiopurines, with 415 

aberrant cell cycle control, DNA mismatched repair and RAC1-dependent mechanisms 416 

implicated in thiopurine resistance [149]. Furthermore, it is increasingly clear that  epigenetic, 417 

microRNA and immune cell signatures among others will have a significant role to play in 418 

predicting disease susceptibility and response to therapy [150–152].  419 

With regards to the intestinal microbiota, a recent study has characterised microbial 420 

signatures for the diagnosis of IBD that were highly sensitive and could differentiate CD 421 

patients from healthy controls and UC patients. This study highlights the potential for using 422 

the intestinal microbiota as a micro-biomarker [153]. Importantly, as many drugs need to be 423 

metabolised and de-toxified by the gut microbiota, this approach could also have application 424 

in predicting response to therapy. Given that dysregulation of autophagy and ER-stress can 425 

affect the intestinal microbial environment, analysis of microbial signatures may help to 426 

determine if a patient would benefit from drugs that modulate the autophagy or UPR 427 

pathways.  428 

To conclude, the ER-stress/UPR and autophagy pathways play a vital role in the maintenance 429 

of intestinal homeostasis and breakdown of these converging pathways has been implicated 430 

in persistent intestinal infections, chronic inflammation and dysregulated immune responses 431 

observed in IBD. Therefore, strategies aimed at modulating these pathways simultaneously 432 

may prove to be an effective therapeutic option.  433 
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Figure Legends  438 

Figure 1: Autophagy pathway and autophagosome biogenesis 439 

During the initial stages of autophagy, the isolation membrane forms a double membrane 440 

vesicle (the autophagosome) around the cargo to be degraded. ULK complex (ULK1-ULK2-441 

ATG13-FIP200-ATG101) and Beclin 1 (Vps34-Vps150-Beclin1) complex, through interaction 442 

with ATG14, recruit autophagy proteins and complexes to the autophagosome membrane. 443 

ATG12 is conjugated to ATG5 and forms a complex with ATG16L1 (ATG16L1 complex). The 444 

ATG16L1 complex is proposed to specify the site of LC3 lipidation for autophagosome 445 

formation. LC3 is conjugated to PE to form lipidated LC3-II and is associated with the 446 

autophagosome outer membrane. Upon autophagosome closure, LC3 localises to the inner 447 

membrane and other autophagy proteins and complexes dissociate for recycling. The mature 448 

autophagosome then fuses with a lysosome to form an autophagolysosome, in which cargo 449 

are degraded by lysosomal enzymes and subunits are recycled.  450 

Figure 2: The unfolded protein response 451 

BiP chaperone protein binds unfolded/misfolded proteins in the ER and dissociates from 452 

transmembrane receptors upon accumulation of the toxic proteins. The transmembrane 453 

receptors PERK, IRE1α and ATF6 become activated. PERK phosphorylates EIF2α, which 454 

downregulates global translation but specifically upregulates ATF4 and CHOP that upregulate 455 

UPR-associated genes. IRE1α splices XBP1 to its active form and ATF6 is cleaved by S1P and 456 

S2P to active ATF6-N, which both translocate to the nucleus to upregulate UPR-associated 457 

genes. The main function of these UPR-associated genes is to increase protein refolding, 458 
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inhibit synthesis of new protein and degrade unfolded/misfolded proteins through autophagy 459 

and ERAD.  460 

Figure 3: Intersection between autophagy and the unfolded protein response 461 

ER stress activates transmembrane receptors PERK, IRE1α and ATF6. PERK phosphorylates 462 

EIF2α, which specifically upregulates ATF4 and CHOP that bind AAREs and CHOP-Res to 463 

upregulate autophagy genes. PERK also induces autophagy via mTORC1 inhibition. IRE1α 464 

splices XBP1 to its active form, which up-regulates Beclin-1.  IRE1α endonuclease activity 465 

activates the JNK pathway, which induces autophagy via TRAF2, NOD2 and NFκB. Enhanced 466 

autophagy degrades accumulated IRE1α clusters. Active ATF6-N induces autophagy via 467 

mTORC1 inhibition and binds C/EBP-β to up-regulate DAPK1.  468 

Table 1: Murine models of intestinal inflammation  469 

Links between autophagy, ER-stress/UPR and experimental colitis/intestinal inflammation 470 

and IBD. 471 

  472 
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