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Abstract 
Buildings are the world’s largest contributors to energy demand, greenhouse gases 
(GHG) emissions, resource consumption and waste generation. An unmissable 
opportunity exists to tackle climate change, global warming, and resource scarcity by 
rethinking how we approach building design. Structural materials often dominate the 
total mass of a building; therefore, a significant potential for material efficiency and GHG 
emissions mitigation is to be found in efficient structural design and use of structural 
materials.   

To this end, environmental impact assessment methods, such as life cycle assessment 
(LCA), are increasingly used. However, they risk failing to deliver the expected benefits 
due to the high number of parameters and uncertainty factors that characterise impacts 
of buildings along their lifespans. Additionally, effort and cost required for a reliable 
assessment seem to be major barriers to a more widespread adoption of LCA. More 
rapid progress towards reducing building impacts seems therefore possible by 
combining established environmental impact assessment methods with artificial 
intelligence approaches such as machine learning and neural networks. 

This short communication will briefly present previous attempts to employ such 
techniques in civil and structural engineering. It will present likely outcomes of machine 
learning and neural network applications in the field of structural engineering and – 
most importantly – it calls for data from professionals across the globe to form a 
fundamental basis which will enable quicker transition to a more sustainable built 
environment.   

Keywords: sustainable; structural; materials; embodied carbon; life cycle assessment LCA; 
machine learning; neural networks.  
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1. Current situation 

The built environment is the sector which puts the most pressure on the natural 
environment [1], and there is urgency in reducing and mitigating the environmental 
impacts caused by buildings [2]. This is particularly true for the non-operational life 
cycle stages (e.g. manufacturing of building materials and components, construction, 
dismantling, waste processing), whose impacts are currently unregulated and seldom 
calculated [3].  

The structure, together with internal fitouts and their replacement cycles, accounts for 
often the largest mass in a building and has been found to contribute to the majority of 
its embodied carbon1  emissions across the whole life cycle [4, 5]. In order to mitigate 
carbon emissions it is imperative to assess environmental impacts accurately and 
reliably. Attempts do exist where embodied carbondatabases have been created to 
facilitate the calculation and benchmarking of building structures and structural 
materials [6-9], but there remains considerable variations in the application of  
methodological approaches, data used, and transparency [1, 3]. This variation has led to 
substantial limitations in drawing conclusions and supporting decision making [3, 10].  

The complexity of assessing the life cycle environmental impacts of buildings and 
building materials is justified by, and probably originates from, the inherent diversity of 
the construction sector. Construction projects involve multiple stakeholders over 
various life cycle stages and deal with many products and services – each with their 
own specific life cycles – that interact dynamically in both time and space [11, 12]. 
Therefore, even in detailed analyses of structural materials [3] or entire buildings [6], 
results regularly differ by two orders of magnitude, leaving decision makers unsure of 
which reliable value to pick.  

In complex issues like the one just described, machine and deep learning, and neural 
networks can represent a further viable approach to problem solving and to support 
decision-making. This short communication does not aim to be an introduction to 
machine and deep learning, and neural networks but the interested reader can find 
thorough reviews and up to date information in the works of Schmidhuber [13] and 
Nielsen [14].  

Significant advances in machine learning and neural networks, and increased 
applications of these methods, have been made in recent years [13]. In the following 
sections, we briefly review the current status of machine learning and neural network 
applications in structural and civil engineering and highlight their potential use in 
research concerning sustainability related decisions concerned with building structures 

                                                        
1 We use embodied carbon as a shorthand to indicate the sum of CO2eq emissions occurred due to all 
activities and components other than the operational energy consumption related to a building's life. 
More generally, embodied costs or impacts may refer to different units such as energy, carbon, water, 
natural resource depletion, etc. Carbon dioxide equivalent emissions are also the measuring unit of the 
Global Warming Indicator (GWI). 
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and structural materials. The short communication concludes with a call for data to 
access this yet untapped potential.   

2. Machine and deep learning in structural and civil engineering 

In 1997, Reich [15] reviewed the applications of machine learning in civil engineering at 
the time, suggesting that the use of machine learning in civil engineering was still in its 
infancy. However, the tone of his work was very optimistic seemingly suggesting that a 
broader uptake of machine learning in engineering was imminent. Twenty years have 
passed and we are yet to see such broader uptake but there is a more realistic hope that 
the time is now right due to pervasive computing and powerful computers, and the 
whole big data and internet of things revolution. Recent applications of machine 
learning and neural networks in structural engineering are mostly related to prediction 
and modelling of elastic properties of materials [inter alia 16, 17], compressive and 
bond strength of concrete [e.g. 18, 19], buckling load [20-22], development of 
cementitious composites [23], and the refinement finite element models [e.g. 24].  

The reasons for these specific fields of applications is related to the nature of machine 
learning and neural networks, that is a large amount of initial data based on which the 
learning algorithm (or network) can be trained (Figure 1). All the above applications 
allow for a relatively easy access to large datasets through, for instance, repeated 
laboratory testing or computer modelling. However, the same cannot be said for 
embodied and life cycle carbon assessments of building structures and structural 
materials. Specifically, multiple specimens of concrete could be realised and tested in a 
controlled laboratory environment to gather the initial data (Figure 1) on, say, 
compressive strength to start the process. However, if we were to assess the embodied 
carbon of concrete in different building projects we need to know exact quantities, 
where the different materials are coming from, the distances they have travelled and the 
means of transportation, the exact construction activities taking place on site, and so on. 
This would then allow for the initial data that starts the process.  

 
Figure 1 - Typical workflow for machine learning – adapted from [25] 
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It is evident from Figure 1 that having an initial, large-enough data population 
represents the first step in the machine learning process. Such an opportunity should 
not be missed, for the predictive power that machine learning and neural networks hold 
can be truly unexpected and surprising. For instance Gebru et al. [26] used deep 
learning to estimate the demographic makeup of US neighbourhoods. They found that 
the “resulting associations are surprisingly simple and powerful; […] for instance if a 
number of sedans encountered  during  a  drive  through  a  city  is  higher  than  the  
number  of  pickup  trucks,  the  city  is  likely  to  vote  for  a  Democrat during  the  next  
presidential  election  (88%  chance);  otherwise, it  is  likely  to  vote  Republican  
(82%)” [26]2. Such impressive conclusion however is solidly built on a large amount of 
initial data.   

AI might help solve problems in showing how buildings can be reasonably divided up 
into sets. The benefit of categorising would be to produce guidance that starting from a 
building of, say, type A is able to place the likely impacts in a X-Y range, and suggests the 
best mitigation measures to reduce those impacts. This would be a considerable 
improvement, and certainly more efficient, than doing an LCA every single time to work 
our the impact range, the ‘hotspots’, and the mitigation measures. Automated and 
intelligent classification does therefore constitute the first barrier to overcome as 
shown in the example given by Pesto [27] who applied convolutional neaural networks 
to the problem of classifying US houses by architectural style.   

Ultimately, data availability now represents the single and greatest barrier to utilise 
machine learning and neural networks in understanding the environmental impacts of 
building structures. Even in the most comprehensive embodied carbon database [6] 
there are only 144 data points for building structures. Unfortunately, a far greater data 
population is needed, which leads us to the next section.  

3. Potential future applications: call for data 

Given the current state of machine learning and neural networks, it is possible to 
foresee what possibilities a successful implementation of machine learning for 
sustainable structural engineering would unlock. We have envisaged two such 
opportunities that are within reach; they are shown in Figure 2.  

                                                        
2 It is worth mentioning, that AI can establish causual links that are not yet understood and explained, and 
therefore we will have to be careful of correlation without causation. 
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Figure 2 - Examples of potential successful implementation of machine learning and neural networks in sustainable 
structural engineering 

For example, Figure 2 shows a case where a trained and validated machine learning 
algorithm is able to look at visual representation of building structures to accurately 
and reliably predict their embodied carbon estimates. Alternatively, it could produce a 
material efficiency index by looking at the difference between the structure fed to the 
algorithm and equivalent optimised structures (e.g. one with the same structural 
performance but optimised, i.e. not overdimensioned, structural members) on which 
the algorithm was trained.  

Similarly, a neural network could take very few numerical inputs3 related to the 
building structure to again estimate embodied or life cycle carbon emissions, produce 
optimised designs, or assess the circular economy potential by looking at material reuse 
at the end of the building’s life [28]. The possibilities are endless but they all start with a 
large and reliable dataset of real and accurate designs of building structures.  

For this reason, this short communication aims to launch a broad and open call for data 
to support such research direction. A submission platform has been created on the 
website of the Resource Efficient Built Environment Lab (REBEL) [29] where data on 
geometry, material, building type and other key parameters can be recorded and 
submitted. REBEL is facilitating this data gathering with an aim to advance sustainable 
structural engineering and material efficiency.  All data will be treated anonymously and 
in an aggregated manner and ethics approval has been obtained by the host 
organisation of the research project [30]. A Data Management Plan (DMP) has been 
submitted to, and approved by, the Engineering and Physical Sciences Research Council 
(EPSRC) and is available to any contributor upon request. The dataset that will 
eventually be put together will be made available freely to anyone for research and non-
commercial purposes in agreement with the EPSRC policy framework on research data 
[31].  

Specifically, we aim to collect as broad a set as possible within the following categories: 
                                                        
3 In the example of Figure 2, Lx, Ly, nx, ny, Ns, and hs refer respectively to the length of the primary span, 
length of the secondary span, number of primary and secondary spans, number of storeys, and inter-
storey height.  
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1. Design of structural frames with steel as the primary structural material, 
2. Design of structural frames with reinforced concrete as the primary structural 

material, 
3. Design of structural frames with structural timber as the primary structural 

material. 

There is no limitation as to parameters such as footprint area, net usable area, number 
of storeys, or the shape of the buildings. In fact, the more varied the sample population 
the more accurate the final model will be in dealing with diverse inputs. Based on 
collected data, which will reflect real built assets, the research team will carry out a 
detailed and rigorous life cycle assessment (LCA) for each of them. To ensure that these 
LCAs will not fall short of transparency and reliability, a structured approach will be 
followed based on the newly published RICS guidance [32]. Data input will be 
consistently reported, data quality assessed, and assumptions justified and recorded, to 
ensure that the training population will be as reliable and as transparent as possible. 
This in turn will produce transparent, verifiable, and reliable predictions. Both the raw 
data on structural designs (in anonymised and aggregate form) and the LCAs will be 
made publicly available [31]. Parametric modelling will be used to increase the size of 
the sample population if necessary. This will form the Initial Data of Figure 1 to build 
and train the model, i.e. a population of structural designs and their related life cycle 
carbon emissions. Not to limit any perspective user from submitting a structure, we 
have decided not specify any file format. Regardless of the file (e.g. dxf, dwg, pdf, Revit 
model, Rhino model, SketchUp model etc.) a guided file upload system will ask the users 
relevant questions such as the building type (e.g. school, office, residential development, 
etc.), the main structural material, and a few others to ensure the dataset is harmonised 
across the key relevant parameters. There is no deadline for data submission as at any 
point new inputs can be used either to further train the model or to test its predictive 
power.  

4. Concluding remarks 

In this short communication, we have highlighted the potential to significantly increase 
the sustainability of building structures by adopting artificial intelligence approaches 
such as machine learning algorithm and neural networks.  

However, the single and biggest impediment to doing so lies with the lack of large 
datasets of real-world structural designs across the main structural materials. The 
availability of such data will allow for more robust and accurate assessments of 
structural materials and construction details, which consequently create an opportunity 
for more reliable estimates of the life cycle GHG emissions. Additionally, such robust 
and reliable dataset will also enable analyses on material efficiency, circularity, wider 
environmental impact assessments—to name but a few. Not least, the combination of 
reliable data and AI will produce an unprecedented shift in terms of speed and ease 
when it comes to LCAs of building structures. In turn, this will widen the LCA user base 
and will increase the number of decisions which are based also on sustainability aspects 
and indicators.  
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We hope that as many stakeholders as possible will contribute their structural designs. 
Data will be anonymised and treated in an aggregate manner and therefore this sharing 
effort will truly contribute to the advancement of science. We will also feed back all 
research findings and outcomes to all organisations who contributed. If willing, 
organisations will also be acknowledged in white papers and publications arising from 
this research. This will show their genuine commitment to environmental sustainability, 
and the role they are playing towards a cleaner, low-carbon future. Mitigating the 
carbon emissions and environmental impacts caused by buildings is imperative and 
urgent – this is one opportunity to wholeheartedly contribute to worldwide efforts to 
tackle climate change and global warming.  
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