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Abstract Recently, the research of Internet of Things (IoT) and Multimedia Big Data

(MBD) has been growing tremendously. Both IoT and MBD have a lot of multimedia

data, which can be tampered easily. Therefore, the research of multimedia forensics is

necessary. Copy-move is an important branch of multimedia forensics. In this paper,

a novel copy-move forgery detection scheme using combined features and transitive

matching is proposed. First, SIFT and LIOP are extracted as combined features from

the input image. Second, transitive matching is used to improve the matching rela-

tionship. Third, a filtering approach using image segmentation is proposed to filter out

false matches. Fourth, affine transformations are estimated between these image patch-

es. Finally, duplicated regions are located based on those affine transformations. The

experimental results demonstrate that the proposed scheme can achieve much better

detection results on the public database under various attacks.
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1 Introduction

In recent years, Internet of Things (IoT) [7] and Multimedia Big Data (MBD) [32,84]

represent two appealing fields for many researchers [48, 50, 76, 82].Internet of Things

(IoT) impart networked connectivity to everyday objects in the physical world [7].

Various electronic devices in IoT have generated huge multimedia data. Multimedia

has become the ”biggest big data”, which is MBD. There are many information security

problems of IoT and MBD, i.e., the multimedia of IoT or MBD is tampered. The related

research is multimedia forensics, which is a science of acquiring, analyzing, extracting,

interpreting and producing an evidence from a multimedia source in civil, criminal or

corporate cases of administrative nature [51].

Multimedia forensics [38,61,78,80,81] is an important domain of information secu-

rity [9,10,12,13,19–24,39]. Both IoT and MBD [17,18,28,30,42,46,47,58,62,65–71,75,

77,79,83,85] have a lot of multimedia data. Therefore, the research of the multimedia

forensics is very meaningful to IoT and MBD. The multimedia forensics can be divided

into many branches, i.e., copy-move and splicing.

In a copy-move attack, one or more parts of an image are copied and pasted into

another part of the same image [27]. The object of study of copy-move is multimedia

data, many multimedia data make up MBD. Therefore, copy-move is an analysis and

treatment of MBD. Many image Copy-Move Forgery Detection (CMFD) schemes [4,

5, 16, 25, 27, 29, 33, 34, 44, 49, 64, 72] have been proposed in recent years. According to

Christlein et al. [15], commonly known copy-move detection schemes can be divided into

two branches. The first one is the block-based schemes, an image is divided into fixed-

size overlapping blocks, the each block is represented by a block descriptor, then those

descriptors are sorted and matched. The main difference of the block-based schemes is

their block features. Fridrich et al. [27] use the Discrete Cosine Transform (DCT) as

block features. Popescu and Farid [53] use the Principal Component Analysis (PCA) as

block features. Bashar et al. [5] propose a CMFD method using the Discrete Wavelet

Transform (DWT) or the Kernel Principal Component Analysis (KPCA). An improved

DCT-based method is proposed by Huang et al. [34]. Bravo-Solorio and Nandi [8]

propose a CMFD scheme based on the Fourier Transform. Li et al. [41] use the Polar

Cosine Transform (PCT) as block features. Ryu et al. [55,56] propose a CMFD scheme

using Zernike moment, and Locality Sensitive Hashing (LSH) matching is adopted

in [55]. A histogram of orientated gradients is applied to each block in [36]. A fast

Walsh-Hadamard Transform (FWHT) is adopted in [73].

The block-based schemes are not robust to scale, rotation, JPEG compression and

additive noise. So keyponint-based schemes are proposed. Feature exaction methods

such as the Scale-Invariant Feature Transform (SIFT) [45] and the Speeded Up Robust

Features (SURF) [6] are most widely used in keypoint-based schemes. Pan and Lyu [52]

propose a framework of the keypoint-based schemes, and their feature was also SIFT.

Amerini et al. [3] propose a method using SIFT feature, the g2NN matching and the

Agglomerative Hierarchical Clustering (AHC). Shivakumar and Baboo [57] propose a

scheme based on SURF and KD-Tree. Silva et al. [59] construct a multi-scale image

representation and a voting process among all detection maps. A rotation invariance

scheme is proposed by Christlein et al. [14]. The Harris corner points [31] in an image

are detected in [11], and their description is based on step sector statistics. Li et al. [40]

propose a scheme using the Maximally Stable Color Region (MSCR). Yang et al. [74]

propose a scheme using KAZE [2] and SIFT [45]. The image segmentation is adopted

by Li et al. [37] and Pun et al. [54]. The image is segmented by Simple Linear Iterative
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Clustering (SLIC) algorithm [1] before feature extraction. Lin et al. [43] propose a

Keypoint Contexts (KC) scheme to deal with duplicated regions with few keypoints.

Jin and Wang [35] use OpponentSIFT and optimized J-Linkage to detect duplicated

regions.

The block-based scheme is not robust and the keypoint-based scheme cannot detect

duplicated regions with few keypoints. To overcome this issue, in this paper, a novel

copy-move forgery detection scheme using combined features and transitive matching

is proposed.

The remainder of this paper is organized into three sections. Section 2 shows the

framework of the proposed scheme and then explains each step in detail. To validate

the effectiveness of the proposed scheme, the experimental results are given in Section

3. Finally, Section 4 draws conclusions.

2 The proposed scheme

SIFT

LIOP

Input Image
Transitive

Matching

Filtering false 

matches 

Affine
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Fig. 1 The framework of the copy-move forgery detection scheme.

2.1 Combined features extraction

Fig. 2 Copy-move forgery detection results of the proposed scheme. Column 1: the forged
images; column 2: the ground truth; column 3: the detection results only using SIFT; column
4: the detection results only using LIOP; column 5: the detection results using the proposed
scheme(SIFT+LIOP).
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A block-based scheme is good at plain copy-move, but it cannot deal with significant

geometrical transformations. A keypoint-based scheme is more robust than a block-

based scheme, but it cannot deal with duplicated regions with few keypoints. Therefore,

a strategy of combined features is proposed by our scheme, where both the Local

Intensity Order Pattern (LIOP) [63] and the Scale Invariant Feature Transform (SIFT)

[45] are adopted as our combined features.

Now we describe the reason why we choose LIOP and SIFT as the combined fea-

tures. First, SIFT is invariant to image scale, rotation, addition of noise, etc. Mean-

while, SIFT has been widely used in many CMFD schemes [3,4,52] and obtained good

results. Second, both local and overall intensity ordinal information of the local patch

are captured by the LIOP descriptor [63]. Therefore, LIOP is invariant to image scale,

rotation, viewpoint change, image blur and JEPG compression. We choose combined

features to deal with duplicated regions with few keypoints.

We are familiar with SIFT. So let’s introduce LIOP [63]. The main idea of LIOP

is that when the intensity monotonous changes, the relative order of pixel intensities

remains unchanged. The steps of LIOP are as follows. First, the local patch is divided

into ordinal bins using the overall intensity order. Second, for a point x, the LIOP of

which is defined as follows [63]:

LIOP (x) = Φ(γ(P (x))) (1)

where P (x) = (I(x1), I(x2), · · · , I(xN )) ∈ PN and I(xi) represent the intensity of the

i-th neighboring sample point xi. Third, for a local patch, to accumulate the LIOPs of

points in each ordinal bin, we obtained the LIOP descriptor [63]:

DLIOP = (des1, des2, · · · , desB)

desi = Σx∈bini
ω(x)LIOP (x)

(2)

where ω(x) is a weighting function and B is the number of the ordinal bins.

In some cases, the results of LIOP are better than that of SIFT. But in other cases,

the results of SIFT are better than that of LIOP. Therefore, both LIOP and SIFT are

integrated as our combined features, and the results of combined features are better

than that of LIOP or SIFT, as shown in Fig. 2.

2.2 Transitive matching

The detected keypoints are tentatively matched using their feature vectors. There are

two common matching methods. The first one is the 2NN matching proposed by Pan

and Lyu [52]. Given a keypoint, its distance d1 to the nearest neighbor and the distance

d2 to the next-nearest-neighbour are compared, if d1/d2 is less than a threshold (often

fixed to 0.5 or 0.6), a pair of keypoints is obtained. To deal with multiple keypoint

matching, Amerini et al. [3] proposed the generalized 2NN (g2NN) matching.

Some duplicated regions which are copied and pasted more than once still cannot be

detected by the g2NN matching, because some matched keypoints cannot be detected.

Therefore, the transitive matching is proposed to improve the matching relationship.

We obtain a list of matched keypoints after the g2NN matching, as shown in Fig. 3,

there are three duplicated regions, which are labeled as Ω1, Ω2 and Ω3. The duplicated

regions Ω1 and Ω3 are easy to be detected for there are enough matched keypoints

between them. Neither the matched keypoints between Ω1 and Ω2, nor the matched
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Fig. 3 The transitive matching. There are three duplicated regions, such as Ω1, Ω2 and Ω3.
The initial matching are connected by a solid line, for instance, (a1, b1) and (a1, c1). The
transitive matching are connected by a dotted line, for instance, (b1, c1).

keypoints between Ω2 and Ω3 are sufficient. So the duplicated region Ω2 cannot be

detected.

In fact, keypoints are sufficient, only their matching relationship is not detected.

Now the transitive matching is used to obtain the new matching relationship. We

obtain the matched keypoints (a1, c1) between Ω1 and Ω3, the matched keypoints

(a1, b1) between Ω1 and Ω2, which are connected by a solid line in Fig. 3. Keypoints

a1 is matched with c1, and the same keypoints is matched with b1, then we draw

a conclusion that keypoints b1 is matched with c1, which is the transitive matching.

Therefore, the transitive matching can be described as follows:

(K1,K2), (K1,K3)⇒ (K2,K3) (3)

where (K1,K2) indicates the matched keypoints K1 and K2. Then the new matched

keypoints such as (b1, c1) and (b2, c2) is obtained, which are connected by a dotted line

in Fig. 3. Thus, we can estimate the affine transformation between Ω2 and Ω3 after the

transitive matching. The transitive matching try to detect a region which is copied and

pasted more than once. The matching relation is improved by the transitive matching.

To decrease mismatches, the transitive matching is limited to some regions which have

matching relation. As shown in Fig. 3, there are matched keypoints between the three

regions, which are connected by a solid line, then the transitive matching is carried out

in the three regions.



6

2.3 Filtering false matches

In the section, the filtering algorithm to discard false matches is described. To improve

the accuracy of affine transformations, those mismatched keypoints should be discarded

after the transitive matching. Therefore, the Random Sample Consensus (RANSAC)

algorithm [26] is adopted by Pan and Lyu [52]. The RANSAC algorithm returns with

the affine transformations that lead to the largest number of matched keypoints and

the smallest error. Some mismatched keypoints can be discarded by RANSAC. But

when there are lots of mismatched keypoints, the inaccurate affine transformation

will be obtained by RANSAC. To overcome this issue, some false matches should be

filtered, and the corresponding affine transformation will not be estimated. Considering

the duplicated regions are usually meaningful regions, the input image is divided into

non-overlapping image patches. It should be noted that the images are segmented by

the Simple Linear Iterative Clustering (SLIC) algorithm [1]. Then Nm is adopted to

represent the number of matched keypoints between the two image patches. If Nm

is larger than a threshold, an affine transformation between the two image patches is

estimated. Otherwise, those mismatched keypoints will be discarded. Thus some false

matches can be discarded by our filtering algorithm.

2.4 Estimation of affine transformation

After the matched keypoints and the image patches are obtained, an affine transfor-

mation is estimated between the two image patches, one denotes as the source region

and the other denotes as the forged region, if there are more than three matched

keypoint between the two image patches. Two matched keypoints x̂i = (xi, yi, 1)T

and x̂′i = (x′i, y
′
i, 1)T are from the source region and the forged region, respectively.

Formally, their transformation can be expressed in matrix form as:

x̂′i = Hx̂i =

h11 h12 tx
h21 h22 ty
0 0 1

 x̂i (4)

where tx and ty are denoted as the translation factors, while h11, h12, h21 and h22 are

denoted as rotation and scaling directions deformation. An affine transformation has six

degrees of freedom, corresponding to the six matrix elements, then the transformation

can be computed from three pairs of matched keypoints that are not collinear. Using

RANSAC, the transformation matrix which returns the the largest number matched

keypoints is obtained. Meanwhile, their total error of the affine transformation is min-

imized. Thus, an affine transformation between the two image patches is estimated.

Then the duplicated regions are located according to the affine transformation [52].

3 Experiments and discussions

3.1 Dataset and error measures

To evaluate the efficiency of the proposed scheme, the Image Manipulation Dataset

(IMD) [15] is adopted as the image dataset. The average size of an image is about
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Table 1 Setting of the attacks on IMD

Attacks Criteria Parameters
Scaling Ratio 0.91:0.02:1.09
Rotation Angle 2◦:2◦:10◦

AWGN Stand Deviation 0.02:0.02:0.1
JPEG Quality Factor 20:10:100

3000×2300 pixels. There are 1488 images on IMD. The details of the utilized image

dataset are shown in Table 1.

In fact, the forgery is more difficult to be detected when the duplicated regions are

small. Many images on the Internet are usually small, they are not as big as the images

on IMD. Therefore, all the images on IMD are resized, just as Li et al. [37] did. The

maximum of the width and the height of the images are set to 800 pixels. The proposed

scheme is rather challenging for the duplicated regions are difficult to be detected after

the images are resized.

It should be noted that the images on IMD are segmented by the SLIC algorithm

[1], which is implemented by vlFeat library [60], where all the images on IMD are

empirically divided into 100 image patches.

To assess the proposed scheme, we should test the detection error at two different

levels, namely the image level and the pixel level. The detection error are measured by

the recall, the precision, and the F1 score [15], which are calculated as follows:

precision =
| {Forged pixels}

⋂
{Detected pixels} |

| {Detected pixels} | (5)

recall =
| {Forged pixels}

⋂
{Detected pixels} |

| {Forged pixels} | (6)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(7)

3.2 Comparisons with other relevant methods

In the section, the proposed scheme is compared with several state-of-the-art existing

schemes, for instance, SIFT [3,52], SURF [57], JLinkage [4] and Zernike [56]. The results

of SIFT, SURF and Zernike are different with Christlein et al. [15] because of the image

resizing. The process of resizing will make the duplicated regions smaller than before.

Therefore, it will difficult to be detected for all the CMFD schemes. The proposed

scheme combines both LIOP and SIFT. Some detection results of the proposed scheme

in comparison with only SIFT or LIOP are shown in Fig. 2. Obviously, the most

duplicated regions can be detected by the the proposed scheme.

3.2.1 Detection results under plain copy-move

In this section, we evaluate the proposed scheme under ideal conditions. There are 48

original images and 48 forgery images, in which a one-to-one copy-move is implemented.

The experimental results under plain copy-move at the image level and the pixel level

are shown in Table 2 and Table 3, respectively. It should be noted that all the images

on IMD are resized and the experimental results are different with Christlein et al. [15].

From Table 2 and Table 3, it can be observed easily that the recall of the proposed
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scheme is the best among all the test schemes. The precision of the proposed scheme

is better than that of SIFT, SURF and JLinkage, all of which are keypoint-based

schemes. Meanwhile, the F1 score of the proposed scheme is much better than that

of the existing state-of-the-art schemes. As a comprehensive evaluation, the F1 score

combines both the recall and the precision into a single value. Therefore, the proposed

scheme is the best among the existing state-of-the-art schemes.

Table 2 Detection results for plain copy-move at the image level

Methods recall (%) precision (%) F1 (%)
SIFT [3,52] 47.92 74.19 58.23
SURF [57] 43.75 72.41 54.55
JLinkage [4] 62.50 78.95 69.77
Zernike [56] 79.17 88.37 83.52
Proposed 93.75 81.82 87.38

Table 3 Detection results for plain copy-move at the pixel level

Methods recall (%) precision (%) F1 (%)
SIFT [3,52] 37.93 36.79 37.35
SURF [57] 25.81 31.44 28.35
JLinkage [4] 47.47 48.12 47.79
Zernike [56] 53.92 87.37 66.68
Proposed 75.41 73.44 74.42

3.2.2 Detection results under other attackers

This section presents the comparison of the proposed method with other schemes under

various attacks. The proposed scheme is evaluated by the recall, the precision and the

F1 at the pixel level. It should be noted that the results of SIFT, SURF and Zernike are

different with Christlein et al. [15] because of the image resizing. In the experiments,

all the images are resized to no more than 800 pixels, just as Li et al. [37] did.

Figure 4 shows the recall results of the proposed scheme compared with the test

schemes. It can be observed easily that the recall of the proposed scheme is the best

among all the test schemes, which means that more number of duplicated regions can

be obtained by the proposed scheme.

Figure 5 shows the precision results of the proposed scheme compared with the

test schemes. The precision results of the proposed scheme is better than that of SIFT,

SURF and JLinkage, all of which are keypoint-based schemes. As a block-based scheme,

the precision results of Zernike is the best among all the test schemes. Therefore, the

precision results of the proposed scheme is the best among all the keypoint-based

schemes.

Figure 6 shows the F1 results of the proposed scheme compared with the test

schemes. Obviously, the proposed scheme outperforms the prior arts in terms of F1

criterion. The F1 score combines both the precision and the recall into a single value,

it is a comprehensive evaluation. Therefore, the proposed scheme is better than the

existing state-of-the-art schemes under various attacks.
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Fig. 4 Recall results at the pixel level. (a) Rotation, (b) Scale, (c) Adding noise, (d) JPEG
compression.

4 Conclusions

In this paper, a novel copy-move forgery detection scheme using combined features

and transitive matching is proposed. The specific contributions are summarized as fol-

lows. First, combined features which are composed of LIOP and SIFT are proposed.

Thus, some duplicated regions with few keypoints can be detected. Second, transitive

matching is used after the g2NN matching, then the matching relationship is improved.

Third, to discard the false matches, a new filtering approach based on image segmen-

tation is proposed. Experimental results show that the proposed scheme can achieve

the best recall and the best F1 score under challenging conditions.
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Fig. 5 Precision results at the pixel level. (a) Rotation, (b) Scale, (c) Adding noise, (d) JPEG
compression.
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